Action-Angle Variables and KAM-Theory in General Relativity

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Action-Angle Variables and KAM-Theory in General Relativity"

Transcription

1 Action-Angle Variables and KAM-Theory in General Relativity Daniela Kunst, Volker Perlick, Claus Lämmerzahl Center of Space Technology and Microgravity University of Bremen, Germany Workshop in Oldenburg March 2013

2 Outline Introduction Schwarzschild spacetime KAM-Theorem and non-degeneracy-conditions Kerr spacetime KAM-Theorem and non-degeneracy-conditions Conclusion and Outlook

3 Outline Introduction Schwarzschild spacetime KAM-Theorem and non-degeneracy-conditions Kerr spacetime KAM-Theorem and non-degeneracy-conditions Conclusion and Outlook

4 Outline Introduction Schwarzschild spacetime KAM-Theorem and non-degeneracy-conditions Kerr spacetime KAM-Theorem and non-degeneracy-conditions Conclusion and Outlook

5 Outline Introduction Schwarzschild spacetime KAM-Theorem and non-degeneracy-conditions Kerr spacetime KAM-Theorem and non-degeneracy-conditions Conclusion and Outlook

6 Outline Introduction Schwarzschild spacetime KAM-Theorem and non-degeneracy-conditions Kerr spacetime KAM-Theorem and non-degeneracy-conditions Conclusion and Outlook

7 Outline Introduction Schwarzschild spacetime KAM-Theorem and non-degeneracy-conditions Kerr spacetime KAM-Theorem and non-degeneracy-conditions Conclusion and Outlook

8 Outline Introduction Schwarzschild spacetime KAM-Theorem and non-degeneracy-conditions Kerr spacetime KAM-Theorem and non-degeneracy-conditions Conclusion and Outlook

9 Outline Introduction Schwarzschild spacetime KAM-Theorem and non-degeneracy-conditions Kerr spacetime KAM-Theorem and non-degeneracy-conditions Conclusion and Outlook

10 Introduction Integrable dynamical systems Dynamical systems of n-dof are described by the Hamiltonian H( q, p) and the equations of motion ṗ i = H(p i, q i ) q i q i = H(p i, q i ) p i The system is integrable if it has n integrals of motion F i, that are in involution. Its phase space is foliated into n-dimensional tori.

11 Introduction Integrable dynamical systems Dynamical systems of n-dof are described by the Hamiltonian H( q, p) and the equations of motion ṗ i = H(p i, q i ) q i q i = H(p i, q i ) p i The system is integrable if it has n integrals of motion F i, that are in involution. Its phase space is foliated into n-dimensional tori.

12 Introduction Integrable dynamical systems

13 Introduction Integrable dynamical systems Action-Angle Variables simplified description of periodic or quasi-periodic motion of integrable systems Action-Variable: specifies a particular torus Angle-Variable: describes location on this torus I i = γ i p i dq i, Equations of Motion Φ i = p i I i dq i H( I, Φ) İ i = H(Ii, Φ i ) = Φ i 0 and Φ i = H(Ii, Φ i ) = ω i (I i ) = const I i = H(Ii )

14 Introduction Integrable dynamical systems Action-Angle Variables simplified description of periodic or quasi-periodic motion of integrable systems Action-Variable: specifies a particular torus Angle-Variable: describes location on this torus I i = γ i p i dq i, Equations of Motion Φ i = p i I i dq i H( I, Φ) İ i = H(Ii, Φ i ) = Φ i 0 and Φ i = H(Ii, Φ i ) = ω i (I i ) = const I i = H(Ii )

15 Introduction Integrable dynamical systems Action-Angle Variables simplified description of periodic or quasi-periodic motion of integrable systems Action-Variable: specifies a particular torus Angle-Variable: describes location on this torus I i = γ i p i dq i, Equations of Motion Φ i = p i I i dq i H( I, Φ) İ i = H(Ii, Φ i ) = Φ i 0 and Φ i = H(Ii, Φ i ) = ω i (I i ) = const I i = H(Ii )

16 Introduction Integrable dynamical systems Action-Angle Variables simplified description of periodic or quasi-periodic motion of integrable systems Action-Variable: specifies a particular torus Angle-Variable: describes location on this torus I i = γ i p i dq i, Equations of Motion Φ i = p i I i dq i H( I, Φ) İ i = H(Ii, Φ i ) = Φ i 0 and Φ i = H(Ii, Φ i ) = ω i (I i ) = const I i = H(Ii )

17 Introduction The KAM-Theorem Integrable system + a small perturbation H(I, Φ) = H 0 (I) + εh pert (I, Φ) KAM-Theorem (Kolmogorov-Arnold-Moser)

18 Introduction The KAM-Theorem Integrable system + a small perturbation H(I, Φ) = H 0 (I) + εh pert (I, Φ) KAM-Theorem (Kolmogorov-Arnold-Moser) If an unperturbed system is non-degenerate, then for sufficiently small [...] perturbations, most non-resonant invariant tori do not vanish, [...] so that in phase space of the perturbed system, too, there are invariant tori densely filled with phase curves winding around them conditionally-periodically [...]. V.I. Arnold: Mathematical aspects of classical and celestial mechanics, Springer, Berlin (2006)

19 Introduction The KAM-Theorem

20 Introduction The KAM-Theorem Integrable system + a small perturbation H(I, Φ) = H 0 (I) + εh pert (I, Φ) KAM-Theorem (Kolmogorov-Arnold-Moser) Iso-Energetic Non-Degeneracy Condition (V. Arnold) D A = det ) ω 0 ω 0 ( ω I

21 Schwarzschild Spacetime General Hamiltonian H = p 0 = g0i p i g 00 + [ ( ) ] 1 g ij p i p j +m 2 2 g + 0i 2 p i g 00 g 00

22 Schwarzschild Spacetime... for Schwarzschild geometry (assume θ = π 2 ) [(1 H = r s ) ( r p 2 r + 1 p 2 r 2 θ + ) p2 ϕ sin( π 2 )2 ] (1 + m 2 r s ) r

23 Schwarzschild Spacetime... for Schwarzschild geometry (assume θ = π 2 ) [(1 H = r s ) ( r p 2 r + 1 p 2 r 2 θ + ) p2 ϕ sin( π 2 )2 ] (1 + m 2 r s ) r Action-Variables: I ϕ = p ϕ dϕ = 2πL γ φ I θ = 0 I r = p r dr = 2 γ r ra r p [ ( 1 1 r s ) r 1 ( 1 r s r ] )H L2 r 2 m2 dr

24 Schwarzschild Spacetime KAM-Theorem and the iso-energetic non-degeneracy condition Action-Variables: I ϕ = p ϕ dϕ = 2πL γ φ I θ = 0 I r = p r dr = 2 γ r ra r p [ ( 1 1 r s ) r 1 ( 1 r s r ] )H L2 r 2 m2 dr The Hamiltonian is implicitly given as: H(I r, I ϕ )

25 Schwarzschild Spacetime KAM-Theorem and the iso-energetic non-degeneracy condition I ϕ = p ϕdϕ = 2πL γ φ I r = p rdr = 2 γ r ra r p = H(I r, I ϕ) implicitly [ ( r s ) ( r 1 r s r ) H L2 r 2 m2 ] dr Fundamental Frequencies defined as ω i = H by the equations of motion and applying the I i implicit function theorem yields: ω r = ( Ir H ) 1 ω ϕ = 1 2π I r L ω r (calculation based on W. Schmidt 2002)

26 Schwarzschild Spacetime KAM-Theorem and the iso-energetic non-degeneracy condition Fundamental Frequencies ω r = ( Ir H ) 1 ω ϕ = 1 I r 2π L ωr iso-energetic non-degeneracy condition D A = det ( ω I = ω3 r (2π) 2 ) ω = ω3 r 2 I r ω 0 (2π) 2 L 2 (( ) L c c L 1 K(k) L k k L ( )) E(k) 1 k K(k) 0 2 which means, that the map (I) ( ωϕ = 1 ) I r ω r 2π L bijective at fixed H must be

27 Schwarzschild Spacetime KAM-Theorem and the iso-energetic non-degeneracy condition D A ( L c c L 1)K(k) L k k L ( E(k) 1 k 2 K(k)) > 0 L c c L 1 < 0 L c c L 1 = 0 H = 1 bdries of bound motion

28 Schwarzschild Spacetime KAM-Theorem and the iso-energetic non-degeneracy condition c DA ( Lc L 1)K(k) L c c L L k E(k) ( k L 1 k2 K(k)) > 0 1<0 L c 1=0 c L H =1 bdries of bound motion H = const ωϕ ωr = const bdries of bound motion

29 KerrSpacetime... for Kerr geometry H = ar sp ϕ ρ 2 +r s(r 2 +a 2 )r r + 2 p 2 r + p2 θ + ρ2 rsr sin(θ) 2 p2 ϕ + ρ2 m 2 ρ 2 +r s+(r 2 +a 2 )r ( + with = r 2 + a 2 r sr and ρ 2 = r 2 + a 2 cos(θ) 2 ) 2 ar sp ϕ ρ r 2 +r s(r 2 +a 2 )r

30 KerrSpacetime... for Kerr geometry H = ar sp ϕ ρ 2 +r s(r 2 +a 2 )r r + 2 p 2 r + p2 θ + ρ2 rsr sin(θ) 2 p2 ϕ + ρ2 m 2 ρ 2 +r s+(r 2 +a 2 )r ( + with = r 2 + a 2 r sr and ρ 2 = r 2 + a 2 cos(θ) 2 ) 2 ar sp ϕ ρ r 2 +r s(r 2 +a 2 )r Action-Variables: I ϕ = p ϕ dϕ = 2πL z γ φ 1 2 C + Lz (1 H 2 )a 2 (1 y 2 ) L2 z y I θ = p θ dθ = 2 γ θ θ min (1 y) [(C + L 2 z )y (1 H 2 )a 2 (1 y)y L 2 z] dy ra 1 [ ] I r = p r dr = 2 ((r γ r 2 + a 2 )H al 2 z) 2 (r 2 + (L 2 z ah) 2 + C) dr r p

31 Kerr Spacetime KAM-Theorem and the iso-energetic non-degeneracy Condition Action-Variables: I ϕ = p ϕ dϕ = 2πL z γ φ 1 2 C + Lz (1 H 2 )a 2 (1 y 2 ) L2 z y I θ = p θ dθ = 2 γ θ θ min (1 y) [(C + L 2 z )y (1 H 2 )a 2 (1 y)y L 2 z] dy ra 1 [ ] I r = p r dr = 2 ((r γ r 2 + a 2 )H al 2 z) 2 (r 2 + (L 2 z ah) 2 + C) dr r p The Hamiltonian is implicitly given as: C(I θ, I ϕ, H) H(I r, I θ, I ϕ )

32 Kerr Spacetime KAM-Theorem and the iso-energetic non-degeneracy Condition I ϕ = p ϕdϕ = 2πL z γ φ 1 I θ = p θ dθ = 2 γ θ θ min I r = p r dr = 2 γ r ra rp = H(I r, I θ, I ϕ) implicitly C + L 2 z (1 H2 )a 2 (1 y 2 ) L2 z y (1 y) [ (C + L 2 z )y (1 H2 )a 2 (1 y)y L 2 z 1 2 [ ((r 2 + a 2 )H al 2 z ] dy ) 2 (r 2 + (L z ah) 2 + C)] dr Fundamental Frequencies ω r = I θ C Q I r C ω θ = Q ω ϕ = 1 [ Ir 2π L ω r + I ] θ L ω θ with Q = I θ I r Ir I θ C H C H (calculation based on W. Schmidt 2002)

33 Kerr Spacetime KAM-Theorem and the iso-energetic non-degeneracy Condition Fundamental Frequencies ω r = I θ C Q I r C ω θ = Q ω ϕ = 1 [ Ir 2π L ωr + I ] θ L ω θ iso-energetic non-degeneracy condition ( ω ) ω D A = det I 0 ω 0 which means, that the map (I) must be bijective at fixed H ( ωr, ω ) ( ϕ = 1 [ Iθ ω θ ω θ 2π L + I ] r ω r, ω ) r L ω θ ω θ

34 Conclusion and Outlook Particle with Spin around a Black Hole can be expressed as H = H 0 + SH pert Schwarzschild: D A 0 the motion of the particle with spin will mostly remain regular for small enough spin values Kerr: also expected but still to be shown What is the limit of the value of the spin for the non-resonant tori to break down? What is the rate of diffusion of the motion in Kerr spacetime?

35 Conclusion and Outlook Particle with Spin around a Black Hole can be expressed as H = H 0 + SH pert Schwarzschild: D A 0 the motion of the particle with spin will mostly remain regular for small enough spin values Kerr: also expected but still to be shown What is the limit of the value of the spin for the non-resonant tori to break down? What is the rate of diffusion of the motion in Kerr spacetime?

36 Conclusion and Outlook Particle with Spin around a Black Hole can be expressed as H = H 0 + SH pert Schwarzschild: D A 0 the motion of the particle with spin will mostly remain regular for small enough spin values Kerr: also expected but still to be shown What is the limit of the value of the spin for the non-resonant tori to break down? What is the rate of diffusion of the motion in Kerr spacetime?

37 Conclusion and Outlook Particle with Spin around a Black Hole can be expressed as H = H 0 + SH pert Schwarzschild: D A 0 the motion of the particle with spin will mostly remain regular for small enough spin values Kerr: also expected but still to be shown What is the limit of the value of the spin for the non-resonant tori to break down? What is the rate of diffusion of the motion in Kerr spacetime?

38 Conclusion and Outlook Particle with Spin around a Black Hole can be expressed as H = H 0 + SH pert Schwarzschild: D A 0 the motion of the particle with spin will mostly remain regular for small enough spin values Kerr: also expected but still to be shown What is the limit of the value of the spin for the non-resonant tori to break down? What is the rate of diffusion of the motion in Kerr spacetime?

39 Conclusion and Outlook Particle with Spin around a Black Hole can be expressed as H = H 0 + SH pert Schwarzschild: D A 0 the motion of the particle with spin will mostly remain regular for small enough spin values Kerr: also expected but still to be shown What is the limit of the value of the spin for the non-resonant tori to break down? What is the rate of diffusion of the motion in Kerr spacetime?

Dynamics of spinning particles in Schwarzschild spacetime

Dynamics of spinning particles in Schwarzschild spacetime Dynamics of spinning particles in Schwarzschild spacetime, Volker Perlick, Claus Lämmerzahl Center of Space Technology and Microgravity University of Bremen, Germany 08.05.2014 RTG Workshop, Bielefeld

More information

= 0. = q i., q i = E

= 0. = q i., q i = E Summary of the Above Newton s second law: d 2 r dt 2 = Φ( r) Complicated vector arithmetic & coordinate system dependence Lagrangian Formalism: L q i d dt ( L q i ) = 0 n second-order differential equations

More information

Im + α α. β + I 1 I 1< 0 I 1= 0 I 1 > 0

Im + α α. β + I 1 I 1< 0 I 1= 0 I 1 > 0 ON THE HAMILTONIAN ANDRONOV-HOPF BIFURCATION M. Olle, J. Villanueva 2 and J. R. Pacha 3 2 3 Departament de Matematica Aplicada I (UPC), Barcelona, Spain In this contribution, we consider an specic type

More information

Physics 106b: Lecture 7 25 January, 2018

Physics 106b: Lecture 7 25 January, 2018 Physics 106b: Lecture 7 25 January, 2018 Hamiltonian Chaos: Introduction Integrable Systems We start with systems that do not exhibit chaos, but instead have simple periodic motion (like the SHO) with

More information

On the shadows of black holes and of other compact objects

On the shadows of black holes and of other compact objects On the shadows of black holes and of other compact objects Volker Perlick ( ZARM, Univ. Bremen, Germany) 1. Schwarzschild spacetime mass m photon sphere at r = 3m shadow ( escape cones ): J. Synge, 1966

More information

INVARIANT TORI IN THE LUNAR PROBLEM. Kenneth R. Meyer, Jesús F. Palacián, and Patricia Yanguas. Dedicated to Jaume Llibre on his 60th birthday

INVARIANT TORI IN THE LUNAR PROBLEM. Kenneth R. Meyer, Jesús F. Palacián, and Patricia Yanguas. Dedicated to Jaume Llibre on his 60th birthday Publ. Mat. (2014), 353 394 Proceedings of New Trends in Dynamical Systems. Salou, 2012. DOI: 10.5565/PUBLMAT Extra14 19 INVARIANT TORI IN THE LUNAR PROBLEM Kenneth R. Meyer, Jesús F. Palacián, and Patricia

More information

GEOMETRIC QUANTIZATION

GEOMETRIC QUANTIZATION GEOMETRIC QUANTIZATION 1. The basic idea The setting of the Hamiltonian version of classical (Newtonian) mechanics is the phase space (position and momentum), which is a symplectic manifold. The typical

More information

Einstein-Maxwell-Chern-Simons Black Holes

Einstein-Maxwell-Chern-Simons Black Holes .. Einstein-Maxwell-Chern-Simons Black Holes Jutta Kunz Institute of Physics CvO University Oldenburg 3rd Karl Schwarzschild Meeting Gravity and the Gauge/Gravity Correspondence Frankfurt, July 2017 Jutta

More information

Kerr black hole and rotating wormhole

Kerr black hole and rotating wormhole Kerr Fest (Christchurch, August 26-28, 2004) Kerr black hole and rotating wormhole Sung-Won Kim(Ewha Womans Univ.) August 27, 2004 INTRODUCTION STATIC WORMHOLE ROTATING WORMHOLE KERR METRIC SUMMARY AND

More information

Journal of Differential Equations

Journal of Differential Equations J. Differential Equations 250 (2011) 2601 2623 Contents lists available at ScienceDirect Journal of Differential Equations www.elsevier.com/locate/jde A geometric mechanism of diffusion: Rigorous verification

More information

Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann s non-degeneracy condition

Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann s non-degeneracy condition J Differential Equations 235 (27) 69 622 wwwelseviercom/locate/de Gevrey-smoothness of invariant tori for analytic nearly integrable Hamiltonian systems under Rüssmann s non-degeneracy condition Junxiang

More information

Control of chaos in Hamiltonian systems

Control of chaos in Hamiltonian systems Control of chaos in Hamiltonian systems G. Ciraolo, C. Chandre, R. Lima, M. Vittot Centre de Physique Théorique CNRS, Marseille M. Pettini Osservatorio Astrofisico di Arcetri, Università di Firenze Ph.

More information

arxiv: v1 [math.ds] 19 Dec 2012

arxiv: v1 [math.ds] 19 Dec 2012 arxiv:1212.4559v1 [math.ds] 19 Dec 2012 KAM theorems and open problems for infinite dimensional Hamiltonian with short range Xiaoping YUAN December 20, 2012 Abstract. Introduce several KAM theorems for

More information

A parameterization method for Lagrangian tori of exact symplectic maps of R 2r

A parameterization method for Lagrangian tori of exact symplectic maps of R 2r A parameterization method for Lagrangian tori of exact symplectic maps of R 2r Jordi Villanueva Departament de Matemàtiques, Universitat Politècnica de Catalunya, Diagonal 647, 08028 Barcelona (Spain.

More information

Quantum Mechanics in Three Dimensions

Quantum Mechanics in Three Dimensions Physics 342 Lecture 21 Quantum Mechanics in Three Dimensions Lecture 21 Physics 342 Quantum Mechanics I Monday, March 22nd, 21 We are used to the temporal separation that gives, for example, the timeindependent

More information

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

7a3 2. (c) πa 3 (d) πa 3 (e) πa3 1.(6pts) Find the integral x, y, z d S where H is the part of the upper hemisphere of H x 2 + y 2 + z 2 = a 2 above the plane z = a and the normal points up. ( 2 π ) Useful Facts: cos = 1 and ds = ±a sin

More information

The Geometry of Relativity

The Geometry of Relativity The Geometry of Relativity Tevian Dray Department of Mathematics Oregon State University http://www.math.oregonstate.edu/~tevian OSU 4/27/15 Tevian Dray The Geometry of Relativity 1/27 Books The Geometry

More information

Averaging II: Adiabatic Invariance for Integrable Systems (argued via the Averaging Principle)

Averaging II: Adiabatic Invariance for Integrable Systems (argued via the Averaging Principle) Averaging II: Adiabatic Invariance for Integrable Systems (argued via the Averaging Principle In classical mechanics an adiabatic invariant is defined as follows[1]. Consider the Hamiltonian system with

More information

Time-Periodic Solutions of the Einstein s Field Equations II: Geometric Singularities

Time-Periodic Solutions of the Einstein s Field Equations II: Geometric Singularities Science in China Series A: Mathematics 2009 Vol. 52 No. 11 1 16 www.scichina.com www.springerlink.com Time-Periodic Solutions of the Einstein s Field Equations II: Geometric Singularities KONG DeXing 1,

More information

M2A2 Problem Sheet 3 - Hamiltonian Mechanics

M2A2 Problem Sheet 3 - Hamiltonian Mechanics MA Problem Sheet 3 - Hamiltonian Mechanics. The particle in a cone. A particle slides under gravity, inside a smooth circular cone with a vertical axis, z = k x + y. Write down its Lagrangian in a) Cartesian,

More information

Nonlinear Single-Particle Dynamics in High Energy Accelerators

Nonlinear Single-Particle Dynamics in High Energy Accelerators Nonlinear Single-Particle Dynamics in High Energy Accelerators Part 4: Canonical Perturbation Theory Nonlinear Single-Particle Dynamics in High Energy Accelerators There are six lectures in this course

More information

PROPERLY DEGENERATE KAM THEORY (FOLLOWING V. I. ARNOLD) Luigi Chierchia. Gabriella Pinzari

PROPERLY DEGENERATE KAM THEORY (FOLLOWING V. I. ARNOLD) Luigi Chierchia. Gabriella Pinzari DISCRETE AND CONTINUOUS doi:10.3934/dcdss.010.3.545 DYNAMICAL SYSTEMS SERIES S Volume 3, Number 4, December 010 pp. 545 578 PROPERLY DEGENERATE KAM THEORY FOLLOWING V. I. ARNOLD Luigi Chierchia Dipartimento

More information

Consider a s ystem with 2 parts with well defined transformation properties

Consider a s ystem with 2 parts with well defined transformation properties Direct Product of Representations Further important developments of the theory of symmetry are needed for systems that consist of parts (e.g. two electrons, spin and orbit of an electron, one electron

More information

Symplectic maps. James D. Meiss. March 4, 2008

Symplectic maps. James D. Meiss. March 4, 2008 Symplectic maps James D. Meiss March 4, 2008 First used mathematically by Hermann Weyl, the term symplectic arises from a Greek word that means twining or plaiting together. This is apt, as symplectic

More information

Stochastic Arnold Diffusion of deterministic systems

Stochastic Arnold Diffusion of deterministic systems Stochastic Arnold Diffusion of deterministic systems V. Kaloshin December 5, 2016 Two main examples: Asteroid belt and Arnold s example. Ergodicity (almost all orbits over a long time behave the same),

More information

cauchy s integral theorem: examples

cauchy s integral theorem: examples Physics 4 Spring 17 cauchy s integral theorem: examples lecture notes, spring semester 17 http://www.phys.uconn.edu/ rozman/courses/p4_17s/ Last modified: April 6, 17 Cauchy s theorem states that if f

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

dy i dt = F x i en supposant que la function F peut se développer suivant les puissances d un paramètre très petit µ de la manière suivante: y i

dy i dt = F x i en supposant que la function F peut se développer suivant les puissances d un paramètre très petit µ de la manière suivante: y i ÁÊËÌ ÁÆÌ Ê ÄË According to Poincaré, the general problem of dynamics is formulated as follows ([87], Vol. I, 13). Nous sommes donc conduit à nous proposer le problème suivant: Étudier les équations canoniques

More information

Math 3435 Homework Set 11 Solutions 10 Points. x= 1,, is in the disk of radius 1 centered at origin

Math 3435 Homework Set 11 Solutions 10 Points. x= 1,, is in the disk of radius 1 centered at origin Math 45 Homework et olutions Points. ( pts) The integral is, x + z y d = x + + z da 8 6 6 where is = x + z 8 x + z = 4 o, is the disk of radius centered on the origin. onverting to polar coordinates then

More information

arxiv:gr-qc/ v1 18 Nov 2004

arxiv:gr-qc/ v1 18 Nov 2004 The Aschenbach effect: unexpected topology changes in motion of particles and fluids orbiting rapidly rotating Kerr black holes arxiv:gr-qc/0411091v1 18 Nov 2004 Zdeněk Stuchlík, 1,2, Petr Slaný, 1,2,

More information

Properly degenerate KAM theory (following V.I. Arnold)

Properly degenerate KAM theory (following V.I. Arnold) Properly degenerate KAM theory (following V.I. Arnold) Luigi Chierchia Dipartimento di Matematica Università Roma Tre Largo S. L. Murialdo 1, I-00146 Roma (Italy) luigi@mat.uniroma3.it Gabriella Pinzari

More information

v n ds where v = x z 2, 0,xz+1 and S is the surface that

v n ds where v = x z 2, 0,xz+1 and S is the surface that M D T P. erif the divergence theorem for d where is the surface of the sphere + + = a.. Calculate the surface integral encloses the solid region + +,. (a directl, (b b the divergence theorem. v n d where

More information

Printed from file Manuscripts/Stark/stark.tex on February 24, 2014 Stark Effect

Printed from file Manuscripts/Stark/stark.tex on February 24, 2014 Stark Effect Printed from file Manuscripts/Stark/stark.tex on February 4, 4 Stark Effect Robert Gilmore Physics Department, Drexel University, Philadelphia, PA 94 February 4, 4 Abstract An external electric field E

More information

Orbits, Integrals, and Chaos

Orbits, Integrals, and Chaos Chapter 7 Orbits, Integrals, and Chaos In n space dimensions, some orbits can be formally decomposed into n independent periodic motions. These are the regular orbits; they may be represented as winding

More information

Numerical Refinement of a Finite Mass Shock-Wave Cosmology

Numerical Refinement of a Finite Mass Shock-Wave Cosmology Numerical Refinement of a Finite Mass Shock-Wave Cosmology Blake Temple, UC-Davis Collaborators: J. Smoller, Z. Vogler, B. Wissman References Exact solution incorporating a shock-wave into the standard

More information

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. E = jωb. H = J + jωd. D = ρ (M3) B = 0 (M4) D = εe

ANTENNAS. Vector and Scalar Potentials. Maxwell's Equations. E = jωb. H = J + jωd. D = ρ (M3) B = 0 (M4) D = εe ANTENNAS Vector and Scalar Potentials Maxwell's Equations E = jωb H = J + jωd D = ρ B = (M) (M) (M3) (M4) D = εe B= µh For a linear, homogeneous, isotropic medium µ and ε are contant. Since B =, there

More information

PHY411 Lecture notes Part 2

PHY411 Lecture notes Part 2 PHY411 Lecture notes Part 2 Alice Quillen April 6, 2017 Contents 1 Canonical Transformations 2 1.1 Poisson Brackets................................. 2 1.2 Canonical transformations............................

More information

28344 Bremen, Germany. hdullin or

28344 Bremen, Germany.   hdullin or Ecient Calculation of Actions H.R. Dullin A. Wittek Institut fur Theoretische Physik Universitat Bremen Postfach 330440 28344 Bremen, Germany Phone: +49(0)421-218-2341 Fax: +49(0)421-218-4869 Email: hdullin

More information

KAM, α-gevrey regularity and the α-bruno-rüssmann condition

KAM, α-gevrey regularity and the α-bruno-rüssmann condition KAM, α-gevrey regularity and the α-bruno-rüssmann condition arxiv:175.699v2 [math.ds] 26 Jun 217 Abed Bounemoura and Jacques Féjoz June 27, 217 Abstract We prove a new invariant torus theorem, for α-gevrey

More information

REVERSALS ON SFT S. 1. Introduction and preliminaries

REVERSALS ON SFT S. 1. Introduction and preliminaries Trends in Mathematics Information Center for Mathematical Sciences Volume 7, Number 2, December, 2004, Pages 119 125 REVERSALS ON SFT S JUNGSEOB LEE Abstract. Reversals of topological dynamical systems

More information

0 + E (1) and the first correction to the ground state energy is given by

0 + E (1) and the first correction to the ground state energy is given by 1 Problem set 9 Handout: 1/24 Due date: 1/31 Problem 1 Prove that the energy to first order for the lowest-energy state of a perturbed system is an upper bound for the exact energy of the lowest-energy

More information

The Geometry of Relativity

The Geometry of Relativity Department of Mathematics Oregon State University http://www.math.oregonstate.edu/~tevian Differential Geometry Definition A topological manifold is a second countable Housdorff space that is locally homeomorphic

More information

51. General Surface Integrals

51. General Surface Integrals 51. General urface Integrals The area of a surface in defined parametrically by r(u, v) = x(u, v), y(u, v), z(u, v) over a region of integration in the input-variable plane is given by d = r u r v da.

More information

Action-angle coordinates and geometric quantization. Eva Miranda. Barcelona (EPSEB,UPC) STS Integrable Systems

Action-angle coordinates and geometric quantization. Eva Miranda. Barcelona (EPSEB,UPC) STS Integrable Systems Action-angle coordinates and geometric quantization Eva Miranda Barcelona (EPSEB,UPC) STS Integrable Systems Eva Miranda (UPC) 6ecm July 3, 2012 1 / 30 Outline 1 Quantization: The general picture 2 Bohr-Sommerfeld

More information

Poisson geometry of b-manifolds. Eva Miranda

Poisson geometry of b-manifolds. Eva Miranda Poisson geometry of b-manifolds Eva Miranda UPC-Barcelona Rio de Janeiro, July 26, 2010 Eva Miranda (UPC) Poisson 2010 July 26, 2010 1 / 45 Outline 1 Motivation 2 Classification of b-poisson manifolds

More information

Seminar Geometrical aspects of theoretical mechanics

Seminar Geometrical aspects of theoretical mechanics Seminar Geometrical aspects of theoretical mechanics Topics 1. Manifolds 29.10.12 Gisela Baños-Ros 2. Vector fields 05.11.12 and 12.11.12 Alexander Holm and Matthias Sievers 3. Differential forms 19.11.12,

More information

Orbits in Static and Stationary Spacetimes

Orbits in Static and Stationary Spacetimes Orbits in Static and Stationary Spacetimes Claus Lämmerzahl with Eva Hackmann, Valeria Kagramanova and Jutta Kunz Centre for Applied Space Technology and Microgravity (ZARM), University of Bremen, 28359

More information

Relativistic theory of surficial Love numbers

Relativistic theory of surficial Love numbers Department of Physics, University of Guelph APS April Meeting 2013, Denver Newtonian tides 1 In Newtonian theory, the tidal environment of a body of mass M and radius R is described by the tidal quadrupole

More information

Thermalization in Quantum Systems

Thermalization in Quantum Systems Thermalization in Quantum Systems Jonas Larson Stockholm University and Universität zu Köln Dresden 18/4-2014 Motivation Long time evolution of closed quantum systems not fully understood. Cold atom system

More information

Math 334 A1 Homework 3 (Due Nov. 5 5pm)

Math 334 A1 Homework 3 (Due Nov. 5 5pm) Math 334 A1 Homework 3 Due Nov. 5 5pm No Advanced or Challenge problems will appear in homeworks. Basic Problems Problem 1. 4.1 11 Verify that the given functions are solutions of the differential equation,

More information

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 >

Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 > Math 63 Final Problem 1: [ points, 5 points to each part] Given the points P : (1, 1, 1), Q : (1,, ), R : (,, c 1), where c is a parameter, find (a) the vector equation of the line through P and Q. (b)

More information

2:2:1 Resonance in the Quasiperiodic Mathieu Equation

2:2:1 Resonance in the Quasiperiodic Mathieu Equation Nonlinear Dynamics 31: 367 374, 003. 003 Kluwer Academic Publishers. Printed in the Netherlands. ::1 Resonance in the Quasiperiodic Mathieu Equation RICHARD RAND Department of Theoretical and Applied Mechanics,

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

arxiv: v1 [math.sg] 6 Nov 2015

arxiv: v1 [math.sg] 6 Nov 2015 A CHIANG-TYPE LAGRANGIAN IN CP ANA CANNAS DA SILVA Abstract. We analyse a simple Chiang-type lagrangian in CP which is topologically an RP but exhibits a distinguishing behaviour under reduction by one

More information

GEVREY-SMOOTHNESS OF INVARIANT TORI FOR NEARLY INTEGRABLE SIMPLECTIC MAPPINGS

GEVREY-SMOOTHNESS OF INVARIANT TORI FOR NEARLY INTEGRABLE SIMPLECTIC MAPPINGS Electronic Journal of Differential Equations, Vol. 017 (017), No. 159, pp. 1 17. ISSN: 107-6691. URL: http://ede.math.txstate.edu or http://ede.math.unt.edu GEVREY-SMOOTHNESS OF INVARIANT TORI FOR NEARLY

More information

On non-reducible quasi-periodic linear skew-products

On non-reducible quasi-periodic linear skew-products On non-reducible quasi-periodic linear skew-products March 17, 2014 1 Floquet theory 2 3 Recall: Floquet theory I Floquet theory named after Gaston Floquet (S.XIX). Concerns about linear equations with

More information

Refined BPS Indices, Intrinsic Higgs States and Quiver Invariants

Refined BPS Indices, Intrinsic Higgs States and Quiver Invariants Refined BPS Indices, Intrinsic Higgs States and Quiver Invariants ddd (KIAS) USTC 26 Sep 2013 Base on: H. Kim, J. Park, ZLW and P. Yi, JHEP 1109 (2011) 079 S.-J. Lee, ZLW and P. Yi, JHEP 1207 (2012) 169

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Wednesday, January 14, 015 1:00PM to 3:00PM Modern Physics Section 3. Quantum Mechanics Two hours are permitted for the completion of this

More information

Finite dimensional invariant KAM tori for tame vector fields

Finite dimensional invariant KAM tori for tame vector fields Finite dimensional invariant KAM tori for tame vector fields L. Corsi, R. Feola, M. Procesi Georgia Institute of Technology, Altanta, lcorsi6@math.gatech.edu; SISSA, Trieste, rfeola@sissa.it; Università

More information

Black-Hole Solutions with Scalar Hair in Einstein-Scalar-Gauss-Bonnet Theories

Black-Hole Solutions with Scalar Hair in Einstein-Scalar-Gauss-Bonnet Theories Black-Hole Solutions with Scalar Hair in Einstein-Scalar-Gauss-Bonnet Theories Athanasios Bakopoulos Physics Department University of Ioannina In collaboration with: George Antoniou and Panagiota Kanti

More information

2 Constructions of manifolds. (Solutions)

2 Constructions of manifolds. (Solutions) 2 Constructions of manifolds. (Solutions) Last updated: February 16, 2012. Problem 1. The state of a double pendulum is entirely defined by the positions of the moving ends of the two simple pendula of

More information

Two-level systems coupled to oscillators

Two-level systems coupled to oscillators Two-level systems coupled to oscillators RLE Group Energy Production and Conversion Group Project Staff Peter L. Hagelstein and Irfan Chaudhary Introduction Basic physical mechanisms that are complicated

More information

( 2 + k 2 )Ψ = 0 (1) c sinhα sinφ. x = y = c sinβ. z =

( 2 + k 2 )Ψ = 0 (1) c sinhα sinφ. x = y = c sinβ. z = Power series Schrodinger eigenfunctions for a particle on the torus. Mario Encinosa and Babak Etemadi Department of Physics Florida A & M University Tallahassee, Florida 3307 Abstract The eigenvalues and

More information

The 3 dimensional Schrödinger Equation

The 3 dimensional Schrödinger Equation Chapter 6 The 3 dimensional Schrödinger Equation 6.1 Angular Momentum To study how angular momentum is represented in quantum mechanics we start by reviewing the classical vector of orbital angular momentum

More information

On the sharpness of the Rüssmann estimates

On the sharpness of the Rüssmann estimates On the sharpness of the Rüssmann estimates arxiv:1703.06809v1 [math.ds] 20 Mar 2017 Jordi-Lluís Figueras Department of Mathematics Uppsala University Box 480, 751 06 Uppsala (Sweden). Alex Haro Departament

More information

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates

CBE 6333, R. Levicky 1. Orthogonal Curvilinear Coordinates CBE 6333, R. Levicky 1 Orthogonal Curvilinear Coordinates Introduction. Rectangular Cartesian coordinates are convenient when solving problems in which the geometry of a problem is well described by the

More information

TRANSMISSION LOSS OF EXTRUDED ALUMINIUM PANELS WITH ORTHOTROPIC CORES

TRANSMISSION LOSS OF EXTRUDED ALUMINIUM PANELS WITH ORTHOTROPIC CORES TRANSMISSION LOSS OF EXTRUDED ALUMINIUM PANELS WITH ORTHOTROPIC CORES PACS REFERENCE: 43.40-Rj RADIATION FROM VIBRATING STRUCTURES INTO FLUID MEDIA Names of the authors: Kohrs, Torsten; Petersson, Björn

More information

TIME-FREQUENCY ANALYSIS OF CLASSICAL TRAJECTORIES OF POLYATOMIC MOLECULES

TIME-FREQUENCY ANALYSIS OF CLASSICAL TRAJECTORIES OF POLYATOMIC MOLECULES International Journal of Bifurcation and Chaos, Vol. 11, No. 5 (1) 159 18 c World Scientific Publishing Company TIME-FREQUENCY ANALYSIS OF CLASSICAL TRAJECTORIES OF POLYATOMIC MOLECULES LUZ V. VELA-AREVALO

More information

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1.

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1. Problem 4.1 A cube m on a side is located in the first octant in a Cartesian coordinate system, with one of its corners at the origin. Find the total charge contained in the cube if the charge density

More information

Review problems for the final exam Calculus III Fall 2003

Review problems for the final exam Calculus III Fall 2003 Review problems for the final exam alculus III Fall 2003 1. Perform the operations indicated with F (t) = 2t ı 5 j + t 2 k, G(t) = (1 t) ı + 1 t k, H(t) = sin(t) ı + e t j a) F (t) G(t) b) F (t) [ H(t)

More information

Singular Perturbation Theory for Homoclinic Orbits in a Class of Near-Integrable Hamiltonian Systems

Singular Perturbation Theory for Homoclinic Orbits in a Class of Near-Integrable Hamiltonian Systems Singular Perturbation Theory for Homoclinic Orbits in a Class of Near-Integrable Hamiltonian Systems Gregor Kovačič Mathematical Sciences Department Rensselaer Polytechnic Institute Troy, NY 12180 Abstract

More information

Multiple scale methods

Multiple scale methods Multiple scale methods G. Pedersen MEK 3100/4100, Spring 2006 March 13, 2006 1 Background Many physical problems involve more than one temporal or spatial scale. One important example is the boundary layer

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 4 Aug 1997

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 4 Aug 1997 arxiv:cond-mat/9708022v1 [cond-mat.dis-nn] 4 Aug 1997 Possible long time tails in the current-current correlation function for the two dimensional electron gas in random magnetic field. Andrzej Lusakowski,

More information

Chap. 1. Some Differential Geometric Tools

Chap. 1. Some Differential Geometric Tools Chap. 1. Some Differential Geometric Tools 1. Manifold, Diffeomorphism 1.1. The Implicit Function Theorem ϕ : U R n R n p (0 p < n), of class C k (k 1) x 0 U such that ϕ(x 0 ) = 0 rank Dϕ(x) = n p x U

More information

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves

Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves p. 1/23 Integrable Systems, Monopoles and Modifications of Bundles over Elliptic Curves Andrei Zotov, Conformal Field Theory,

More information

The thermodynamics of Kaluza Klein black hole/ bubble chains

The thermodynamics of Kaluza Klein black hole/ bubble chains University of Massachusetts Amherst ScholarWorks@UMass Amherst Physics Department Faculty Publication Series Physics 2008 The thermodynamics of Kaluza Klein black hole/ bubble chains David Kastor University

More information

Goldstone mode stochastization in a quantum Hall ferromagnet

Goldstone mode stochastization in a quantum Hall ferromagnet Goldstone mode stochastization in a quantum Hall ferromagnet S. Dickmann (Cologne, December 14, 2015) Sergey Dickmann Chernogolovka, Russia Zero and nonzero spin excitons are lowest energy excitations

More information

Quasi-local Mass in General Relativity

Quasi-local Mass in General Relativity Quasi-local Mass in General Relativity Shing-Tung Yau Harvard University For the 60th birthday of Gary Horowtiz U. C. Santa Barbara, May. 1, 2015 This talk is based on joint work with Po-Ning Chen and

More information

The intricate interplay between integrability and chaos for the dynamics of the probes of extremal black hole spacetimes

The intricate interplay between integrability and chaos for the dynamics of the probes of extremal black hole spacetimes The intricate interplay between integrability and chaos for the dynamics of the probes of extremal black hole spacetimes Stam Nicolis CNRS Laboratoire de Mathématiques et Physique Théorique (UMR7350) Fédération

More information

The Mermin-Wagner Theorem

The Mermin-Wagner Theorem June 24, 2010 Conclusion In one and two dimensions, continuous symmetries cannot be spontaneously broken at finite temperature in systems with sufficiently short-range interactions. Contents 1 How symmetry

More information

Approximation Methods in QM

Approximation Methods in QM Chapter 3 Approximation Methods in QM Contents 3.1 Time independent PT (nondegenerate)............... 5 3. Degenerate perturbation theory (PT)................. 59 3.3 Time dependent PT and Fermi s golden

More information

THE FOUCAULT PENDULUM (WITH A TWIST)

THE FOUCAULT PENDULUM (WITH A TWIST) THE FOUCAULT PENDULUM (WITH A TWIST) RICHARD MOECKEL The Foucault pendulum is often given as proof of the rotation of the earth. As the pendulum swings back and forth, the positions of maximum amplitude

More information

Hamiltonian Systems with Widely Separated. Frequencies. Mathematisch Instituut, Utrecht University

Hamiltonian Systems with Widely Separated. Frequencies.    Mathematisch Instituut, Utrecht University Hamiltonian Systems with Widely Separated Frequencies J.M. Tuwankotta F. Verhulst e-mail: tuwankotta@math.uu.nl, verhulst@math.uu.nl. Mathematisch Instituut, Utrecht University PO Box 80.010, 3508 TA Utrecht

More information

AA242B: MECHANICAL VIBRATIONS

AA242B: MECHANICAL VIBRATIONS AA242B: MECHANICAL VIBRATIONS 1 / 50 AA242B: MECHANICAL VIBRATIONS Undamped Vibrations of n-dof Systems These slides are based on the recommended textbook: M. Géradin and D. Rixen, Mechanical Vibrations:

More information

Flat-Space Holography and Anisotrpic Conformal Infinity

Flat-Space Holography and Anisotrpic Conformal Infinity Flat-Space Holography and Anisotrpic Conformal Infinity Reza Fareghbal Department of Physics, Shahid Beheshti University, Tehran Recent Trends in String Theory and Related Topics, IPM, May 26 2016 Based

More information

Eva Miranda. UPC-Barcelona. (joint with Victor Guillemin and Ana Rita Pires) Zaragoza, February

Eva Miranda. UPC-Barcelona. (joint with Victor Guillemin and Ana Rita Pires) Zaragoza, February From b-poisson manifolds to symplectic mapping torus and back Eva Miranda UPC-Barcelona (joint with Victor Guillemin and Ana Rita Pires) Zaragoza, February 8 2011 Eva Miranda (UPC) Poisson Day February

More information

KAM Theory: quasi-periodicity in dynamical systems

KAM Theory: quasi-periodicity in dynamical systems KAM Theory: quasi-periodicity in dynamical systems Henk W. Broer Department of Mathematics and Computing Science, University of Groningen, Blauwborgje 3, 9747 AC Groningen, The Netherlands E-mail: broer@math.rug.nl

More information

Chemistry 3502/4502. Exam III. All Hallows Eve/Samhain, ) This is a multiple choice exam. Circle the correct answer.

Chemistry 3502/4502. Exam III. All Hallows Eve/Samhain, ) This is a multiple choice exam. Circle the correct answer. B Chemistry 3502/4502 Exam III All Hallows Eve/Samhain, 2003 1) This is a multiple choice exam. Circle the correct answer. 2) There is one correct answer to every problem. There is no partial credit. 3)

More information

Dimensions = xyz dv. xyz dv as an iterated integral in rectangular coordinates.

Dimensions = xyz dv. xyz dv as an iterated integral in rectangular coordinates. Math Show Your Work! Page of 8. () A rectangular box is to hold 6 cubic meters. The material used for the top and bottom of the box is twice as expensive per square meter than the material used for the

More information

Classical Mechanics Solutions 1.

Classical Mechanics Solutions 1. Classical Mechanics Solutions 1. HS 2015 Prof. C. Anastasiou Prologue Given an orthonormal basis in a vector space with n dimensions, any vector can be represented by its components1 ~v = n X vi e i. 1)

More information

Chaos in classical string dynamics in ˆγ deformed AdS 5 T 1,1

Chaos in classical string dynamics in ˆγ deformed AdS 5 T 1,1 Preprint typeset in JHEP style. - HYPER VERSION Chaos in classical string dynamics in ˆγ deformed AdS 5 T, arxiv:605.05638v [hep-th] 8 May 206 Kamal L. Panigrahi Department of Physics, Indian Institute

More information

Polymer Theory: Freely Jointed Chain

Polymer Theory: Freely Jointed Chain Polymer Theory: Freely Jointed Chain E.H.F. February 2, 23 We ll talk today about the most simple model for a single polymer in solution. It s called the freely jointed chain model. Each monomer occupies

More information

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach

Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Real-time dynamics in Quantum Impurity Systems: A Time-dependent Numerical Renormalization Group Approach Frithjof B Anders Institut für theoretische Physik, Universität Bremen Concepts in Electron Correlation,

More information

Transformations. 1 The Lorentz Transformation. 2 Velocity Transformation

Transformations. 1 The Lorentz Transformation. 2 Velocity Transformation Transformations 1 The Lorentz Transformation In the last lecture we obtained the relativistic transformations for space/time between inertial frames. These transformations follow mainly from the postulate

More information

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain

More information

Chaos Indicators. C. Froeschlé, U. Parlitz, E. Lega, M. Guzzo, R. Barrio, P.M. Cincotta, C.M. Giordano, C. Skokos, T. Manos, Z. Sándor, N.

Chaos Indicators. C. Froeschlé, U. Parlitz, E. Lega, M. Guzzo, R. Barrio, P.M. Cincotta, C.M. Giordano, C. Skokos, T. Manos, Z. Sándor, N. C. Froeschlé, U. Parlitz, E. Lega, M. Guzzo, R. Barrio, P.M. Cincotta, C.M. Giordano, C. Skokos, T. Manos, Z. Sándor, N. Maffione November 17 th 2016 Wolfgang Sakuler Introduction Major question in celestial

More information

Perturbation Theory of Dynamical Systems

Perturbation Theory of Dynamical Systems Perturbation Theory of Dynamical Systems arxiv:math.ho/0111178 v1 15 Nov 2001 Nils Berglund Department of Mathematics ETH Zürich 8092 Zürich Switzerland Lecture Notes Summer Semester 2001 Version: November

More information

The influence of noise on two- and three-frequency quasi-periodicity in a simple model system

The influence of noise on two- and three-frequency quasi-periodicity in a simple model system arxiv:1712.06011v1 [nlin.cd] 16 Dec 2017 The influence of noise on two- and three-frequency quasi-periodicity in a simple model system A.P. Kuznetsov, S.P. Kuznetsov and Yu.V. Sedova December 19, 2017

More information

Relativistic Dynamics

Relativistic Dynamics Chapter 4 Relativistic Dynamics The most important example of a relativistic particle moving in a potential is a charged particle, say an electron, moving in an electromagnetic field, which might be that

More information