III. The STM-8 Loop - Work in progress
|
|
- Rose York
- 1 years ago
- Views:
Transcription
1 III. The STM-8 Loop - Work in progress This contains the loop functions for a velocity input. The interaction between, forward gain, feedback function, loop gain and transfer function are well displayed. The asymptote functions give a simple way to estimate loop performance. More detail to mathematics. Some general design considerations added. This is an analysis of the feedback loop of the STM-8 vertical seismometer. The results agree closely with the MathCad analysis done by S-T Morrissey. My goal here is to clarify, mostly in my own mind, the structure of the feedback system, and to that end I want to block-diagram the system in the form that I am used to using. In particular, I would like to derive a view of the loop which is aimed as much toward the synthesis process as it is toward analysis. For more information on feedback analysis, see the feedback tutorial file feedback.pdf. The analysis is done with respect to an inertial frame of reference fixed to the earth s surface. The input signal is the force on the mass due to ground motion. The feedback is the force from the Feedback Coil. The mass itself is the summing point. There are three branches in the feedback path. The two outputs on the right, in blue, are independent of the loop and can be analyzed separately; that is, they are independent if there are no significant loading effects, which I think is the case. The next step will be to insert the appropriate transfer functions for each block. The spring Mass will be a quadratic, the others will be quite simple functions. Spring-Mass Displacement Transducer Transducer Amplifier 1000 Sec Hi Pass F(s) - Vbb(s) Feedback Coil Derivative Proportional 9.3 ua/v Integrator Vmp(s) Figure 2 Original STM-8 configuration
2 To analyze this loop we want to reduce it to the form of the Basic Loop, in Figure 1 (in feedback.pdf ). Note that any two blocks in the diagram in which an output connects to a single input, can be combined, by multiplying their transfer functions together and assigning the result to the combined block. First we need to deal with the Mass Position output. We want to detach it from the feedback loop. To do that we just have to make a copy of the integrator block. Spring-Mass Displacement Transducer Transducer Amplifier 1000 Sec Hi Pass F(s) - Vbb(s) Feedback Coil Derivative Proportional 9.3 ua/v Integrator Copy of Integrator Vm(s) Figure 3 Mass Position integrator duplicated Finally because the coil resistance is low compared with the three feedback branches, they can be easily combined into a single block with its transfer function being the sum of the transfer functions of the three branches. Spring-Mass Displacement Transducer Transducer Amplifier 1000 Sec Hi Pass F(s) - Vbb(s) Feedback Coil 3 Branches Copy of Integrator Vmp(s) Figure 4 Feedback branches combined
3 Transfer functions In the following, the symbol ω is used to represent frequency in radians per second. The symbol f represents frequency in Hz, where ω = 2πf Similarly, τ 1/ω is the time constant sec/radian and T is the period in seconds. T = 2πτ The symbol s is the complex variable somewhat related to frequency Spring-mass x(s) = 1 meters / Newton Force(s) K (s 2 M/K s R/K 1) where x(s) = mass position Force(s) = external force applied to mass - Newtons R is a velocity damping term Newtons / meter/sec K = effective spring constant at mass M location = df/dx - Newtons/meter With other variables x(s) = 1 m / N Force(s) K (s 2 τ 2 0 s 2ζτ 0 1) where τ 0 is the time constant. τ 0 = M/K - sec/rad May be used to compute K from T 0 where T 0 is the undamped natural period in seconds and ζ is the damping factor. ζ = R May be used to compute the value of R 2 MK In terms of acceleration, using F = MA x(s) = M Acc(s) K (s 2 τ 2 0 s 2ζτ 0 1) m / m/s 2 where M = effective seismic mass - Kg and Acc(s) = acceleration of the mass - m/s 2 In terms of velocity Acc(s) = dvel(s)/dt = s Vel(s) Multiplying by s corresponds to differentiation x(s) = M s m / m/s Vel(s) K (s 2 τ 0 2 s 2ζτ 0 1) where Vel(s) = velocity of the mass - m/s Displacement Transducer E4 Volts/meter DC to several hundred hz. Look for phase shifts at high end. Transducer Amplifier x 10 input filter terms Filters not included. Effect mostly at f > 100 Hz r = Total displacement transducer constant = 10 x E4 3.7E5 Volts/Meter
4 Total Forward Path expression - Spring-Mass and displacement transducer A(s) = r Volts / N K (s 2 τ 0 2 s 2ζτ 0 1) where τ 0 is the time constant. τ 0 = M/K - sec/rad where T 0 is the undamped natural period in seconds and ζ is the damping factor. ζ = R. 2 MK Expressing A(s) in terms of velocity, A(s) = s M r Volts/ m/s K (s 2 τ 0 2 s 2ζτ 0 1) Integrator Assumes feedback coil resistance is low vs. 107k Ω I out (s) (1/τ I ) Amperes / Volt sec R I = 1.07E5, Ra = 2E6, Ca = 40.2E-6 V in (s) R I (s 1/τ I ) where τ I = RaCa = 80.4 sec/rad or substituting ω I = 1/τ I I out (s) ω I Amperes / Volt sec V in (s) R I (s ω I ) Proportional Feedback - Assumes feedback coil resistance is low vs. 581k Ω I out (s) 1 / R p R p = 5.81E5 ohms V in (s) = 1.72E-6 Amperes / Volt Derivative Feedback I out (s) sc d Amperes/ Volt/sec or = sc d including coil-resistance effects V in (s) (sr c C d 1) C d = 24.1 µf, R c = Feedback coil resistance = 8 Ohms Feedback coil G n Force(s) = Newtons /Ampere Assumed wide-band. I in (s) Total Combined Feedback expression - Assuming feedback coil resistance is low. B Force(s) Gn (sc d 1 1 ω I ) Newtons / Volt V in (s) R p R I (s ω I )
5 Expressed in terms of velocity B Vel(s) Gn 1 (sc d 1 1 ω I ) meters/sec / Volt V in (s) M s R p R I (s ω I ) Expressed in terms of time constant τ B and damping factor ζ B B G n (R I R p ) 1 ω I ( s 2 τ B 2 s 2ζ B τ B 1) meters/sec / Volt M R I R p s (s ω I ) where τ B 2 = C d R I R p and ζ B = ½τ B (ω I 1 ) ω I (R p R I ) R p C d Note that with the proportional feedback removed (Rp ) these reduce to 2 τ B = C d R I and ζ B = ½ τ B ω I ω I Mass position filter 1000 sec hi-pass s = s R p = 1E6, C p = 1000E-6 (s 1/τ P ) (s ω p ) where τ P = R p C p = 1000 sec/rad. ω p 1/τ p = rad/sec VBB output amplifier. (s (1/τ 1 1/τ 2 ) (s 1/τ 2 ) where τ 1 = R 1 C 1, τ 2 = R 2 C 1, R 1 = 4.7E5, R 2 = 2E6, C 1 = 1E-7 so τ 1 = 4.7E-2 sec/rad.; τ 2 = 0.2 sec/rad. Closed Loop Transfer Function: = System response with respect to applied input velocity CLTF = A(s)/(1 A(s)B(s)) For those frequencies where loop gain AB is high, the closed loop transfer function V out (s) / Vel in(s) 1/B(s) Volts / meter/sec, where V out (s) is the output signal voltage and Vel in(s) the the input velocity due to ground motion. The system functions for a velocity input to the STM-8 are graphed in figure 5. The graphs include A, the forward portion of the loop, made up of the spring-mass system, the displacement transducer and its amplifier. This plot currently ignores the effect of the filters following the synchronous detector, but its effect is rather small, and is in the region above 100 hz. The spring-mass was arbitrarily given a damping factor of 0.1, with an undamped natural frequency of 0.5 Hz. That frequency with a mass of 0.5kg implies an effective spring-constant K = N/m. The damping factor determines the sharpness and height of the peak in the A function but will not show up in the CLTF.
6 The system response to a velocity input, the CLTF of Figure 5, is very similar to the one given by S-T Morrissey in his analysis. In the mid-frequencies the gain is computed here as 1590 V / m/s. Gain-crossover is at about 37 hz. The CLTF deviates somewhat from 1/B in the vicinity of.01hz, where the loop gain dips to 2. Above the gain-crossover frequency, the transfer function tracks the gain curve of the forward elements, and they are what determine the high frequency portion of the system response. The computations show a phase-margin of better than 87 degrees, which indicates that the loop, as described, is pleasantly far from oscillation. In reality, the components which have been ignored, those acting at the higher frequencies, are precisely those which will most strongly influence the loop stability. More analysis to be done here.
7 A Volts / meter/sec /B Volts / meter/sec 1000 CLTF Volts / meter/sec Loop Gain Frequency - Hz Figure 5 Loop Functions with respect to velocity Volts / meter/sec The input is the velocity of the seismic mass due to ground-motion, and the feedback is the velocity imparted to the seismic mass by the feedback coil.
8 Evaluating asymptotes: In the log-log graph of figure 5 the various curves appear to consist of straight line segments, connected by relatively short curved sections. These straight lines are called the asymptotes to the functions, as shown in Figure 6. We note that all these lines have slopes which are integers. Some are horizontal (slope = 0) some have slope ± 1 (x 10 or x 0.1 per frequency decade, i.e. ±20db /decade), and some have slope ± 2 (x 100 or x 0.01, i.e. ±40db per decade). It is not difficult to compute the equations for the asymptotes. Knowing them is particularly useful when one wants to understand what factors are contributing to what characteristics of the system. For the system as described, the asymptote lines in Figure 6 are: for the forward function : for < f < 0.1 Hz A 2πf M r / K Volts / m/sec for 2 < f < 1000 Hz A r / 2πf Volts / m/sec for the feedback term 1/B: for f < Hz 1/B 2πf M /(G n (1/R p 1/R I )) Volts / m/sec for < f < 0.01 Hz 1/B (2πf) 2 M R I τ I / G n Volts / m/sec for 0.04 < f < 10 Hz 1/B M / (C d G n ) Volts / m/sec = velocity response The system response (CLTF) 1/B below 10 Hz and A above 70 Hz The asymptotes to the Loop Gain function may be computed for the appropriate frequency ranges by using Loop Gain AB = A / (1/B) and applying it to the asymptotes for A and 1/B. In this log plot it is useful to note that the vertical distance between A and 1/B which = A/(1/B) = AB is the loop gain. The point where A intersects 1/B is where AB = 1, which defines the gain crossover frequency.
9 r ω ωmr K ω 2 MR I τ I G n M / C d G n ωm _ (G n (1/R p 1/R I )) Frequency - Hz Figure 6 Loop Functions showing asymptotes Note that an asymptote slope of 1 is associated with a function which contains ω, and 2 with a function containing ω 2. Slopes of -1 have a 1/ω term and -2 would contain 1/ω 2. The horizontal asymptote is a constant and thus has no ω term.
10 Evaluating Corner Frequencies: Another useful characteristic of the asymptotes is that they intersect at frequencies which are significant to the loop, i.e. corresponding to poles and zeros of the transfer function. To find the corner frequencies, the equations for the intersecting asymptotes can easily be set equal and solved for frequency. For example equating the rising and falling asymptotes of A shows that they intersect at f = K/M = Hz Which is the natural frequency we assumed for the spring-mass. 2π The upward bend of 1/B occurs at f = 1 1 = Hz 2π τ I (R I /R p 1) which is of no special significance as far as I can see. The low frequency rolloff of 1/B (recall that 1/B the system velocity response) is at f = 1 1 = Hz which approximates the natural frequency of the 2π C d R I τ I system with the loop active (90 second period). The high frequency rolloff of the system velocity response occurs where A = 1/B which is at f = 1 r C d G n = Hz This, it should also be noted, is the gain crossover 2π M frequency. What s doing what: From observing the formulas for the asymptote lines and corner frequencies, we can begin to relate individual blocks of the loop to particular portions of the graphs. The proportional feedback path dominates at the very lowest frequencies. The integrator also contributes proportional feedback below its lower cutoff frequency. This is apparent when we observe that the lowest frequency asymptote to 1/B has a term (1/R p 1/R I ). The integral feedback path dominates between Hz and Hz. Its main benefit appears to to be that it pushes down 1/B at the very low frequencies giving higher loop gain in that region. It is also important in that it gives a 40db/decade slope to the velocity response below
11 the low frequency corner. This is the desired standard shape for the seismometer velocity response. The derivative feedback determines the velocity sensitivity in the main response range, Hz. The transition between integral and derivative feedback at Hz results in a quadratic term in 1/B and some modest peaking. Design considerations for VBB vertical seismograph electronics: 1) The aim of the design will be to create a force-feedback system which has a desired velocity response, and which is nearly independent from the characteristics of the mechanical springmass system. The phase response of the system (essentially, the time delays for different frequencies) should at least be known, and could possibly be deliberately shaped to match other instruments, if waveform correlation will be important. 2) Since this is a feedback system, the loop must not self-oscillate and should not exhibit any resonant peaking at the gain crossover frequency. 3) We want the system to respond to the largest ground velocities expected, without clipping or other waveform distortion, and without creating false long period signals. Low distortion is particularly important if digital post-processing is planned. 4) Finally, any random signals (noise and drift) added by the system should be smaller than the background noise levels at the planned installation site. Item (1) relates to the design of the feedback (B) elements. After they have been specified, the loop gain AB should be designed to be as large as reasonably possible over the frequency range where we want the system response and distortion to be tightly controlled. Item (2) relates to how we get rid of all the loop gain, at the higher frequencies. In particular, the phase lag of the loop gain function at the gain crossover frequency (where AB = 1) must not be too close to 180 o. Item (3) relates to the clipping levels and nonlinearities of the various loop components. High loop gain helps to linearize the overall loop response. Clipping can occur as a result of either voltage or current limitations. Item (4) involves choosing the proper electronic components, designing the circuits to minimize the impact of unavoidable component noise and drift, electrical shielding, supply voltage regulation and probably thermal considerations.
12 Each of these four items will likely involve some compromises with the others, and there s unfortunately still the biggest compromise cost. For remote systems some additional factors which may need to be considered are size/weight, mechanical ruggedness and power consumption. Appendix 1 Magnitude computations This will outline how the magnitude functions used to plot the graphs may be obtained. In reality I used the COMPLEX, IMABS, IMSUM and related Excel 97 IM functions to work directly on the functions of jω. Remember that everything except s and ω are constants. Spring-mass x(s) = M s m / m/s Vel(s) K (s 2 τ 0 2 s 2ζτ 0 1) where τ 0 is the spring-mass time constant - sec/rad T 0 is the undamped natural period in seconds = 2πτ 0 and ζ is the spring-mass damping factor. To get the magnitude of the transfer function we set s = jω, and also indicate magnitudes and replacing j 2 with -1 x(jω) = M jω m/ m/s Vel(jω) K (1 - ω 2 τ 0 2 jω 2ζτ 0 ) Evaluating the magnitudes x(ω) = M ω m/ m/s Vel(ω) K ((1- ω 2 τ 0 2 ) 2 (2ωζτ 0 ) 2 ) Total Forward Path A(s) = V out (s) = s M r Volts/ m/s Vel(s) K (s 2 τ 0 2 s 2ζτ 0 1) A(jω) = jω M r Volts/ m/s K (j 2 ω 2 τ 0 2 jω 2ζτ 0 1) A(ω) = ω M r Volts/ m/s K ((1- ω2 τ 0 2 ) 2 (ω2ζτ 0 ) 2 ) Integrator I out (s) ω I Amperes / Volt sec V in (s) R I (s ω I )
13 I out (jω) ω I I out (ω) ω I Amperes / Volt sec V in (jω) R I (ω I jω) V in (ω) R I (ω I 2 ω 2 ) Derivative Feedback I out (s) = sc d Amperes/ Volt/sec V in (s) (sr c C d 1) I out (jω) = jωc d I out (ω) = ωc d Amperes/ Volt/sec V in (jω) (1 jωr c C d ) V in (ω) (1 ω2 R c 2 C d 2 ) If R c is ignored (its effects are only at high frequencies) I out (ω) ωc d Amperes/ Volt/sec V in (ω) Total Combined Feedback expression - Assuming feedback coil resistance is low. B(s) G n (R I R p ) 1 ω I ( s 2 τ B 2 s 2ζ B τ B 1) meters/sec / Volt M R I R p s (s ω I ) where τ B 2 = C d R I R p and ζ B = ½τ B (ω I 1 ) ω I (R p R I ) R p C d B(jω) G n (R I R p ) 1 ω I ( j 2 ω 2 τ B 2 jω 2ζ B τ B 1) meters/sec / Volt M R I R p jω (ω I jω) B(ω) G n (R I R p ) ω I (1- ω 2 τ 2 B ) 2 (ω 2ζ B τ B ) 2 M R I R p ω (ω 2 I ω 2 ) meters/sec / Volt Mass position filter 1000 sec hi-pass V out (s) = s = s R p = 1E6, C p = 1000E-6 V in (s) (s 1/τ P ) (s ω p ) where τ P = R p C p = 1000 sec/rad. ω p 1/τ p = rad/sec V out (jω) = jω V out (ω) = ω V in (jω) ω p jω V in (ω) ω 2 ω p 2
Transducer Amplifier. Derivative. 24 mfd =24 ua-sec/v = 24E-6 s. Proportional. 581k =1.72 ua/v. Resistor. Integrator.
III. The STM-8 Loop This contains the loop functions for a velocity input. The interaction between, forward gain, feedback function, loop gain and transfer function are well displayed. The asymptote functions
Dynamic circuits: Frequency domain analysis
Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution
ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 2010/2011 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques
CAIRO UNIVERSITY FACULTY OF ENGINEERING ELECTRONICS & COMMUNICATIONS DEP. 3rd YEAR, 00/0 CONTROL ENGINEERING SHEET 5 Lead-Lag Compensation Techniques [] For the following system, Design a compensator such
(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:
1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.
ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)
C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s) - H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closed-loop system when the gain K changes from 0 to 1+ K G ( s)
Steady State Frequency Response Using Bode Plots
School of Engineering Department of Electrical and Computer Engineering 332:224 Principles of Electrical Engineering II Laboratory Experiment 3 Steady State Frequency Response Using Bode Plots 1 Introduction
CHAPTER 7 STEADY-STATE RESPONSE ANALYSES
CHAPTER 7 STEADY-STATE RESPONSE ANALYSES 1. Introduction The steady state error is a measure of system accuracy. These errors arise from the nature of the inputs, system type and from nonlinearities of
Chapter 10 Feedback. PART C: Stability and Compensation
1 Chapter 10 Feedback PART C: Stability and Compensation Example: Non-inverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS STAFF NAME: Mr. P.NARASIMMAN BRANCH : ECE Mr.K.R.VENKATESAN YEAR : II SEMESTER
FREQUENCY-RESPONSE DESIGN
ECE45/55: Feedback Control Systems. 9 FREQUENCY-RESPONSE DESIGN 9.: PD and lead compensation networks The frequency-response methods we have seen so far largely tell us about stability and stability margins
To study the motion of an object under the influence
L A B 3 FALLING OBJECTS First and Second Derivatives To study the motion of an object under the influence of gravity, we need equipment to track the motion of the object. We can use calculus to analyze
ECE137B Final Exam. There are 5 problems on this exam and you have 3 hours There are pages 1-19 in the exam: please make sure all are there.
ECE37B Final Exam There are 5 problems on this exam and you have 3 hours There are pages -9 in the exam: please make sure all are there. Do not open this exam until told to do so Show all work: Credit
R-L-C Circuits and Resonant Circuits
P517/617 Lec4, P1 R-L-C Circuits and Resonant Circuits Consider the following RLC series circuit What's R? Simplest way to solve for is to use voltage divider equation in complex notation. X L X C in 0
Feedback design for the Buck Converter
Feedback design for the Buck Converter Portland State University Department of Electrical and Computer Engineering Portland, Oregon, USA December 30, 2009 Abstract In this paper we explore two compensation
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING
KINGS COLLEGE OF ENGINEERING DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING QUESTION BANK SUB.NAME : CONTROL SYSTEMS BRANCH : ECE YEAR : II SEMESTER: IV 1. What is control system? 2. Define open
Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore
Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.
Measuring Properties of Piezoelectric Ceramics
BULL.:SP-011 Measuring Properties of Piezoelectric Ceramics SPARKLER CERAMICS PVT. LTD. J - 508, MIDC, BHOSARI, PUNE - 411 026. INDIA. Tel : 91-20- 2747 2375, 2746 2956. Fax : 91-20 2746 2955 E-mail :
Laplace Transform Analysis of Signals and Systems
Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.
Sinusoidal Steady-State Analysis
Chapter 4 Sinusoidal Steady-State Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.
Homework 7 - Solutions
Homework 7 - Solutions Note: This homework is worth a total of 48 points. 1. Compensators (9 points) For a unity feedback system given below, with G(s) = K s(s + 5)(s + 11) do the following: (c) Find the
FEEDBACK CONTROL SYSTEMS
FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control
ESE319 Introduction to Microelectronics. Feedback Basics
Feedback Basics Stability Feedback concept Feedback in emitter follower One-pole feedback and root locus Frequency dependent feedback and root locus Gain and phase margins Conditions for closed loop stability
Use of a Notch Filter in a Tuned Mode for LISA.
Use of a Notch Filter in a Tuned Mode for LISA. Giorgio Fontana September 00 Abstract. During interferometric measurements the proof mass must be free from any controlling force within a given observation
EE 410/510: Electromechanical Systems Chapter 4
EE 410/510: Electromechanical Systems Chapter 4 Chapter 4. Direct Current Electric Machines and Motion Devices Permanent Magnet DC Electric Machines Radial Topology Simulation and Experimental Studies
Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year
Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback
Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto
Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually
Tactics Box 23.1 Using Kirchhoff's Loop Law
PH203 Chapter 23 solutions Tactics Box 231 Using Kirchhoff's Loop Law Description: Knight/Jones/Field Tactics Box 231 Using Kirchhoff s loop law is illustrated Learning Goal: To practice Tactics Box 231
Physics 326 Lab 6 10/18/04 DAMPED SIMPLE HARMONIC MOTION
DAMPED SIMPLE HARMONIC MOTION PURPOSE To understand the relationships between force, acceleration, velocity, position, and period of a mass undergoing simple harmonic motion and to determine the effect
The rectangular loop shown in the figure is pivoted about the y axis and carries a current of 15.0 in the direction indicated. T +
Heimadæmi 6 Due: 11:00pm on Thursday, February 25, 2016 You will receive no credit for items you complete after the assignment is due. Grading Policy Problem 27.68 The rectangular loop shown in the figure
Application Note #3413
Application Note #3413 Manual Tuning Methods Tuning the controller seems to be a difficult task to some users; however, after getting familiar with the theories and tricks behind it, one might find the
Frequency Response DR. GYURCSEK ISTVÁN
DR. GYURCSEK ISTVÁN Frequency Response Sources and additional materials (recommended) Dr. Gyurcsek Dr. Elmer: Theories in Electric Circuits, GlobeEdit, 2016, ISBN:978-3-330-71341-3 Ch. Alexander, M. Sadiku:
FEEDBACK AND STABILITY
FEEDBCK ND STBILITY THE NEGTIVE-FEEDBCK LOOP x IN X OUT x S + x IN x OUT Σ Signal source _ β Open loop Closed loop x F Feedback network Output x S input signal x OUT x IN x F feedback signal x IN x S x
Test, Lesson 7 Waves - Answer Key Page 1
Test, Lesson 7 Waves - Answer Key Page 1 1. Match the proper units with the following: W. wavelength 1. nm F. frequency 2. /sec V. velocity 3. m 4. ms -1 5. Hz 6. m/sec (A) W: 1, 3 F: 2, 4, 5 V: 6 (B)
Step Response for the Transfer Function of a Sensor
Step Response f the Transfer Function of a Sens G(s)=Y(s)/X(s) of a sens with X(s) input and Y(s) output A) First Order Instruments a) First der transfer function G(s)=k/(1+Ts), k=gain, T = time constant
ESE319 Introduction to Microelectronics Bode Plot Review High Frequency BJT Model
Bode Plot Review High Frequency BJT Model 1 Logarithmic Frequency Response Plots (Bode Plots) Generic form of frequency response rational polynomial, where we substitute jω for s: H s=k sm a m 1 s m 1
Laboratory III: Operational Amplifiers
Physics 33, Fall 2008 Lab III - Handout Laboratory III: Operational Amplifiers Introduction Operational amplifiers are one of the most useful building blocks of analog electronics. Ideally, an op amp would
COURSE OUTLINE. Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors. Sensors, Signals and Noise 1
Sensors, Signals and Noise 1 COURSE OUTLINE Introduction Signals and Noise Filtering Sensors: Piezoelectric Force Sensors Piezoelectric Force Sensors 2 Piezoelectric Effect and Materials Piezoelectric
Equations. A body executing simple harmonic motion has maximum acceleration ) At the mean positions ) At the two extreme position 3) At any position 4) he question is irrelevant. A particle moves on the
Active Filter Design by Carsten Kristiansen Napier University. November 2004
by Carsten Kristiansen November 2004 Title page Author: Carsten Kristiansen. Napier No: 0400772. Assignment partner: Benjamin Grydehoej. Assignment title:. Education: Electronic and Computer Engineering.
Tracking of Spread Spectrum Signals
Chapter 7 Tracking of Spread Spectrum Signals 7. Introduction As discussed in the last chapter, there are two parts to the synchronization process. The first stage is often termed acquisition and typically
Studio Exercise Time Response & Frequency Response 1 st -Order Dynamic System RC Low-Pass Filter
Studio Exercise Time Response & Frequency Response 1 st -Order Dynamic System RC Low-Pass Filter i i in R out Assignment: Perform a Complete e in C e Dynamic System Investigation out of the RC Low-Pass
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8.02 Spring 2003 Experiment 17: RLC Circuit (modified 4/15/2003) OBJECTIVES
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics 8. Spring 3 Experiment 7: R Circuit (modified 4/5/3) OBJECTIVES. To observe electrical oscillations, measure their frequencies, and verify energy
AP Physics. Harmonic Motion. Multiple Choice. Test E
AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.
Design Engineering MEng EXAMINATIONS 2016
IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS 2016 For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination
Performance of Feedback Control Systems
Performance of Feedback Control Systems Design of a PID Controller Transient Response of a Closed Loop System Damping Coefficient, Natural frequency, Settling time and Steady-state Error and Type 0, Type
Today (10/23/01) Today. Reading Assignment: 6.3. Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10
Today Today (10/23/01) Gain/phase margin lead/lag compensator Ref. 6.4, 6.7, 6.10 Reading Assignment: 6.3 Last Time In the last lecture, we discussed control design through shaping of the loop gain GK:
Transient response via gain adjustment. Consider a unity feedback system, where G(s) = 2. The closed loop transfer function is. s 2 + 2ζωs + ω 2 n
Design via frequency response Transient response via gain adjustment Consider a unity feedback system, where G(s) = ωn 2. The closed loop transfer function is s(s+2ζω n ) T(s) = ω 2 n s 2 + 2ζωs + ω 2
Transient Response of a Second-Order System
Transient Response of a Second-Order System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a well-behaved closed-loop
ECE382/ME482 Spring 2005 Homework 6 Solution April 17, (s/2 + 1) s(2s + 1)[(s/8) 2 + (s/20) + 1]
ECE382/ME482 Spring 25 Homework 6 Solution April 17, 25 1 Solution to HW6 P8.17 We are given a system with open loop transfer function G(s) = 4(s/2 + 1) s(2s + 1)[(s/8) 2 + (s/2) + 1] (1) and unity negative
Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review
Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics
Study of Electromagnetic Induction
7. Study of Electromagnetic Induction 7.1 Introduction The basic principle of generation of alternating emf is electromagnetic induction* discovered by Michael Faraday. This phenomenon is the production
2.010 Fall 2000 Solution of Homework Assignment 7
. Fall Solution of Homework Assignment 7. Control of Hydraulic Servomechanism. We return to the Hydraulic Servomechanism of Problem in Homework Assignment 6 with additional data which permits quantitative
D G 2 H + + D 2
MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.302 Feedback Systems Final Exam May 21, 2007 180 minutes Johnson Ice Rink 1. This examination consists
Digital Control & Digital Filters. Lectures 21 & 22
Digital Controls & Digital Filters Lectures 2 & 22, Professor Department of Electrical and Computer Engineering Colorado State University Spring 205 Review of Analog Filters-Cont. Types of Analog Filters:
Section 6.4 DEs with Discontinuous Forcing Functions
Section 6.4 DEs with Discontinuous Forcing Functions Key terms/ideas: Discontinuous forcing function in nd order linear IVPs Application of Laplace transforms Comparison to viewing the problem s solution
DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C
MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OP-AMP It consists of two stages: First
1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera
ELECTROMAGNETISM Q # 1. Describe the properties of magnetic field due to current in a long straight conductor. Ans. When the heavy current is passed through a straight conductor: i. A magnetic field is
VolksMeter with one as opposed to two pendulums
VolksMeter with one as opposed to two pendulums Preface In all of the discussions that follow, remember that a pendulum, which is the seismic element used in the VolksMeter, responds only to horizontal
Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current
Physics 4B Chapter 31: Electromagnetic Oscillations and Alternating Current People of mediocre ability sometimes achieve outstanding success because they don't know when to quit. Most men succeed because
4.2 Graphs of Rational Functions
4.2. Graphs of Rational Functions www.ck12.org 4.2 Graphs of Rational Functions Learning Objectives Compare graphs of inverse variation equations. Graph rational functions. Solve real-world problems using
Chapter 4. Synchronous Generators. Basic Topology
Basic Topology Chapter 4 ynchronous Generators In stator, a three-phase winding similar to the one described in chapter 4. ince the main voltage is induced in this winding, it is also called armature winding.
Experiment #6. Thevenin Equivalent Circuits and Power Transfer
Experiment #6 Thevenin Equivalent Circuits and Power Transfer Objective: In this lab you will confirm the equivalence between a complicated resistor circuit and its Thevenin equivalent. You will also learn
Good Vibes: Introduction to Oscillations
Chapter 14 Solutions Good Vibes: Introduction to Oscillations Description: Several conceptual and qualitative questions related to main characteristics of simple harmonic motion: amplitude, displacement,
Lecture 17 Date:
Lecture 17 Date: 27.10.2016 Feedback and Properties, Types of Feedback Amplifier Stability Gain and Phase Margin Modification Elements of Feedback System: (a) The feed forward amplifier [H(s)] ; (b) A
PHY 101 Practice Exam III Monday, November 27, 2:15-3:35PM
1 PHY 101 Practice Exam III Monday, November 27, 2:15-3:35PM Please be sure to show your work where it is requested. If no work is shown where it is requested, you will not receive any points. Partial
Investigating Springs (Simple Harmonic Motion)
Investigating Springs (Simple Harmonic Motion) INTRODUCTION The purpose of this lab is to study the well-known force exerted by a spring The force, as given by Hooke s Law, is a function of the amount
Mechanical Oscillations
Mechanical Oscillations Richard Spencer, Med Webster, Roy Albridge and Jim Waters September, 1988 Revised September 6, 010 1 Reading: Shamos, Great Experiments in Physics, pp. 4-58 Harmonic Motion.1 Free
6.302 Feedback Systems Recitation 16: Compensation Prof. Joel L. Dawson
Bode Obstacle Course is one technique for doing compensation, or designing a feedback system to make the closed-loop behavior what we want it to be. To review: - G c (s) G(s) H(s) you are here! plant For
INTRODUCTION TO DIGITAL CONTROL
ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant
THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY
THE MOVING MAN: DISTANCE, DISPLACEMENT, SPEED & VELOCITY Background Remember graphs are not just an evil thing your teacher makes you create, they are a means of communication. Graphs are a way of communicating
Lab 11 - Free, Damped, and Forced Oscillations
Lab 11 Free, Damped, and Forced Oscillations L11-1 Name Date Partners Lab 11 - Free, Damped, and Forced Oscillations OBJECTIVES To understand the free oscillations of a mass and spring. To understand how
CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE
CHAPTER.6 :TRANSISTOR FREQUENCY RESPONSE To understand Decibels, log scale, general frequency considerations of an amplifier. low frequency analysis - Bode plot low frequency response BJT amplifier Miller
The requirements of a plant may be expressed in terms of (a) settling time (b) damping ratio (c) peak overshoot --- in time domain
Compensators To improve the performance of a given plant or system G f(s) it may be necessary to use a compensator or controller G c(s). Compensator Plant G c (s) G f (s) The requirements of a plant may
10 Measurement of Acceleration, Vibration and Shock Transducers
Chapter 10: Acceleration, Vibration and Shock Measurement Dr. Lufti Al-Sharif (Revision 1.0, 25/5/2008) 1. Introduction This chapter examines the measurement of acceleration, vibration and shock. It starts
Frequency (rad/s)
. The frequency response of the plant in a unity feedback control systems is shown in Figure. a) What is the static velocity error coefficient K v for the system? b) A lead compensator with a transfer
University of TN Chattanooga Physics 1040L 8/18/2012 PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB
PHYSICS 1040L LAB LAB 4: R.C. TIME CONSTANT LAB OBJECT: To study the discharging of a capacitor and determine the time constant for a simple circuit. APPARATUS: Capacitor (about 24 μf), two resistors (about
Time Varying Circuit Analysis
MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set
Electricity and Light Pre Lab Questions
Electricity and Light Pre Lab Questions The pre lab questions can be answered by reading the theory and procedure for the related lab. You are strongly encouraged to answers these questions on your own.
CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS
CHAPTER 4 SIGNA GENERATORS AND WAEFORM SHAPING CIRCUITS Chapter Outline 4. Basic Principles of Sinusoidal Oscillators 4. Op Amp RC Oscillators 4.3 C and Crystal Oscillators 4.4 Bistable Multivibrators
APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS
APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration
Acceleration, Velocity and Displacement Spectra Omega Arithmetic
Acceleration, Velocity and Displacement Spectra Omega Arithmetic 1 Acceleration, Velocity and Displacement Spectra Omega Arithmetic By Dr Colin Mercer, Technical Director, Prosig A ccelerometers are robust,
Review of Linear Time-Invariant Network Analysis
D1 APPENDIX D Review of Linear Time-Invariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D-1. If an input x 1 (t) produces an output y 1 (t), and an input x
MATH2351 Introduction to Ordinary Differential Equations, Fall Hints to Week 07 Worksheet: Mechanical Vibrations
MATH351 Introduction to Ordinary Differential Equations, Fall 11-1 Hints to Week 7 Worksheet: Mechanical Vibrations 1. (Demonstration) ( 3.8, page 3, Q. 5) A mass weighing lb streches a spring by 6 in.
Motion Graphs Refer to the following information for the next four questions.
Motion Graphs Refer to the following information for the next four questions. 1. Match the description provided about the behavior of a cart along a linear track to its best graphical representation. Remember
Undamped Free Vibrations (Simple Harmonic Motion; SHM also called Simple Harmonic Oscillator)
Section 3. 7 Mass-Spring Systems (no damping) Key Terms/ Ideas: Hooke s Law of Springs Undamped Free Vibrations (Simple Harmonic Motion; SHM also called Simple Harmonic Oscillator) Amplitude Natural Frequency
16.30/31, Fall 2010 Recitation # 2
16.30/31, Fall 2010 Recitation # 2 September 22, 2010 In this recitation, we will consider two problems from Chapter 8 of the Van de Vegte book. R + - E G c (s) G(s) C Figure 1: The standard block diagram
Chapter 3. 1 st Order Sine Function Input. General Solution. Ce t. Measurement System Behavior Part 2
Chapter 3 Measurement System Behavior Part 2 1 st Order Sine Function Input Examples of Periodic: vibrating structure, vehicle suspension, reciprocating pumps, environmental conditions The frequency of
Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros)
Overview of Bode Plots Transfer function review Piece-wise linear approximations First-order terms Second-order terms (complex poles & zeros) J. McNames Portland State University ECE 222 Bode Plots Ver.
18 - ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENTS ( Answers at the end of all questions ) Page 1
( Answers at the end of all questions ) Page ) The self inductance of the motor of an electric fan is 0 H. In order to impart maximum power at 50 Hz, it should be connected to a capacitance of 8 µ F (
Physics 2220 Fall 2010 George Williams THIRD MIDTERM - REVIEW PROBLEMS
Physics 2220 Fall 2010 George Williams THIRD MIDTERM - REVIEW PROBLEMS Solution sets are available on the course web site. A data sheet is provided. Problems marked by "*" do not have solutions. 1. An
Wednesday 9/27. Please open quizizz
Wednesday 9/27 Please open quizizz Graphing Acceleration VT Graphs VELOCITY m/s VELOCITY TIME GRAPHS Moving in a positive direction, SPEEDING UP Constant speed NO ACCELERATION Moving in a positive direction,
Fundamentals of Electric Circuits, Second Edition - Alexander/Sadiku
Chapter 3, Problem 9(8). Find V x in the network shown in Fig. 3.78. Figure 3.78 Chapter 3, Solution 9(8). Consider the circuit below. 2 Ω 2 Ω -j 8 30 o I j 4 j 4 I 2 -j2v For loop, 8 30 = (2 j4)i ji 2
Electrochemical methods : Fundamentals and Applications
Electrochemical methods : Fundamentals and Applications Lecture Note 7 May 19, 2014 Kwang Kim Yonsei University kbkim@yonsei.ac.kr 39 8 7 34 53 Y O N Se I 88.91 16.00 14.01 78.96 126.9 Electrochemical
Human Arm. 1 Purpose. 2 Theory. 2.1 Equation of Motion for a Rotating Rigid Body
Human Arm Equipment: Capstone, Human Arm Model, 45 cm rod, sensor mounting clamp, sensor mounting studs, 2 cord locks, non elastic cord, elastic cord, two blue pasport force sensors, large table clamps,
Transform Representation of Signals
C H A P T E R 3 Transform Representation of Signals and LTI Systems As you have seen in your prior studies of signals and systems, and as emphasized in the review in Chapter 2, transforms play a central
2.2. THE PRODUCT AND QUOTIENT RULES 179. P dv dt + V dp. dt.
22 THE PRODUCT AND QUOTIENT RULES 179 Thus, using the Product Rule, we find that dt = 1 k P dv + V dp At t = t 0, we obtain dt = 1 [(100, 000)(0005) + (002)( 100)] = 6225 K/s t0 8 Hence, at time t 0, the
Latency, Bandwidth, and Control Loop Residual Relationships
Latency, Bandwidth, and Control Loop Residual Relationships Keck Adaptive Optics Note 70 Donald Gavel, UCSC Feb. 2, 200 Revision : Feb 6, 200 Abstract This is a description of how latency in a [open closed]
NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni
NADAR SARASWATHI COLLEGE OF ENGINEERING AND TECHNOLOGY Vadapudupatti, Theni-625531 Question Bank for the Units I to V SE05 BR05 SU02 5 th Semester B.E. / B.Tech. Electrical & Electronics engineering IC6501
What happens if one pulls on the spring? The spring exerts a restoring force which is proportional to the distance it is stretched, F = - k x (1)
Physics 244 Harmonic Motion Introduction In this lab you will observe simple harmonic motion qualitatively in the laboratory and use a program run in Excel to find the mathematical description of the motion
Applications of Second-Order Differential Equations
Applications of Second-Order Differential Equations ymy/013 Building Intuition Even though there are an infinite number of differential equations, they all share common characteristics that allow intuition