Investigation of the Attitude Dynamics of the ISEE-3 Spacecraft

Size: px
Start display at page:

Download "Investigation of the Attitude Dynamics of the ISEE-3 Spacecraft"

Transcription

1 Investigation of the Attitude Dynamics of the ISEE-3 Spacecraft AOE5984: Advanced Spacecraft Dynamics and Control Kevin Langone December 12, 2003

2 Contents 1 Abstract 1 2 Introduction 1 3 Literature Review 2 4 Parameters Reference Frames Units Spacecraft Dimensions Assumptions Mathematical Analysis Orbit Stability axis Fixed Attitude Stability Stabilty of Axisymmetric Spinning Body Simulation Orbit Nominal Attitude Axis Stabilization Attached Spring-Mass-Damper Conclusion 22 i

3 1 Abstract This paper investigates the attitude propagation of the International Sun Earth Explorer-3 spacecraft during the halo orbit phase of its mission. The linearization technique is used to analyze the stability of both orbit and attitude for a spacecraft in the vicinity of L 1. Numerical simulation then models the nominal attitude propagation. Other simulations change ISEE-3 to a 3-axis stabilized spacecraft and a spinner with a spring-mass-damper installed. In the 3-axis case, the gains are varied to determine their effects. For the energy dissipator, the orientation is changed to examine the change in error-damping effectiveness. 2 Introduction The International Sun-Earth Explorer mission was a joint project between the National Aeronautics and Space Administration (NASA) and the European Space Agency (ESA) designed to study the interaction of the solar wind with the Earth s magnetosphere. The mission consisted of three spacecraft, the first two of which were launched in 1977 into highly elliptical Earth orbits. ISEE-3, launched in August of 1978 towards the L 1 point of the Sun-Earth system, became the first satellite to orbit a Lagrange point. The spacecraft was inserted into a halo orbit which kept it outside the solar exclusion zone (which would disrupt communications) but inside the antenna s field of view. Study of the spacecraft s orbit provided scientists and engineers with much new information on the mechanics of libration point orbits in the Sun-Earth system including trajectory correction and stationkeeping maneuver requirements. For over three years ISEE-3 was kept in its halo orbit about L 1 making upstream measurements of the solar wind. In June of 1982, the spacecraft performed the first of several maneuvers, sending it back to the vicinity of the Earth in order to make measurements of the Earth s geomagnetic tail. After several transits ISEE-3 left the Earth to intercept the comet Giacobini- Zinner. In September of 1985 ISEE-3 became the first spacecraft to make in-situ cometary measurements. It is currently in a heliocentric orbit and will return to Earth in 2014 barring further maneuvers. The purpose of this project is to simulate the dynamics of ISEE-3 during its halo orbit. Section 5 presents mathematical analysis to show the instabil- 1

4 ity of both the orbit and attitude in the absence of control. Section 6 then discusses the results of computer simulations which model the dynamics of ISEE-3. The orbit is considered independent of the attitude and computed first. The attitude simulation then models ISEE-3 in its nominal spinning attitude. Other models are included as well such as a three-axis stablization mode and the inclusion of an energy sink device to examine the effects that these changes have on the attitude propagation. 3 Literature Review Shortly after the development of space flight, the use of libration orbits for space missions became a topic of considerable interest. Robert Farquhar was one of the pioneers in the field; he completed thesis work on the subject and later worked as a mission designer for the ISEE-3 project. He, along with Muhonen and Richardson, discuss the proposed orbit for ISEE-3 while providing an introduction to libration point orbits along with a description of how the halo orbit is designed to fit the mission constraints [1]. In addition they provide appropriate equations of motion in the vicinity of L 1 and the required coupling between in-plane and out-of-plane frequencies needed to produce a halo orbit. Finally, these researchers conclude with a discussion about the transfer to the halo orbit and give a V budget associated with the midcourse corrections and stationkeeping maneuvers. In a later paper, Farquhar and Muhonen, along with Church, summarize ISEE-3 s maneuvers up to 1985 [2]. They discuss the successful maneuvering of the spacecraft that had only been predicted in the previous literature. Also, Farquhar and his colleagues present a summary of all the maneuvers including the launch and orbit maintenance for the halo orbit, transfer to the Earth s geomagnetic tail, and comet G-Z intercept trajectory via lunar swingby. Finally they report that the spacecraft initially carried 89 kg of hydrazine, enough for about 430 m/s of maneuvers. Stationkeeping for three years required only about 30 m/s, and attitude and spin control required about 32 m/s during that period. Thus maintenance of a halo orbit about L 1 was considerably less fuel costly than initially believed. Work continutes to further understand the dynamics of spacecraft in three body systems. For example, papers by Howell [3] and by Guzman, Cooley, Howell, and Folta [4] present more complete investigations of libration point orbits after ISEE-3 s launch. These investigations include computations of 2

5 orbit families and the combination of dynamical systems theory with computer simulation to study the nature of three body orbits. The study of orbits in the three body problem only makes up half of a spacecraft s dynamics; the attitude motion is certainly important as well. ISEE-3 was nominally spin-stabilized about its symmetry axis, which was to remain perpendicular to the ecliptic plane during its orbit. Spin-stabilization has been a concept of interest since the beginnings of space flight and considerable literature is available on the subject. Jones discusses a method for reorienting the spin axis of an axisymmetric spacecraft with minimum precession [5]. He concludes that a constant pitch rate is desirable during rotation of the spin axis. Later, Dvornychenko and Gerding examine the effects of non-circular orbits on spin stability [6]. They consider the effects of eccentricity and nodal regression and they establish a method for determining the maximum precession of the spin axis without solving the equations of motion. Steyn presents a method for spacecraft slew maneuvers using the shortest angular path [7]. A combination of passive gravity-gradient and active reaction wheel control is used to three-axis stabilize a nadir pointing spacecraft. Initially, the attitude stability of Earth-orbiting spacecraft was the primary focus of research efforts. Eventually though, the attitude motion of satellites in three-body orbits became a topic of interest as well. The first studies concerned the stability of a spacecraft located at a Lagrange point. Kane and Marsh [8] examined the stability of a spacecraft spinning with constant angular velocity at these points. At the triangular points, they conclude that the stability properties are nearly identical to the two-body case. At the colinear points however, the regions of instability are much larger than for the two-body case. Robinson [9] continues the work by considering a non-spinning body at the equilibrium points. He finds two regions of stability at the colinear points, similar to the Lagrange and Debra-Delp regions for the two-body case. Additionally, he finds two stable attitudes at the equilateral points. Later, Hitzl and Levinson analyze the attitude stability of an axisymmetric spinning satellite moving in a peridioc orbit of the restricted three body problem [10]. They employ Floquet theory to construct instability charts and present these for several orbits in the Earth-Moon system. Ashenberg later examines the pitch dynamics of a spacecraft moving in the elliptic restricted three-body problem in [11]. He shows that the pitch equation is of the same form for this problem as for the two-body case and that for stable pitch motion at a Lagrange point the satellite s minor axis is 3

6 tilted toward the larger primary. 4 Parameters 4.1 Reference Frames There are three primary frames of reference utilized in the following discussions. The first is the spacecraft body frame (b) which is fixed in the satellite. The 3 axis is the symmetry axis, and the 1 and 2 axes are mutually perpendicular to each other and the 3 axis and complete a right hand set. Since the spacecraft is considered axisymmetric the exact direction is somewhat arbitrary. An inertial reference frame (i) will also be used. For this case, the sun will be considered inertially fixed with the spacecraft and Earth moving around it. The inertial 3 axis is perpendicular to the ecliptic plane while the 1 and 2 axes remain fixed in the plane of rotation and complete a right hand set. The final reference frame of interest is the rotating libration point (rlp) frame. In this case the 3 axis is again perpendicular to the ecliptic plane. The 1 axis is along the line joining the Earth and Sun and points at the Earth at all times. The 2 axis is also in the ecliptic plane and completes the right hand set. 4.2 Units In the discussion of many three-body problems, canonical units are used to generalize the problem. A similar approach is taken here for the purpose of computations. Masses are normalized on the total mass of the primaries (Sun and Earth here) and distances on the mean distance between the primaries. Time is based on the revolutionary period of the smaller primary (in this case the Earth). The canonical units are denoted MU, DU, TU for the mass unit, distance unit, and time unit, respectively. The values for this problem are given below. 1MU = kg 1DU = m 1T U = π s 4

7 4.3 Spacecraft Dimensions The body of ISEE-3 is essentially a right circular cylinder of height 161 cm and diameter 173 cm with a mass of approximately 470 kg [1]. The moments of inertia for the body are then I 1 = I 2 = 1 4 mr ml2 = kg m 2 I 3 = 1 2 mr2 = kg m 2 Thus for the body the spin axis is the minor axis. However, ISEE-3 is equipped with a total of ten appendages that alter the inertia properties. These are listed in table 1; each is modeled as slender rod lying on the indicated axis (and thus it alters the moments of inertia about the other two axes by an amount equal to 1 3 ml2 ). All appendages are perpendicular to the symmetry axis with the exception of the axial antennas. With the inclusion of the appendages, the total moments of inertia are: I 1 = I kg m 2 I kg m 2 Thus the spin axis is the major axis of the spacecraft. ISEE-3 is included in Figure 1. A diagram of Table 1: Approximate size and mass of ISEE-3 appendages. Appendage Mass (kg) Length (m) Moment of Inertia (Each) Wire Antenna (4) Experiment Boom (2) Inertia Boom (2) Axial Antenna (2) Assumptions In general, the following assumptions are implicit to all simulations unless otherwise noted: 1. ISEE-3 is a rigid body with constant moments of inertia as calculated above (in the body frame) 2. All assumptions associated with the circular restricted three-body problem 5

8 5 Mathematical Analysis 5.1 Orbit Stability The Lagrange points are those five points in the circular restricted three body problem at which the forces mutually cancel in the rotating reference frame. In this case, the stability of the L 1 point in the Sun-Earth system is of interest. The linearized equations of motion for a satellite near the Sun-Earth L 1 point are [1] ẍ 2ẏ (2B L1 + 1)x = 0 ÿ + 2ẋ + (B L1 1)y = 0 (1) z + B L1 z = 0 where B L1 = Using the substitutions x 1 = x x 2 = ẋ x 3 = y x 4 = ẏ x 5 = z x 6 = ż Figure 1: The ISEE-3 spacecraft. Reprinted from [1]. 6

9 the above equations can easily be written as the following first order system: B L x = A x A = B L B L1 0 The eigenvalues of the matrix A are ±2.533 ± 2.087ı ± 2.015ı According to Hughes [12], the linear system given by equation 2 is unstable in the vicinity of the origin if any of the eigenvalues of A has a positive real part, which is true in this case. Furthermore, if the linear system is shown to be unstable, the nonlinear system is necessarily unstable as well. Thus motion in the vicinity of L 1 is an unstable motion and a spacecraft s trajectory will eventually diverge from that point in the absence of control. This fact is well known and has been proved in literature such as that by Szebehely [13] axis Fixed Attitude Stability The following discussion examines the attitude stability of a spacecraft at the L 1 point. The appropriate linearized attitude equations of motion applied to a non-spinning spacecraft subject to gravity gradient torque from both bodies are [9]: θ 1 kj 3 θ 1 = 0 (2) θ 2 J 1 θ 2 = (J 1 + 1) θ 3 (3) θ 3 + J 2 (1 + k)θ 3 = (J 2 1) θ 2 The θ i terms refer to Euler angles that relate the body and rotating libration point reference frames. The above equations apply to a body at the equilibrium point. This is not true for ISEE-3 but the distance away from L 1 7

10 is small compared to the distances from the primaries so this is not a bad approximation. The inertia coefficients and constant k are defined as: J 1 = I 2 I 3 J 2 = I 3 I 1 J 3 = I ( 1 I 2 m1 k = 3 I 1 I 2 I 3 r1 3 + m ) 2 r2 3 Examination of Equations 3 reveals that the first equation decouples from the other two. This equation is standard form second order and undamped; the corresponding stability condition is that the coefficient of the undifferentiated term by positive. Thus stability requires kj 3 < 0 (4) The other two equations can be written as a first order linear system in the same manner as in the previous section: J x = A x A = J J 2 1 J 2 (1 + k) 0 The characteristic equation for the above system is (5) λ 4 + aλ 2 + b = 0 a = 1 + kj 2 J 1 J 2 b = J 1 J 2 (1 + k) (6) Routh s stability require the following to be true for system stability: a > 0 b > 0 a 2 > 4b (7) Using the above conditions along with Equation 4 yields the information depicted in Figure 2. There are two regions of stability, labeled I and II in the figure. Region I corresponds to I 3 > I 2 > I 1 while Region II indicates I 2 > I 1 > I 3. There are other restrictions on Region II though based on the constant k and the inertia coefficients. A graph similar to Figure 2 is available for Earth orbiting spacecraft subject to gravity gradient using Smelt parameters. In Section 6, ISEE-3 will be modeled in a 3-axis stabilized mode with its major axis nominally aligned with the ecliptic normal, which corresponds to a body on the border of Region I in Figure 2. 8

11 5.3 Stabilty of Axisymmetric Spinning Body The following analysis applies to the same situation as discussed in the previous section, except now the spacecraft is taken as an axisymmetric spinner. The linearized equations of motion for such a spacecraft at L 1 are [8] θ 1 [2 I(r + 1)] θ 2 [1 I(r + 1)]θ 1 = 0 (8) θ 2 + [2 I(r + 1)] θ 1 [1 I(r + 1)]θ 2 + k(i 1)θ 2 = 0 with the following quantities defined: I = I 1 I 3 r = η Ω τ = Ωt k = 3 [ ] m ρ + m 3 (1 ρ) 3 where η is the spin rate of the spacecraft, Ω is the spin rate of the rlp frame, m is mass ratio of the small primary to that of the large primary, ρ is the nondimensionalized distance from the large primary to L 1, and differentiation is with respect to τ. For the Sun-Earth system, ρ = 0.99 m = k = Figure 2: Attitude stability chart for non-spinning spacecraft at L 1. 9

12 The characteristic equation associated with Equation 8 is λ 4 + aλ 2 + b = 0 (9) a = I 2 (r + 1) 2 2I(r + 1) + 2 k(1 I) b = I 2 (r + 1) 2 I[2 + k(1 I)](r + 1) k(1 I) The requirements for stability are again given by Equation 7. An instability plot is provided in Figure 3. Faster spins serve to stabilize the spacecraft, even if the major axis is not parallel to the ecliptic normal. For this system, spins in the opposite sense of the primary orbital motion are always unstable. ISEE-3 s spin rate was much faster than shown here and the spacecraft had I>1 so it would always be stable under the gravity-gradient torque if it were situated at L 1. Figure 3: Attitude stability chart for spinning spacecraft at L 1. 6 Simulation Simulation of ISEE-3 s dynamics are conducted with Matlab script files. For all simulations initial conditions for orbit and attitude are specified and 10

13 then differential equations of motion are numerically integrated using Matlab s ordinary differential equation solvers. 6.1 Orbit For the purpose of the orbit simulation the dimensions of the spacecraft are considered small compared to the dimensions of the orbit (i.e. a point mass) and thus the orbit is unaffected by the attitude and can be considered separately. The orbit propagation is modeled using Equations 1. Initial conditions are chosen such that the spacecraft begins on the RLP x-axis at the point of maximum z-amplitude. Initial velocities are selected so that the orbit makes two consecutive perpendicular crossings of the x-z plane, establishing the halo orbit. The time for one full revolution is approximately six months. The appropriate values are: x o = 216, 767km ẋ o = km/s y o = 0 z o = 120, 000km ẏ o = 0.3km/s ż o = km/s Orthographic views of the orbit (propagated for 170 days) are shown in Figure 4. The attitude simulations are conducted for much shorter times both for computational reasons and the fact that it should not take nearly as long to demonstrate stability/instability. 6.2 Nominal Attitude The first simulation models the actual attitude propagation of ISEE-3. The nominal attitude of the spacecraft kept the symmetry axis perpendicular to the ecliptic plane. ISEE-3 spun about this axis at a constant rate of approximately 20 revolutions per minute. The attitude of the spacecraft is characterized by a sequence of Euler angle rotations (precession, nutation, and spin respectively) that relate the body frame to the rotating libration point frame. The corresponding rotation matrix is cθ 1 cθ 3 sθ 1 cθ 2 sθ 3 sθ 1 cθ 3 + cθ 1 cθ 2 sθ 3 sθ 2 sθ 3 R b rlp = cθ 1 sθ 3 sθ 1 cθ 2 cθ 3 sθ 1 sθ 3 + cθ 1 cθ 2 cθ 3 sθ 2 cθ 3 (10) sθ 1 sθ 2 cθ 1 sθ 2 cθ 2 11

14 Figure 4: ISEE-3 orbit simulation. 12

15 where c represents a cosine and s represents a sine. The appropriate kinetics equation is Euler s equation, expressed in the body frame [14]: I ω b i = ω b i Iω b i + g (11) where I is the principal moment of inertia matrix, ω is the angular velocity, and g is the torque vector. For many Earth-orbiting spacecraft, the gravity gradient torque is the dominant torque. Gravity gradient torque, expressed in the body frame, is computed by the expression [10] g gg = 3 GM r 3 â Iâ (12) where G is the gravitational constant, M is the central body mass, r is the distance to the central body s center of mass, and â is a unit vector from the spacecraft to the primary expressed in the body frame. In contrast to Earth satellites, the factor of r 3 in the denominator makes the gravity gradient torque small in magnitude for a spacecraft in the vicinity of L 1 (approximately 10 9 N m due to both the Sun and Earth). The torque caused by solar radiation pressure can indeed be considerably greater in magnitude. Exact computation depends heavily on the spacecraft geometry and surface reflectivity, but for this case the value can be approximated as 10 7 N m and considered constant [15]. For the purposes of this simulation, the solar radiation torque will be taken as acting about the rlp 2-axis. Thus, expressed in the body frame, 0 g slp = R b rlp N m (13) When used in the numerical simulations, both the gravity gradient torque and the solar radiation torque will be included in Equation 11; however, the contribution of the gravity gradient torque is nearly negligible. In addition to the kinetics equation, a kinematics equation is necessary to determine the propagation of the attitude in time. As noted above, Euler angles are used to describe the attitude for visualization. For the purposes of numerical integration, however, Euler angles are generally a poor choice due to singularities and an abundance of trigonometric functions involved in the computations. Quaternions are used for this simulation because they avoid these problems. The initial conditions on Euler angles are first used 13

16 in Equation 10 to obtain a starting rotation matrix. The initial quaternions are then calculated from the expressions [14] q 4 = trace(r b rlp ) q = 1 4q 4 r 23 r 32 r 31 r 13 (14) r 12 r 21 where r ij is the entry from the ith row and j th column of R b rlp and the trace operation indicates the sum of the diagonal entries of the operand. The quaternions are then indicated with the appropriate kinematics equation [14]: q = Q( q)ω b rlp Q = 1 2 [ q ] + q 4 I d1 q T (15) where I d1 is the three-by-three identity matrix. Note that Equations 11 and 15 use two different angular velocities. The two vectors are related simply by ω b rlp = ω b i ˆr i3 2π (16) Here ˆr i3 indicates the third column of R b rlp and 2π is the angular velocity of the rlp frame with respect to the i frame. Once the integration is complete, the quaternions are converted back to Euler angles via the rotation matrix given in Equation 10 and the relation [14] R b rlp = (q 2 4 q T q)i 1 + 2qq T 2q 4 q (17) Note that once the rotation matrix is known, quadrant checks must be performed to discern the correct Euler angles, as the arc trigonometric functions may not return the expected values. With the above equations, the simulation has everything it needs to model ISEE-3 s dynamics. The first case is the nominal one, that is, all Euler angles are initially zero and the initial angular velocity is 20 rpm about the symmetry axis. The results are shown in Figure 5 for sixty seconds of propagation. As expected, the spacecraft exhibits a steady spin (rotating 20 times during the minute) and maintains its spin axis perpendicular to the ecliptic plane. Note that for the case of no nutation, the precession angle cannot be distinguished from the spin angle. The code is instructed to plot the sum of the two angles as only the spin angle (θ 3 ). Examination of longer duration simulations is instructive as well to see the behavior of the spin axis as it propagates through time. In the above case the 14

17 nutation stayed near enough to zero to be unnoticeable if not identically zero. Figure 6 displays the same simulation used above for a period of 150 minutes (the spin angle is not shown so as not to clutter the plot). The nutation angle begins to oscillate about zero with increasing amplitude, reaching a value of about 0.05 degrees in 9000 seconds. The case of the same initial angles (R b rlp =I 1 ) but with no spin is shown as well. For this case the angle between the ecliptic normal and the spin axis increases exponentially and reaches a value of approximately 0.33 degrees during the same span. Thus the spinning motion of the spacecraft serves to considerably slow the divergence of the spacecraft from its nominal attitude in the presence of disturbing torques. Figure 7 displays the data for a further investigation of the spin rate s effect on the attitude propagation. It shows the time for the spacecraft spin axis to deviate 0.01 degrees from the ecliptic normal for varying spin rates. Examination shows that the non spinning case actually diverges more slowly than slow spin rates but this trend quickly reverses past a spin rate of about 3 revolutions per minute. This is due to a slow (exponential) initial increase associated with the non-spinner but a relatively quick initial increase from the slow-spinning case which quickly tapers off. A larger choice for the angle of interest would likely yield a monotonic increase of the time to reach that angle with increasing spin rate. Referring again to Figure 6, even the spinning motion is insufficient to maintain the nominal pointing of the symmetry axis. Though it occurs slowly, Figure 5: Nominal attitude propagation. 15

18 Figure 6: Nutation and precession angles for spinning and non-spinning cases. Figure 7: Time for spin axis to deviate 0.01 degrees from ecliptic normal versus spin rate. 16

19 eventually the deviation between the ecliptic normal and the spin axis reaches an unacceptable level from a scientific perspective. Some additional method is needed to indefinitely maintain the attitude. ISEE-3 is equipped with a total of twelve thrusters: four radial, four spin-change, and four axial [2]. As noted in the Literature Review, during the halo orbit phase of the mission about 32 m/s of fuel was used for attitude maintenance and spin control Axis Stabilization Figure 6 shows that in the absence of any control or stabilizing mechanism the symmetry axis departs from its nominal direction (ecliptic normal). The next simulation uses ISEE-3 s thrusters in attempt to stabilize the spacecraft in a 3-axis fixed configuration. As noted in the previous section, ISEE-3 has a total of twelve thrusters onboard. It is assumed that the redundant configuration can generate torques about any axis. For the following simulation, a rotation sequence is employed. The corresponding rotation matrix in terms of the Euler angles is cθ 1 cθ 3 + sθ 1 sθ 2 sθ 3 cθ 2 sθ 3 sθ 1 cθ 3 + cθ 1 sθ 2 sθ 3 R b rlp = cθ 1 sθ 3 + sθ 1 sθ 2 cθ 3 cθ 2 cθ 3 sθ 1 sθ 3 + cθ 1 sθ 2 cθ 3 (18) sθ 1 cθ 2 sθ 2 cθ 1 cθ 2 The Euler angles will now be integrated directly using the following relation: sθ 3 /cθ 2 cθ 3 /cθ 2 0 θ = S 1 (θ)ω b rlp S 1 (θ) = cθ 3 sθ 3 0 (19) sθ 3 sθ 2 /cθ 2 cθ 3 sθ 2 /cθ 2 1 Note that the singularity occurs at θ 2 = 90 whereas with the previous Euler angle sequence the singularity would occur at 0. Since the nominal attitude is all angles equal to zero, the singularity does not present a problem. Equation 11 is again used to model the kinetics. A simple linear PID controller is used to create the control torques. An initial error was created for the Euler angles, and the gains were varied to determine their effect. Several important results were noted: 1. Varying the proportional gain (k p ) has no effect on the time to damp out the disturbances. This is expected since the proportional time 17

20 multiplies the state, whereas the damping comes from the derivative terms. 2. Figure 8 displays the time for the controller to reduce the disturbance to 1/10th of the initial amplitude for different values of the derivative (k d ) and integral (k I ) gains. In general, reducing the integral gain and increasing the derivative gain reduce the time for the error to be damped out. 3. For a given value of the derivative gain, there is a maximum value of the integral gain beyond which the system response will diverge. This value of integral gain is plotted against derivative gain in Figure 9. Note that the relationship is exactly linear. 4. Figure 10 shows the total control effort required to correct the disturbance to 1/10th of its original value. Note that this figure corresponds almost identically with Figure 8. Thus the total control effort is directly related to the time required to reduce the disturbance. More total control effort corresponds directly to higher fuel consumption. 5. The total control effort required increases monotonically with increases in proportional gain. This result is expected since a higher proportional gain causes the motion to oscillate more. Thus a low proportional gain is desired for minimum fuel expenditure. Figure 8: Time to 1/10th amplitude using PID controller. 18

21 Figure 9: Corresponding integral and derivative gains for system divergence. Figure 10: Total control effort required to reduce disturbance by 90%. 19

22 6.4 Attached Spring-Mass-Damper The next simulation includes a spring-mass-damper fixed in the spacecraft. Figure 11 is a diagram of ISEE-3 with an included spring-mass-damper. The body frame is the same as previously established, but relocated to the center of mass with the inclusion of the damper. The principal moments of inertia are calculated with the damper at rest in the neutral position. s is a vector from the center of the b-frame to the neutral location of the damper; the r vector extends from the b-frame center to the current location of the damper. ξ is the displacement of the damper along its axis, whose unit normal vector is defined as n. Figure 11: ISEE-3 with a spring-mass-damper. In contrast to the previous two cases, this simulation does not establish the orbit separately from the attitude. The appropriate equations of motion are provided by Hughes [12]. The following symbols are defined as: c F irst moment of inertia J Second moment of inertia v Linear velocity of b frame m T otal spacecraft mass m d Mass of particle c visc V iscous damping constant k Spring constant The linear momentum of the spacecraft is p = mv c ω + m d ξn (20) 20

23 The angular momentum of the body frame is h = c v + Jω + m d ξs n (21) The linear momentum of the particle in the n-direction is also useful and defined as p n = m d (n T v n T s ω + ξ) (22) In order to use the numerical integrator, the time rates of change of these quantities must be defined. The time rate of change of linear momentum is ṗ = ω p + f (23) where f represents the external forces on the system. In this case the only external forces are the gravitational forces of the Sun and Earth, which are given by Newton s Law of Gravitation: f = GMm r 3 r (24) This force must be rotated into the body frame via the rotation matrix for use in Equation 23. The derivative of angular momentum is ḣ = ω h v p + g (25) Again the torque g is given by Equations 12 and 13. Finally, ṗ n = m d ω T n (v r ω) c visc ξ kξ (26) Note that the quantities v, ω, and ξ must be known to compute the right hand side of Equations 23, 25, and 26. These are computed by writing Equations 20, 21, and 22 as a linear system in terms of the above variables and inverting the coefficient matrix. This allows computation of v, ω, and ξ in terms of the current states. Finally, the necessary kinematics equations are Equation 15 and ẋ = v (27) The initial conditions on position and velocity are as indicated in Section 6.1. The damper is oriented at a 45 degree angle to both the body 1 and 2 axes. Other parameters are established as: 21

24 m d = 10 kg c visc = 150 N s m k = 1000 N m ξ o = 0.5 m ξo = 0 The initial attitude is specified as a 1 degree error on the nutation angle. Figure 12 shows the propagation of the nutation angle as the spacecraft spins. The damper does serve to eliminate the error in the state, though the time to damp in this case is on the order of days. Figure 12: Nutation damping using energy dissipation device. The next simulation used the same parameters but changes the orientation of the damper to determine the effect of this variable. The simulations were conducted for approximately three days; Figure 13 shows the final nutation angle after the given period for different damper orientations. The damper angle is measured relative to the spacecraft 2 axis. Results show that skewing the damper farther from the 2 axis improves the damping qualities, though the change is not large. 7 Conclusion This project examined the dynamics of the ISEE-3 spacecraft during the halo orbit phase of its mission. The linzearized equations of motion in the 22

25 vicinity of the solar L 1 point established the orbital motion. The first simulation modeled the nominal attitude propagation of ISEE-3, during which the spacecraft spun about its symmetry axis, which remained perpendicular to the ecliptic normal. Results showed that the spinning motion provided some stability to the motion and helped delay the deviation of the symmetry axis from its nominal direction. The next simulation modeled the spacecraft as 3-axis stabilized using the hydrazine thrusters to maintain the attitude. Higher derivative gains and lower integral gains reduce both the time and fuel required to damp out disturbances. The final simulation included an energy dissipation device in the spacecraft. This device served to damp out initial errors in the nutation angle, though the damping took place slowly. Figure 13: Final nutation angle after 250,000 seconds of damping. 23

26 References [1] R.W. Farquhar, D.P. Muhonen, and D.L. Richardson, Mission Design for a Halo Orbiter of the Earth, Journal of Spacecraft and Rockets, Vol. 14, No. 3, March 1979, pp [2] R.W. Farquhar, D.P. Muhonen, and L.C. Church, Trajectories and Orbital Maneuvers for the ISEE-3/ICE Comet Mission, Journal of the Astronautical Sciences, Vol. 33, No. 3, July-September 1985, pp [3] J.J. Guzman, D.S. Cooley, K.C. Howell, and D.C. Folta, Trajectory Design Strategies that Incorporate Invariant Manifolds and Swingby, Paper No. AAS , Spaceflight dynamics 1998; Proceedings of the AAS/GSFC International Symposium, Greenbelt, Maryland, May [4] K.C. Howell, Families of Orbits in the Vicinity of the Collinear Libration Points, Paper No. AAS , AIAA/AAS Astrodynamics Specialist Conference and Exhibit, Boston, Massachusetts, August [5] A. Jones, Closed-Loop Pitch Control for Spin-Stabilized Spacecraft, Journal of Spacecraft and Rockets, Vol. 3, No. 4, April 1966, pp [6] V.N. Dvornychenko and R.B. Gerding, The Effect of Orbital Eccentricity and Nodal Regression on Spin-Stabilized Satellites, Celestial Mechanics, Vol. 16, November 1977, pp [7] W.H. Steyn, Near-Minimum-Time Eigenaxis Rotation Maneuvers Using Reaction Wheels, Journal of Guidance, Control, and Dynamics, Vol. 18, No. 5, September-October 1995, pp [8] T.R. Kane and E.L. Marsh, Attitude Stability of a Symmetric Satellite at the Equilibrium Points in the Restricted Three-Body Problem, Celestial Mechanics, Vol. 4, 1971, pp [9] W.J. Robinson, Attitude Stability of a Rigid Body Placed at an Equilibrium Point in the Restricted Problem of Three Bodies, Celestial Mechanics, Vol. 10, 1974, pp [10] D.L. Hitzl and D.A. Levinson, Attitude Stability of a Spinning Symmetric Satellite in a Planar Periodic Orbit, Celestial Mechanics, Vol. 20, August 1979, pp

27 [11] J. Ashenberg, Satellite Pitch Dynamics in the Elliptic Problem of Three Bodies, Journal of Guidance, Control, and Dynamics, Vol. 19, No. 1, January-February 1996, pp [12] P.C. Hughes, Spacecraft Attitude Dynamics, New York: J. Wiley, [13] V. Szebehely, Theory of Orbits, New York: Academic Press, [14] C.D. Hall, Spacecraft Attitude Dynamics and Control, avail. cdhall/courses/aoe4140/ [15] J.R. Wertz and W.J. Larson (editors), Space Mission Analysis and Design, El Segundo: Microcosm Press,

AS3010: Introduction to Space Technology

AS3010: Introduction to Space Technology AS3010: Introduction to Space Technology L E C T U R E 22 Part B, Lecture 22 19 April, 2017 C O N T E N T S Attitude stabilization passive and active. Actuators for three axis or active stabilization.

More information

Lecture Module 5: Introduction to Attitude Stabilization and Control

Lecture Module 5: Introduction to Attitude Stabilization and Control 1 Lecture Module 5: Introduction to Attitude Stabilization and Control Lectures 1-3 Stability is referred to as a system s behaviour to external/internal disturbances (small) in/from equilibrium states.

More information

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top Physics 106a, Caltech 4 December, 2018 Lecture 18: Examples on Rigid Body Dynamics I go through a number of examples illustrating the methods of solving rigid body dynamics. In most cases, the problem

More information

Spacecraft Attitude Dynamics for Undergraduates

Spacecraft Attitude Dynamics for Undergraduates Session 1123 Spacecraft Attitude Dynamics for Undergraduates Dr. Rachel Shinn Embry Riddle Aeronautical University, Prescott, AZ Abstract Teaching spacecraft attitude dynamics to undergraduate students

More information

A Study of the Close Approach Between a Planet and a Cloud of Particles

A Study of the Close Approach Between a Planet and a Cloud of Particles A Study of the Close Approach Between a Planet a Cloud of Particles IIAN MARTINS GOMES, ANTONIO F. B. A. PRADO National Institute for Space Research INPE - DMC Av. Dos Astronautas 1758 São José dos Campos

More information

ON THE STABILITY OF APPROXIMATE DISPLACED LUNAR ORBITS

ON THE STABILITY OF APPROXIMATE DISPLACED LUNAR ORBITS AAS 1-181 ON THE STABILITY OF APPROXIMATE DISPLACED LUNAR ORBITS Jules Simo and Colin R. McInnes INTRODUCTION In a prior study, a methodology was developed for computing approximate large displaced orbits

More information

IAC-12-C1.8.1 COUPLED ORBIT AND ATTITUDE DYNAMICS FOR SPACECRAFT COMPRISED OF MULTIPLE BODIES IN EARTH-MOON HALO ORBITS

IAC-12-C1.8.1 COUPLED ORBIT AND ATTITUDE DYNAMICS FOR SPACECRAFT COMPRISED OF MULTIPLE BODIES IN EARTH-MOON HALO ORBITS 63rd International Astronautical Congress, Naples, Italy. Copyright c 1 by the International Astronautical Federation. All rights reserved. IAC-1-C1.8.1 COUPLED ORBIT AND ATTITUDE DYNAMICS FOR SPACECRAFT

More information

TRANSFER TO THE COLLINEAR LIBRATION POINT L 3 IN THE SUN-EARTH+MOON SYSTEM

TRANSFER TO THE COLLINEAR LIBRATION POINT L 3 IN THE SUN-EARTH+MOON SYSTEM TRANSFER TO THE COLLINEAR LIBRATION POINT L 3 IN THE SUN-EARTH+MOON SYSTEM HOU Xi-yun,2 TANG Jing-shi,2 LIU Lin,2. Astronomy Department, Nanjing University, Nanjing 20093, China 2. Institute of Space Environment

More information

Swing-By Maneuvers for a Cloud of Particles with Planets of the Solar System

Swing-By Maneuvers for a Cloud of Particles with Planets of the Solar System Swing-By Maneuvers for a Cloud of Particles with Planets of the Solar System VIVIAN MARTINS GOMES, ANTONIO F. B. A. PRADO National Institute for Space Research INPE - DMC Av. Dos Astronautas 1758 São José

More information

The Three Body Problem

The Three Body Problem The Three Body Problem Joakim Hirvonen Grützelius Karlstad University December 26, 2004 Department of Engineeringsciences, Physics and Mathematics 5p Examinator: Prof Jürgen Füchs Abstract The main topic

More information

Design of Attitude Determination and Control Subsystem

Design of Attitude Determination and Control Subsystem Design of Attitude Determination and Control Subsystem 1) Control Modes and Requirements Control Modes: Control Modes Explanation 1 ) Spin-Up Mode - Acquisition of Stability through spin-up maneuver -

More information

Mixed Control Moment Gyro and Momentum Wheel Attitude Control Strategies

Mixed Control Moment Gyro and Momentum Wheel Attitude Control Strategies AAS03-558 Mixed Control Moment Gyro and Momentum Wheel Attitude Control Strategies C. Eugene Skelton II and Christopher D. Hall Department of Aerospace & Ocean Engineering Virginia Polytechnic Institute

More information

SUN-EARTH L1 REGION HALO-TO-HALO ORBIT AND HALO-TO-LISSAJOUS ORBIT TRANSFERS

SUN-EARTH L1 REGION HALO-TO-HALO ORBIT AND HALO-TO-LISSAJOUS ORBIT TRANSFERS SUN-EARTH REGION HALO-TO-HALO ORBIT AND HALO-TO-LISSAJOUS ORBIT TRANSFERS Craig E. Roberts a. i. solutions, Inc., 10001Derekwood Lane, Lanham, Maryland, U.S.A. 20706, E-mail: croberts@ai-solutions.com

More information

LOW-COST LUNAR COMMUNICATION AND NAVIGATION

LOW-COST LUNAR COMMUNICATION AND NAVIGATION LOW-COST LUNAR COMMUNICATION AND NAVIGATION Keric Hill, Jeffrey Parker, George H. Born, and Martin W. Lo Introduction Spacecraft in halo orbits near the Moon could relay communications for lunar missions

More information

3D Pendulum Experimental Setup for Earth-based Testing of the Attitude Dynamics of an Orbiting Spacecraft

3D Pendulum Experimental Setup for Earth-based Testing of the Attitude Dynamics of an Orbiting Spacecraft 3D Pendulum Experimental Setup for Earth-based Testing of the Attitude Dynamics of an Orbiting Spacecraft Mario A. Santillo, Nalin A. Chaturvedi, N. Harris McClamroch, Dennis S. Bernstein Department of

More information

On Sun-Synchronous Orbits and Associated Constellations

On Sun-Synchronous Orbits and Associated Constellations On Sun-Synchronous Orbits and Associated Constellations Daniele Mortari, Matthew P. Wilkins, and Christian Bruccoleri Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843,

More information

MODELING AND CONTROL OF INTERFEROMETRIC FORMATIONS IN THE VICINITY OF THE COLLINEAR LIBRATION POINTS

MODELING AND CONTROL OF INTERFEROMETRIC FORMATIONS IN THE VICINITY OF THE COLLINEAR LIBRATION POINTS AAS 5-6 MODELING AND CONTROL OF INTERFEROMETRIC FORMATIONS IN THE VICINITY OF THE COLLINEAR LIBRATION POINTS Prasenjit Sengupta and Srinivas R. Vadali The modeling and control of a Fizeau-type interferometer

More information

Quaternion-Based Tracking Control Law Design For Tracking Mode

Quaternion-Based Tracking Control Law Design For Tracking Mode A. M. Elbeltagy Egyptian Armed forces Conference on small satellites. 2016 Logan, Utah, USA Paper objectives Introduction Presentation Agenda Spacecraft combined nonlinear model Proposed RW nonlinear attitude

More information

TRAJECTORY SENSITIVITIES FOR SUN-MARS LIBRATION POINT MISSIONS

TRAJECTORY SENSITIVITIES FOR SUN-MARS LIBRATION POINT MISSIONS TRAJECTORY SENSITIVITIES FOR SUN-MARS LIBRATION POINT MISSIONS AAS 01-327 John P. Carrico *, Jon D. Strizzi, Joshua M. Kutrieb, and Paul E. Damphousse Previous research has analyzed proposed missions utilizing

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

Attitude Determination and. Attitude Control

Attitude Determination and. Attitude Control Attitude Determination and Placing the telescope in orbit is not the end of the story. It is necessary to point the telescope towards the selected targets, or to scan the selected sky area with the telescope.

More information

What is the InterPlanetary Superhighway?

What is the InterPlanetary Superhighway? What is the InterPlanetary Superhighway? Kathleen Howell Purdue University Lo and Ross Trajectory Key Space Technology Mission-Enabling Technology Not All Technology is hardware! The InterPlanetary Superhighway

More information

Attitude Regulation About a Fixed Rotation Axis

Attitude Regulation About a Fixed Rotation Axis AIAA Journal of Guidance, Control, & Dynamics Revised Submission, December, 22 Attitude Regulation About a Fixed Rotation Axis Jonathan Lawton Raytheon Systems Inc. Tucson, Arizona 85734 Randal W. Beard

More information

5.12 The Aerodynamic Assist Trajectories of Vehicles Propelled by Solar Radiation Pressure References...

5.12 The Aerodynamic Assist Trajectories of Vehicles Propelled by Solar Radiation Pressure References... 1 The Two-Body Problem... 1 1.1 Position of the Problem... 1 1.2 The Conic Sections and Their Geometrical Properties... 12 1.3 The Elliptic Orbits... 20 1.4 The Hyperbolic and Parabolic Trajectories...

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

COUPLED ORBITAL AND ATTITUDE CONTROL SIMULATION

COUPLED ORBITAL AND ATTITUDE CONTROL SIMULATION COUPLED ORBITAL AND ATTITUDE CONTROL SIMULATION Scott E. Lennox AOE 5984: Advanced Attitude Spacecraft Dynamics and Control December 12, 23 INTRODUCTION In the last few years the space industry has started

More information

(3.1) a 2nd-order vector differential equation, as the two 1st-order vector differential equations (3.3)

(3.1) a 2nd-order vector differential equation, as the two 1st-order vector differential equations (3.3) Chapter 3 Kinematics As noted in the Introduction, the study of dynamics can be decomposed into the study of kinematics and kinetics. For the translational motion of a particle of mass m, this decomposition

More information

Libration Point Missions,

Libration Point Missions, Libration Point Missions, 1978 2002 David W. Dunham and Robert W. Farquhar Johns Hopkins University Applied Physics Laboratory Abstract This paper summarizes the six missions to the vicinity of libration

More information

1/30. Rigid Body Rotations. Dave Frank

1/30. Rigid Body Rotations. Dave Frank . 1/3 Rigid Body Rotations Dave Frank A Point Particle and Fundamental Quantities z 2/3 m v ω r y x Angular Velocity v = dr dt = ω r Kinetic Energy K = 1 2 mv2 Momentum p = mv Rigid Bodies We treat a rigid

More information

/. 3D. a very abstract sort of problem, this research is a step on the way to applicable knowledge.

/. 3D. a very abstract sort of problem, this research is a step on the way to applicable knowledge. /. 3D Corwin Atwood-Stone Physics Department, The College of Wooster, Wooster, Ohio 691, USA (Dated: May 7, 009) A simulation of the mutual orbital motion of a point and a stick of equal masses in three

More information

Attitude Control Simulator for the Small Satellite and Its Validation by On-orbit Data of QSAT-EOS

Attitude Control Simulator for the Small Satellite and Its Validation by On-orbit Data of QSAT-EOS SSC17-P1-17 Attitude Control Simulator for the Small Satellite and Its Validation by On-orbit Data of QSAT-EOS Masayuki Katayama, Yuta Suzaki Mitsubishi Precision Company Limited 345 Kamikmachiya, Kamakura

More information

Lecture 41: Highlights

Lecture 41: Highlights Lecture 41: Highlights The goal of this lecture is to remind you of some of the key points that we ve covered this semester Note that this is not the complete set of topics that may appear on the final

More information

Ulrich Walter. Astronautics. The Physics of Space Flight. 2nd, Enlarged and Improved Edition

Ulrich Walter. Astronautics. The Physics of Space Flight. 2nd, Enlarged and Improved Edition Ulrich Walter Astronautics The Physics of Space Flight 2nd, Enlarged and Improved Edition Preface to Second Edition Preface XVII Acknowledgments XIX List of Symbols XXI XV 1 Rocket Fundamentals 1 1.1 Rocket

More information

Torque and Rotation Lecture 7

Torque and Rotation Lecture 7 Torque and Rotation Lecture 7 ˆ In this lecture we finally move beyond a simple particle in our mechanical analysis of motion. ˆ Now we consider the so-called rigid body. Essentially, a particle with extension

More information

Physical Dynamics (SPA5304) Lecture Plan 2018

Physical Dynamics (SPA5304) Lecture Plan 2018 Physical Dynamics (SPA5304) Lecture Plan 2018 The numbers on the left margin are approximate lecture numbers. Items in gray are not covered this year 1 Advanced Review of Newtonian Mechanics 1.1 One Particle

More information

AN ANALYTICAL SOLUTION TO QUICK-RESPONSE COLLISION AVOIDANCE MANEUVERS IN LOW EARTH ORBIT

AN ANALYTICAL SOLUTION TO QUICK-RESPONSE COLLISION AVOIDANCE MANEUVERS IN LOW EARTH ORBIT AAS 16-366 AN ANALYTICAL SOLUTION TO QUICK-RESPONSE COLLISION AVOIDANCE MANEUVERS IN LOW EARTH ORBIT Jason A. Reiter * and David B. Spencer INTRODUCTION Collision avoidance maneuvers to prevent orbital

More information

PHYS2330 Intermediate Mechanics Fall Final Exam Tuesday, 21 Dec 2010

PHYS2330 Intermediate Mechanics Fall Final Exam Tuesday, 21 Dec 2010 Name: PHYS2330 Intermediate Mechanics Fall 2010 Final Exam Tuesday, 21 Dec 2010 This exam has two parts. Part I has 20 multiple choice questions, worth two points each. Part II consists of six relatively

More information

OPTIMAL MANEUVERS IN THREE-DIMENSIONAL SWING-BY TRAJECTORIES

OPTIMAL MANEUVERS IN THREE-DIMENSIONAL SWING-BY TRAJECTORIES OPTIMAL MANEUVERS IN THREE-DIMENSIONAL SWING-BY TRAJECTORIES Gislaine de Felipe and Antonio Fernando Bertachini de Almeida Prado Instituto Nacional de Pesquisas Espaciais - São José dos Campos - SP - 12227-010

More information

1 The displacement, s in metres, of an object after a time, t in seconds, is given by s = 90t 4 t 2

1 The displacement, s in metres, of an object after a time, t in seconds, is given by s = 90t 4 t 2 CFE Advanced Higher Physics Unit 1 Rotational Motion and Astrophysics Kinematic relationships 1 The displacement, s in metres, of an object after a time, t in seconds, is given by s = 90t 4 t 2 a) Find

More information

Celestial Mechanics Lecture 10

Celestial Mechanics Lecture 10 Celestial Mechanics Lecture 10 ˆ This is the first of two topics which I have added to the curriculum for this term. ˆ We have a surprizing amount of firepower at our disposal to analyze some basic problems

More information

Robotics & Automation. Lecture 25. Dynamics of Constrained Systems, Dynamic Control. John T. Wen. April 26, 2007

Robotics & Automation. Lecture 25. Dynamics of Constrained Systems, Dynamic Control. John T. Wen. April 26, 2007 Robotics & Automation Lecture 25 Dynamics of Constrained Systems, Dynamic Control John T. Wen April 26, 2007 Last Time Order N Forward Dynamics (3-sweep algorithm) Factorization perspective: causal-anticausal

More information

8.012 Physics I: Classical Mechanics Fall 2008

8.012 Physics I: Classical Mechanics Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.012 Physics I: Classical Mechanics Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. MASSACHUSETTS INSTITUTE

More information

Classical Mechanics III (8.09) Fall 2014 Assignment 3

Classical Mechanics III (8.09) Fall 2014 Assignment 3 Classical Mechanics III (8.09) Fall 2014 Assignment 3 Massachusetts Institute of Technology Physics Department Due September 29, 2014 September 22, 2014 6:00pm Announcements This week we continue our discussion

More information

Physical Dynamics (PHY-304)

Physical Dynamics (PHY-304) Physical Dynamics (PHY-304) Gabriele Travaglini March 31, 2012 1 Review of Newtonian Mechanics 1.1 One particle Lectures 1-2. Frame, velocity, acceleration, number of degrees of freedom, generalised coordinates.

More information

Spinning Satellites Examples. ACS: Gravity Gradient. ACS: Single Spin

Spinning Satellites Examples. ACS: Gravity Gradient. ACS: Single Spin Attitude Determination and Attitude Control Placing the telescope in orbit is not the end of the story. It is necessary to point the telescope towards the selected targets, or to scan the selected sky

More information

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings:

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings: Introduction Up to this point we have considered only the kinematics of a manipulator. That is, only the specification of motion without regard to the forces and torques required to cause motion In this

More information

MAE 142 Homework #5 Due Friday, March 13, 2009

MAE 142 Homework #5 Due Friday, March 13, 2009 MAE 142 Homework #5 Due Friday, March 13, 2009 Please read through the entire homework set before beginning. Also, please label clearly your answers and summarize your findings as concisely as possible.

More information

Nonlinear Control of Electrodynamic Tether in Equatorial or Somewhat Inclined Orbits

Nonlinear Control of Electrodynamic Tether in Equatorial or Somewhat Inclined Orbits Proceedings of the 15th Mediterranean Conference on Control & Automation, July 7-9, 7, Athens - Greece T-5 Nonlinear Control of Electrodynamic Tether in Equatorial or Somewhat Inclined Martin B. Larsen

More information

The Orbit Control of ERS-1 and ERS-2 for a Very Accurate Tandem Configuration

The Orbit Control of ERS-1 and ERS-2 for a Very Accurate Tandem Configuration The Orbit Control of ERS-1 and ERS-2 for a Very Accurate Tandem Configuration Mats Rosengren European Space Operations Centre Robert Bosch Str 5 D64293 Darmstadt Germany Email: mrosengr@esoc.esa.de Abstract

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

Attitude Control Strategy for HAUSAT-2 with Pitch Bias Momentum System

Attitude Control Strategy for HAUSAT-2 with Pitch Bias Momentum System SSC06-VII-5 Attitude Control Strategy for HAUSAT-2 with Pitch Bias Momentum System Young-Keun Chang, Seok-Jin Kang, Byung-Hoon Lee, Jung-on Choi, Mi-Yeon Yun and Byoung-Young Moon School of Aerospace and

More information

WEIGHTING MATRICES DETERMINATION USING POLE PLACEMENT FOR TRACKING MANEUVERS

WEIGHTING MATRICES DETERMINATION USING POLE PLACEMENT FOR TRACKING MANEUVERS U.P.B. Sci. Bull., Series D, Vol. 75, Iss. 2, 2013 ISSN 1454-2358 WEIGHTING MATRICES DETERMINATION USING POLE PLACEMENT FOR TRACKING MANEUVERS Raluca M. STEFANESCU 1, Claudiu L. PRIOROC 2, Adrian M. STOICA

More information

EARTH TO HALO ORBIT TRANSFER TRAJECTORIES. A Thesis. Submitted to the Faculty. Purdue University. Raoul R. Rausch. In Partial Fulfillment of the

EARTH TO HALO ORBIT TRANSFER TRAJECTORIES. A Thesis. Submitted to the Faculty. Purdue University. Raoul R. Rausch. In Partial Fulfillment of the EARTH TO HALO ORBIT TRANSFER TRAJECTORIES A Thesis Submitted to the Faculty of Purdue University by Raoul R. Rausch In Partial Fulfillment of the Requirements for the Degree of Master of Science August

More information

Physics 351, Spring 2015, Final Exam.

Physics 351, Spring 2015, Final Exam. Physics 351, Spring 2015, Final Exam. This closed-book exam has (only) 25% weight in your course grade. You can use one sheet of your own hand-written notes. Please show your work on these pages. The back

More information

ORBITAL CHARACTERISTICS DUE TO THE THREE DIMENSIONAL SWING-BY IN THE SUN-JUPITER SYSTEM

ORBITAL CHARACTERISTICS DUE TO THE THREE DIMENSIONAL SWING-BY IN THE SUN-JUPITER SYSTEM ORBITAL CHARACTERISTICS DUE TO THE THREE DIMENSIONAL SWING-BY IN THE SUN-JUPITER SYSTEM JORGE K. S. FORMIGA 1,2 and ANTONIO F B A PRADO 2 National Institute for Space Research -INPE 1 Technology Faculty-FATEC-SJC

More information

Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels

Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels Visual Feedback Attitude Control of a Bias Momentum Micro Satellite using Two Wheels Fuyuto Terui a, Nobutada Sako b, Keisuke Yoshihara c, Toru Yamamoto c, Shinichi Nakasuka b a National Aerospace Laboratory

More information

Advanced Higher Mathematics of Mechanics

Advanced Higher Mathematics of Mechanics Advanced Higher Mathematics of Mechanics Course Outline (2016-2017) Block 1: Change of timetable to summer holiday Assessment Standard Assessment 1 Applying skills to motion in a straight line (Linear

More information

Generation X. Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San. July 27, 2000

Generation X. Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San. July 27, 2000 Generation X Attitude Control Systems (ACS) Aprille Ericsson Dave Olney Josephine San July 27, 2000 ACS Overview Requirements Assumptions Disturbance Torque Assessment Component and Control Mode Recommendations

More information

Phys 7221 Homework # 8

Phys 7221 Homework # 8 Phys 71 Homework # 8 Gabriela González November 15, 6 Derivation 5-6: Torque free symmetric top In a torque free, symmetric top, with I x = I y = I, the angular velocity vector ω in body coordinates with

More information

Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be.

Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be. Chapter 4 Energy and Stability 4.1 Energy in 1D Consider a particle in 1D at position x(t), subject to a force F (x), so that mẍ = F (x). Define the kinetic energy to be T = 1 2 mẋ2 and the potential energy

More information

MATHEMATICAL PHYSICS

MATHEMATICAL PHYSICS MATHEMATICAL PHYSICS Third Year SEMESTER 1 015 016 Classical Mechanics MP350 Prof. S. J. Hands, Prof. D. M. Heffernan, Dr. J.-I. Skullerud and Dr. M. Fremling Time allowed: 1 1 hours Answer two questions

More information

Astronomy 111 Midterm #1

Astronomy 111 Midterm #1 Astronomy 111 Midterm #1 Prof. Douglass 11 October 2018 Name: You may consult only one page of formulas and constants and a calculator while taking this test. You may not consult any books, digital resources,

More information

ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS

ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS IAA-AAS-DyCoSS2-14-07-02 ATTITUDE CONTROL MECHANIZATION TO DE-ORBIT SATELLITES USING SOLAR SAILS Ozan Tekinalp, * Omer Atas INTRODUCTION Utilization of solar sails for the de-orbiting of satellites is

More information

Chapter 13. Gravitation

Chapter 13. Gravitation Chapter 13 Gravitation e = c/a A note about eccentricity For a circle c = 0 à e = 0 a Orbit Examples Mercury has the highest eccentricity of any planet (a) e Mercury = 0.21 Halley s comet has an orbit

More information

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J. Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik Robot Dynamics Dr.-Ing. John Nassour 25.1.218 J.Nassour 1 Introduction Dynamics concerns the motion of bodies Includes Kinematics

More information

GRAIL Takes A Roundabout Route To Lunar Orbit

GRAIL Takes A Roundabout Route To Lunar Orbit The Gravity Recovery and Interior Laboratory (GRAIL) mission departed Earth from Cape Canaveral Air Force Station Space Launch Complex 17B on 2011 September 10 at 13:08 UTC, carried by a Delta II Heavy

More information

Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia. 8.01t Nov 3, 2004

Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia. 8.01t Nov 3, 2004 Rotational Motion, Torque, Angular Acceleration, and Moment of Inertia 8.01t Nov 3, 2004 Rotation and Translation of Rigid Body Motion of a thrown object Translational Motion of the Center of Mass Total

More information

A plane autonomous system is a pair of simultaneous first-order differential equations,

A plane autonomous system is a pair of simultaneous first-order differential equations, Chapter 11 Phase-Plane Techniques 11.1 Plane Autonomous Systems A plane autonomous system is a pair of simultaneous first-order differential equations, ẋ = f(x, y), ẏ = g(x, y). This system has an equilibrium

More information

Level 3 Physics, 2018

Level 3 Physics, 2018 91524 915240 3SUPERVISOR S Level 3 Physics, 2018 91524 Demonstrate understanding of mechanical systems 2.00 p.m. Tuesday 20 November 2018 Credits: Six Achievement Achievement with Merit Achievement with

More information

AP Physics 1 Chapter 7 Circular Motion and Gravitation

AP Physics 1 Chapter 7 Circular Motion and Gravitation AP Physics 1 Chapter 7 Circular Motion and Gravitation Chapter 7: Circular Motion and Angular Measure Gravitation Angular Speed and Velocity Uniform Circular Motion and Centripetal Acceleration Angular

More information

Spacecraft Attitude Control with RWs via LPV Control Theory: Comparison of Two Different Methods in One Framework

Spacecraft Attitude Control with RWs via LPV Control Theory: Comparison of Two Different Methods in One Framework Trans. JSASS Aerospace Tech. Japan Vol. 4, No. ists3, pp. Pd_5-Pd_, 6 Spacecraft Attitude Control with RWs via LPV Control Theory: Comparison of Two Different Methods in One Framework y Takahiro SASAKI,),

More information

Pointing Control for Low Altitude Triple Cubesat Space Darts

Pointing Control for Low Altitude Triple Cubesat Space Darts Pointing Control for Low Altitude Triple Cubesat Space Darts August 12 th, 2009 U.S. Naval Research Laboratory Washington, D.C. Code 8231-Attitude Control System James Armstrong, Craig Casey, Glenn Creamer,

More information

A classification of swing-by trajectories using the Moon

A classification of swing-by trajectories using the Moon A classification of swing-by trajectories using the Moon Antonio Fernando Bertachini de Almeida Prado Research Engineer, Department of Space Mechanics and Control Instituto Nacional de Pesquisas Espaciais

More information

Attitude Control Method of Spin-Stabilized Satellite Base on Equiangular Precession

Attitude Control Method of Spin-Stabilized Satellite Base on Equiangular Precession International Conference on Artificial Intelligence and Engineering Applications (AIEA 2016) Attitude Control Method of Spin-Stabilized Satellite Base on Equiangular Precession Yonggang Li a, Jiping Ren

More information

AA 528 Spacecraft Dynamics and Control. Mehran Mesbahi Aeronautics & Astronautics Winter 2017 University of Washington

AA 528 Spacecraft Dynamics and Control. Mehran Mesbahi Aeronautics & Astronautics Winter 2017 University of Washington AA 528 Spacecraft Dynamics and Control Mehran Mesbahi Aeronautics & Astronautics Winter 2017 University of Washington Spacecraft dynamics and control What is this class all about? what is in the name?

More information

Design of Sliding Mode Attitude Control for Communication Spacecraft

Design of Sliding Mode Attitude Control for Communication Spacecraft Design of Sliding Mode Attitude Control for Communication Spacecraft Erkan Abdulhamitbilal 1 and Elbrous M. Jafarov 1 ISTAVIA Engineering, Istanbul Aeronautics and Astronautics Engineering, Istanbul Technical

More information

the EL equation for the x coordinate is easily seen to be (exercise)

the EL equation for the x coordinate is easily seen to be (exercise) Physics 6010, Fall 2016 Relevant Sections in Text: 1.3 1.6 Examples After all this formalism it is a good idea to spend some time developing a number of illustrative examples. These examples represent

More information

Physics 5A Final Review Solutions

Physics 5A Final Review Solutions Physics A Final Review Solutions Eric Reichwein Department of Physics University of California, Santa Cruz November 6, 0. A stone is dropped into the water from a tower 44.m above the ground. Another stone

More information

Supplementary Problems

Supplementary Problems A Supplementary Problems These are practice questions: you do not need to hand in solutions. You can also study past exam papers. PH211 (now PHYS2006) was a new course in 1993, so you ll find some relevant

More information

Jitter and Basic Requirements of the Reaction Wheel Assembly in the Attitude Control System

Jitter and Basic Requirements of the Reaction Wheel Assembly in the Attitude Control System Jitter and Basic Requirements of the Reaction Wheel Assembly in the Attitude Control System Lulu Liu August, 7 1 Brief Introduction Photometric precision is a major concern in this space mission. A pointing

More information

Symmetries 2 - Rotations in Space

Symmetries 2 - Rotations in Space Symmetries 2 - Rotations in Space This symmetry is about the isotropy of space, i.e. space is the same in all orientations. Thus, if we continuously rotated an entire system in space, we expect the system

More information

III. Work and Energy

III. Work and Energy Rotation I. Kinematics - Angular analogs II. III. IV. Dynamics - Torque and Rotational Inertia Work and Energy Angular Momentum - Bodies and particles V. Elliptical Orbits The student will be able to:

More information

IAC-07-C SOLAR SAIL SURFING ALONG FAMILIES OF EQUILIBRIUM POINTS

IAC-07-C SOLAR SAIL SURFING ALONG FAMILIES OF EQUILIBRIUM POINTS 58th International Astronautical Congress, Hyderabad, India, 24-28 September 2007. Copyright IAF/IAA. All rights reserved. IAC-07-C1.4.04 SOLAR SAIL SURFING ALONG FAMILIES OF EQUILIBRIUM POINTS Ariadna

More information

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity 2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity Energy 7 4 Kinematics Free fall Collisions 3 5 Dynamics

More information

AS3010: Introduction to Space Technology

AS3010: Introduction to Space Technology AS3010: Introduction to Space Technology L E C T U R E S 8-9 Part B, Lectures 8-9 23 March, 2017 C O N T E N T S In this lecture, we will look at factors that cause an orbit to change over time orbital

More information

The design of spacecraft trajectories is a crucial task in space mission design. Solar sail technology

The design of spacecraft trajectories is a crucial task in space mission design. Solar sail technology Asymptotic Analysis of Displaced Lunar Orbits Jules Simo and Colin R. McInnes University of Strathclyde, Glasgow, G1 1XJ, United Kingdom I. Introduction The design of spacecraft trajectories is a crucial

More information

Analytical Mechanics. of Space Systems. tfa AA. Hanspeter Schaub. College Station, Texas. University of Colorado Boulder, Colorado.

Analytical Mechanics. of Space Systems. tfa AA. Hanspeter Schaub. College Station, Texas. University of Colorado Boulder, Colorado. Analytical Mechanics of Space Systems Third Edition Hanspeter Schaub University of Colorado Boulder, Colorado John L. Junkins Texas A&M University College Station, Texas AIM EDUCATION SERIES Joseph A.

More information

Dynamics. Dynamics of mechanical particle and particle systems (many body systems)

Dynamics. Dynamics of mechanical particle and particle systems (many body systems) Dynamics Dynamics of mechanical particle and particle systems (many body systems) Newton`s first law: If no net force acts on a body, it will move on a straight line at constant velocity or will stay at

More information

UPDATED: NOVEMBER A particle of mass m and energy E moving in one dimension comes in from - and encounters the repulsive potential:

UPDATED: NOVEMBER A particle of mass m and energy E moving in one dimension comes in from - and encounters the repulsive potential: UVA PHYSICS DEPARTMENT PHD QUALIFYING EXAM PROBLEM FILE CLASSICAL MECHANICS UPDATED: NOVEMBER 007 1. A particle of mass m and energy E moving in one dimension comes in from - and encounters the repulsive

More information

Stationkeeping of Lissajous Trajectories in the Earth-Moon System with Applications to ARTEMIS

Stationkeeping of Lissajous Trajectories in the Earth-Moon System with Applications to ARTEMIS AAS 10 113 Stationkeeping of Lissajous Trajectories in the Earth-Moon System with Applications to ARTEMIS D.C. Folta,* T.A. Pavlak, K.C. Howell, M.A. Woodard, and D. W. Woodfork In the last few decades,

More information

Trajectory-tracking control of a planar 3-RRR parallel manipulator

Trajectory-tracking control of a planar 3-RRR parallel manipulator Trajectory-tracking control of a planar 3-RRR parallel manipulator Chaman Nasa and Sandipan Bandyopadhyay Department of Engineering Design Indian Institute of Technology Madras Chennai, India Abstract

More information

Physics 53 Summer Final Exam. Solutions

Physics 53 Summer Final Exam. Solutions Final Exam Solutions In questions or problems not requiring numerical answers, express the answers in terms of the symbols given, and standard constants such as g. If numbers are required, use g = 10 m/s

More information

The in-plane Motion of a Geosynchronous Satellite under the Gravitational Attraction of the Sun, the Moon and the Oblate Earth

The in-plane Motion of a Geosynchronous Satellite under the Gravitational Attraction of the Sun, the Moon and the Oblate Earth J Astrophys Astr (1990) 11, 1 10 The in-plane Motion of a Geosynchronous Satellite under the Gravitational Attraction of the Sun, the Moon and the Oblate Earth Κ Β Bhatnagar Department of Mathematics,

More information

Spacecraft Dynamics and Control

Spacecraft Dynamics and Control Spacecraft Dynamics and Control Matthew M. Peet Arizona State University Lecture 1: In the Beginning Introduction to Spacecraft Dynamics Overview of Course Objectives Determining Orbital Elements Know

More information

Tracking Rigid Body Motion Using Thrusters and Momentum. Wheels

Tracking Rigid Body Motion Using Thrusters and Momentum. Wheels JAS 199 Tracking Rigid Body Motion Using Thrusters and Momentum Wheels Christopher D. Hall, Panagiotis Tsiotras, and Haijun Shen Abstract Tracking control laws are developed for a rigid spacecraft using

More information

TTK4150 Nonlinear Control Systems Solution 6 Part 2

TTK4150 Nonlinear Control Systems Solution 6 Part 2 TTK4150 Nonlinear Control Systems Solution 6 Part 2 Department of Engineering Cybernetics Norwegian University of Science and Technology Fall 2003 Solution 1 Thesystemisgivenby φ = R (φ) ω and J 1 ω 1

More information

Optimal Fault-Tolerant Configurations of Thrusters

Optimal Fault-Tolerant Configurations of Thrusters Optimal Fault-Tolerant Configurations of Thrusters By Yasuhiro YOSHIMURA ) and Hirohisa KOJIMA, ) ) Aerospace Engineering, Tokyo Metropolitan University, Hino, Japan (Received June st, 7) Fault tolerance

More information

The Simplest Tether Control Law in a Small Satellite

The Simplest Tether Control Law in a Small Satellite The Simplest Tether Control Law in a Small Satellite Yosuke Nakamura (Kyushu University) Designing of a small satellite based on the Satellite Design Contest is progressing in Kyushu University. This is

More information

7. FORCE ANALYSIS. Fundamentals F C

7. FORCE ANALYSIS. Fundamentals F C ME 352 ORE NLYSIS 7. ORE NLYSIS his chapter discusses some of the methodologies used to perform force analysis on mechanisms. he chapter begins with a review of some fundamentals of force analysis using

More information