Physics 214 Spring

Size: px
Start display at page:

Download "Physics 214 Spring"

Transcription

1 Lecture 23 March The elation between Voltage Differences V and Voltages V? Current Flow, Voltage Drop on esistors and Equivalent esistance Case 1: Series esistor Combination and esulting Currents Case 2: Parallel esistor Combination and esulting Currents Case 3: Mixed Series and Parallel esistor Combination, Corresponding Equivalent esistance and esulting Currents Current, Power and Energy Transmission of Power to Your Home Household Appliances Questions 3/3/2016 Physics 214 Spring

2 3/3/2016 Physics 214 Spring What is the elation between Voltage V and Voltage Difference V? We have seen that the definition of voltage is ΔV = Δpotential energy/q when a charge q is moved in an electrical force field. Δis the notation for difference of some quantity. So energy is stored as potential energy as a positive charge is moved in the opposite direction to E or a negative charge is moved in the same direction as E. If we move a positive charge toward a positive charge potential energy and ΔV increase or if we move a negative charge away from a positive charge. Just as in the gravitational field there are only differences in PE. So normally we use the term ΔV. But very often for circuits we choose one point, usually the negative terminal, to be zero and then instead of ΔV we just use V. When charge is free to move, that is positive charge moving to a lower voltage or negative charge moving to a higher voltage the PE will transform into KE just like dropping something. In a simple circuit with resistance this KE is turned into heat and light so there is a voltage drop across every element in the circuit.

3 Voltage drop, Current and Equivalent esitance If we have a circuit with many different resistors then there is a voltage drop across each resistor and there is also a voltage drop for the whole circuit. Current only flows if there is a voltage difference and in a time t charge q passes through the resistor. Case1 I = q/t and ΔV = I 6V 1 V I 0.1A V A, V A, V A Case 2 12V I24, Itotal 3 I A 1.5A 24 Case 3 3/3/2016 total , total VAB , I 5.5 Physics 214 Spring 2016 V V V VAB 3 3V I VAB 3 VAB I VAB 3V I AB AB 3

4 Series plus parallel A I 1 V I I 4 I 1 I 2 I 3 A B I 2 I 3 B V B I 4 I parallel V AB = I 1 1 V AB = I 2 2 V AB = I 3 3 I = I 1 + I 2 + I 3 V 4 = I 4 V = V AB + V 4 V = I( 4 + parallel ) 3/3/2016 Physics 214 Spring

5 Simple circuits The current is the same everywhere = V = V 1 + V 2 +V 3 V V is the same across all resistors V = I circuit 1/ circuit = 1/ 1 + 1/ 2 + 1/ 3 I 1 = V/ 1 I 2 = V/ 2 I 3 = V/ 3 = V ab = I /3/2016 Physics 214 Spring

6 Power and Energy Electromotive force or voltage difference between two points is the difference in potential energy/unit charge. So the energy delivered if charge q is transferred is energy = ΔVq power = ΔVq/t = ΔVI watts Eq.1 Eq.2 For any voltage difference ΔV and current I, the delivered power is power = ΔVI Eq.3 For circuits that obey OHM s law ΔV = I we substitute for ΔV in Eq.3, we have Power = ΔVI = I 2 = ΔV 2 / watts The power used appears as heat or light Practical Unit for power 1 kilowatt Energy Unit 1 kilowatt hour = 1000 x 3600 joules 3/3/2016 Physics 214 Spring

7 Measuring current and Voltage It is often very important to know the current in a circuit or the voltage difference between two points. A hand held meter is very useful to test batteries or a circuit. An ammeter is a device inserted into a circuit. The resistance of an ammeter is very small so as to minimize the effect on the circuit. A voltmeter is attached in parallel and V is found by measuring the current and V = I meter meter. The resistance has to be much larger than the circuit resistance so that the current is very small and does not disturb the main circuit. 3/3/2016 Physics 214 Spring

8 Transmission In the distribution of electric power the goal is to deliver to the user as large a fraction as possible of the generated power. Practical cables have a specific resistance so the power losses will be I 2 cable and we need I to be as small as possible. But we also need the delivered power P = V source I source to be as high as possible, therefore, the electrical power is distributed at very high voltage and low current. The voltage is reduced from 250,000volts to 220volts for households by using a transformer. The current increases by the same factor since for an ideal transformer no power is lost. Transformers are the dominant reason electrical transmission is alternating current i V source cable i V user user V user = V source I cable P user = iv user = iv source i 2 cable 3/3/2016 Physics 214 Spring

9 Household appliances Household circuits are wired in parallel so that when more than one appliance is plugged in each sees the same voltage and can get the required current. As we plug in more and more appliances the current in the circuit increases and the I 2 losses could cause a fire. This is why we have fuses and why major appliances use 220 volts and many parts of the world use 220 volts for all household use. As many people turn on appliances (air conditioners) the grid has to supply more power by increasing the current. P user = iv user = iv source i 2 cable This results in a higher fraction of the power being lost in the cable In cases of very heavy load the power station reduces the transmission voltage resulting in a brown out and in extreme cases there are rolling blackouts. 3/3/2016 Physics 214 Spring

10 Summary Chapter 13 I = q/t amperes (coulombs/sec) OHM s Law = ΔV/I ohms I = ε/( circuit + battery ) P = ΔVI = I 2 = (ΔV) 2 / watts 3/3/2016 Physics 214 Spring

11 Questions Chapter 13 Q3 In a simple battery-and-bulb circuit, is the electric current that enters the bulb on the side nearer to the positive terminal of the battery larger than the current that leaves the bulb on the opposite side? The current is the same Q4 Are electric current and electric charge the same thing? No. electric current is the flow of charge I = q/t 3/3/2016 Physics 214 Spring

12 Q6 Consider the circuit shown. Could we increase the brightness of the bulb by connecting a wire between points A and B? Explain. A Є B No. The voltage drop from A to B is stiil the same so the current through the bulb does not change. 3/3/2016 Physics 214 Spring

13 Q7 Two circuit diagrams are shown. Which one, if either, will cause the light bulb to light? Explain you analysis of each case. Open Switch 1.5 V 1.5 V (a) In a) the battery is not connected. In b) the bulb is lit (b) 3/3/2016 Physics 214 Spring

14 Q11 A dead battery will still indicate a voltage when a good voltmeter is connected across the terminals. Can the battery still be used to light a bulb? A battery has internal resistance so although one can measure an open circuit voltage when connected to a circuit the voltage will drop and the current flow will be very low. Q12 When a battery is being used in a circuit, will the voltage across its terminals be less than that measured when there is no current being drawn from the battery? Explain. The voltage will be less because of the voltage drop due to the internal resistance 3/3/2016 Physics 214 Spring

15 Q13 Two resistors are connected in a series with a battery as shown in the diagram. 1 is less than 2. A. Which of the two resistors, if either, has the greater current flowing through it? Explain. B. Which of the two resistors, if either, has the greatest voltage difference across it? Explain. 1 Є 2 The current is the same in both. Since V = I the greatest voltage drop will be across 2 3/3/2016 Physics 214 Spring

16 Q14 In the circuit shown below, 1, 2, and 3 are three resistors of different values. 3 is greater than 2, and 2 is greater than 1. Є is the electromotive force of the battery whose internal resistance is negligible. Which of the three resistors has the greatest current flowing through it? Є I 3 = I 1 + I 2 so I 3 is the largest 3/3/2016 Physics 214 Spring

17 Q15 In the circuit shown in question 14, which of the three resistors, if any, has the largest voltage difference across it? V = I and both I and are the largest for 3 Q16 If we disconnect 2 from the rest of the circuit shown in the diagram for question 14, will the current through 3 increase, decrease, or remain the same? The resistance of the circuit will increase so the current through 3 will decrease. Є 1 2 3/3/2016 Physics 214 Spring

18 Q18 In the circuit shown, the circle with a V in it represents a voltmeter. Which of the following statements is correct? Explain. A. The voltmeter is in the correct position for measuring the voltage difference across. B. No current will flow through the meter, so it will have no effect. C. The meter will draw a large current. Є + + V The voltmeter is in the correct position. Current will flow through the meter but the current will be very small because the resistance is very high. 3/3/2016 Physics 214 Spring

19 Q19 In the circuit shown, the circle with an A in it represents an ammeter. Which of these statements is correct? Comment on each. A. The meter is in the correct position for measuring the current through. B. No current will flow through the meter, so it will have no effect. C. The meter will draw a significant current from the battery. Є + + A The meter is in the wrong position. A large current will flow because the meter resistance is very low. 3/3/2016 Physics 214 Spring

20 Q21 Is electric energy the same as electric power? Power is the rate at which energy is used. Your electrical bill is for the total energy you use. Q22 If the current through a certain resistance is doubled, does the power dissipated in that resistor also double? P = I 2 so the power increases by a factor of 4 Q23 Does the power being delivered by a battery depend on the resistance of the circuit connected to the battery? Yes because increasing the resistance lowers the current 3/3/2016 Physics 214 Spring

21 Q29 Suppose that the appliances connected to a household circuit were connected in series rather than in parallel. What disadvantages would there be to this arrangement? First if one failed then all the appliances will not function. Secondly the current will be determined by the whole string of appliances by the voltage drop from end to end and will depend on the number of appliances. Each appliance requires the same voltage drop and this is what happens when they are connected in parallel. 3/3/2016 Physics 214 Spring

22 Ch 13 E resistor has voltage difference 3V across leads. a) What is the current through the resistor? b) What is the power dissipated in resistor? 3V 24 a) V = I I = V/ = 3/24 = 0.125A b) P = IV = V 2 / = (3) 2 /24 = 0.375W 3/3/2016 Physics 214 Spring

23 Ch 13 E 16 A toaster draws current = 7A on a 110-V AC line a) What is the power consumption of the toaster? b) What is the resistance of the heating element in the toaster? a) P = IV = = 770 W b) V = I, = V/I = 110/7 = V I = 7A 3/3/2016 Physics 214 Spring

24 Ch 13 CP 2 Three 30- light bulbs connected in PAALLEL to 1.5 V battery with negligible internal resistance. a) What is the current through the battery? b) What is the current through each bulb? c) If one bulb burns out, does the brightness of the other bulbs change? 1.5 V = 30 3/3/2016 Physics 214 Spring

25 Ch 13 CP2 cont. a) 1/ p = 1/ 1 + 1/ 2 + 1/ 3 = 1/30 + 1/30 + 1/30 = 1/10 p = 10 V = I t p, I t = V/ p = 1.5/10 = 0.15 A b) V = I, I = V/ = 1.5/30 = 0.05 A Notice that total current, I t, through the battery is the sum of currents through each bulb. I t = 3(I) = 0.15 A c) Brightness of remaining two bulbs do not change. Instead, load on the battery is reduced. Each remaining bulb still feels 1.5 V. So, each remaining bulb still draws 0.05 A of current. Since, P=IV, each remaining bulb still outputs same power. This is benefit of hooking circuits in parallel. 3/3/2016 Physics 214 Spring

26 CH 13 CP 4 A B = 3 a) What is the resistance of each parallel combination? b) What is the total resistance between A and B? c) 6V voltage difference b/w A and B. What is the current through the entire circuit? d) What is the current through each resistor in three-resistor parallel combination? a) Two-resistor parallel combination I/ P2 = 1/ + 1/ = 1/3 + 1/3 = 2/3, P2 = 3/2 b) Three resistor parallel combination I/ P3 = 1/ + 1/ + 1/ = 1/3 + 1/3 + 1/3 = 1, P3 = 1 3/3/2016 Physics 214 Spring

27 CH 13 CP 4 cont A C B = 3 A 3/2 3 C 1 B A 9/2 C 1 B c) V = I T, I = V/ T = 6/(11/2) = 12/11 = 1.09 A 3/3/2016 Physics 214 Spring

28 CH 13 CP 4 After accounting for AC part of circuit we have left C d) V AC = I AC = (1.09) (9/2) = 4.91 V V CB = V V AC = 1.09 V I = V/ = 1.09/3 = 0.37 A V=1.09 V B This answer could have been easily noted as follows: We calculated 1.09 A flowing from A to B. That means, at point C, there is 1.09 A. Now this current must make it to point B, but there are 3 different paths. Since each path is of equal resistance, the current will equally choose all three paths. thus any one path has 1.09/3 A = 0.37 A of current 3/3/2016 Physics 214 Spring

This week. 3/23/2017 Physics 214 Summer

This week. 3/23/2017 Physics 214 Summer This week Electrical Circuits Series or parallel that s the question. Current, Power and Energy Why does my laptop battery die? Transmission of power to your home Why do we have big transmission towers?

More information

This week. 6/2/2015 Physics 214 Summer

This week. 6/2/2015 Physics 214 Summer This week Electrical Circuits Series or parallel that s the question. Current, Power and Energy Why does my laptop battery die? Transmission of power to your home Why do we have big transmission towers?

More information

Electricity Test Review

Electricity Test Review Electricity Test Review Definitions; Series Circuit, Parallel Circuit, Equivalent Resistance, Fuse, Circuit Breaker, kilowatt hour, load, short circuit, dry cell, wet cell, fuel cells, solar cells, fossil

More information

1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits.

1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits. 1) Two lightbulbs, one rated 30 W at 120 V and another rated 40 W at 120 V, are arranged in two different circuits. a. The two bulbs are first connected in parallel to a 120 V source. i. Determine the

More information

Electron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge.

Electron Theory of Charge. Electricity. 1. Matter is made of atoms. Refers to the generation of or the possession of electric charge. Electricity Refers to the generation of or the possession of electric charge. There are two kinds of electricity: 1. Static Electricity the electric charges are "still" or static 2. Current Electricity

More information

ELECTRICITY UNIT REVIEW

ELECTRICITY UNIT REVIEW ELECTRICITY UNIT REVIEW S1-3-04: How does the Atomic Model help to explain static electricity? 1. Which best describes static electricity? a) charges that can be collected and held in one place b) charges

More information

Chapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final

Chapter 16. Current and Drift Speed. Electric Current, cont. Current and Drift Speed, cont. Current and Drift Speed, final Chapter 6 Current, esistance, and Direct Current Circuits Electric Current Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge

More information

Chapter 18. Direct Current Circuits

Chapter 18. Direct Current Circuits Chapter 18 Direct Current Circuits Sources of emf The source that maintains the current in a closed circuit is called a source of emf Any devices that increase the potential energy of charges circulating

More information

52 VOLTAGE, CURRENT, RESISTANCE, AND POWER

52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 52 VOLTAGE, CURRENT, RESISTANCE, AND POWER 1. What is voltage, and what are its units? 2. What are some other possible terms for voltage? 3. Batteries create a potential difference. The potential/voltage

More information

EXPERIMENT 12 OHM S LAW

EXPERIMENT 12 OHM S LAW EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete

More information

Electricity. Prepared by Juan Blázquez, Alissa Gildemann. Electric charge is a property of all objects. It is responsible for electrical phenomena.

Electricity. Prepared by Juan Blázquez, Alissa Gildemann. Electric charge is a property of all objects. It is responsible for electrical phenomena. Unit 11 Electricity 1. Electric charge Electric charge is a property of all objects. It is responsible for electrical phenomena. Electrical phenomena are caused by the forces of attraction and repulsion.

More information

What is an Electric Current?

What is an Electric Current? Electric Circuits NTODUCTON: Electrical circuits are part of everyday human life. e.g. Electric toasters, electric kettle, electric stoves All electrical devices need electric current to operate. n this

More information

ELECTRICITY. Prepared by: M. S. KumarSwamy, TGT(Maths) Page

ELECTRICITY. Prepared by: M. S. KumarSwamy, TGT(Maths) Page ELECTRICITY 1. Name a device that helps to maintain a potential difference across a conductor. Cell or battery 2. Define 1 volt. Express it in terms of SI unit of work and charge calculate the amount of

More information

Physics 7B-1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20

Physics 7B-1 (A/B) Professor Cebra. Winter 2010 Lecture 2. Simple Circuits. Slide 1 of 20 Physics 7B-1 (A/B) Professor Cebra Winter 2010 Lecture 2 Simple Circuits Slide 1 of 20 Conservation of Energy Density In the First lecture, we started with energy conservation. We divided by volume (making

More information

Section 1 Electric Charge and Force

Section 1 Electric Charge and Force CHAPTER OUTLINE Section 1 Electric Charge and Force Key Idea questions > What are the different kinds of electric charge? > How do materials become charged when rubbed together? > What force is responsible

More information

Information for Makeup exam is posted on the course website.

Information for Makeup exam is posted on the course website. Information for Makeup exam is posted on the course website. Three resistors are connected to a 6-V battery as shown. The internal resistance of the battery is negligible. What is the current through the

More information

Closed loop of moving charges (electrons move - flow of negative charges; positive ions move - flow of positive charges. Nucleus not moving)

Closed loop of moving charges (electrons move - flow of negative charges; positive ions move - flow of positive charges. Nucleus not moving) Unit 2: Electricity and Magnetism Lesson 3: Simple Circuits Electric circuits transfer energy. Electrical energy is converted into light, heat, sound, mechanical work, etc. The byproduct of any circuit

More information

Chapter 3: Electric Current and Direct-Current Circuit

Chapter 3: Electric Current and Direct-Current Circuit Chapter 3: Electric Current and Direct-Current Circuit n this chapter, we are going to discuss both the microscopic aspect and macroscopic aspect of electric current. Direct-current is current that flows

More information

Circuits-Ohm's Law. 1. Which graph best represents the relationship between the electrical power and the current in a resistor that obeys Ohm s Law?

Circuits-Ohm's Law. 1. Which graph best represents the relationship between the electrical power and the current in a resistor that obeys Ohm s Law? 1. Which graph best represents the relationship between the electrical power and the current in a resistor that obeys Ohm s Law? 2. A potential drop of 50 volts is measured across a 250- ohm resistor.

More information

Test Review Electricity

Test Review Electricity Name: Date: 1. An operating television set draws 0.71 ampere of current when connected to a 120-volt outlet. Calculate the time it takes the television to consume 3.0 10 5 joules of electric energy. [Show

More information

Electric Currents and Circuits

Electric Currents and Circuits Electric Currents and Circuits Producing Electric Current Electric Current flow of charged particles Need a potential difference to occur Conventional Current- flow of positive charges flowing from positive

More information

CHAPTER ONE. 1.1 International System of Units and scientific notation : Basic Units: Quantity Basic unit Symbol as shown in table 1

CHAPTER ONE. 1.1 International System of Units and scientific notation : Basic Units: Quantity Basic unit Symbol as shown in table 1 CHAPTER ONE 1.1 International System of Units and scientific notation : 1.1.1 Basic Units: Quantity Basic unit Symbol as shown in table 1 Table 1 1.1.2 Some scientific notations : as shown in table 2 Table

More information

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question.

Review. Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. Review Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. When more devices are added to a series circuit, the total circuit resistance: a.

More information

Electricity Final Unit Final Assessment

Electricity Final Unit Final Assessment Electricity Final Unit Final Assessment Name k = 1/ (4pe 0 ) = 9.0 10 9 N m 2 C -2 mass of an electron = 9.11 10-31 kg mass of a proton = 1.67 10-27 kg G = 6.67 10-11 N m 2 kg -2 C = 3 x10 8 m/s Show all

More information

Read Chapter 7; pages:

Read Chapter 7; pages: Forces Read Chapter 7; pages: 191-221 Objectives: - Describe how electrical charges exert forces on each other; Compare the strengths of electric and gravitational forces; Distinguish between conductors

More information

Electromotive Force. The electromotive force (emf), ε, of a battery is the maximum possible voltage that the battery can provide between its terminals

Electromotive Force. The electromotive force (emf), ε, of a battery is the maximum possible voltage that the battery can provide between its terminals Direct Current When the current in a circuit has a constant magnitude and direction, the current is called direct current Because the potential difference between the terminals of a battery is constant,

More information

Section 1: Electric Charge and Force

Section 1: Electric Charge and Force Electricity Section 1 Section 1: Electric Charge and Force Preview Key Ideas Bellringer Electric Charge Transfer of Electric Charge Induced Charges Charging by Contact Electric Force Electric Field Lines

More information

ANNOUNCEMENT REMINDER

ANNOUNCEMENT REMINDER ANNOUNCEMENT REMINDER There will be a review session Monday night in Forney (FRNY) Room G124 (note change, many evening exams on Monday). The building just South of Civil Engr. and across the inside street

More information

Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move.

Insulators Non-metals are very good insulators; their electrons are very tightly bonded and cannot move. SESSION 11: ELECTRIC CIRCUITS Key Concepts Resistance and Ohm s laws Ohmic and non-ohmic conductors Series and parallel connection Energy in an electric circuit X-planation 1. CONDUCTORS AND INSULATORS

More information

Lecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 21. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 21 Physics, 4 th Edition James S. Walker Chapter 21 Electric Current and Direct- Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power

More information

Chapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Chapter 17. Current and Resistance. Sections: 1, 3, 4, 6, 7, 9 Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Equations: 2 2 1 e r q q F = k 2 e o r Q k q F E = = I R V = A L R ρ = )] ( 1 [ o o T T + = α ρ ρ V I V t Q P = = R V R I P 2 2 ) ( = = C Q

More information

Name: Class: Date: 1. Friction can result in the transfer of protons from one object to another as the objects rub against each other.

Name: Class: Date: 1. Friction can result in the transfer of protons from one object to another as the objects rub against each other. Class: Date: Physics Test Review Modified True/False Indicate whether the statement is true or false. If false, change the identified word or phrase to make the statement true. 1. Friction can result in

More information

PHY232 Spring 2008 Jon Pumplin (Original ppt courtesy of Remco Zegers) Direct current Circuits

PHY232 Spring 2008 Jon Pumplin  (Original ppt courtesy of Remco Zegers) Direct current Circuits PHY232 Spring 2008 Jon Pumplin http://www.pa.msu.edu/~pumplin/phy232 (Original ppt courtesy of Remco Zegers) Direct current Circuits So far, we have looked at systems with only one resistor PHY232 Spring

More information

Circuits. PHY2054: Chapter 18 1

Circuits. PHY2054: Chapter 18 1 Circuits PHY2054: Chapter 18 1 What You Already Know Microscopic nature of current Drift speed and current Ohm s law Resistivity Calculating resistance from resistivity Power in electric circuits PHY2054:

More information

Chapter 4. Chapter 4

Chapter 4. Chapter 4 Chapter 4 Energy 1 n Energy, W, is the ability to do work and is measured in joules. One joule is the work done when a force of one newton is applied through a distance of one meter. The symbol for energy,

More information

Electric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9

Electric Current. Chapter 17. Electric Current, cont QUICK QUIZ Current and Resistance. Sections: 1, 3, 4, 6, 7, 9 Electric Current Chapter 17 Current and Resistance Sections: 1, 3, 4, 6, 7, 9 Whenever electric charges of like signs move, an electric current is said to exist The current is the rate at which the charge

More information

SPS Presents: A Cosmic Lunch!

SPS Presents: A Cosmic Lunch! SPS Presents: A Cosmic Lunch! Who: Dr. Brown will be speaking about Evolution of the Elements: from Periodic table to Standard Model and Beyond! When: October 7 th at am Where: CP 79 (by the front office)

More information

Lab 4. Current, Voltage, and the Circuit Construction Kit

Lab 4. Current, Voltage, and the Circuit Construction Kit Physics 2020, Spring 2009 Lab 4 Page 1 of 8 Your name: Lab section: M Tu Wed Th F TA name: 8 10 12 2 4 Lab 4. Current, Voltage, and the Circuit Construction Kit The Circuit Construction Kit (CCK) is a

More information

Physics 1402: Lecture 10 Today s Agenda

Physics 1402: Lecture 10 Today s Agenda Physics 1402: Lecture 10 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #3: On Masterphysics : due Friday at 8:00 AM Go to masteringphysics.com

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Circuit Analysis Simple electric circuits may contain batteries, resistors, and capacitors in various combinations. For some circuits, analysis may consist of combining

More information

ΔV of battery. = ε - Ir or εmf = I(R+r) (for this particular series circuit) March 04, Emf and internal resistance. Emf and internal resistance

ΔV of battery. = ε - Ir or εmf = I(R+r) (for this particular series circuit) March 04, Emf and internal resistance. Emf and internal resistance Emf and internal resistance Emf and internal resistance ΔV of battery = ε - Ir or εmf = I(R+r) (for this particular series circuit) As the current in the circuit increases the voltage, supplied to the

More information

Electromagnetism Checklist

Electromagnetism Checklist Electromagnetism Checklist Elementary Charge and Conservation of Charge 4.1.1A Convert from elementary charge to charge in coulombs What is the charge in coulombs on an object with an elementary charge

More information

Physics 152 V 1 + V 2 = V. Parallel & Series Circuits Electric Power. Announcements. Wednesday, April 4, 2007

Physics 152 V 1 + V 2 = V. Parallel & Series Circuits Electric Power. Announcements. Wednesday, April 4, 2007 ics Wed Apr.04. Announcements Parallel & Series Circuits Electric Power Wednesday, April 4, 2007 Help sessions W 9-10 pm in NSC 119 Masteringics WU #18 due Mon., April 9 Hwk #4 due Wed., Apr. 11 WU #19

More information

POE Practice Test - Electricity, Power, & Energy

POE Practice Test - Electricity, Power, & Energy Class: Date: POE Practice Test - Electricity, Power, & Energy Multiple Choice Identify the choice that best completes the statement or answers the question. 1. Which of the following forms of energy is

More information

Chapter 3: Electric Current And Direct-Current Circuits

Chapter 3: Electric Current And Direct-Current Circuits Chapter 3: Electric Current And Direct-Current Circuits 3.1 Electric Conduction 3.1.1 Describe the microscopic model of current Mechanism of Electric Conduction in Metals Before applying electric field

More information

Superconductors A class of materials and compounds whose resistances fall to virtually zero below a certain temperature, T C T C is called the critical temperature The graph is the same as a normal metal

More information

ELECTRIC CURRENTS D R M A R T A S T A S I A K D E P A R T M E N T O F C Y T O B I O L O G Y A N D P R O T E O M I C S

ELECTRIC CURRENTS D R M A R T A S T A S I A K D E P A R T M E N T O F C Y T O B I O L O G Y A N D P R O T E O M I C S ELECTRIC CURRENTS D R M A R T A S T A S I A K D E P A R T M E N T O F C Y T O B I O L O G Y A N D P R O T E O M I C S lecture based on 2016 Pearson Education, Ltd. The Electric Battery Electric Current

More information

For an electric current to flow between two points, two conditions must be met.

For an electric current to flow between two points, two conditions must be met. ELECTROSTATICS LAB Electric Circuits For an electric current to flow between two points, two conditions must be met. 1. There must be a conducting path between the points along which the charges can move.

More information

Chapter 21 Electric Current and Circuits

Chapter 21 Electric Current and Circuits Chapter 21 Electric Current and Circuits 1 As an introduction to this chapter you should view the following movie. If you cannot click on the link, then copy it and paste it into your web browser. http://www.ionaphysics.org/movies/vir.mp4

More information

Current Electricity.notebook. December 17, 2012

Current Electricity.notebook. December 17, 2012 1 Circuit Diagrams and Assembly 1. Draw a circuit diagram containing a battery, a single throw switch, and a light. 2. Once the diagram has been checked by your teacher, assemble the circuit. Keep the

More information

Q-2 How many coulombs of charge leave the power supply during each second?

Q-2 How many coulombs of charge leave the power supply during each second? Part I - Circuit Elements in Series In Figure 1 at the right circuit elements #1, #2, #3 (in this case light bulbs) are said to be connected "IN SERIES". That is, they are connected in a series one right

More information

Chapter 28. Direct Current Circuits

Chapter 28. Direct Current Circuits Chapter 28 Direct Current Circuits Electromotive Force An electromotive force device, or emf device, is a source of constant potential. The emf describes the work done per unit charge and has units of

More information

Coulomb s constant k = 9x10 9 N m 2 /C 2

Coulomb s constant k = 9x10 9 N m 2 /C 2 1 Part 2: Electric Potential 2.1: Potential (Voltage) & Potential Energy q 2 Potential Energy of Point Charges Symbol U mks units [Joules = J] q 1 r Two point charges share an electric potential energy

More information

1 of 23. Boardworks Ltd Electrical Power

1 of 23. Boardworks Ltd Electrical Power 1 of 23 Boardworks Ltd 2016 Electrical Power Electrical Power 2 of 23 Boardworks Ltd 2016 What is electrical power? 3 of 23 Boardworks Ltd 2016 Electrical power is the rate at which energy is transferred

More information

11. ELECTRIC CURRENT. Questions and Answers between the forces F e and F c. 3. Write the difference between potential difference and emf. A.

11. ELECTRIC CURRENT. Questions and Answers between the forces F e and F c. 3. Write the difference between potential difference and emf. A. CLSS-10 1. Explain how electron flow causes electric current with Lorentz-Drude theory of electrons?. Drude and Lorentz, proposed that conductors like metals contain a large number of free electrons while

More information

Electricity CHAPTER ELECTRIC CURRENT AND CIRCUIT

Electricity CHAPTER ELECTRIC CURRENT AND CIRCUIT CHAPTER 12 Electricity Electricity has an important place in modern society. It is a controllable and convenient form of energy for a variety of uses in homes, schools, hospitals, industries and so on.

More information

Direct Current (DC) Circuits

Direct Current (DC) Circuits Direct Current (DC) Circuits NOTE: There are short answer analysis questions in the Participation section the informal lab report. emember to include these answers in your lab notebook as they will be

More information

Chapter 3. Chapter 3

Chapter 3. Chapter 3 Chapter 3 Review of V, I, and R Voltage is the amount of energy per charge available to move electrons from one point to another in a circuit and is measured in volts. Current is the rate of charge flow

More information

CLASS X- ELECTRICITY

CLASS X- ELECTRICITY Conductor- Insulator: Materia Materials through which electric current cannot pass are called insulators. Electric Circuit: A continuous a CLASS X- ELECTRICITY als through which electric current can pass

More information

DC Circuits. Circuits and Capacitance Worksheet. 10 Ω resistance. second? on the sodium is the same as on an electron, but positive.

DC Circuits. Circuits and Capacitance Worksheet. 10 Ω resistance. second? on the sodium is the same as on an electron, but positive. Circuits and Capacitance Worksheet DC Circuits 1. A current of 1.30 A flows in a wire. How many electrons are flowing past any point in the wire per second? 2. What is the current in amperes if 1200 Na

More information

Revision checklist SP10. SP10 Electricity and Circuits. SP10a Electric circuits. SP10b Current and potential difference

Revision checklist SP10. SP10 Electricity and Circuits. SP10a Electric circuits. SP10b Current and potential difference Electricity and Circuits a Electric circuits Describe the basic structure of an atom (positions, relative masses and relative charges of protons, neutrons and electrons). Recognise the circuit symbols

More information

POWER B. Terms: EMF, terminal voltage, internal resistance, load resistance. How to add up resistors in series and parallel: light bulb problems.

POWER B. Terms: EMF, terminal voltage, internal resistance, load resistance. How to add up resistors in series and parallel: light bulb problems. iclicker Quiz (1) I have completed at least 50% of the reading and study-guide assignments associated with the lecture, as indicated on the course schedule. A. True B. False Hint: this is a good time to

More information

2/25/2014. Circuits. Properties of a Current. Conservation of Current. Definition of a Current A. I A > I B > I C B. I B > I A C. I C D. I A E.

2/25/2014. Circuits. Properties of a Current. Conservation of Current. Definition of a Current A. I A > I B > I C B. I B > I A C. I C D. I A E. Circuits Topics: Current Conservation of current Batteries Resistance and resistivity Simple circuits 0.1 Electromotive Force and Current Conventional current is the hypothetical flow of positive charges

More information

physics 4/7/2016 Chapter 31 Lecture Chapter 31 Fundamentals of Circuits Chapter 31 Preview a strategic approach THIRD EDITION

physics 4/7/2016 Chapter 31 Lecture Chapter 31 Fundamentals of Circuits Chapter 31 Preview a strategic approach THIRD EDITION Chapter 31 Lecture physics FOR SCIENTISTS AND ENGINEERS a strategic approach THIRD EDITION randall d. knight Chapter 31 Fundamentals of Circuits Chapter Goal: To understand the fundamental physical principles

More information

Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT

Physics Module Form 5 Chapter 2- Electricity GCKL 2011 CHARGE AND ELECTRIC CURRENT 2.1 CHARGE AND ELECTRIC CURRENT Van de Graaf 1. What is a Van de Graaff generator? Fill in each of the boxes the name of the part shown. A device that produces and store electric charges at high voltage

More information

Use these circuit diagrams to answer question 1. A B C

Use these circuit diagrams to answer question 1. A B C II Circuit Basics Use these circuit diagrams to answer question 1. B C 1a. One of the four voltmeters will read 0. Put a checkmark beside it. b. One of the ammeters is improperly connected. Put a checkmark

More information

Chapter 21 Electric Current and Direct- Current Circuits

Chapter 21 Electric Current and Direct- Current Circuits Chapter 21 Electric Current and Direct- Current Circuits Units of Chapter 21 Electric Current Resistance and Ohm s Law Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s

More information

Chapter 17 Electric Current and Resistance Pearson Education, Inc.c

Chapter 17 Electric Current and Resistance Pearson Education, Inc.c Chapter 17 Electric Current and Resistance 2010 Pearson Education, Inc.c 1 Units of Chapter 17 Batteries and Direct Current Current and Drift Velocity Resistance and Ohm s Law Electric Power 2010 Pearson

More information

8. Electric circuit: The closed path along which electric current flows is called an electric circuit.

8. Electric circuit: The closed path along which electric current flows is called an electric circuit. GIST OF THE LESSON 1. Positive and negative charges: The charge acquired by a glass rod when rubbed with silk is called positive charge and the charge acquired by an ebonite rod when rubbed with wool is

More information

Charge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter

Charge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter Basic Concepts of DC Circuits Introduction An electric circuit is an interconnection of electrical elements. Systems of Units 1 Charge The most basic quantity in an electric circuit is the electric charge.

More information

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc.

Chapter 25 Electric Currents and Resistance. Copyright 2009 Pearson Education, Inc. Chapter 25 Electric Currents and Resistance Units of Chapter 25 The Electric Battery Electric Current Ohm s Law: Resistance and Resistors Resistivity Electric Power Units of Chapter 25 Power in Household

More information

PEP 2017 Assignment 12

PEP 2017 Assignment 12 of the filament?.16.. Aductile metal wire has resistance. What will be the resistance of this wire in terms of if it is stretched to three times its original length, assuming that the density and resistivity

More information

Electric current is a flow of electrons in a conductor. The SI unit of electric current is ampere.

Electric current is a flow of electrons in a conductor. The SI unit of electric current is ampere. C h a p t e r at G l a n c e 4. Electric Current : Electric current is a flow of electrons in a conductor. The SI unit of electric current is ampere. Current = Charge time i.e, I = Q t The SI unit of charge

More information

1. How does a light bulb work?

1. How does a light bulb work? AP Physics 1 Lesson 12.a Electric Current and Circuits Outcomes 1. Determine the resistance of a resistor given length, cross-sectional area and length. 2. Relate the movement of charge to differences

More information

Chapter 20 Electric Circuits

Chapter 20 Electric Circuits Chapter 0 Electric Circuits Chevy olt --- Electric vehicle of the future Goals for Chapter 9 To understand the concept of current. To study resistance and Ohm s Law. To observe examples of electromotive

More information

Equivalent resistance in Series Combination

Equivalent resistance in Series Combination Combination of Resistances There are two methods of joining the resistors together. SERIES CONNECTION An electric circuit in which three resistors having resistances R1, R2 and R3, respectively, are joined

More information

AC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage

AC vs. DC Circuits. Constant voltage circuits. The voltage from an outlet is alternating voltage Circuits AC vs. DC Circuits Constant voltage circuits Typically referred to as direct current or DC Computers, logic circuits, and battery operated devices are examples of DC circuits The voltage from

More information

Unit 3 BLM Answers UNIT 3 BLM 3-46

Unit 3 BLM Answers UNIT 3 BLM 3-46 UNIT 3 BLM 3-46 Unit 3 BLM Answers BLM 3-3, Charge Transfer Diagrams 1. Positively charged objects should have more (+) than ( ). Negatively charged objects should have more ( ) than (+). 2. They must

More information

Notes on Electricity (Circuits)

Notes on Electricity (Circuits) A circuit is defined to be a collection of energy-givers (batteries) and energy-takers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current

More information

MEP 382: Design of Applied Measurement Systems Lecture 3: DC & AC Circuit Analysis

MEP 382: Design of Applied Measurement Systems Lecture 3: DC & AC Circuit Analysis Faculty of Engineering MEP 38: Design of Applied Measurement Systems Lecture 3: DC & AC Circuit Analysis Outline oltage and Current Ohm s Law Kirchoff s laws esistors Series and Parallel oltage Dividers

More information

ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current?

ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current? ELECTRICITY What do you already know about it? Voltage? Resistance? Current? Do Smarty Demo 1 Electric Circuit A path over which electrons travel, out through the negative terminal, through the conductor,

More information

LESSON 5: ELECTRICITY II

LESSON 5: ELECTRICITY II LESSON 5: ELECTRICITY II The first two points are a review of the previous lesson 1.1.ELECTRIC CHARGE - Electric charge is a property of all objects and is responsible for electrical phenomena. -All matter

More information

Preliminary Course Physics Module 8.3 Electrical Energy in the Home Summative Test. Student Name:

Preliminary Course Physics Module 8.3 Electrical Energy in the Home Summative Test. Student Name: Summative Test Student Name: Date: / / IMPORTANT FORMULAE I = Q/t V = I.R R S = R 1 + R 2 +.. 1/R P = 1/R 1 + 1/R 2 + P = V.I = I 2.R = V 2 /R Energy = V.I.t E = F/q Part A. Multiple Choice Questions 1-20.

More information

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws

ES250: Electrical Science. HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws ES250: Electrical Science HW1: Electric Circuit Variables, Elements and Kirchhoff s Laws Introduction Engineers use electric circuits to solve problems that are important to modern society, such as: 1.

More information

Electric Charge. Electric Charge ( q ) unbalanced charges positive and negative charges. n Units Coulombs (C)

Electric Charge. Electric Charge ( q ) unbalanced charges positive and negative charges. n Units Coulombs (C) Electric Charge Electric Charge ( q ) unbalanced charges positive and negative charges n Units Coulombs (C) Electric Charge How do objects become charged? Types of materials Conductors materials in which

More information

Which of the following is the SI unit of gravitational field strength?

Which of the following is the SI unit of gravitational field strength? T5-2 [122 marks] 1. A cell is connected in series with a 2.0Ω resistor and a switch. The voltmeter is connected across the cell and reads 12V when the switch is open and 8.0V when the switch is closed.

More information

Electric Current Unlike static electricity, electric current is a continuous flow of charged particles (electricity). For current to flow, there must

Electric Current Unlike static electricity, electric current is a continuous flow of charged particles (electricity). For current to flow, there must CURRENT ELECTRICITY Electric Current Unlike static electricity, electric current is a continuous flow of charged particles (electricity). For current to flow, there must be a power source and there must

More information

Lecture (07) Electric Current and Resistance By: Dr. Ahmed ElShafee Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II

Lecture (07) Electric Current and Resistance By: Dr. Ahmed ElShafee Dr. Ahmed ElShafee, ACU : Spring 2015, Physics II Lecture (07) Electric Current and Resistance By: Dr. Ahmed ElShafee ١ The glow of the thin wire filament of a light bulb is caused by the electric current passing through it. Electric energy is transformed

More information

6. In a dry cell electrical energy is obtained due to the conversion of:

6. In a dry cell electrical energy is obtained due to the conversion of: 1. If a wire of uniform area of cross section is cut into two halves (equal in size), the resistivity of each part will be: a) Halved. b) Doubled. c) Becomes four times its initial value. d) Remains the

More information

Downloaded from

Downloaded from CHAPTER 12 ELECTRICITY Electricity is a general term that encompasses a variety of phenomena resulting from the presence and flow of electric charge. These include many easily recognizable phenomena such

More information

Current and Resistance

Current and Resistance Current and Resistance 1 Define the current. Understand the microscopic description of current. Discuss the rat at which the power transfer to a device in an electric current. 2 2-1 Electric current 2-2

More information

DC Circuits. Electromotive Force Resistor Circuits. Kirchoff s Rules. RC Circuits. Connections in parallel and series. Complex circuits made easy

DC Circuits. Electromotive Force Resistor Circuits. Kirchoff s Rules. RC Circuits. Connections in parallel and series. Complex circuits made easy DC Circuits Electromotive Force esistor Circuits Connections in parallel and series Kirchoff s ules Complex circuits made easy C Circuits Charging and discharging Electromotive Force (EMF) EMF, E, is the

More information

Chapter 19 Lecture Notes

Chapter 19 Lecture Notes Chapter 19 Lecture Notes Physics 2424 - Strauss Formulas: R S = R 1 + R 2 +... C P = C 1 + C 2 +... 1/R P = 1/R 1 + 1/R 2 +... 1/C S = 1/C 1 + 1/C 2 +... q = q 0 [1-e -t/(rc) ] q = q 0 e -t/(rc τ = RC

More information

What does it mean for an object to be charged? What are charges? What is an atom?

What does it mean for an object to be charged? What are charges? What is an atom? What does it mean for an object to be charged? What are charges? What is an atom? What are the components of an atom? Define the following: Electric Conductor Electric Insulator Define the following: Electric

More information

ELECTRIC CURRENT. Ions CHAPTER Electrons. ELECTRIC CURRENT and DIRECT-CURRENT CIRCUITS

ELECTRIC CURRENT. Ions CHAPTER Electrons. ELECTRIC CURRENT and DIRECT-CURRENT CIRCUITS LCTRC CURRNT CHAPTR 25 LCTRC CURRNT and DRCTCURRNT CRCUTS Current as the motion of charges The Ampère Resistance and Ohm s Law Ohmic and nonohmic materials lectrical energy and power ons lectrons nside

More information

Electricity Review completed.notebook. June 13, 2013

Electricity Review completed.notebook. June 13, 2013 Which particle in an atom has no electric charge associated with it? a. proton c. neutron b. electron d. nucleus Jun 12 9:28 PM The electrons in a metal sphere can be made to move by touching it with a

More information

Tactics Box 23.1 Using Kirchhoff's Loop Law

Tactics Box 23.1 Using Kirchhoff's Loop Law PH203 Chapter 23 solutions Tactics Box 231 Using Kirchhoff's Loop Law Description: Knight/Jones/Field Tactics Box 231 Using Kirchhoff s loop law is illustrated Learning Goal: To practice Tactics Box 231

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com Electricity May 02 1. The graphs show the variation with potential difference V of the current I for three circuit elements. PhysicsAndMathsTutor.com When the four lamps are connected as shown in diagram

More information

Electric Currents and Circuits

Electric Currents and Circuits Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 19 Electric Currents and Circuits Marilyn Akins, PhD Broome Community College Electric Circuits The motion of charges leads to the idea of

More information

SIMPLE D.C. CIRCUITS AND MEASUREMENTS Background

SIMPLE D.C. CIRCUITS AND MEASUREMENTS Background SIMPLE D.C. CICUITS AND MEASUEMENTSBackground This unit will discuss simple D.C. (direct current current in only one direction) circuits: The elements in them, the simple arrangements of these elements,

More information