Postinflationary Higgs Relaxation and the Origin of Matter

Size: px
Start display at page:

Download "Postinflationary Higgs Relaxation and the Origin of Matter"

Transcription

1 Postinflationary Higgs Relaxation and the Origin of Matter Louis Yang University of California, Los Angeles Ph.D. Final Oral Presentation May 16, 2017

2 Outline Motivation: the Higgs potential Quantum Fluctuation during inflation Postinflationary Higgs relaxation Leptogenesis via Higgs field relaxation Cosmic Infrared Background (CIB) excess Isocurvature perturbation Based on: [1] A. Kusenko, L. Pearce, LY, Phys. Rev. Lett. 114, (2015). [2] L. Pearce, LY, A. Kusenko, M. Peloso, Phys. Rev. D 92, (2015). [3] LY, L. Pearce, A. Kusenko, Phys. Rev. D 92, (2015). [4] H. Gertov, L. Pearce, F. Sannino, LY, Phys. Rev. D 93, (2016). [5] A. Kusenko, L. Pearce, LY, Phys. Rev. D 93, (2016). [6] M. Kawasaki, A. Kusenko, L. Pearce, LY, Phys. Rev. D 95, (2017). 2

3 Motivation The Higgs Potential 3

4 The Higgs Boson In 2012, ATLAS and CMS found the Higgs boson. V Φ = m 2 Φ + Φ + λ Φ + Φ 2, where Φ = v + h. Higgs boson mass: M h = ± ± GeV. A mass smaller than expected! A small quartic coupling λ μ = M t M h 2 2v V(φ) v h Electroweak Vacuum φ C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, (2016). 4

5 Running of λ J. Elias-Miro et al., Phys. Lett. B709, 222 (2012) G. Degrassi et al., JHEP 1208, 098 (2012) D. Buttazzo et al., arxiv: [hep-ph] QFT: Coupling constants changes with energy scale μ β λ = y t 4 + Due to large top mass m t = 1 2 y tv If no new physics, λ h becomes very small and turns negative at μ GeV. Figure from D. Buttazzo et al., arxiv: [hep-ph] 5

6 The Higgs Effective Potential Another minimum in the potential: Planckain vacuum!! Much lower than the electroweak vacuum. Our universe can tunnel into the Planckain vacuum and end in a big crunch! ssss V lll V φ Planckian Vacuum h lll φ Our Electroweak Vacuum ~ GeV h 6

7 Meta-stability of our Vacuum J. Elias-Miro et al., Phys. Lett. B709, 222 (2012) G. Degrassi et al., JHEP 1208, 098 (2012) D. Buttazzo et al., arxiv: [hep-ph] Our universe seems to be right on the meta-stable region. 7

8 The Higgs Effective Potential What does it imply? A shallow Higgs potential at large scale A large Higgs VEV during inflation ssss V lll V φ Planckian Vacuum h lll φ Our Electroweak Vacuum ~ GeV 8

9 I Quantum Fluctuation during Inflation 9

10 Quantum Fluctuation during Inflation During inflation, quantum fluctuations get amplified. They becomes classical when the wavelength exits the horizon. φ(t) jumps randomly like Brownian motion. Horizon Horizon φ(x) Quantum fluctuation Inflation φ 0 0 Becomes classical 10

11 Quantum Fluctuation during Inflation Quantum fluctuation brings the field to non-zero value. Classical rolling down follows φ + 3H I φ = V φ, which requires t rrr ~ d2 V φ dφ = 1 m φ If m φ H I, insufficient time to relax (slow-rolling). A non-zero VEV of the scalar field is building up. V(ϕ) ϕ min Quantum Jump Bunch, Davies (1978); Linde (1982); Hawking, Moss (1982); Starobinsky (1982); Vilenkin, Ford (1982); Starobinsky, Yokoyama (1994). Can t Roll Down Classically ϕ 11

12 Large VEV of Scalar Fields A. A. Starobinsky (1982) A. Vilenkin (1982) Fokker-Planck equation: P c φ,t = j c where j c = P c φ, t : probability distribution of φ H 3 P c 8π 2 + P c H Massless scalar, the field undergoes random walks φ 0 φ 2 H I t = H I 22 Massive case V φ = 1 2 m2 φ 2 : φ 0 3 H I 8π 2 m For V(φ) = λ 4 φ4 : φ H I /λ 1/4 In general, V φ 0 ~ H I 4 dd dd N, N: number of e-folds 2 12

13 Large Higgs VEV During Inflation Higgs has a shallow potential at large scale (small λ). Large Higgs vacuum expectation value (VEV) during inflation. For inflationary scale Λ I = GGG, the Hubble rate Λ I 2 H I = ~10 11 GGG, and λ~0. 00, the Higgs VEV after 3M pp inflation is φ H I /λ 1/4 ~ GGG. For such a large VEV, the Higgs field can be sensitive to higher dimensional operators. 13

14 Postinflationary Higgs Field Relaxation 14

15 Post-inflationary Higgs Relaxation As the inflation end, the H drops. When H < m φ,eee, the Higgs field can relax classically φ t + 33 t φ t + V eff φ, T t = 0 φ V eee (φ, T) is the finite temperature effective potential. Higgs field oscillates with decreasing amplitude due to the Hubble friction. Relaxation time 2.5 4/3 1 t rrr = t RR if thermal mass dominates V a T T RR t α RR 2 T 2 T 2 φ 2 t rrr = 6. 9/ λφ 0 if the zero T dominates V λφ 4 /4 Typically during reheating or right after reheating. 15

16 Post-inflationary Higgs Relaxation M. Kawasaki, A. Kusenko, L. Pearce, LY, Phys. Rev. D 95, (2017). If the thermal mass dominates, V φ, T 1 2 α T 2 T 2 φ 2 where α T λ g g y t at μ = GeV. The equation of motion is approximately A solution: φ t + 2 t φ t + α T 2 T RR φ t = φ 0 Γ J 2 3 where β = T RR t RR and x = t/t RR. 2 t t RR 4α T β 3 φ t = 0 4 x3 1 α T β 2 3 x 16

17 Post-inflationary Higgs Relaxation Thermal mass dominated Zero T potential dominated What can this do for us? Breaks time reversal symmetry, and provides the out of thermal equilibrium condition. An important epoch for the matter-antimatter asymmetry! 17

18 Initial Conditions for the Higgs field Initial Condition 1 (IC-1): A metastable Planckian vacuum due to higher dimensional operators O~ M 2 φ6, M 4 φ8, φ11 M6 Higgs field trapped in a metastable vacuum during inflation Reheating destabilize the metastable vaccum via δδ~t 2 φ 2 and the Higgs VEV relaxes V(ϕ) H 4 Trapped Reheating Second Min. Thermal correction ϕ 18

19 Initial Conditions for the Higgs field Initial Condition 2 (IC-2): Inflaton VEV induced mass term to the Higgs via O = I n φ m /Λ n+m 4 V(ϕ) Large I during early stage of inflation Large Higgs mass and suppressing quantum φ 2 ~0 fluctuation In the last N e-fold of inflation, I decreases and Higgs becomes massless with H N φ 0 = 22 Last Early N e-folds stage End of of inflation Quantum jumps Rolls down classically φ 2 starts φ 2 to = grow H 2 I N/4π 2 H 4 H 4 ϕ 19

20 II Leptogenesis via the Relaxation of the Higgs Field 20

21 Sakharov Conditions Andrei D. Sakharov (1967) Successfully Leptogenesis requires: 1. Deviation from thermal equilibrium Post-inflationary Higgs relaxation 2. C and CC violations CC phase in the quark sector (not enough), higher dimensional operator, 3. Lepton number violation Right-handed Majorana neutrino, others 21

22 Effective Operator M. E. Shaposhnikov (1987), M. E. Shaposhnikov (1988) CP violation: Consider the effective operator: O 6 = 1 Λ n 2 φ2 g 2 WW g 2 BB, W and B: SS 2 L and U 1 Y gauge fields W : dual tensor of W Λ n : energy scale when the operator is relevant In standard model, integrating out a loop with all 6 quarks: Also used by baryogenesis But suppressed by small Yukawa and small CC phase 22

23 Effective Operator O 6 = 1 Λ n 2 φ2 g 2 WW g 2 BB Replace the SM fermions by heavy states that carry SS 2 charge. Scale: Λ n = M n mass (must not from the SM Higgs) or Λ n = T temperature 23

24 Effective Chemical Potential Dine et. al. (1991) Cohen, Kaplan, Nelson (1991) O 6 = 1 Λ n 2 φ2 g 2 WW g 2 BB Using electroweak anomaly equation, we have O 6 = 1 2 Λ φ 2 μ μ j B+L, n μ where j B+L is the B + L fermion current. Integration by part: O 6 = 1 Λ n 2 μ φ 2 μ j B+L Similar to the one use by spontaneous baryogenesis. Breaks CPT spontaneously while φ is changing! Sakharov s conditions doesn t have to be satisfied explicitly in this form. 24

25 Effective Chemical Potential O 6 = 1 Λ n 2 μ φ 2 μ j B+L Effective chemical potential for baryon and lepton number: μ eff = 1 Λ n 2 t φ 2 Shifts the energy levels between fermions and anti-fermions while Higgs is rolling down (φ 0). V(ϕ) Scalar VEV Rolls Down Reheating Leads to l, q l, q ϕ 25

26 Lepton Number Violation Last ingredient: Right-handed neutrino N R with Majorana mass term M R. The processes for ΔΔ = 2: ν L h 0 ν L h 0 ν L ν L h 0 h 0 ν L ν L h 0 h 0 For m ν ~0. 1 ev, σ R ~ Σ 2 im ν,i ~10 33 GeV v EE LY, L. Pearce, A. Kusenko, Phys. Rev. D 92, (2015). 26

27 Evolution of Lepton Asymmetry Boltzman equation: n L + 33n L 2 π 2 T3 σ R n L 2 π 2 μ eeet 2 Final lepton asymmetry: Y = n L s 99σ R π 6 g S φ 0 Λ n 2 3z0 T RR eee 4α T t RR π 2 Λ I = GeV, Γ I = 10 8 GeV, T RR = GeV, φ 0 = GeV. For μ eff M n 2 case, M n = GeV. σ R T 3 RR t RR Could be the origin of matter-antimatter asymmetry! 27

28 Leptogenesis via other scalar fields Elementary Goldstone Higgs (EGH) σ H. Gertov, L. Pearce, F. Sannino, and LY Phys. Rev. D 93, (2016), arxiv: [hep-ph] Axion a A. Kusenko, K. Schmitz, T. Yanagida, PRL 115, (2015) Pseudoscalar S L λ γ α 111v EE SF μμ F μμ Sign of S determines the sign of baryon asymmetry Domain wall Fixed by large correlation length A. Kusenko, L. Pearce, and LY Phys. Rev. D 93, (2016), arxiv: [hep-ph]. 28

29 Leptogenesis via the Neutrino Production L. Pearce, LY, A. Kusenko, M. Peloso, PRD 92, (2015) Evolving background scalar field creates particles Initial vacuum is not the vacuum at a later time Time-dependent background mixes positive and negative frequency solutions. Neutrino production via Higgs relaxation L = Y e L i j ii Φe R ν Yii L i j 1 Φ N R 2 M iin i j R N R + h. c. With effective chemical potential and Majorana mass term, the system favors production of neutrinos over antineutrinos. Work better at low reheat temperature ( T RR ~ Γ I m pp ) -> less dilution by entropy production of inflaton decay. 29

30 III Cosmic Infrared Background Radiation excess 30

31 Cosmic Infrared Background (CIB) fluctuations CIB: IR part of extragalactic background light from galaxies at all redshifts Difficult to determine absolute intensity (isotropic flux) More focus on the anisotropies (spatial fluctuation) of CIB CIB (spatial) fluctuations observed by Spitzer space telescope 31

32 Excess in the CIB fluctuations Helgason et al., MNRAS 455, 282 (2015) Kashlinsky et al. ApJ 804, 99 (2015) Spitzer AKARI Excess found in near-ir (1 11 μμ) at θ = 3 33 arcmins scale. Not from known galaxy populations at z < 6 Most possible: First stars (population III stars) at z 11 But: Needs too large star formation efficiency and/or radiation efficiency Due to insufficient stars forming at z =

33 CIB fluctuation from population III stars CIB fluctuation: δf CCC nwm 2 sr 1 (2 55m at 5 ) Matter density fluctuation at 5 arcmins scale: Δ Inferred isotropic flux: F CCC δf CCC Δ 5 = 1 nwm 2 sr 1 CIB flux from first stars (population III) F FF = c 44 ε ρ B c 2 1 f hhhh f z eee f hhhh : mass fraction of the universe inside collapsed halos f : the star formation efficiency ε : radiation efficiency To explain the CIB fluctuation by first stars forming: f hhhh ε 10 3 f F FF F CCC Difficult to reach with only adiabatic density perturbation from usual inflation. Solution: isocurvature perturbation in the small spatial scale 33

34 Large vs Small scale density perturbation Δ 5 10% ~10 6 M halos Isocurvature perturbation due to relaxation leptogenesis θ ~ 5 Large scale fluctuation in CIB due to the adiabatic perturbation from inflaton Increasing the density contrast δ B in small scale increase the number of collapse halos f hhhh 34

35 Isocurvature Perturbation from Relaxation Leptogenesis 35

36 Isocurvature Perturbation Fluctuation of φ in each patch of the universe during inflation Variation in baryon asymmetry δ(b B ) through leptogenesis Spatial fluctuation of baryon asymmetry after patches reenter V(φ) φ Baryon asymmetry δy B Baryon density δρ B Produce isocurvature perturbation of baryon φφφ φ φφ No contribution to the initial curvature perturbation. 36

37 Higgs Fluctuation during Inflation In IC-2, the Higgs φ becomes massless in the last N llll e-fold of inflation due to the inflaton couplings. Quantum fluctuation δφ k H I is produced at the scale 22 smaller than the horizon scale l~h 1 at that time When Higgs becomes massless t = 0 Outside the horizon H I Inside the horizon No difference from Minkowski space After N llll e-fold of inflation t = N llll H H I eee N llll H I δφ k H I 22 Inflationary region p = k/a Physical momentum 37

38 Higgs Fluctuation during Inflation The horizon at N llll before the end of inflation has a scale k S at present. Power spectrum of φ P φ k H I for k k S otherwise Baryonic isocurvature perturbation for k > k S δ B k δρ B = δy B = δ φ2 k ρ B Y k B φ 2 2 ln1 2 k k S N k llll θ k k S 38

39 Constraints on Isocurvature Perturbation CMB: MMc 1 k 0. 1 MMc 1 (Limited by Silk damping) Lyman-α: 0. 1 MMc 1 k 11 MMc 1 Allowed N of e-folds of inflation for the Higgs field: N llll < ll k 11 MMc ll Λ I GGG ll T RR GGG 39

40 Growth of density perturbation Baryon isocurvature perturbation only growth after decoupling But the induced potential allows dark matter to grows faster. δ B,0 = 0.025, k S = 65 Mpc 1, N last = 46.5 Matter power Spectrum Contribution from relaxation leptogenesis model only appear in the small scale Silk damping does not affect baryonic isocurvature perturbation. 40

41 Variance of the density contrast Solid lines: Isocurvature perturbations from k S = 65 Mpc 1 Dashed lines: with only adiabatic perturbation Dash-dot line: δ c = Halos with 10 6 M collapsed by z = 10. Mass fraction in collapsed halos Solid lines: 10 6 M halos Reach f halo = 0.16 by z = 10 for k S = 65 Mpc 1 Dashed lines: 10 8 M halos unchanged Can explain the CIB fluctuation excess! 41

42 Summary Our universe seems to be right on the meta-stable region. The quartic coupling of the Higgs potential turns negative giving a shallow potential. Higgs can obtain a large vacuum expectation during inflation. The relaxation of the Higgs VEV happens during reheating. Higgs relaxation provides the out of thermal equilibrium condition and breaks T invariant. Leptogenesis via the Higgs relaxation is possible. Isocurvature perturbation generated by the relaxation leptogenesis might explain the CIB excess. Higgs relaxation is an important epoch in the early universe. Thanks for your listening! 42

43 Backup Slides 43

44 Generating the O 6 Operator LY, Pearce, Kusenko Phys. Rev. D92 (2015) Explicit Fermonic Model: Fields: n 3 Dirac spinors ψ 1i (both left and right): SU(2) doublet, hypercharge -1/2. A Dirac spinor ψ 2 (both left and right): SU(2) singlet, hypercharge -1. Higgs field Φ: SU(2) doublet, hypercharge 1/2. Where Y W = Q T 3. Lagrangian: 44

45 Parameter Space for Higgs Relaxation Leptogenesis Final lepton asymmetry (lepton-number-to-entropy ration), Y. IC-2 with Λ n = M n, Λ I = GeV (left) and Λ I = GeV (right). 45

46 Parameter Space for Higgs Relaxation Leptogenesis Final lepton asymmetry (lepton-number-to-entropy ration), Y. IC-2 with Λ n = T 46

47 What is Zodiacal light? Faint and diffuse triangle shape light seen in the night sky that appears along the zodiac. They come from sunlight scattered by space dust in the zodiacal cloud. 47

Post-Inflationary Higgs Relaxation and Leptogenesis. Louis Yang Kavli IPMU PACIFIC 2018 February 17, 2018

Post-Inflationary Higgs Relaxation and Leptogenesis. Louis Yang Kavli IPMU PACIFIC 2018 February 17, 2018 Post-Inflationary Higgs Relaxation and Leptogenesis Louis Yang Kavli IPMU PACIFIC 2018 February 17, 2018 Outline Motivation: the Higgs potential Quantum fluctuation during inflation Post-inflationary Higgs

More information

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY LOUIS YANG ( 楊智軒 ) UNIVERSITY OF CALIFORNIA, LOS ANGELES (UCLA) DEC 30, 2016 4TH INTERNATIONAL WORKSHOP ON DARK MATTER,

More information

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY

POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY POST-INFLATIONARY HIGGS RELAXATION AND THE ORIGIN OF MATTER- ANTIMATTER ASYMMETRY LOUIS YANG ( 楊智軒 ) UNIVERSITY OF CALIFORNIA, LOS ANGELES (UCLA) DEC 27, 2016 NATIONAL TSING HUA UNIVERSITY OUTLINE Big

More information

Leptogenesis via the Relaxation of Higgs and other Scalar Fields

Leptogenesis via the Relaxation of Higgs and other Scalar Fields Leptogenesis via the Relaxation of Higgs and other Scalar Fields Louis Yang Department of Physics and Astronomy University of California, Los Angeles PACIFIC 2016 September 13th, 2016 Collaborators: Alex

More information

Leptogenesis via Higgs Condensate Relaxation

Leptogenesis via Higgs Condensate Relaxation The Motivation Quantum Fluctuations Higgs Relaxation Leptogenesis Summary Leptogenesis via Higgs Condensate Relaxation Louis Yang Department of Physics and Astronomy University of California, Los Angeles

More information

Evolution of Scalar Fields in the Early Universe

Evolution of Scalar Fields in the Early Universe Evolution of Scalar Fields in the Early Universe Louis Yang Department of Physics and Astronomy University of California, Los Angeles PACIFIC 2015 September 17th, 2015 Advisor: Alexander Kusenko Collaborator:

More information

Testing Higgs Relaxation Leptogenesis: Why Isocurvature Is More Promising Than CP Violation

Testing Higgs Relaxation Leptogenesis: Why Isocurvature Is More Promising Than CP Violation Testing Higgs Relaxation Leptogenesis: Why Isocurvature Is More Promising Than CP Violation Lauren Pearce University of Illinois, Urbana-Champaign Based on: Alexander Kusenko, LP, Louis Yang, Phys.Rev.Lett.

More information

The Matter-Antimatter Asymmetry and New Interactions

The Matter-Antimatter Asymmetry and New Interactions The Matter-Antimatter Asymmetry and New Interactions The baryon (matter) asymmetry The Sakharov conditions Possible mechanisms A new very weak interaction Recent Reviews M. Trodden, Electroweak baryogenesis,

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview Part 1: problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Part : Need for

More information

Dissipative and Stochastic Effects During Inflation 1

Dissipative and Stochastic Effects During Inflation 1 Dissipative and Stochastic Effects During Inflation 1 Rudnei O. Ramos Rio de Janeiro State University Department of Theoretical Physics McGill University Montreal, Canada September 8th, 2017 1 Collaborators:

More information

Postinflationary Higgs relaxation and the origin of matter-antimatter asymmetry

Postinflationary Higgs relaxation and the origin of matter-antimatter asymmetry Postinflationary Higgs relaxation and the origin of matter-antimatter asymmetry Alexander Kusenko, 1, 2 Lauren Pearce, and Louis Yang 1 1 Department of Physics and Astronomy, University of California,

More information

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV)

INFLATION. - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ GeV) INFLATION - EARLY EXPONENTIAL PHASE OF GROWTH OF SCALE FACTOR (after T ~ TGUT ~ 10 15 GeV) -Phenomenologically similar to Universe with a dominant cosmological constant, however inflation needs to end

More information

Leptogenesis via varying Weinberg operator

Leptogenesis via varying Weinberg operator Silvia Pascoli IPPP, Department of Physics, Durham University, Durham DH1 3LE, United Kingdom E-mail: silvia.pascoli@durham.ac.uk Jessica Turner Theoretical Physics Department, Fermi National Accelerator

More information

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011

Baryogenesis. David Morrissey. SLAC Summer Institute, July 26, 2011 Baryogenesis David Morrissey SLAC Summer Institute, July 26, 2011 Why is There More Matter than Antimatter? About 5% of the energy density of the Universe consists of ordinary (i.e. non-dark) matter. By

More information

SM*A*S*H. Standard Model * Axion * See-saw * Hidden PQ scalar inflation. Andreas Ringwald (DESY)

SM*A*S*H. Standard Model * Axion * See-saw * Hidden PQ scalar inflation. Andreas Ringwald (DESY) SM*A*S*H Standard Model * Axion * See-saw * Hidden PQ scalar inflation Andreas Ringwald (DESY) From the Vacuum to the Universe Kitzbühel, Austria 26 June 1 July 2016 [Guillermo Ballesteros, Javier Redondo,

More information

Inflation, Gravity Waves, and Dark Matter. Qaisar Shafi

Inflation, Gravity Waves, and Dark Matter. Qaisar Shafi Inflation, Gravity Waves, and Dark Matter Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware Feb 2015 University of Virginia Charlottesville, VA Units ћ =

More information

The first one second of the early universe and physics beyond the Standard Model

The first one second of the early universe and physics beyond the Standard Model The first one second of the early universe and physics beyond the Standard Model Koichi Hamaguchi (University of Tokyo) @ Colloquium at Yonsei University, November 9th, 2016. Credit: X-ray: NASA/CXC/CfA/M.Markevitch

More information

Leptogenesis with Composite Neutrinos

Leptogenesis with Composite Neutrinos Leptogenesis with Composite Neutrinos Based on arxiv:0811.0871 In collaboration with Yuval Grossman Cornell University Friday Lunch Talk Yuhsin Tsai, Cornell University/CIHEP Leptogenesis with Composite

More information

Solar and atmospheric neutrino mass splitting with SMASH model

Solar and atmospheric neutrino mass splitting with SMASH model Solar and atmospheric neutrino mass splitting with SMASH model C.R. Das 1, Katri Huitu, Timo Kärkkäinen 3 1 Bogoliubov Laboratory of Theoretical Physics, Joint Institute for Nuclear Research, Joliot-Curie

More information

Astroparticle Physics and the LC

Astroparticle Physics and the LC Astroparticle Physics and the LC Manuel Drees Bonn University Astroparticle Physics p. 1/32 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/32 Contents 1) Introduction:

More information

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad.

Neutrinos. Riazuddin National Centre for Physics Quaid-i-Azam University Campus. Islamabad. Neutrinos Riazuddin National Centre for Physics Quaid-i-Azam University Campus Islamabad. Neutrino was the first particle postulated by a theoretician: W. Pauli in 1930 to save conservation of energy and

More information

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov

Minimal Extension of the Standard Model of Particle Physics. Dmitry Gorbunov Minimal Extension of the Standard Model of Particle Physics Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia 14th Lomonosov Conference on Elementary Paticle Physics, Moscow, MSU, 21.08.2009

More information

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter?

Baryo- and leptogenesis. Purpose : explain the current excess of matter/antimatter. Is there an excess of matter? Baryo- and leptogenesis Purpose : explain the current excess of matter/antimatter Is there an excess of matter? Baryons: excess directly observed; Antibaryons seen in cosmic rays are compatible with secondary

More information

Recent progress in leptogenesis

Recent progress in leptogenesis XLIII rd Rencontres de Moriond Electroweak Interactions and Unified Theories La Thuile, Italy, March 1-8, 2008 Recent progress in leptogenesis Steve Blanchet Max-Planck-Institut for Physics, Munich March

More information

Natural Nightmares for the LHC

Natural Nightmares for the LHC Dirac Neutrinos and a vanishing Higgs at the LHC Athanasios Dedes with T. Underwood and D. Cerdeño, JHEP 09(2006)067, hep-ph/0607157 and in progress with F. Krauss, T. Figy and T. Underwood. Clarification

More information

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 We are directly observing the history of the universe as we look deeply into the sky. JUN 30, 2016 ZZXianyu (CMSA) 2 At ~10 4 yrs the universe becomes

More information

Astroparticle Physics at Colliders

Astroparticle Physics at Colliders Astroparticle Physics at Colliders Manuel Drees Bonn University Astroparticle Physics p. 1/29 Contents 1) Introduction: A brief history of the universe Astroparticle Physics p. 2/29 Contents 1) Introduction:

More information

What could we learn about high energy particle physics from cosmological observations at largest spatial scales?

What could we learn about high energy particle physics from cosmological observations at largest spatial scales? What could we learn about high energy particle physics from cosmological observations at largest spatial scales? Dmitry Gorbunov 1,a 1 Institute for Nuclear Research of Russian Academy of Sciences, 117312

More information

Effects of Reheating on Leptogenesis

Effects of Reheating on Leptogenesis Effects of Reheating on Leptogenesis Florian Hahn-Woernle Max-Planck-Institut für Physik München 2. Kosmologietag Florian Hahn-Woernle (MPI-München) Effects of Reheating on Leptogenesis Kosmologietag 2007

More information

Sterile Neutrinos in Cosmology and Astrophysics

Sterile Neutrinos in Cosmology and Astrophysics Kalliopi Petraki (UCLA) October 27, 2008 Particle Physics Neutrino Oscillation experiments: neutrinos have mass Cosmology and Astrophysics Plenty of unexplained phenomena Dark Matter Pulsar Kicks Supernova

More information

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter

Relating the Baryon Asymmetry to WIMP Miracle Dark Matter Brussels 20/4/12 Relating the Baryon Asymmetry to WIMP Miracle Dark Matter PRD 84 (2011) 103514 (arxiv:1108.4653) + PRD 83 (2011) 083509 (arxiv:1009.3227) John McDonald, LMS Consortium for Fundamental

More information

Baryon asymmetry from hypermagnetic helicity in inflationary cosmology

Baryon asymmetry from hypermagnetic helicity in inflationary cosmology Baryon asymmetry from hypermagnetic helicity in inflationary cosmology Reference: Physical Review D 74, 123504 (2006) [e-print arxiv:hep-ph/0611152] Particle and field seminar at National Tsing Hua University

More information

COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE

COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE COSMIC INFLATION AND THE REHEATING OF THE UNIVERSE Francisco Torrentí - IFT/UAM Valencia Students Seminars - December 2014 Contents 1. The Friedmann equations 2. Inflation 2.1. The problems of hot Big

More information

Physics 133: Extragalactic Astronomy and Cosmology. Week 8

Physics 133: Extragalactic Astronomy and Cosmology. Week 8 Physics 133: Extragalactic Astronomy and Cosmology Week 8 Outline for Week 8 Primordial Nucleosynthesis Successes of the standard Big Bang model Olbers paradox/age of the Universe Hubble s law CMB Chemical/Physical

More information

Leptogenesis from a First-Order Lepton- Number Breaking Phase Transition

Leptogenesis from a First-Order Lepton- Number Breaking Phase Transition Leptogenesis from a First-Order Lepton- umber Breaking Phase Transition Andrew Long TeVPA 2017 at Ohio State University Aug 10, 2017 based on work with Andrea Tesi & Lian-Tao Wang (1703.04902 & JHEP) Bubbles!

More information

Scalar field dark matter and the Higgs field

Scalar field dark matter and the Higgs field Scalar field dark matter and the Higgs field Catarina M. Cosme in collaboration with João Rosa and Orfeu Bertolami Phys. Lett., B759:1-8, 2016 COSMO-17, Paris Diderot University, 29 August 2017 Outline

More information

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays.

Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays. Entropy, Baryon Asymmetry and Dark Matter from Heavy Neutrino Decays. Kai Schmitz Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany Based on arxiv:1008.2355 [hep-ph] and arxiv:1104.2750 [hep-ph].

More information

The Standard Model of particle physics and beyond

The Standard Model of particle physics and beyond The Standard Model of particle physics and beyond - Lecture 3: Beyond the Standard Model Avelino Vicente IFIC CSIC / U. Valencia Physics and astrophysics of cosmic rays in space Milano September 2016 1

More information

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe

Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Gravitinos, Reheating and the Matter-Antimatter Asymmetry of the Universe Raghavan Rangarajan Physical Research Laboratory Ahmedabad with N. Sahu, A. Sarkar, N. Mahajan OUTLINE THE MATTER-ANTIMATTER ASYMMETRY

More information

Priming the BICEP. Wayne Hu Chicago, March BB

Priming the BICEP. Wayne Hu Chicago, March BB Priming the BICEP 0.05 0.04 0.03 0.02 0.01 0 0.01 BB 0 50 100 150 200 250 300 Wayne Hu Chicago, March 2014 A BICEP Primer How do gravitational waves affect the CMB temperature and polarization spectrum?

More information

A biased review of Leptogenesis. Lotfi Boubekeur ICTP

A biased review of Leptogenesis. Lotfi Boubekeur ICTP A biased review of Leptogenesis Lotfi Boubekeur ICTP Baryogenesis: Basics Observation Our Universe is baryon asymmetric. n B s n b n b s 10 11 BAU is measured in CMB and BBN. Perfect agreement with each

More information

Dynamical CP violation in the Early Universe

Dynamical CP violation in the Early Universe Dynamical CP violation in the Early Universe Balaji Katlai (McGill University) In collaboration with T. Biswas, R.H. Brandenberger, David London Phys.Lett. B595, 22 (2004) DESY workshop, 2004. p.1/10 .

More information

Naturalizing SUSY with the relaxion and the inflaton

Naturalizing SUSY with the relaxion and the inflaton Naturalizing SUSY with the relaxion and the inflaton Tony Gherghetta KEK Theory Meeting on Particle Physics Phenomenology, (KEK-PH 2018) KEK, Japan, February 15, 2018 [Jason Evans, TG, Natsumi Nagata,

More information

The cosmological constant puzzle

The cosmological constant puzzle The cosmological constant puzzle Steven Bass Cosmological constant puzzle: Accelerating Universe: believed to be driven by energy of nothing (vacuum) Vacuum energy density (cosmological constant or dark

More information

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang

Flavor Models with Sterile Neutrinos. NuFact 11 Geneva, Aug, He Zhang Flavor Models with Sterile Neutrinos NuFact 11 Geneva, Aug, 2011 Contents: Sterile neutrinos in ν-osc. and 0νββ decays Mechanisms for light sterile neutrino masses Flavor symmetry with sterile neutrinos

More information

Dark Matter and Gauged Baryon Number

Dark Matter and Gauged Baryon Number Dark Matter and Gauged Baryon Number Sebastian Ohmer Collaborators: Pavel Fileviez Pérez and Hiren H. Patel P. Fileviez Pérez, SO, H. H. Patel, Phys.Lett.B735(2014)[arXiv:1403.8029] P.Fileviez Pérez, SO,

More information

Astro 507 Lecture 28 April 2, 2014

Astro 507 Lecture 28 April 2, 2014 Astro 507 Lecture 28 April 2, 2014 Announcements: PS 5 due now Preflight 6 posted today last PF! 1 Last time: slow-roll inflation scalar field dynamics in an expanding universe slow roll conditions constrain

More information

The 1-loop effective potential for the Standard Model in curved spacetime

The 1-loop effective potential for the Standard Model in curved spacetime The 1-loop effective potential for the Standard Model in curved spacetime arxiv:1804.02020 (JHEP) The 1-loop effective potential for the SM in curved spacetime arxiv:1809.06923 (Review) Cosmological Aspects

More information

Moduli Problem, Thermal Inflation and Baryogenesis

Moduli Problem, Thermal Inflation and Baryogenesis Finnish-Japanese Workshop on Particle Physics 2007 Moduli Problem, Thermal Inflation and Baryogenesis Masahiro Kawasaki Institute for Cosmic Ray Research University of Tokyo Cosmological Moduli Problem

More information

German physicist stops Universe

German physicist stops Universe Big bang or freeze? NATURE NEWS Cosmologist claims Universe may not be expanding Particles' changing masses could explain why distant galaxies appear to be rushing away. Jon Cartwright 16 July 2013 German

More information

Physics Spring Week 7 INFLATION, BEFORE AND AFTER

Physics Spring Week 7 INFLATION, BEFORE AND AFTER Physics 224 - Spring 2010 Week 7 INFLATION, BEFORE AND AFTER Joel Primack University of California, Santa Cruz Motivations for Inflation Joel Primack, in Formation of Structure in the Universe, ed. Dekel

More information

Inflation and the origin of structure in the Universe

Inflation and the origin of structure in the Universe Phi in the Sky, Porto 0 th July 004 Inflation and the origin of structure in the Universe David Wands Institute of Cosmology and Gravitation University of Portsmouth outline! motivation! the Primordial

More information

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology

From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology From Inflation to TeV physics: Higgs Reheating in RG Improved Cosmology Yi-Fu Cai June 18, 2013 in Hefei CYF, Chang, Chen, Easson & Qiu, 1304.6938 Two Standard Models Cosmology CMB: Cobe (1989), WMAP (2001),

More information

Introduction to Cosmology

Introduction to Cosmology Introduction to Cosmology Subir Sarkar CERN Summer training Programme, 22-28 July 2008 Seeing the edge of the Universe: From speculation to science Constructing the Universe: The history of the Universe:

More information

Higgs Inflation Mikhail Shaposhnikov SEWM, Montreal, 29 June - 2 July 2010

Higgs Inflation Mikhail Shaposhnikov SEWM, Montreal, 29 June - 2 July 2010 Higgs Inflation Mikhail Shaposhnikov SEWM, Montreal, 29 June - 2 July 2010 SEWM, June 29 - July 2 2010 p. 1 Original part based on: F. Bezrukov, M. S., Phys. Lett. B 659 (2008) 703 F. Bezrukov, D. Gorbunov,

More information

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers

Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers Neutrino Masses and Dark Matter in Gauge Theories for Baryon and Lepton Numbers DPG Frühjahrstagung 014 in Mainz Based on Phys. Rev. Lett. 110, 31801 (013), Phys. Rev. D 88, 051701(R) (013), arxiv:1309.3970

More information

Will Planck Observe Gravity Waves?

Will Planck Observe Gravity Waves? Will Planck Observe Gravity Waves? Qaisar Shafi Bartol Research Institute Department of Physics and Astronomy University of Delaware in collaboration with G. Dvali, R. K. Schaefer, G. Lazarides, N. Okada,

More information

Could the Higgs Boson be the Inflaton?

Could the Higgs Boson be the Inflaton? Could the Higgs Boson be the Inflaton? Michael Atkins Phys.Lett. B697 (2011) 37-40 (arxiv:1011.4179) NExT Meeting March 2012, Sussex Outline Why inflation? The Higgs as the inflaton Unitarity and Higgs

More information

The Higgs Boson and Electroweak Symmetry Breaking

The Higgs Boson and Electroweak Symmetry Breaking The Higgs Boson and Electroweak Symmetry Breaking 1. Minimal Standard Model M. E. Peskin Chiemsee School September 2014 The Higgs boson has an odd position in the Standard Model of particle physics. On

More information

Yang-Hwan Ahn Based on arxiv:

Yang-Hwan Ahn Based on arxiv: Yang-Hwan Ahn (CTPU@IBS) Based on arxiv: 1611.08359 1 Introduction Now that the Higgs boson has been discovered at 126 GeV, assuming that it is indeed exactly the one predicted by the SM, there are several

More information

arxiv:astro-ph/ v4 5 Jun 2006

arxiv:astro-ph/ v4 5 Jun 2006 BA-06-12 Coleman-Weinberg Potential In Good Agreement With WMAP Q. Shafi and V. N. Şenoğuz Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE 19716, USA

More information

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential)

Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Who is afraid of quadratic divergences? (Hierarchy problem) & Why is the Higgs mass 125 GeV? (Stability of Higgs potential) Satoshi Iso (KEK, Sokendai) Based on collaborations with H.Aoki (Saga) arxiv:1201.0857

More information

Scale symmetry a link from quantum gravity to cosmology

Scale symmetry a link from quantum gravity to cosmology Scale symmetry a link from quantum gravity to cosmology scale symmetry fluctuations induce running couplings violation of scale symmetry well known in QCD or standard model Fixed Points Quantum scale symmetry

More information

Inflationary cosmology. Andrei Linde

Inflationary cosmology. Andrei Linde Inflationary cosmology Andrei Linde Problems of the Big Bang theory: What was before the Big Bang? Why is our universe so homogeneous? Why is it isotropic? Why its parts started expanding simultaneously?

More information

PHYSICS BEYOND SM AND LHC. (Corfu 2010)

PHYSICS BEYOND SM AND LHC. (Corfu 2010) PHYSICS BEYOND SM AND LHC (Corfu 2010) We all expect physics beyond SM Fantastic success of SM (LEP!) But it has its limits reflected by the following questions: What is the origin of electroweak symmetry

More information

Dynamics of a two-step Electroweak Phase Transition

Dynamics of a two-step Electroweak Phase Transition Dynamics of a two-step Electroweak Phase Transition May 2, 2014 ACFI Higgs Portal Workshop in Collaboration with Pavel Fileviez Pérez Michael J. Ramsey-Musolf Kai Wang hiren.patel@mpi-hd.mpg.de Electroweak

More information

Baryogenesis and Particle Antiparticle Oscillations

Baryogenesis and Particle Antiparticle Oscillations Baryogenesis and Particle Antiparticle Oscillations Seyda Ipek UC Irvine SI, John March-Russell, arxiv:1604.00009 Sneak peek There is more matter than antimatter - baryogenesis SM cannot explain this There

More information

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4

Structures in the early Universe. Particle Astrophysics chapter 8 Lecture 4 Structures in the early Universe Particle Astrophysics chapter 8 Lecture 4 overview problems in Standard Model of Cosmology: horizon and flatness problems presence of structures Need for an exponential

More information

Scalar fields and vacuum fluctuations II

Scalar fields and vacuum fluctuations II Scalar fields and vacuum fluctuations II Julian Merten ITA July 12, 2007 Julian Merten (ITA) Scalar fields and vacuum fluctuations II July 12, 2007 1 / 22 Outline 1 What we did so far 2 Primordial curvature

More information

A Supersymmetric Two-Field Relaxion Model

A Supersymmetric Two-Field Relaxion Model A Supersymmetric Two-Field Relaxion Model Natsumi Nagata Univ. of Minnesota Phenomenology 2016 May. 10, 2016 University of Pi

More information

Ratchet Baryogenesis during Reheating

Ratchet Baryogenesis during Reheating Ratchet Baryogenesis during Reheating Neil D. Barrie Kavli IPMU (WPI) February 17, 2018 K. Bamba, N. B., A. Sugamoto, T. Takeuchi and K. Yamashita, arxiv:1610.03268, and upcoming work. N. D. Barrie (Kavli

More information

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC

TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC TeV-scale type-i+ii seesaw mechanism and its collider signatures at the LHC Wei Chao (IHEP) Outline Brief overview of neutrino mass models. Introduction to a TeV-scale type-i+ii seesaw model. EW precision

More information

arxiv: v3 [hep-ph] 11 Aug 2015

arxiv: v3 [hep-ph] 11 Aug 2015 HGU-CAP-037 EPHOU-15-0009 arxiv:1505.0194v3 [hep-ph] 11 Aug 015 Dilution of axion dark radiation by thermal inflation Hironori Hattori, Tatsuo Kobayashi, Naoya Omoto Department of Physics, Hokkaido University,

More information

Inflaton decay in supergravity and the new gravitino problem

Inflaton decay in supergravity and the new gravitino problem Inflaton decay in supergravity and the new gravitino problem 10. December 2007 @ICRR, University of Tokyo Fuminobu Takahashi (Institute for the Physics and Mathematics of the Universe) Collaborators: Endo,

More information

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation

Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Neutrino Oscillation, Leptogenesis and Spontaneous CP Violation Mu-Chun Chen Fermilab (Jan 1, 27: UC Irvine) M.-C. C & K.T. Mahanthappa, hep-ph/69288, to appear in Phys. Rev. D; Phys. Rev. D71, 351 (25)

More information

9 Quantum Field Theory for Children

9 Quantum Field Theory for Children 101 9 Quantum Field Theory for Children The theories (known and hypothetical) needed to describe the (very) early universe are quantum field theories (QFT). The fundamental entities of these theories are

More information

Astronomy 182: Origin and Evolution of the Universe

Astronomy 182: Origin and Evolution of the Universe Astronomy 182: Origin and Evolution of the Universe Prof. Josh Frieman Lecture 14 Dec. 2, 2015 Today The Inflationary Universe Origin of Density Perturbations Gravitational Waves Origin and Evolution of

More information

SM predicts massless neutrinos

SM predicts massless neutrinos MASSIVE NEUTRINOS SM predicts massless neutrinos What is the motivation for considering neutrino masses? Is the question of the existence of neutrino masses an isolated one, or is connected to other outstanding

More information

kev sterile Neutrino Dark Matter in Extensions of the Standard Model

kev sterile Neutrino Dark Matter in Extensions of the Standard Model kev sterile Neutrino Dark Matter in Extensions of the Standard Model Manfred Lindner Max-Planck-Institut für Kernphysik, Heidelberg F. Bezrukov, H. Hettmannsperger, ML, arxiv:0912.4415, PRD81,085032 The

More information

Cosmological Relaxation of the Electroweak Scale

Cosmological Relaxation of the Electroweak Scale the Relaxion Cosmological Relaxation of the Electroweak Scale with P. Graham and D. E. Kaplan arxiv: 1504.07551 The Hierarchy Problem The Higgs mass in the standard model is sensitive to the ultraviolet.

More information

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight MATHEMATICAL TRIPOS Part III Friday 31 May 00 9 to 1 PAPER 71 COSMOLOGY Attempt THREE questions There are seven questions in total The questions carry equal weight You may make free use of the information

More information

Supersymmetry in Cosmology

Supersymmetry in Cosmology Supersymmetry in Cosmology Raghavan Rangarajan Ahmedabad University raghavan@ahduni.edu.in OUTLINE THE GRAVITINO PROBLEM SUSY FLAT DIRECTIONS AND THEIR COSMOLOGIAL IMPLICATIONS SUSY DARK MATTER SUMMARY

More information

We can check experimentally that physical constants such as α have been sensibly constant for the past ~12 billion years

We can check experimentally that physical constants such as α have been sensibly constant for the past ~12 billion years ² ² ² The universe observed ² Relativistic world models ² Reconstructing the thermal history ² Big bang nucleosynthesis ² Dark matter: astrophysical observations ² Dark matter: relic particles ² Dark matter:

More information

Matter vs Anti-matter

Matter vs Anti-matter Baryogenesis Matter vs Anti-matter Earth, Solar system made of baryons B Our Galaxy Anti-matter in cosmic rays p/p O(10 4 ) secondary Our Galaxy is made of baryons p galaxy p + p p + p + p + p galaxy γ

More information

Testing leptogenesis at the LHC

Testing leptogenesis at the LHC Santa Fe Summer Neutrino Workshop Implications of Neutrino Flavor Oscillations Santa Fe, New Mexico, July 6-10, 2009 Testing leptogenesis at the LHC ArXiv:0904.2174 ; with Z. Chacko, S. Granor and R. Mohapatra

More information

Big Bang Nucleosynthesis

Big Bang Nucleosynthesis Big Bang Nucleosynthesis George Gamow (1904-1968) 5 t dec ~10 yr T dec 0.26 ev Neutrons-protons inter-converting processes At the equilibrium: Equilibrium holds until 0 t ~14 Gyr Freeze-out temperature

More information

Status Report on Electroweak Baryogenesis

Status Report on Electroweak Baryogenesis Outline Status Report on Electroweak Baryogenesis Thomas Konstandin KTH Stockholm hep-ph/0410135, hep-ph/0505103, hep-ph/0606298 Outline Outline 1 Introduction Electroweak Baryogenesis Approaches to Transport

More information

Higgs field as the main character in the early Universe. Dmitry Gorbunov

Higgs field as the main character in the early Universe. Dmitry Gorbunov Higgs field as the main character in the early Universe Dmitry Gorbunov Institute for Nuclear Research, Moscow, Russia Dual year Russia-Spain, Particle Physics, Nuclear Physics and Astroparticle Physics

More information

Week 10 Cosmic Inflation: Before & After. Joel Primack

Week 10 Cosmic Inflation: Before & After. Joel Primack Astro/Phys 224 Spring 2014 Origin and Evolution of the Universe Week 10 Cosmic Inflation: Before & After Joel Primack University of California, Santa Cruz Physics 224 - Spring 2014 Tentative Term Project

More information

Electroweak phase transition in the early universe and Baryogenesis

Electroweak phase transition in the early universe and Baryogenesis Electroweak phase transition in the early universe and Baryogenesis Arka Banerjee December 14, 2011 Abstract In the Standard Model, it is generally accepted that elementary particles get their masses via

More information

Non-Abelian SU(2) H and Two-Higgs Doublets

Non-Abelian SU(2) H and Two-Higgs Doublets Non-Abelian SU(2) H and Two-Higgs Doublets Technische Universität Dortmund Wei- Chih Huang 25 Sept 2015 Kavli IPMU arxiv:1510.xxxx(?) with Yue-Lin Sming Tsai, Tzu-Chiang Yuan Plea Please do not take any

More information

The Origin of Matter. Koichi Funakubo Dept. Physics Saga University. NASA Hubble Space Telescope NGC 4911

The Origin of Matter. Koichi Funakubo Dept. Physics Saga University. NASA Hubble Space Telescope NGC 4911 The Origin of Matter Koichi Funakubo Dept. Physics Saga University NASA Hubble Space Telescope NGC 4911 fundamental theory of elementary particles Local Quantum Field Theory causality relativistic quantum

More information

Part III The Standard Model

Part III The Standard Model Part III The Standard Model Theorems Based on lectures by C. E. Thomas Notes taken by Dexter Chua Lent 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Feebly coupled hidden sectors. Kimmo Tuominen University of Helsinki

Feebly coupled hidden sectors. Kimmo Tuominen University of Helsinki Feebly coupled hidden sectors Kimmo Tuominen University of Helsinki Outline Background Scalar portal models Outlook Collaborators: N. Bernal, K. Enqvist, M. Heikinheimo, K. Kainulainen, S. Nurmi, T. Tenkanen,

More information

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik

generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion Nejc Košnik th Discovery Discovery of of the the 4 4th generation generation Outline Outline Motivation Electroweak constraints Selected flavor constraints in B and D sector Conclusion 1 Introduction Introduction

More information

Probing the Majorana nature in radiative seesaw models at collider experiments

Probing the Majorana nature in radiative seesaw models at collider experiments Probing the Majorana nature in radiative seesaw models at collider experiments Shinya KANEMURA (U. of Toyama) M. Aoki, SK and O. Seto, PRL 102, 051805 (2009). M. Aoki, SK and O. Seto, PRD80, 033007 (2009).

More information

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism

Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism Pangenesis in a Baryon-Symmetric Universe: Dark and Visible Matter via the Affleck-Dine Mechanism Kalliopi Petraki University of Melbourne (in collaboration with: R. Volkas, N. Bell, I. Shoemaker) COSMO

More information

Antonio L. Maroto Complutense University Madrid Modern Cosmology: Early Universe, CMB and LSS Benasque, August 3-16, 2014

Antonio L. Maroto Complutense University Madrid Modern Cosmology: Early Universe, CMB and LSS Benasque, August 3-16, 2014 Antonio L. Maroto Complutense University Madrid Modern Cosmology: Early Universe, CMB and LSS Benasque, August 3-16, 2014 A.L.M and F. Prada to appear Albareti, Cembranos, A.L.M. arxiv:1404.5946 and 1405.3900

More information

Cosmological Signatures of a Mirror Twin Higgs

Cosmological Signatures of a Mirror Twin Higgs Cosmological Signatures of a Mirror Twin Higgs Zackaria Chacko University of Maryland, College Park Curtin, Geller & Tsai Introduction The Twin Higgs framework is a promising approach to the naturalness

More information

A model of the basic interactions between elementary particles is defined by the following three ingredients:

A model of the basic interactions between elementary particles is defined by the following three ingredients: I. THE STANDARD MODEL A model of the basic interactions between elementary particles is defined by the following three ingredients:. The symmetries of the Lagrangian; 2. The representations of fermions

More information