Solution by Nicuşor Zlota, Traian Vuia Technical College, Focşani, Romania

Size: px
Start display at page:

Download "Solution by Nicuşor Zlota, Traian Vuia Technical College, Focşani, Romania"

Transcription

1 Revista Virtuala Ifo MateTehic ISSN ISSN-L Probleme rouse sre rezolvare Nicusor Zlota, Focsai 08.Prove that C, j N,where the fiboacci, F F F 0 F F, F 0, F + = + + = = = 0 + j + j 09.Let a,b,c be umbers real ad,, <.Prove that a b c a + b + c + + a + b b + c c + a 0.Let a>0 ad sequece ( x) 0, x x,. Evaluate lim!( x a ) Solutio Mathematical Reflectios 5/04, 6/04 Solutio Mathematical Excalibur 460, School Sciece ad Mathematics Associatio (ssma) Solutio Recreatii Matematice /04 J5 Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia By settig a= x, b= y, c= z,whe iequality is equivalet to : x+ y+ z x+ y+ z x+ y+ z 4a+ + ab+ + ac+ 5+ 5x+ y+ z+ x+ 5y+ z+ x+ y+ 5 z ( 5+ ) x+ y+ z By squarig, we obtai

2 Revista Virtuala Ifo MateTehic ISSN ISSN-L x+ y+ z+ x+ 5y+ z+ x+ y+ 5z+ 5x+ y+ z x+ 5 y+ z ( x+ y+ z)(9+ 4 5),(*) 5x+ y+ z x+ 5 y+ z (+ 5)( x+ y+ z) We show that 5x+ y+ z x+ 5y+ z 5( x+ y) + z 8 xy+ ( 5) yz+ ( 5) zx> 0, x, y, z> 0, is true similarly we get x+ 5y+ z x+ y+ 5z 5( y+ z) + x x+ y+ 5z 5x+ y+ z 5( x+ z) + y,that by gatherig obtai iequality (*) J9. Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia Alyig Cauchy-Schwarz-Buiaovsi, we a a a a ( a+ a+.. + a) = aa aa aa aa aa aa aa a a aa + aa a J. Let x,y,z be ositive real umbers such that xyz(x+y+z)=.prove that 54 9 x + y + z + ( x+ y+ z) Proosed by Marius Staea, Zalau, Romaia Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia Let

3 Revista Virtuala Ifo MateTehic ISSN ISSN-L x+ y+ z= u xy+ yz+ zx= v xyz= w, the we have xyz( x+ y+ z) = uw = uw =, () This iequality is equivalet to 54 x y z ( x+ y+ z) ( x+ y+ z) ( x y + y z + z x ) + 54( xyz) 9( x+ y+ z) ( xyz) u (9v 6 uw ) 54w 9(9 u )( w ) u (v ) + w Hece, our iequality is equivalet to, where is a icreasig fuctio. J. I triagle ABC sia+ sib+ sic= 5 Proosed by Titu Adreescu, Uiversity of Texas at Dallas, USA Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia I triagle ABC, we have : a< b+ c sia< sib+ sic Therefore 5 5 sia+ sia< sia+ sib+ sic= sia< = si6 4 0 A> 6

4 Revista Virtuala Ifo MateTehic ISSN ISSN-L S Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia Let f ( abc,, ) = ( a+ b+ )( c+ ) we show that : f ( abc,, ) 0 We have f ( abc,, ) = ( a+ b+ )( c+ ) = ( a+ b+ )( c+ ) 9 ( a+ b+ )( c+ ) + ac+ a+ bc+ b+ ( a+ b+ c) f ( abc, ) = = ( a+ b+ )( c+ ) + ( a b) + ( bc ) + ( ca ) ( a+ b+ )( c+ ) + 0, abc,, 0 S4 Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia we show that : P= ( x y )( y z )( z x ) = q We have : ( x y)( y z)( z x) = q,() ( x + xy+ y )( y + yz+ z )( z + zx+ x ) = q + q+,() We wor i C. Let + i α =.Tthe, α = ad thus

5 Revista Virtuala Ifo MateTehic ISSN ISSN-L ( x αy)( y αz)( z αx) ( α ) xyz α( x y y z z x) α ( xy yz zx ) = = α+ α q= α( + αq) The asume comutatio with α relaced by α = ) roves : α every where (ad usig ( ) = istead of α ( x+ y)( y+ z)( z+ x) = ( + q) α α α α α But ay two comlex u ad v satisfy ( u+ αv)( u+ v) = u + uv+ v α Hece, ( x + xy+ y )( y + yz+ z )( z + zx+ x ) = ( x+ αy)( y+ αz)( z+ αx)( x+ y)( y+ z)( z+ x) = α α α α( + αq) ( + q) = + q+ q α α From () ad (), obtai P= ( x y )( y z )( z x ) = q S9.Let a,b,c be ositive real umbers such that a+b+c=.prove that for ay ositive real umber t, ( at + bt+ c)( bt + ct+ a)( ct + at+ b) t Proosed by Titu Adreescu, Uiversity of Texas at Dallas, USA Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia S9.Let a,b,c be ositive real umbers such that a+b+c=.prove that for ay ositive real umber t, ( at + bt+ c)( bt + ct+ a)( ct + at+ b) t

6 Revista Virtuala Ifo MateTehic ISSN ISSN-L Proosed by Titu Adreescu, Uiversity of Texas at Dallas, USA Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia Usig atural logarithm, we obtai l[( at + bt+ c)( bt + ct+ a)( ct + at+ b)] lt,() l( at + bt+ c) + l( bt + ct+ a) + l( ct + at+ b) lt Cosider the fuctio f :[0, ) R, f ( t) = l( at + bt+ c) + l( bt + ct+ a) + l( ct + at+ b) lt We shall rove that this fuctio has o-egative derivative f ' ( t) 0,(*) We have at+ b bt+ c ct+ a ( ) = + + ' f t at + bt+ c bt + ct+ a ct + at+ b t at+ b bt+ c ct+ a ( at+ b) (t+ ) + + = at + bt+ c bt + ct+ a ct + at+ b ( at+ b)( at + bt+ c) ( t + t) a + (t + t+ ) ab t,() t(t+ ) ( t + t) a + (t + t+ ) ab For x y z a=, b=, c=,=x+y+z,q=xy+yz+zx,r=xyz, the iequality () becomes x+ y+ z x+ y+ z x+ y+ z (4 4 )( ) ( ) ( ) t + t + t x t t + x + t + t+ xy ( t )((8t + 7t+ ) xy t( t ) x ) 0 t 0, or t (4 xy x ) + t(7 xy+ x ) + xy 0 = xy+ x xy xy x = q + q= q + q q + q t 4 4 (7 ) 4 (4 ) (4 ) 9 0 We have roved (*), therefore the fuctio f is icreasig. It follows that f ( t) 0, t, q.e.d

7 Revista Virtuala Ifo MateTehic ISSN ISSN-L U4 Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia Deote by t 0 =, for, we have : t t l= lim ( ) = lim t 0( ) Alyig l'hosital's rule, we : t t l t t l l.. l ex lim l= t 0 = ex limt 0 = t t t l + l l ex =... =! We show by iductio that: t! >,(), or =, the iequality is true. e Suose that () is true ad rove ( + )! > ( )! ( + > ( + )( ) > ( ) e> ( ) e e e e e> ( + ) S07 Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia

8 Revista Virtuala Ifo MateTehic ISSN ISSN-L Tae D BC, the i triagle ADB, we have succesively : ADB AD= AB sib a= 4csiB From the theorem of siuses we get : sia= 4siC sib si(40 B) = 4si( B 60) sib si(0 B) cos(0 B) = 4siB si(60 B) ( cosb+ si B)( sib cos B) = 4si B(siB cos B) ( 4) si B+ (+ 4 ) sib cosb cos B= 0 Deotig tgb=t, the equatio becomes : ( 4) t ( 4 ) t 0 t + + = = +, whece tgb= + B= 75 0 O4.Let a,b,c,d be oegative real umbers such that a b c d abcd = 5.Prove that abc+ bcd+ cda+ dab abcd Proosed by A Zhe-ig, Xiayag Normal Uiversity, Chia Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia We fix m= a+ b ad = c+ d.let x=ab ad y=cd, the we have m mx y xy + + = 5,(),ad abc+ bcd+ cda+ dab abcd = x+ my xy = f ( x, y) Is a liear (covex) fuctio i both x ad y. It oly reaches the maximum at boud ary values, amely : m max f ( x, y) = f ( α, β ); α {0, }, β {0, } 4 4 If m α = ad 4 β =, we have : a=b, c=d. I this case, the roblem becomes : 4

9 Revista Virtuala Ifo MateTehic ISSN ISSN-L a c ac + + = 5, ac ac ac + a= c The equality holds for a=b=c=d= m Otherwise, if α # ad 4 β # 4, we must have m=0 or abcd=0, assume that d=0, the iequality becomes abc if a + b + c = 5 This follows immediately from AM-GM iequality ad attais equality for a= b= c= 5 We are doe. 460.If x,y,z >0 ad x+y+z+=xyz, the rove that x+ y+ z+ 6 ( yz+ zx+ xy) Solutio () Solutio by Nicuşor ZLOTA, Traia Vuia Techical College, Focşai, Romaia Iegalitatea di eut se mai oate scrie astfel yz zx xy x+ y+ z ,(*) yz zx xy Notam cu : a=, b=, c=, atuci yz zx xy a b c x=, y=, z=, deci coditia di eut devie bc ca ab a b c abc = 4, () π Petru a,b,c umere reale ozitive exista ABC,, (0, ) astfel icat

10 Revista Virtuala Ifo MateTehic ISSN ISSN-L ,a=cosA,b=cosB,c=cosC, atuci () devie este adevarata cos A cos B cos C cosa cosb cosc =, care Ilociud i (*), obtiem iegalitatea a b c abc ab bc ca ( + + ) cos A cos B cos C 6 cosa cosb cosc (cosa cosb cosb cosc cosc cos A) + 4 cosa cosb cosc (cosa cosb+ cosb cosc+ cosc cos A),() Utilizad formulele s ( R+ r) 4R cosa=, cosacosb= s + r 4R 4R, atuci iegalitatea (), devie : s ( R+ r) s + r 4R 4 8 4R 4R + s R + Rr+ r,() Petru a demostra iegalitatea (), avem urmatorul rezultat Itr-u triughi eobtuzughic exista iegalitatea Waler a + b + c 4( R+ r) s r 8Rr 4( R+ r) 0 s R + 8Rr+ r, adica () Demostratie(iegalitatea lui Waler) Avem succesiv Solutio () Notam cu x=a+ab,y=b+bc,z=c+ca, astfel icat abc=, care verifica coditia di eut. Atuci iegalitatea devie a+ ab+ b+ bc+ c+ ca+ 6 ( ( b+ bc)( c+ ca) + ( c+ ca)( a+ ab) + ( a+ ab)( b+ bc)) = ( ( bc+ )( + c) + ( ca+ )( + a) + ( ab+ )( + b), ude am folosit iegalitatea α+ β αβ si ( b+ bc)( c+ ca) = bc+ abc+ bc + abc = bc+ + bc + c= ( bc+ )( + c)

11 Revista Virtuala Ifo MateTehic ISSN ISSN-L If lim ( + ) = a> 0 =, the comute + = lim ( ) a Proosed by D.M. Ba tietu-giurgiu, Matei Basarab Natioal College, Bucharest, Romaia ad Neculai Staciu George Emil Palade School, Buzau, Romaia Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia Avem cazul Notam cu a = + =, atuci limita se oate scrie astfel : a a a a a lim a a a a a a e lim ( ) lim [( ) ] a l= + = + = a a Fie a a a a l = lim = lim, si alicad lema lui Cesaro-Stolz, avem succesiv : a a l a a lim lim + a a = = ( + ) + + ( ( )) (9 )( ( ) ( ) ) lim + + lim l = = = a + a (+ ) + (9+ ) ( + ) + 9 ( + ) a Deci limita este l= e a

12 Revista Virtuala Ifo MateTehic ISSN ISSN-L Geeralizare : If, the comute im ( + ) = a> 0 = + = lim ( ), N, a I mod similar se rocedeaza la fel, deci ri urmare, limita este egala cu : ( ) a e 57: Show that i ay triagle ABC, with the usual otatios, that ( ab ) + ( bc ) + ( ca ) 9r a+ b b+ c c+ a Proosed by D.M. Ba tietu-giurgiu, Matei Basarab Natioal College, Bucharest, Romaia ad Neculai Staciu, George Emil Palade School, Buzau, Romaia Solutio () by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia Notam cu x=, y=, z=, atuci iegalitatea devie a b c ( x y) ( y z) ( z x) 4( xy yz zx),care rerezita iegalitatea data la Olimiada Ira 996 Folosid otatiile de mai sus, obtiem 9abc 6Rrs 9r 9r R r, care rerezita iegalitatea lui Euler,ude 4( a+ b+ c) 8s,()

13 Revista Virtuala Ifo MateTehic ISSN ISSN-L abc= 4 Rrs, a+ b+ c= s Petru mai multe detalii rivid demostrarea iegalitatii (), uteti vedea urmatoarele : [.] Yu-Dog Wu, Chag-Jia Zhao- Buildig triagle to rove algebraic iequalities, Octogo Mathematical Magazie, vol, o..a./004, October 004. []. [4] Cezar Luu, Asura iegalitatii lui Gerretse, RMT, vol XI ( seria a IV-a), ag. -0, o.4/006., htt:// []. Titu Adreescu, Old ew iequalities, Solutio () by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia Folosid iegalitatiile x + y + z xy+ yz+ zx 9xyz xy+ yz+ zx x + y + z, si uad : x= ab, y= bc, z= ca a+ b b+ c c+ a, obtiem 9xyz ab c 9( abc) xy+ yz+ zx 9r x+ y+ z ( a+ b)( b+ c) ab ( ) ( a+ b) a+ b 8R s + r + Rr Alicad iegalitatea lui Gerretse, avem s R Rr r R r Rr R r R r ( )( + ) 0, care este evideta, deoarece R r, ude am utilizat urmatoarele formule : a+b+c=s,

14 Revista Virtuala Ifo MateTehic ISSN ISSN-L abc= Rrs ab+ bc+ ca= s + r + Rr 4, 4, ( a+ b) = a ab abc= s( s + r + Rr), ab a+ b+ c = s a+ b 59: Proosed by Arady Alt, Sa Jose, CA Fid the smallest value of x y z + + x + y y + z z + x where real x; y; z > 0 ad xy + yz + zx = Solutio by Nicuşor Zlota, Traia Vuia Techical College, Focşai, Romaia Avem x y z x xy xy E= + + = = ( x ) ( x ) = x + y y + z z + x x + y x + y xy y x+ y+ z = ( x ) =, ude am utilizat x + y xy Deci x+ y+ z ( xy+ yz+ zx) E =

15 Revista Virtuala Ifo MateTehic ISSN ISSN-L Geeralizare : Fid the smallest value of x y z + + x + y y + z z + x, where real x; y; z > 0 ad xy + yz + zx =, < Demostratie Vom arata ca : x y z x + +,() x + y y + z z + x Folosim iegalitatea lui Cauchy-Buiaovschi-Schwarz : x x ( )( ( ) ( ( ) ( ) x + y x + y + + x x + y x x + y = x Este suficiet acum sa demostram ca : ( x ) x x ( x + y ),ceea ce este echivalet cu : x x ( x + y ) x x y,() Folosim acum iegalitatea oderata a mediilor, α β γ αa+ βb+ γc a b c, α+ β + γ =, si obtiem iegalitatii de forma

16 Revista Virtuala Ifo MateTehic ISSN ISSN-L x + y ( x ) ( y ) y + z ( y ) ( z ) z + x ( z ) ( x ) De aici, ri isumare, obtiem iegalitatea () si astfel iegalitatea () este demostrata Petru a rezolva cerita dorita, vom utiliza iegalitatea x + y + z ( x+ y+ z) ( ( xy+ yz+ zx)) = Deci, x y z x E= + + = x y y z z x Petru = si =, obtiem ceea ce trebuia demostrat. icuzlota@yahoo.com Recreatii Matematice /04 IX-5 Solutie : Nicusor Zlota Colegiul Tehic Auto Traia Vuia, Focsai Folosid iegalitatea lui Cauchy-Buiaowschi-Schwartz, avem : a ( a+ b+ c) 4 = = 4 rr rr + rr + rr a b a b b c c a, ude : rr + rr + rr = a b b c c a

17 Revista Virtuala Ifo MateTehic ISSN ISSN-L X-54 Solutie : Nicusor Zlota Colegiul Tehic Auto Traia Vuia, Focsai Fie A,B,C,O uctele de afixe ale lui z, z, z si 0, atuci iegalitatea di eut se scrie astfel : max(,, ) AB AC BC + max( OA, OB, OC ),() Fie AB cea mai mica latura a triughiului ABC si = max( OA, OB, OC ).Iegalitatea() devie : + AB, () Folosid relatia lui Leibiz,avem : AB + BC + CA OA + OB + OC = OG + AB, deci AB. Atuci + + AB si este suficiet sa aratam ca : + AB AB ( AB ) 0 L68 Solutie : Nicusor Zlota- Colegiul Tehic Auto Traia Vuia, Focsai Notam cu = a+ b+ c, q= ab+ bc+ ca, r = abc, atuci iegalitatea di eut devie a ab a q a ( a) a b c a + = ( q) ( a) 4 a ( b)( c) ( a) q+ r 6q 6qr 0,(),ude: ( + a) = + q+ r, 4 ( ) a + b+ c+ bc = + q+ r

18 Revista Virtuala Ifo MateTehic ISSN ISSN-L Iegalitatea () se oate scrie astfel : ( 4q 9 r) q( 4q 9 r) 6( q r qr) 5 r( q) ,, care este evideta deoarece , q r q r qr q 0 0,care rerezita iegalitatile lui Schur. L7 Solutie Nicusor Zlota, Colegiul Tehic Auto Traia Vuia, Focsai Notam cu a=y+z,b=z+x,c=x+y, atuci iegalitatea di eut este echivaleta cu : bc ( y+ z)( z+ x) x y z + ( xy+ yz+ zx)( x y + y z + z x ) 0R 4 ( a) x x y z r = = x y z 4xyz x y z ( xy yz zx)( x y y z z x ) 0 ( x y)( y z)( z x) 4,(), ude R abc ( x+ y)( y+ z)( z+ x) = = r 4S S 4xyz Daca x,y,z sut umere reale ozitive si otam cu : = x+ y+ z, q= xy+ yz+ zxr, = xyz, atuci iegalitatea () devie : r + q( q r) 5( q r) 4 r r, care este evideta, deoarece : q 4qr+ 9r 0 q 9r 0, care rerezita iegalitatile lui Schur. 0 q qr 8r 0 ( q 4qr 9 r ) r( q 9 r) 0

19 Revista Virtuala Ifo MateTehic ISSN ISSN-L

Probleme propuse spre rezolvare. Solution by Mathematical Reflections and Mathematical Excalibu. Nicusor Zlota

Probleme propuse spre rezolvare. Solution by Mathematical Reflections and Mathematical Excalibu. Nicusor Zlota Revista Virtuala Info MateTehnic ISSN 69-7988 ISSN-L 69-7988 Probleme propuse spre rezolvare Solution by Mathematical Reflections and Mathematical Excalibu Nicusor Zlota O Let such that. Prove that O Solve

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY HARRIS KWONG Please submit solutios ad problem proposals to Dr Harris Kwog, Departmet of Mathematical Scieces, SUNY Fredoia, Fredoia, NY, 4063, or by email at

More information

PUTNAM TRAINING INEQUALITIES

PUTNAM TRAINING INEQUALITIES PUTNAM TRAINING INEQUALITIES (Last updated: December, 207) Remark This is a list of exercises o iequalities Miguel A Lerma Exercises If a, b, c > 0, prove that (a 2 b + b 2 c + c 2 a)(ab 2 + bc 2 + ca

More information

ELEMENTARY PROBLEMS AND SOLUTIONS

ELEMENTARY PROBLEMS AND SOLUTIONS ELEMENTARY PROBLEMS AND SOLUTIONS EDITED BY HARRIS KWONG Please submit solutios ad problem proposals to Dr. Harris Kwog Departmet of Mathematical Scieces SUNY Fredoia Fredoia NY 14063 or by email at wog@fredoia.edu.

More information

József Wildt International Mathematical Competition

József Wildt International Mathematical Competition József Wildt Iteratioal Mathematical Competitio The Editio XXVIII th, 28 The solutio of the problems W. - W.6 must be mailed before 26. October 28, to, str. Hărmaului 6, 556 Săcele - Négyfalu, Jud. Braşov,

More information

MATH 112: HOMEWORK 6 SOLUTIONS. Problem 1: Rudin, Chapter 3, Problem s k < s k < 2 + s k+1

MATH 112: HOMEWORK 6 SOLUTIONS. Problem 1: Rudin, Chapter 3, Problem s k < s k < 2 + s k+1 MATH 2: HOMEWORK 6 SOLUTIONS CA PRO JIRADILOK Problem. If s = 2, ad Problem : Rudi, Chapter 3, Problem 3. s + = 2 + s ( =, 2, 3,... ), prove that {s } coverges, ad that s < 2 for =, 2, 3,.... Proof. The

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS ADVANCED PROBLEMS AND SOLUTIONS EDITED BY FLORIAN LUCA Please sed all commuicatios cocerig ADVANCED PROBLEMS AND SOLUTIONS to FLORIAN LUCA, SCHOOL OF MATHEMATICS, UNIVERSITY OF THE WITWA- TERSRAND, WITS

More information

Coffee Hour Problems of the Week (solutions)

Coffee Hour Problems of the Week (solutions) Coffee Hour Problems of the Week (solutios) Edited by Matthew McMulle Otterbei Uiversity Fall 0 Week. Proposed by Matthew McMulle. A regular hexago with area 3 is iscribed i a circle. Fid the area of a

More information

University of Manitoba, Mathletics 2009

University of Manitoba, Mathletics 2009 Uiversity of Maitoba, Mathletics 009 Sessio 5: Iequalities Facts ad defiitios AM-GM iequality: For a, a,, a 0, a + a + + a (a a a ) /, with equality iff all a i s are equal Cauchy s iequality: For reals

More information

[ 11 ] z of degree 2 as both degree 2 each. The degree of a polynomial in n variables is the maximum of the degrees of its terms.

[ 11 ] z of degree 2 as both degree 2 each. The degree of a polynomial in n variables is the maximum of the degrees of its terms. [ 11 ] 1 1.1 Polyomial Fuctios 1 Algebra Ay fuctio f ( x) ax a1x... a1x a0 is a polyomial fuctio if ai ( i 0,1,,,..., ) is a costat which belogs to the set of real umbers ad the idices,, 1,...,1 are atural

More information

*********************************************************

********************************************************* Problems Ted Eiseberg, Sectio Editor ********************************************************* This sectio of the Joural offers readers a opportuity to echage iterestig mathematical problems ad solutios.

More information

INEQUALITIES BJORN POONEN

INEQUALITIES BJORN POONEN INEQUALITIES BJORN POONEN 1 The AM-GM iequality The most basic arithmetic mea-geometric mea (AM-GM) iequality states simply that if x ad y are oegative real umbers, the (x + y)/2 xy, with equality if ad

More information

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = =

Review Problems 1. ICME and MS&E Refresher Course September 19, 2011 B = C = AB = A = A 2 = A 3... C 2 = C 3 = = Review Problems ICME ad MS&E Refresher Course September 9, 0 Warm-up problems. For the followig matrices A = 0 B = C = AB = 0 fid all powers A,A 3,(which is A times A),... ad B,B 3,... ad C,C 3,... Solutio:

More information

The Problem Corner. Edited by Pat Costello

The Problem Corner. Edited by Pat Costello The Problem Corer Edited by Pat Costello The Problem Corer ivites questios of iterest to udergraduate studets. As a rule, the solutio should ot demad ay tools beyod calculus ad liear algebra. Although

More information

Test de Departajare pentru MofM 2014 (Bucureşti) Enunţuri & Soluţii

Test de Departajare pentru MofM 2014 (Bucureşti) Enunţuri & Soluţii Test de Departajare petru MofM 04 Bucureşti Euţuri & Soluţii Problem. Give + distict real umbers i the iterval [0,], prove there exist two of them a b, such that ab a b < Solutio. Idex the umbers 0 a 0

More information

ECE534, Spring 2018: Solutions for Problem Set #2

ECE534, Spring 2018: Solutions for Problem Set #2 ECE534, Srig 08: s for roblem Set #. Rademacher Radom Variables ad Symmetrizatio a) Let X be a Rademacher radom variable, i.e., X = ±) = /. Show that E e λx e λ /. E e λx = e λ + e λ = + k= k=0 λ k k k!

More information

*********************************************************

********************************************************* Problems Ted Eiseberg, Sectio Editor ********************************************************* This sectio of the Joural offers readers a opportuity to exchage iterestig mathematical problems ad solutios

More information

VECTOR SEMINORMS, SPACES WITH VECTOR NORM, AND REGULAR OPERATORS

VECTOR SEMINORMS, SPACES WITH VECTOR NORM, AND REGULAR OPERATORS Dedicated to Professor Philippe G. Ciarlet o his 70th birthday VECTOR SEMINORMS, SPACES WITH VECTOR NORM, AND REGULAR OPERATORS ROMULUS CRISTESCU The rst sectio of this paper deals with the properties

More information

ADVANCED PROBLEMS AND SOLUTIONS PROBLEMS PROPOSED IN THIS ISSUE

ADVANCED PROBLEMS AND SOLUTIONS PROBLEMS PROPOSED IN THIS ISSUE EDITED BY LORIAN LUCA Please sed all commuicatios cocerig to LORIAN LUCA, SCHOOL O MATHEMATICS, UNIVERSITY O THE WITWA- TERSRAND, PRIVATE BAG X3, WITS 00, JOHANNESBURG, SOUTH ARICA or by e-mail at the

More information

Assignment 5: Solutions

Assignment 5: Solutions McGill Uiversity Departmet of Mathematics ad Statistics MATH 54 Aalysis, Fall 05 Assigmet 5: Solutios. Let y be a ubouded sequece of positive umbers satisfyig y + > y for all N. Let x be aother sequece

More information

Appendix to Quicksort Asymptotics

Appendix to Quicksort Asymptotics Appedix to Quicksort Asymptotics James Alle Fill Departmet of Mathematical Scieces The Johs Hopkis Uiversity jimfill@jhu.edu ad http://www.mts.jhu.edu/~fill/ ad Svate Jaso Departmet of Mathematics Uppsala

More information

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE

NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE UPB Sci Bull, Series A, Vol 79, Iss, 207 ISSN 22-7027 NEW FAST CONVERGENT SEQUENCES OF EULER-MASCHERONI TYPE Gabriel Bercu We itroduce two ew sequeces of Euler-Mascheroi type which have fast covergece

More information

*********************************************************

********************************************************* Problems Ted Eiseberg, Sectio Editor ********************************************************* This sectio of the Joural offers readers a opportuity to exchage iterestig mathematical problems ad solutios.

More information

Solutions for May. 3 x + 7 = 4 x x +

Solutions for May. 3 x + 7 = 4 x x + Solutios for May 493. Prove that there is a atural umber with the followig characteristics: a) it is a multiple of 007; b) the first four digits i its decimal represetatio are 009; c) the last four digits

More information

F on AB and G on CD satisfy AF F B = DG

F on AB and G on CD satisfy AF F B = DG THE OLYMPIAD CORNER / 353 F o AB ad G o CD satisfy AF F B = DG GC. I fact, we shall see that if directed distaces are used the F ca be ay poit of the lie AB ad G the correspodig poit o DC. Let T = EH AB;

More information

A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II 1. INTRODUCTION

A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II 1. INTRODUCTION A LIMITED ARITHMETIC ON SIMPLE CONTINUED FRACTIONS - II C. T. LONG J. H. JORDAN* Washigto State Uiversity, Pullma, Washigto 1. INTRODUCTION I the first paper [2 ] i this series, we developed certai properties

More information

Solutions to Math 347 Practice Problems for the final

Solutions to Math 347 Practice Problems for the final Solutios to Math 347 Practice Problems for the fial 1) True or False: a) There exist itegers x,y such that 50x + 76y = 6. True: the gcd of 50 ad 76 is, ad 6 is a multiple of. b) The ifiimum of a set is

More information

SEQUENCE AND SERIES NCERT

SEQUENCE AND SERIES NCERT 9. Overview By a sequece, we mea a arragemet of umbers i a defiite order accordig to some rule. We deote the terms of a sequece by a, a,..., etc., the subscript deotes the positio of the term. I view of

More information

IMAR Problema 1. Fie P un punct situat în interiorul unui triunghi ABC. Dreapta AP intersectează

IMAR Problema 1. Fie P un punct situat în interiorul unui triunghi ABC. Dreapta AP intersectează IMAR 017 Problema 1 Fie P u puct situat î iteriorul uui triughi ABC Dreapta AP itersectează latura BC î puctul D ; dreapta BP itersectează latura CA î puctul E ; iar dreapta CP itersectează latura AB î

More information

Rational Bounds for the Logarithm Function with Applications

Rational Bounds for the Logarithm Function with Applications Ratioal Bouds for the Logarithm Fuctio with Applicatios Robert Bosch Abstract We fid ratioal bouds for the logarithm fuctio ad we show applicatios to problem-solvig. Itroductio Let a = + solvig the problem

More information

Teorema Reziduurilor şi Bucuria Integralelor Reale Prezentare de Alexandru Negrescu

Teorema Reziduurilor şi Bucuria Integralelor Reale Prezentare de Alexandru Negrescu Teorema Reiduurilor şi Bucuria Integralelor Reale Preentare de Alexandru Negrescu Integrale cu funcţii raţionale ce depind de sint şi cost u notaţia e it, avem: cost sint i ( + ( dt d i, iar integrarea

More information

Q.11 If S be the sum, P the product & R the sum of the reciprocals of a GP, find the value of

Q.11 If S be the sum, P the product & R the sum of the reciprocals of a GP, find the value of Brai Teasures Progressio ad Series By Abhijit kumar Jha EXERCISE I Q If the 0th term of a HP is & st term of the same HP is 0, the fid the 0 th term Q ( ) Show that l (4 36 08 up to terms) = l + l 3 Q3

More information

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory

ACO Comprehensive Exam 9 October 2007 Student code A. 1. Graph Theory 1. Graph Theory Prove that there exist o simple plaar triagulatio T ad two distict adjacet vertices x, y V (T ) such that x ad y are the oly vertices of T of odd degree. Do ot use the Four-Color Theorem.

More information

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial.

It is often useful to approximate complicated functions using simpler ones. We consider the task of approximating a function by a polynomial. Taylor Polyomials ad Taylor Series It is ofte useful to approximate complicated fuctios usig simpler oes We cosider the task of approximatig a fuctio by a polyomial If f is at least -times differetiable

More information

*********************************************************

********************************************************* Problems Ted Eiseberg, Sectio Editor ********************************************************* This sectio of the Joural offers readers a opportuity to exchage iterestig mathematical problems ad solutios.

More information

Math 143 Review for Quiz 14 page 1

Math 143 Review for Quiz 14 page 1 Math Review for Quiz age. Solve each of the followig iequalities. x + a) < x + x c) x d) x x +

More information

Inequalities. Putnam Notes, Fall 2006 University of Utah

Inequalities. Putnam Notes, Fall 2006 University of Utah Iequalities Putam Notes, Fall 2006 Uiversity of Utah There are several stadard methods for provig iequalities, ad there are also some classical iequalities you should kow about. Method 1: Good old calculus

More information

On Divisibility concerning Binomial Coefficients

On Divisibility concerning Binomial Coefficients A talk give at the Natioal Chiao Tug Uiversity (Hsichu, Taiwa; August 5, 2010 O Divisibility cocerig Biomial Coefficiets Zhi-Wei Su Najig Uiversity Najig 210093, P. R. Chia zwsu@ju.edu.c http://math.ju.edu.c/

More information

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6

Find a formula for the exponential function whose graph is given , 1 2,16 1, 6 Math 4 Activity (Due by EOC Apr. ) Graph the followig epoetial fuctios by modifyig the graph of f. Fid the rage of each fuctio.. g. g. g 4. g. g 6. g Fid a formula for the epoetial fuctio whose graph is

More information

ADVANCED PROBLEMS AND SOLUTIONS. Edited by Florian Luca

ADVANCED PROBLEMS AND SOLUTIONS. Edited by Florian Luca Edited by Floria Luca Please sed all commuicatios cocerig ADVANCED PROBLEMS AND SOLU- TIONS to FLORIAN LUCA, IMATE, UNAM, AP. POSTAL 6-3 (XANGARI), CP 58 089, MORELIA, MICHOACAN, MEXICO, or by e-mail at

More information

On forward improvement iteration for stopping problems

On forward improvement iteration for stopping problems O forward improvemet iteratio for stoppig problems Mathematical Istitute, Uiversity of Kiel, Ludewig-Mey-Str. 4, D-24098 Kiel, Germay irle@math.ui-iel.de Albrecht Irle Abstract. We cosider the optimal

More information

DANIELL AND RIEMANN INTEGRABILITY

DANIELL AND RIEMANN INTEGRABILITY DANIELL AND RIEMANN INTEGRABILITY ILEANA BUCUR We itroduce the otio of Riema itegrable fuctio with respect to a Daiell itegral ad prove the approximatio theorem of such fuctios by a mootoe sequece of Jorda

More information

About Surányi s Inequality

About Surányi s Inequality About Suráyi s Iequality Mihály Becze Str Harmaului 6 505600 Sacele Jud Brasov Romaia Abstract I the Milós Schweitzer Mathematical Competitio Hugary Proessor Jáos Suráyi proposed the ollowig problem which

More information

SEVERAL GEOMETRIC INEQUALITIES OF ERDÖS - MORDELL TYPE IN THE CONVEX POLYGON

SEVERAL GEOMETRIC INEQUALITIES OF ERDÖS - MORDELL TYPE IN THE CONVEX POLYGON INTERNATIONAL JOURNAL OF GEOMETRY Vol. 1 (01), No. 1, 0-6 SEVERAL GEOMETRIC INEQUALITIES OF ERDÖS - MORDELL TYPE IN THE CONVEX POLYGON NICUŞOR MINCULETE Abstract. I this aer we reset the several geometric

More information

Objective Mathematics

Objective Mathematics . If sum of '' terms of a sequece is give by S Tr ( )( ), the 4 5 67 r (d) 4 9 r is equal to : T. Let a, b, c be distict o-zero real umbers such that a, b, c are i harmoic progressio ad a, b, c are i arithmetic

More information

Topics. Homework Problems. MATH 301 Introduction to Analysis Chapter Four Sequences. 1. Definition of convergence of sequences.

Topics. Homework Problems. MATH 301 Introduction to Analysis Chapter Four Sequences. 1. Definition of convergence of sequences. MATH 301 Itroductio to Aalysis Chapter Four Sequeces Topics 1. Defiitio of covergece of sequeces. 2. Fidig ad provig the limit of sequeces. 3. Bouded covergece theorem: Theorem 4.1.8. 4. Theorems 4.1.13

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS ADVANCED PROBLEMS AND SOLUTIONS EDITED BY FLORIAN LUCA Please sed all couicatios cocerig ADVANCED PROBLEMS AND SOLUTIONS to FLORIAN LUCA, SCHOOL OF MATHEMATICS, UNIVERSITY OF THE WITWA- TERSRAND, PRIVATE

More information

The Asymptotic Expansions of Certain Sums Involving Inverse of Binomial Coefficient 1

The Asymptotic Expansions of Certain Sums Involving Inverse of Binomial Coefficient 1 Iteratioal Mathematical Forum, 5, 2, o. 6, 76-768 The Asymtotic Easios of Certai Sums Ivolvig Iverse of Biomial Coefficiet Ji-Hua Yag Deartmet of Mathematics Zhoukou Normal Uiversity, Zhoukou 466, P.R.

More information

Lecture 23 Rearrangement Inequality

Lecture 23 Rearrangement Inequality Lecture 23 Rearragemet Iequality Holde Lee 6/4/ The Iequalities We start with a example Suppose there are four boxes cotaiig $0, $20, $50 ad $00 bills, respectively You may take 2 bills from oe box, 3

More information

A Bernstein-Stancu type operator which preserves e 2

A Bernstein-Stancu type operator which preserves e 2 A. Şt. Uiv. Ovidius Costaţa Vol. 7), 009, 45 5 A Berstei-Stacu type operator which preserves e Igrid OANCEA Abstract I this paper we costruct a Berstei-Stacu type operator followig a J.P.Kig model. Itroductio

More information

Procedeu de demonstrare a unor inegalităţi bazat pe inegalitatea lui Schur

Procedeu de demonstrare a unor inegalităţi bazat pe inegalitatea lui Schur Procedeu de demonstrare a unor inegalităţi bazat pe inegalitatea lui Schur Andi Gabriel BROJBEANU Abstract. A method for establishing certain inequalities is proposed and applied. It is based upon inequalities

More information

MA131 - Analysis 1. Workbook 9 Series III

MA131 - Analysis 1. Workbook 9 Series III MA3 - Aalysis Workbook 9 Series III Autum 004 Cotets 4.4 Series with Positive ad Negative Terms.............. 4.5 Alteratig Series.......................... 4.6 Geeral Series.............................

More information

ON THE LAGRANGE COMPLEX INTERPOLATION

ON THE LAGRANGE COMPLEX INTERPOLATION U.P.B. Sci. Bull., Series A, Vol. 72, Iss. 2, 200 ISSN 223-7027 ON HE LAGRANGE COMPLEX INERPOLAION Adria NEAGOE I lucrare prez uele rezultate legate de erpolarea Lagrage î domeiul complex ( cor. prop.

More information

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University.

Signal Processing. Lecture 02: Discrete Time Signals and Systems. Ahmet Taha Koru, Ph. D. Yildiz Technical University. Sigal Processig Lecture 02: Discrete Time Sigals ad Systems Ahmet Taha Koru, Ph. D. Yildiz Techical Uiversity 2017-2018 Fall ATK (YTU) Sigal Processig 2017-2018 Fall 1 / 51 Discrete Time Sigals Discrete

More information

SYMMETRIC POSITIVE SEMI-DEFINITE SOLUTIONS OF AX = B AND XC = D

SYMMETRIC POSITIVE SEMI-DEFINITE SOLUTIONS OF AX = B AND XC = D Joural of Pure ad Alied Mathematics: Advaces ad Alicatios olume, Number, 009, Pages 99-07 SYMMERIC POSIIE SEMI-DEFINIE SOLUIONS OF AX B AND XC D School of Mathematics ad Physics Jiagsu Uiversity of Sciece

More information

LECTURE SERIES WITH NONNEGATIVE TERMS (II). SERIES WITH ARBITRARY TERMS

LECTURE SERIES WITH NONNEGATIVE TERMS (II). SERIES WITH ARBITRARY TERMS LECTURE 4 SERIES WITH NONNEGATIVE TERMS II). SERIES WITH ARBITRARY TERMS Series with oegative terms II) Theorem 4.1 Kummer s Test) Let x be a series with positive terms. 1 If c ) N i 0, + ), r > 0 ad 0

More information

3sin A 1 2sin B. 3π x is a solution. 1. If A and B are acute positive angles satisfying the equation 3sin A 2sin B 1 and 3sin 2A 2sin 2B 0, then A 2B

3sin A 1 2sin B. 3π x is a solution. 1. If A and B are acute positive angles satisfying the equation 3sin A 2sin B 1 and 3sin 2A 2sin 2B 0, then A 2B 1. If A ad B are acute positive agles satisfyig the equatio 3si A si B 1 ad 3si A si B 0, the A B (a) (b) (c) (d) 6. 3 si A + si B = 1 3si A 1 si B 3 si A = cosb Also 3 si A si B = 0 si B = 3 si A Now,

More information

Some remarks on the paper Some elementary inequalities of G. Bennett

Some remarks on the paper Some elementary inequalities of G. Bennett Soe rears o the paper Soe eleetary iequalities of G. Beett Dag Ah Tua ad Luu Quag Bay Vieta Natioal Uiversity - Haoi Uiversity of Sciece Abstract We give soe couterexaples ad soe rears of soe of the corollaries

More information

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3

(A sequence also can be thought of as the list of function values attained for a function f :ℵ X, where f (n) = x n for n 1.) x 1 x N +k x N +4 x 3 MATH 337 Sequeces Dr. Neal, WKU Let X be a metric space with distace fuctio d. We shall defie the geeral cocept of sequece ad limit i a metric space, the apply the results i particular to some special

More information

On a class of convergent sequences defined by integrals 1

On a class of convergent sequences defined by integrals 1 Geeral Mathematics Vol. 4, No. 2 (26, 43 54 O a class of coverget sequeces defied by itegrals Dori Adrica ad Mihai Piticari Abstract The mai result shows that if g : [, ] R is a cotiuous fuctio such that

More information

1+x 1 + α+x. x = 2(α x2 ) 1+x

1+x 1 + α+x. x = 2(α x2 ) 1+x Math 2030 Homework 6 Solutios # [Problem 5] For coveiece we let α lim sup a ad β lim sup b. Without loss of geerality let us assume that α β. If α the by assumptio β < so i this case α + β. By Theorem

More information

A REFINEMENT OF JENSEN S INEQUALITY WITH APPLICATIONS. S. S. Dragomir 1. INTRODUCTION

A REFINEMENT OF JENSEN S INEQUALITY WITH APPLICATIONS. S. S. Dragomir 1. INTRODUCTION TAIWANESE JOURNAL OF MATHEMATICS Vol. 14, No. 1,. 153-164, February 2010 This aer is available olie at htt://www.tjm.sysu.edu.tw/ A REFINEMENT OF JENSEN S INEQUALITY WITH APPLICATIONS FOR f-divergence

More information

Equations and Inequalities Involving v p (n!)

Equations and Inequalities Involving v p (n!) Equatios ad Iequalities Ivolvig v (!) Mehdi Hassai Deartmet of Mathematics Istitute for Advaced Studies i Basic Scieces Zaja, Ira mhassai@iasbs.ac.ir Abstract I this aer we study v (!), the greatest ower

More information

Exponential Functions and Taylor Series

Exponential Functions and Taylor Series MATH 4530: Aalysis Oe Expoetial Fuctios ad Taylor Series James K. Peterso Departmet of Biological Scieces ad Departmet of Mathematical Scieces Clemso Uiversity March 29, 2017 MATH 4530: Aalysis Oe Outlie

More information

Sequences and Limits

Sequences and Limits Chapter Sequeces ad Limits Let { a } be a sequece of real or complex umbers A ecessary ad sufficiet coditio for the sequece to coverge is that for ay ɛ > 0 there exists a iteger N > 0 such that a p a q

More information

Seunghee Ye Ma 8: Week 5 Oct 28

Seunghee Ye Ma 8: Week 5 Oct 28 Week 5 Summary I Sectio, we go over the Mea Value Theorem ad its applicatios. I Sectio 2, we will recap what we have covered so far this term. Topics Page Mea Value Theorem. Applicatios of the Mea Value

More information

De Moivre s Theorem - ALL

De Moivre s Theorem - ALL De Moivre s Theorem - ALL. Let x ad y be real umbers, ad be oe of the complex solutios of the equatio =. Evaluate: (a) + + ; (b) ( x + y)( x + y). [6]. (a) Sice is a complex umber which satisfies = 0,.

More information

A New Method About Using Polynomial Roots and Arithmetic-Geometric Mean Inequality to Solve Olympiad Problems

A New Method About Using Polynomial Roots and Arithmetic-Geometric Mean Inequality to Solve Olympiad Problems Polynomial Roots and Arithmetic-Geometric Mean Inequality 1 A New Method About Using Polynomial Roots and Arithmetic-Geometric Mean Inequality to Solve Olympiad Problems The purpose of this article is

More information

Poincaré Problem for Nonlinear Elliptic Equations of Second Order in Unbounded Domains

Poincaré Problem for Nonlinear Elliptic Equations of Second Order in Unbounded Domains Advaces i Pure Mathematics 23 3 72-77 http://dxdoiorg/4236/apm233a24 Published Olie Jauary 23 (http://wwwscirporg/oural/apm) Poicaré Problem for Noliear Elliptic Equatios of Secod Order i Ubouded Domais

More information

Complex Analysis Spring 2001 Homework I Solution

Complex Analysis Spring 2001 Homework I Solution Complex Aalysis Sprig 2001 Homework I Solutio 1. Coway, Chapter 1, sectio 3, problem 3. Describe the set of poits satisfyig the equatio z a z + a = 2c, where c > 0 ad a R. To begi, we see from the triagle

More information

PERIODS OF FIBONACCI SEQUENCES MODULO m. 1. Preliminaries Definition 1. A generalized Fibonacci sequence is an infinite complex sequence (g n ) n Z

PERIODS OF FIBONACCI SEQUENCES MODULO m. 1. Preliminaries Definition 1. A generalized Fibonacci sequence is an infinite complex sequence (g n ) n Z PERIODS OF FIBONACCI SEQUENCES MODULO m ARUDRA BURRA Abstract. We show that the Fiboacci sequece modulo m eriodic for all m, ad study the eriod i terms of the modulus.. Prelimiaries Defiitio. A geeralized

More information

Math 61CM - Solutions to homework 1

Math 61CM - Solutions to homework 1 Math 61CM - Solutios to homework 1 Cédric De Groote October 1 st, 2018 Problem 1: Use mathematical iductio to check the validity of the formula j 3 = 2 ( + 1) 2 for = 1, 2,.... Note: The priciple of mathematical

More information

LOWER BOUNDS FOR THE BLOW-UP TIME OF NONLINEAR PARABOLIC PROBLEMS WITH ROBIN BOUNDARY CONDITIONS

LOWER BOUNDS FOR THE BLOW-UP TIME OF NONLINEAR PARABOLIC PROBLEMS WITH ROBIN BOUNDARY CONDITIONS Electroic Joural of Differetial Equatios, Vol. 214 214), No. 113, pp. 1 5. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.ut.edu ftp ejde.math.txstate.edu LOWER BOUNDS FOR THE BLOW-UP

More information

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 3 Solutions

Math 451: Euclidean and Non-Euclidean Geometry MWF 3pm, Gasson 204 Homework 3 Solutions Math 451: Euclidea ad No-Euclidea Geometry MWF 3pm, Gasso 204 Homework 3 Solutios Exercises from 1.4 ad 1.5 of the otes: 4.3, 4.10, 4.12, 4.14, 4.15, 5.3, 5.4, 5.5 Exercise 4.3. Explai why Hp, q) = {x

More information

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018)

Randomized Algorithms I, Spring 2018, Department of Computer Science, University of Helsinki Homework 1: Solutions (Discussed January 25, 2018) Radomized Algorithms I, Sprig 08, Departmet of Computer Sciece, Uiversity of Helsiki Homework : Solutios Discussed Jauary 5, 08). Exercise.: Cosider the followig balls-ad-bi game. We start with oe black

More information

ANSWERS SOLUTIONS iiii i. and 1. Thus, we have. i i i. i, A.

ANSWERS SOLUTIONS iiii i. and 1. Thus, we have. i i i. i, A. 013 ΜΑΘ Natioal Covetio ANSWERS (1) C A A A B (6) B D D A B (11) C D D A A (16) D B A A C (1) D B C B C (6) D C B C C 1. We have SOLUTIONS 1 3 11 61 iiii 131161 i 013 013, C.. The powers of i cycle betwee

More information

SINGLE CORRECT ANSWER TYPE QUESTIONS: TRIGONOMETRY 2 2

SINGLE CORRECT ANSWER TYPE QUESTIONS: TRIGONOMETRY 2 2 Class-Jr.X_E-E SIMPLE HOLIDAY PACKAGE CLASS-IX MATHEMATICS SUB BATCH : E-E SINGLE CORRECT ANSWER TYPE QUESTIONS: TRIGONOMETRY. siθ+cosθ + siθ cosθ = ) ) ). If a cos q, y bsi q, the a y b ) ) ). The value

More information

Sequence A sequence is a function whose domain of definition is the set of natural numbers.

Sequence A sequence is a function whose domain of definition is the set of natural numbers. Chapter Sequeces Course Title: Real Aalysis Course Code: MTH3 Course istructor: Dr Atiq ur Rehma Class: MSc-I Course URL: wwwmathcityorg/atiq/fa8-mth3 Sequeces form a importat compoet of Mathematical Aalysis

More information

IIT JAM Mathematical Statistics (MS) 2006 SECTION A

IIT JAM Mathematical Statistics (MS) 2006 SECTION A IIT JAM Mathematical Statistics (MS) 6 SECTION A. If a > for ad lim a / L >, the which of the followig series is ot coverget? (a) (b) (c) (d) (d) = = a = a = a a + / a lim a a / + = lim a / a / + = lim

More information

Non-Archimedian Fields. Topological Properties of Z p, Q p (p-adics Numbers)

Non-Archimedian Fields. Topological Properties of Z p, Q p (p-adics Numbers) BULETINUL Uiversităţii Petrol Gaze di Ploieşti Vol. LVIII No. 2/2006 43-48 Seria Matematică - Iformatică - Fizică No-Archimedia Fields. Toological Proerties of Z, Q (-adics Numbers) Mureşa Alexe Căli Uiversitatea

More information

Objective Mathematics

Objective Mathematics 6. If si () + cos () =, the is equal to :. If <

More information

Numere prime. O selecţie de probleme pentru gimnaziu

Numere prime. O selecţie de probleme pentru gimnaziu Numere prime O selecţie de probleme petru gimaziu Adria Zaoschi Colegiul Natioal "Costache Negruzzi" Iasi (Clasa a V-a) Determiați submulțimea B a mulțimii A 0,,,, 49, 50, formată di toate elemetele lui

More information

A METHOD TO SOLVE THE DIOPHANTINE EQUATION ax 2 by 2 c 0

A METHOD TO SOLVE THE DIOPHANTINE EQUATION ax 2 by 2 c 0 A METHOD TO SOLVE THE DIOPHANTINE EQUATION ax by c Floreti Smaradache, Ph D Associate Professor Chair of Departmet of Math & Scieces Uiversity of New Mexico College Road Gallup, NM 87, USA E-mail:smarad@um.edu

More information

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs

CSE 1400 Applied Discrete Mathematics Number Theory and Proofs CSE 1400 Applied Discrete Mathematics Number Theory ad Proofs Departmet of Computer Scieces College of Egieerig Florida Tech Sprig 01 Problems for Number Theory Backgroud Number theory is the brach of

More information

Exponential Functions and Taylor Series

Exponential Functions and Taylor Series Expoetial Fuctios ad Taylor Series James K. Peterso Departmet of Biological Scieces ad Departmet of Mathematical Scieces Clemso Uiversity March 29, 207 Outlie Revistig the Expoetial Fuctio Taylor Series

More information

Infinite Sequences and Series

Infinite Sequences and Series Chapter 6 Ifiite Sequeces ad Series 6.1 Ifiite Sequeces 6.1.1 Elemetary Cocepts Simply speakig, a sequece is a ordered list of umbers writte: {a 1, a 2, a 3,...a, a +1,...} where the elemets a i represet

More information

Time series models 2007

Time series models 2007 Norwegia Uiversity of Sciece ad Techology Departmet of Mathematical Scieces Solutios to problem sheet 1, 2007 Exercise 1.1 a Let Sc = E[Y c 2 ]. The This gives Sc = EY 2 2cEY + c 2 ds dc = 2EY + 2c = 0

More information

Solutions to Problem Set 7

Solutions to Problem Set 7 8.78 Solutios to Problem Set 7. If the umber is i S, we re doe sice it s relatively rime to everythig. So suose S. Break u the remaiig elemets ito airs {, }, {4, 5},..., {, + }. By the Pigeohole Pricile,

More information

II. EXPANSION MAPPINGS WITH FIXED POINTS

II. EXPANSION MAPPINGS WITH FIXED POINTS Geeralizatio Of Selfmaps Ad Cotractio Mappig Priciple I D-Metric Space. U.P. DOLHARE Asso. Prof. ad Head,Departmet of Mathematics,D.S.M. College Jitur -431509,Dist. Parbhai (M.S.) Idia ABSTRACT Large umber

More information

ECE534, Spring 2018: Final Exam

ECE534, Spring 2018: Final Exam ECE534, Srig 2018: Fial Exam Problem 1 Let X N (0, 1) ad Y N (0, 1) be ideedet radom variables. variables V = X + Y ad W = X 2Y. Defie the radom (a) Are V, W joitly Gaussia? Justify your aswer. (b) Comute

More information

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA.

Q-BINOMIALS AND THE GREATEST COMMON DIVISOR. Keith R. Slavin 8474 SW Chevy Place, Beaverton, Oregon 97008, USA. INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 2008, #A05 Q-BINOMIALS AND THE GREATEST COMMON DIVISOR Keith R. Slavi 8474 SW Chevy Place, Beaverto, Orego 97008, USA slavi@dsl-oly.et Received:

More information

ADVANCED PROBLEMS AND SOLUTIONS

ADVANCED PROBLEMS AND SOLUTIONS ADVANCED PROBLEMS AND SOLUTIONS Edited by RAYIVIOWDE. WHITNEY Lock Have State College, Lock Have, Pesylvaia Sed all commuicatios cocerig Advaced Problems ad Solutios to Eaymod E D Whitey, Mathematics Departmet,

More information

Solutions. tan 2 θ(tan 2 θ + 1) = cot6 θ,

Solutions. tan 2 θ(tan 2 θ + 1) = cot6 θ, Solutios 99. Let A ad B be two poits o a parabola with vertex V such that V A is perpedicular to V B ad θ is the agle betwee the chord V A ad the axis of the parabola. Prove that V A V B cot3 θ. Commet.

More information

VIETA-LIKE PRODUCTS OF NESTED RADICALS

VIETA-LIKE PRODUCTS OF NESTED RADICALS VIETA-IKE PRODUCTS OF ESTED RADICAS Thomas J. Osler athematics Deartmet Rowa Uiversity Glassboro, J 0808 Osler@rowa.edu Itroductio The beautiful ifiite roduct of radicals () π due to Vieta [] i 9, is oe

More information

Log1 Contest Round 1 Theta Equations & Inequalities. 4 points each. 5 points each. 7, a c d. 9, find the value of the product abcd.

Log1 Contest Round 1 Theta Equations & Inequalities. 4 points each. 5 points each. 7, a c d. 9, find the value of the product abcd. 013 01 Log1 Cotest Roud 1 Theta Equatios & Iequalities Name: poits each 1 Solve for x : x 3 38 Fid the greatest itegral value of x satisfyig the iequality x x 3 7 1 3 3 xy71 Fid the ordered pair solutio

More information

1 Introduction. 1.1 Notation and Terminology

1 Introduction. 1.1 Notation and Terminology 1 Itroductio You have already leared some cocepts of calculus such as limit of a sequece, limit, cotiuity, derivative, ad itegral of a fuctio etc. Real Aalysis studies them more rigorously usig a laguage

More information

GAMALIEL CERDA-MORALES 1. Blanco Viel 596, Valparaíso, Chile. s: /

GAMALIEL CERDA-MORALES 1. Blanco Viel 596, Valparaíso, Chile.  s: / THE GELIN-CESÀRO IDENTITY IN SOME THIRD-ORDER JACOBSTHAL SEQUENCES arxiv:1810.08863v1 [math.co] 20 Oct 2018 GAMALIEL CERDA-MORALES 1 1 Istituto de Matemáticas Potificia Uiversidad Católica de Valparaíso

More information

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5

Ma 4121: Introduction to Lebesgue Integration Solutions to Homework Assignment 5 Ma 42: Itroductio to Lebesgue Itegratio Solutios to Homework Assigmet 5 Prof. Wickerhauser Due Thursday, April th, 23 Please retur your solutios to the istructor by the ed of class o the due date. You

More information

On Cesáro means for Fox-Wright functions

On Cesáro means for Fox-Wright functions Joural of Mathematics ad Statistics: 4(3: 56-6, 8 ISSN: 549-3644 8 Sciece Publicatios O Cesáro meas for Fox-Wright fuctios Maslia Darus ad Rabha W. Ibrahim School of Mathematical Scieces, Faculty of Sciece

More information

ANSWERS TO MIDTERM EXAM # 2

ANSWERS TO MIDTERM EXAM # 2 MATH 03, FALL 003 ANSWERS TO MIDTERM EXAM # PENN STATE UNIVERSITY Problem 1 (18 pts). State ad prove the Itermediate Value Theorem. Solutio See class otes or Theorem 5.6.1 from our textbook. Problem (18

More information