Region of attraction approximations for polynomial dynamical systems

Size: px
Start display at page:

Download "Region of attraction approximations for polynomial dynamical systems"

Transcription

1 Region of attraction approximations for polynomial dynamical systems Milan Korda EPFL Lausanne Didier Henrion LAAS-CNRS Toulouse & CTU Prague Colin N. Jones EPFL Lausanne

2 Region of Attraction (ROA) ẋ(t) =f (x(t),u(t)), x(t) X, u(t) U t [0,T] x(t ) X T Region of attraction (ROA) a.k.a. Backward reachable set The set of all initial states that can be admissibly steered to the target set at a given time X X T 2

3 Region of Attraction (ROA) Long history - typically tackled using non-convex BMIs or gridding 3

4 How is it done? 4

5 Approach Approach ẋ = f (x,u) Common approach for stochastic or chaotic systems The ensembles are modeled using measures.! 5

6 Measures in control x µ 0 µ 0 0 T t 6

7 Measures in control x µ F µ 0 µ F 0 T t 7

8 Measures in control x µ µ 0 µ F µ(d) = R n T 0 I D (t,x(t x 0 )) dt dµ 0 (x 0 ) 0 T t 8

9 Liouville s equation µ 0 µ µ T v v(t,x) dµ F (x) v(0,x) dµ 0 (x) = R n R t + xv f (t,x,u) dµ(t,x,u) n v C 1 ([0,T] X) [0,T ] R n R m Key fact ẋ = f (x,u) Optimization over system trajectories Optimization over measures satisfying Liouville s equation 9

10 ROA characterization 10

11 ROA characterization x x max µ F µ 0 X T x min 0 T t 11

12 ROA characterization µ x µ F x max µ 0 X T µ F 0 T t 12

13 ROA characterization µ 0 x µ µ F x max µ 0 µ F X T x min 1 0 T t 13

14 ROA characterization µ 0 x µ µ F x max µ 0 µ F X T x min 1 0 T t 14

15 ROA characterization µ 0 x µ µ F x max µ 0 µ F X T x min 1 0 T t 15

16 ROA complement characterization µ x µ F x max Finite-dimensional relaxations give outer approximations µ F X T x min 1 0 T t 16

17 ROA complement characterization ẋ = f (x) 17

18 ROA complement characterization x x max µ F µ 0 X T x min 0 T t 18

19 ROA complement characterization µ x µ F x max µ 0 µ F X T x min 0 T t 19

20 ROA complement characterization µ 0 x µ µ F µ 0 µ F X T 1 0 T t 20

21 ROA complement characterization µ 0 x µ µ F µ 0 µ F X T 1 0 T t 21

22 ROA characterization using measures µ 0 x µ µ F µ 0 µ F X T 1 0 T t 22

23 ROA characterization using measures µ x µ F µ F X T 1 0 T t 23

24 Primal LP Infinite dimensional primal LP in the cone of nonnegative measures µ 0 µ 0 1 sup µ 0 (X) s.t. X vdµ F X vdµ 0 = Primal LP [0,T ] X v t + xv fdµ v C 1 µ 0 µ 0 M(X) +, µ F M(X F ) +, µ M([0,T] X) + {T } X T [0,T] X {T } X \ X T 24

25 Dual LP Infinite dimensional dual LP in the cone of nonnegative continuous functions Dual LP Decrease along trajectories inf s.t. X w(x) dx v t + xv f (t,x) 0, (t,x) [0,T] X v(t,x) 0, (t,x) X F w(x) v(0,x)+1, x X w(x) 0, x X, v C 1 ([0,T] X) w C(X) X F = {T } X T X F =[0,T] X {T } X \ X T w I X0 {x w(x) 1} w I X\X0 {x w(x) < 1} 25

26 Finite-dimensional relaxations 26

27 Finite dimensional SDP relaxations SDP! Optimization over measures Optimization over moment sequences Optimization over moment sequences up to degree 2k No gap Optimization over nonnegative continuous functions Optimization over nonnegative polynomials SDP! Optimization over SOS polynomials up to degree 2k No gap 27

28 Convergence w k (x) k w k (x) w k I X0 L 1 vol(k \ ) 0 k := {x w k (x) 1} w k (x) w k I X\X0 L 1 vol( \ k ) 0 k := {x w k (x) < 1} X X 28

29 Convergence w k (x) k w k (x) w k I X0 L 1 vol(k \ ) 0 k := {x w k (x) 1} w k (x) w k I X\X0 L 1 vol( \ k ) 0 k := {x w k (x) < 1} X X 29

30 Convergence w k (x) k w k (x) w k I X0 L 1 vol(k \ ) 0 k := {x w k (x) 1} w k (x) w k I X\X0 L 1 vol( \ k ) 0 k := {x w k (x) < 1} X X 30

31 Convergence w k (x) k w k I X0 L 1 vol(k \ ) 0 k := {x w k (x) 1} w k I X\X0 L 1 vol( \ k ) 0 k := {x w k (x) < 1} 31

32 Convergence µ k 0 µ k 0 X X 32

33 Convergence µ k 0 µ k 0 X X 33

34 Convergence µ k 0 µ k 0 X X 34

35 Numerical examples Backward Van der Pol oscillator ẋ 1 = 2x 2 ẋ 2 =0.8x (x )x 2 X =[ 1.2, 1.2] 2 X T = {x x }, T = 100 Stable equilibrium at the origin with a bounded region of attraction d = 10 d =

36 Numerical examples Backward Van der Pol oscillator ẋ 1 = 2x 2 ẋ 2 =0.8x (x )x 2 X =[ 1.2, 1.2] 2 X T = {x x }, T = 100 Stable equilibrium at the origin with a bounded region of attraction d =

37 Numerical examples Backward Van der Pol oscillator ẋ 1 = 2x 2 ẋ 2 =0.8x (x )x 2 X =[ 1.2, 1.2] 2 X T = {x x }, T = 100 Stable equilibrium at the origin with a bounded region of attraction d =

38 Numerical examples Backward Van der Pol oscillator ẋ 1 = 2x 2 ẋ 2 =0.8x (x )x 2 X =[ 1.2, 1.2] 2 X T = {x x }, T = 100 Stable equilibrium at the origin with a bounded region of attraction d =

39 Numerical examples Backward Van der Pol oscillator ẋ 1 = 2x 2 ẋ 2 =0.8x (x )x 2 X =[ 1.2, 1.2] 2 X T = {x x }, T = 100 Stable equilibrium at the origin with a bounded region of attraction 18 I X0 39

40 Numerical examples Backward Van der Pol oscillator ẋ 1 = 2x 2 ẋ 2 =0.8x (x )x 2 X = {x x 2 1.1}, X T = {x x 2 0.5}, T =1 Stable equilibrium at the origin with a bounded region of attraction d =

41 Numerical examples Backward Van der Pol oscillator ẋ 1 = 2x 2 ẋ 2 =0.8x (x )x 2 X = {x x 2 1.1}, X T = {x x 2 0.5}, T =1 Stable equilibrium at the origin with a bounded region of attraction d =

42 Numerical examples Backward Van der Pol oscillator x 1 = 2x2 x 2 = 0.8x1 + 10(x )x2 X = {x!x!2 1.1}, XT = {x!x!2 0.5}, T = 1 Stable equilibrium at the origin with a bounded region of attraction 18 IX\X0 42

43 Numerical examples Brockett integrator ẋ 1 = u 1 ẋ 2 = u 2 ẋ 3 = u 1 x 2 u 2 x 1 X = {x x 1} U = {u u 2 1} X T = {0}, T =1 ROA known semi-analytically d =6 43

44 Numerical examples Brockett integrator ẋ 1 = u 1 ẋ 2 = u 2 ẋ 3 = u 1 x 2 u 2 x 1 X = {x x 1} U = {u u 2 1} X T = {0}, T =1 ROA known semi-analytically d = 10 44

45 Extensions Infinite time version Discrete-time version, sampled-data version Controlled inner approximations Robust inner approximations Rational or trigonometric dynamics ROA of optimization-based controllers 45

46 Conclusion Convex characterization of the ROA and its complement SDP relaxations inner & outer approximations Additional properties (e.g. convexity) can be easily enforced Many extensions Easy to use - Gloptipoly, Yalmip, SOSTOOLS, etc. 46

47 Question time 47

Convex computation of the region of attraction for polynomial control systems

Convex computation of the region of attraction for polynomial control systems Convex computation of the region of attraction for polynomial control systems Didier Henrion LAAS-CNRS Toulouse & CTU Prague Milan Korda EPFL Lausanne Region of Attraction (ROA) ẋ = f (x,u), x(t) X, u(t)

More information

Convex computation of the region of attraction for polynomial control systems

Convex computation of the region of attraction for polynomial control systems Convex computation of the region of attraction for polynomial control systems Didier Henrion LAAS-CNRS Toulouse & CTU Prague Milan Korda EPFL Lausanne Region of Attraction (ROA) ẋ = f (x,u), x(t) X, u(t)

More information

Convex computation of the region of attraction of polynomial control systems

Convex computation of the region of attraction of polynomial control systems Convex computation of the region of attraction of polynomial control systems Didier Henrion 1,2,3, Milan Korda 4 Draft of July 15, 213 Abstract We address the long-standing problem of computing the region

More information

Controller design and region of attraction estimation for nonlinear dynamical systems

Controller design and region of attraction estimation for nonlinear dynamical systems Controller design and region of attraction estimation for nonlinear dynamical systems Milan Korda 1, Didier Henrion 2,3,4, Colin N. Jones 1 ariv:1310.2213v1 [math.oc] 8 Oct 2013 Draft of December 16, 2013

More information

Controller design and region of attraction estimation for nonlinear dynamical systems

Controller design and region of attraction estimation for nonlinear dynamical systems Controller design and region of attraction estimation for nonlinear dynamical systems Milan Korda 1, Didier Henrion 2,3,4, Colin N. Jones 1 ariv:1310.2213v2 [math.oc] 20 Mar 2014 Draft of March 21, 2014

More information

Inner approximations of the region of attraction for polynomial dynamical systems

Inner approximations of the region of attraction for polynomial dynamical systems Inner approimations of the region of attraction for polynomial dynamical systems Milan Korda, Didier Henrion 2,3,4, Colin N. Jones October, 22 Abstract hal-74798, version - Oct 22 In a previous work we

More information

Convex computation of the region of attraction of polynomial control systems

Convex computation of the region of attraction of polynomial control systems Convex computation of the region of attraction of polynomial control systems Didier Henrion 1,2,3, Milan Korda 4 ariv:128.1751v1 [math.oc] 8 Aug 212 Draft of August 9, 212 Abstract We address the long-standing

More information

Maximal Positive Invariant Set Determination for Transient Stability Assessment in Power Systems

Maximal Positive Invariant Set Determination for Transient Stability Assessment in Power Systems Maximal Positive Invariant Set Determination for Transient Stability Assessment in Power Systems arxiv:8.8722v [math.oc] 2 Nov 28 Antoine Oustry Ecole Polytechnique Palaiseau, France antoine.oustry@polytechnique.edu

More information

Linear conic optimization for nonlinear optimal control

Linear conic optimization for nonlinear optimal control Linear conic optimization for nonlinear optimal control Didier Henrion 1,2,3, Edouard Pauwels 1,2 Draft of July 15, 2014 Abstract Infinite-dimensional linear conic formulations are described for nonlinear

More information

Measures and LMIs for optimal control of piecewise-affine systems

Measures and LMIs for optimal control of piecewise-affine systems Measures and LMIs for optimal control of piecewise-affine systems M. Rasheed Abdalmoaty 1, Didier Henrion 2, Luis Rodrigues 3 November 14, 2012 Abstract This paper considers the class of deterministic

More information

arxiv:math/ v1 [math.oc] 13 Mar 2007

arxiv:math/ v1 [math.oc] 13 Mar 2007 arxiv:math/0703377v1 [math.oc] 13 Mar 2007 NONLINEAR OPTIMAL CONTROL VIA OCCUPATION MEASURES AND LMI-RELAXATIONS JEAN B. LASSERRE, DIDIER HENRION, CHRISTOPHE PRIEUR, AND EMMANUEL TRÉLAT Abstract. We consider

More information

Inner approximations of the maximal positively invariant set for polynomial dynamical systems

Inner approximations of the maximal positively invariant set for polynomial dynamical systems arxiv:1903.04798v1 [math.oc] 12 Mar 2019 Inner approximations of the maximal positively invariant set for polynomial dynamical systems Antoine Oustry 1, Matteo Tacchi 2, and Didier Henrion 3 March 13,

More information

arxiv: v1 [math.oc] 31 Jan 2017

arxiv: v1 [math.oc] 31 Jan 2017 CONVEX CONSTRAINED SEMIALGEBRAIC VOLUME OPTIMIZATION: APPLICATION IN SYSTEMS AND CONTROL 1 Ashkan Jasour, Constantino Lagoa School of Electrical Engineering and Computer Science, Pennsylvania State University

More information

arxiv: v2 [cs.sy] 26 Jul 2018

arxiv: v2 [cs.sy] 26 Jul 2018 Controller Synthesis for Discrete-Time Polynomial Systems via Occupation Measures Weiqiao Han and Russ Tedrake ariv:83.9v [cs.sy] 6 Jul 8 Abstract In this paper, we design nonlinear state feedback controllers

More information

c 2008 Society for Industrial and Applied Mathematics

c 2008 Society for Industrial and Applied Mathematics SIAM J. CONTROL OPTIM. Vol. 0, No. 0, pp. 000 000 c 2008 Society for Industrial and Applied Mathematics NONLINEAR OPTIMAL CONTROL VIA OCCUPATION MEASURES AND LMI-RELAXATIONS JEAN B. LASSERRE, DIDIER HENRION,

More information

Semidefinite Approximations of Reachable Sets for Discrete-time Polynomial Systems

Semidefinite Approximations of Reachable Sets for Discrete-time Polynomial Systems Semidefinite Approximations of Reachable Sets for Discrete-time Polynomial Systems arxiv:1703.05085v2 [math.oc] 13 Feb 2018 Victor Magron 1 Pierre-Loic Garoche 2 Didier Henrion 3,4 Xavier Thirioux 5 September

More information

Global Optimization with Polynomials

Global Optimization with Polynomials Global Optimization with Polynomials Geoffrey Schiebinger, Stephen Kemmerling Math 301, 2010/2011 March 16, 2011 Geoffrey Schiebinger, Stephen Kemmerling (Math Global 301, 2010/2011) Optimization with

More information

Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets

Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets Convergence rates of moment-sum-of-squares hierarchies for volume approximation of semialgebraic sets Milan Korda 1, Didier Henrion,3,4 Draft of December 1, 016 Abstract Moment-sum-of-squares hierarchies

More information

Convex computation of the maximum controlled invariant set for discrete-time polynomial control systems

Convex computation of the maximum controlled invariant set for discrete-time polynomial control systems Convex computation of the maximum controlled invariant set for discrete-time polynomial control systems Milan Korda 1, Didier Henrion 2,3,4, Colin N. Jones 1 Abstract We characterize the maximum controlled

More information

Strong duality in Lasserre s hierarchy for polynomial optimization

Strong duality in Lasserre s hierarchy for polynomial optimization Strong duality in Lasserre s hierarchy for polynomial optimization arxiv:1405.7334v1 [math.oc] 28 May 2014 Cédric Josz 1,2, Didier Henrion 3,4,5 Draft of January 24, 2018 Abstract A polynomial optimization

More information

Convex Optimization of Nonlinear Feedback Controllers via Occupation Measures

Convex Optimization of Nonlinear Feedback Controllers via Occupation Measures Convex Optimization of Nonlinear Feedback Controllers via Occupation Measures Anirudha Majumdar, Ram Vasudevan, Mark M. Tobenkin, and Russ Tedrake Computer Science and Artificial Intelligence Lab Massachusetts

More information

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009

LMI MODELLING 4. CONVEX LMI MODELLING. Didier HENRION. LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ. Universidad de Valladolid, SP March 2009 LMI MODELLING 4. CONVEX LMI MODELLING Didier HENRION LAAS-CNRS Toulouse, FR Czech Tech Univ Prague, CZ Universidad de Valladolid, SP March 2009 Minors A minor of a matrix F is the determinant of a submatrix

More information

A new look at nonnegativity on closed sets

A new look at nonnegativity on closed sets A new look at nonnegativity on closed sets LAAS-CNRS and Institute of Mathematics, Toulouse, France IPAM, UCLA September 2010 Positivstellensatze for semi-algebraic sets K R n from the knowledge of defining

More information

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010

I.3. LMI DUALITY. Didier HENRION EECI Graduate School on Control Supélec - Spring 2010 I.3. LMI DUALITY Didier HENRION henrion@laas.fr EECI Graduate School on Control Supélec - Spring 2010 Primal and dual For primal problem p = inf x g 0 (x) s.t. g i (x) 0 define Lagrangian L(x, z) = g 0

More information

Moments and Positive Polynomials for Optimization II: LP- VERSUS SDP-relaxations

Moments and Positive Polynomials for Optimization II: LP- VERSUS SDP-relaxations Moments and Positive Polynomials for Optimization II: LP- VERSUS SDP-relaxations LAAS-CNRS and Institute of Mathematics, Toulouse, France Tutorial, IMS, Singapore 2012 LP-relaxations LP- VERSUS SDP-relaxations

More information

Polynomial level-set methods for nonlinear dynamical systems analysis

Polynomial level-set methods for nonlinear dynamical systems analysis Proceedings of the Allerton Conference on Communication, Control and Computing pages 64 649, 8-3 September 5. 5.7..4 Polynomial level-set methods for nonlinear dynamical systems analysis Ta-Chung Wang,4

More information

The moment-lp and moment-sos approaches

The moment-lp and moment-sos approaches The moment-lp and moment-sos approaches LAAS-CNRS and Institute of Mathematics, Toulouse, France CIRM, November 2013 Semidefinite Programming Why polynomial optimization? LP- and SDP- CERTIFICATES of POSITIVITY

More information

Semidenite Approximations of Reachable Sets for Discrete-time Polynomial Systems

Semidenite Approximations of Reachable Sets for Discrete-time Polynomial Systems Semidenite Approximations of Reachable Sets for Discrete-time Polynomial Systems Victor Magron 1 Pierre-Loic Garoche 2 Didier Henrion 3,4 Xavier Thirioux 5 March 15, 2017 Abstract We consider the problem

More information

Analytical Validation Tools for Safety Critical Systems

Analytical Validation Tools for Safety Critical Systems Analytical Validation Tools for Safety Critical Systems Peter Seiler and Gary Balas Department of Aerospace Engineering & Mechanics, University of Minnesota, Minneapolis, MN, 55455, USA Andrew Packard

More information

Semidefinite Programming Duality and Linear Time-invariant Systems

Semidefinite Programming Duality and Linear Time-invariant Systems Semidefinite Programming Duality and Linear Time-invariant Systems Venkataramanan (Ragu) Balakrishnan School of ECE, Purdue University 2 July 2004 Workshop on Linear Matrix Inequalities in Control LAAS-CNRS,

More information

Moments and Positive Polynomials for Optimization II: LP- VERSUS SDP-relaxations

Moments and Positive Polynomials for Optimization II: LP- VERSUS SDP-relaxations Moments and Positive Polynomials for Optimization II: LP- VERSUS SDP-relaxations LAAS-CNRS and Institute of Mathematics, Toulouse, France EECI Course: February 2016 LP-relaxations LP- VERSUS SDP-relaxations

More information

Lecture: Examples of LP, SOCP and SDP

Lecture: Examples of LP, SOCP and SDP 1/34 Lecture: Examples of LP, SOCP and SDP Zaiwen Wen Beijing International Center For Mathematical Research Peking University http://bicmr.pku.edu.cn/~wenzw/bigdata2018.html wenzw@pku.edu.cn Acknowledgement:

More information

arxiv: v1 [math.ds] 23 Apr 2017

arxiv: v1 [math.ds] 23 Apr 2017 Estimating the Region of Attraction Using Polynomial Optimization: a Converse Lyapunov Result Hesameddin Mohammadi, Matthew M. Peet arxiv:1704.06983v1 [math.ds] 23 Apr 2017 Abstract In this paper, we propose

More information

Fast ADMM for Sum of Squares Programs Using Partial Orthogonality

Fast ADMM for Sum of Squares Programs Using Partial Orthogonality Fast ADMM for Sum of Squares Programs Using Partial Orthogonality Antonis Papachristodoulou Department of Engineering Science University of Oxford www.eng.ox.ac.uk/control/sysos antonis@eng.ox.ac.uk with

More information

Convex Optimization & Parsimony of L p-balls representation

Convex Optimization & Parsimony of L p-balls representation Convex Optimization & Parsimony of L p -balls representation LAAS-CNRS and Institute of Mathematics, Toulouse, France IMA, January 2016 Motivation Unit balls associated with nonnegative homogeneous polynomials

More information

Modal occupation measures and LMI relaxations for nonlinear switched systems control

Modal occupation measures and LMI relaxations for nonlinear switched systems control Modal occupation measures and LMI relaxations for nonlinear switched systems control Mathieu Claeys 1, Jamal Daafouz 2, Didier Henrion 3,4,5 Updated version of November 16, 2016 Abstract This paper presents

More information

The Big Picture. Discuss Examples of unpredictability. Odds, Stanisław Lem, The New Yorker (1974) Chaos, Scientific American (1986)

The Big Picture. Discuss Examples of unpredictability. Odds, Stanisław Lem, The New Yorker (1974) Chaos, Scientific American (1986) The Big Picture Discuss Examples of unpredictability Odds, Stanisław Lem, The New Yorker (1974) Chaos, Scientific American (1986) Lecture 2: Natural Computation & Self-Organization, Physics 256A (Winter

More information

Lecture 6: Conic Optimization September 8

Lecture 6: Conic Optimization September 8 IE 598: Big Data Optimization Fall 2016 Lecture 6: Conic Optimization September 8 Lecturer: Niao He Scriber: Juan Xu Overview In this lecture, we finish up our previous discussion on optimality conditions

More information

Research overview. Seminar September 4, Lehigh University Department of Industrial & Systems Engineering. Research overview.

Research overview. Seminar September 4, Lehigh University Department of Industrial & Systems Engineering. Research overview. Research overview Lehigh University Department of Industrial & Systems Engineering COR@L Seminar September 4, 2008 1 Duality without regularity condition Duality in non-exact arithmetic 2 interior point

More information

Continuous Optimisation, Chpt 9: Semidefinite Optimisation

Continuous Optimisation, Chpt 9: Semidefinite Optimisation Continuous Optimisation, Chpt 9: Semidefinite Optimisation Peter J.C. Dickinson DMMP, University of Twente p.j.c.dickinson@utwente.nl http://dickinson.website/teaching/2017co.html version: 28/11/17 Monday

More information

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization

Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Semidefinite and Second Order Cone Programming Seminar Fall 2012 Project: Robust Optimization and its Application of Robust Portfolio Optimization Instructor: Farid Alizadeh Author: Ai Kagawa 12/12/2012

More information

Robust Multi-Objective Control for Linear Systems

Robust Multi-Objective Control for Linear Systems Robust Multi-Objective Control for Linear Systems Elements of theory and ROMULOC toolbox Dimitri PEAUCELLE & Denis ARZELIER LAAS-CNRS, Toulouse, FRANCE Part of the OLOCEP project (includes GloptiPoly)

More information

Approximate Optimal Designs for Multivariate Polynomial Regression

Approximate Optimal Designs for Multivariate Polynomial Regression Approximate Optimal Designs for Multivariate Polynomial Regression Fabrice Gamboa Collaboration with: Yohan de Castro, Didier Henrion, Roxana Hess, Jean-Bernard Lasserre Universität Potsdam 16th of February

More information

Recent robust analysis and design results. for simple adaptive control

Recent robust analysis and design results. for simple adaptive control Recent robust analysis and design results for simple adaptive control Dimitri PEAUCELLE LAAS-CNRS - Université de Toulouse - FRANCE Cooperation program between CNRS, RAS and RFBR A. Fradkov, B. Andrievsky,

More information

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC

6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 6-1 The Positivstellensatz P. Parrilo and S. Lall, ECC 2003 2003.09.02.10 6. The Positivstellensatz Basic semialgebraic sets Semialgebraic sets Tarski-Seidenberg and quantifier elimination Feasibility

More information

Linear Quadratic Zero-Sum Two-Person Differential Games Pierre Bernhard June 15, 2013

Linear Quadratic Zero-Sum Two-Person Differential Games Pierre Bernhard June 15, 2013 Linear Quadratic Zero-Sum Two-Person Differential Games Pierre Bernhard June 15, 2013 Abstract As in optimal control theory, linear quadratic (LQ) differential games (DG) can be solved, even in high dimension,

More information

Simple Approximations of Semialgebraic Sets and their Applications to Control

Simple Approximations of Semialgebraic Sets and their Applications to Control Simple Approximations of Semialgebraic Sets and their Applications to Control Fabrizio Dabbene 1 Didier Henrion 2,3,4 Constantino Lagoa 5 arxiv:1509.04200v1 [math.oc] 14 Sep 2015 October 15, 2018 Abstract

More information

Semidefinite Programming Basics and Applications

Semidefinite Programming Basics and Applications Semidefinite Programming Basics and Applications Ray Pörn, principal lecturer Åbo Akademi University Novia University of Applied Sciences Content What is semidefinite programming (SDP)? How to represent

More information

Detecting global optimality and extracting solutions in GloptiPoly

Detecting global optimality and extracting solutions in GloptiPoly Detecting global optimality and extracting solutions in GloptiPoly Didier HENRION 1,2 Jean-Bernard LASSERRE 1 1 LAAS-CNRS Toulouse 2 ÚTIA-AVČR Prague Part 1 Description of GloptiPoly Brief description

More information

Sum of Squares Relaxations for Polynomial Semi-definite Programming

Sum of Squares Relaxations for Polynomial Semi-definite Programming Sum of Squares Relaxations for Polynomial Semi-definite Programming C.W.J. Hol, C.W. Scherer Delft University of Technology, Delft Center of Systems and Control (DCSC) Mekelweg 2, 2628CD Delft, The Netherlands

More information

arzelier

arzelier COURSE ON LMI OPTIMIZATION WITH APPLICATIONS IN CONTROL PART II.1 LMIs IN SYSTEMS CONTROL STATE-SPACE METHODS STABILITY ANALYSIS Didier HENRION www.laas.fr/ henrion henrion@laas.fr Denis ARZELIER www.laas.fr/

More information

Convexification of Mixed-Integer Quadratically Constrained Quadratic Programs

Convexification of Mixed-Integer Quadratically Constrained Quadratic Programs Convexification of Mixed-Integer Quadratically Constrained Quadratic Programs Laura Galli 1 Adam N. Letchford 2 Lancaster, April 2011 1 DEIS, University of Bologna, Italy 2 Department of Management Science,

More information

Moments and convex optimization for analysis and control of nonlinear partial differential equations

Moments and convex optimization for analysis and control of nonlinear partial differential equations Moments and convex optimization for analysis and control of nonlinear partial differential equations Milan Korda 1, Didier Henrion 2,3,4, Jean Bernard Lasserre 2 April 19, 2018 Abstract This work presents

More information

Optimization over Polynomials with Sums of Squares and Moment Matrices

Optimization over Polynomials with Sums of Squares and Moment Matrices Optimization over Polynomials with Sums of Squares and Moment Matrices Monique Laurent Centrum Wiskunde & Informatica (CWI), Amsterdam and University of Tilburg Positivity, Valuations and Quadratic Forms

More information

Modern Optimal Control

Modern Optimal Control Modern Optimal Control Matthew M. Peet Arizona State University Lecture 19: Stabilization via LMIs Optimization Optimization can be posed in functional form: min x F objective function : inequality constraints

More information

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013

Convex Optimization. (EE227A: UC Berkeley) Lecture 28. Suvrit Sra. (Algebra + Optimization) 02 May, 2013 Convex Optimization (EE227A: UC Berkeley) Lecture 28 (Algebra + Optimization) 02 May, 2013 Suvrit Sra Admin Poster presentation on 10th May mandatory HW, Midterm, Quiz to be reweighted Project final report

More information

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space.

Chapter 1. Preliminaries. The purpose of this chapter is to provide some basic background information. Linear Space. Hilbert Space. Chapter 1 Preliminaries The purpose of this chapter is to provide some basic background information. Linear Space Hilbert Space Basic Principles 1 2 Preliminaries Linear Space The notion of linear space

More information

Semidefinite Programming

Semidefinite Programming Semidefinite Programming Basics and SOS Fernando Mário de Oliveira Filho Campos do Jordão, 2 November 23 Available at: www.ime.usp.br/~fmario under talks Conic programming V is a real vector space h, i

More information

LMI Methods in Optimal and Robust Control

LMI Methods in Optimal and Robust Control LMI Methods in Optimal and Robust Control Matthew M. Peet Arizona State University Lecture 15: Nonlinear Systems and Lyapunov Functions Overview Our next goal is to extend LMI s and optimization to nonlinear

More information

Iterative LP and SOCP-based. approximations to. sum of squares programs. Georgina Hall Princeton University. Joint work with:

Iterative LP and SOCP-based. approximations to. sum of squares programs. Georgina Hall Princeton University. Joint work with: Iterative LP and SOCP-based approximations to sum of squares programs Georgina Hall Princeton University Joint work with: Amir Ali Ahmadi (Princeton University) Sanjeeb Dash (IBM) Sum of squares programs

More information

COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS. Didier HENRION henrion

COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS. Didier HENRION   henrion COURSE ON LMI PART I.2 GEOMETRY OF LMI SETS Didier HENRION www.laas.fr/ henrion October 2006 Geometry of LMI sets Given symmetric matrices F i we want to characterize the shape in R n of the LMI set F

More information

Semidefinite Programming, Combinatorial Optimization and Real Algebraic Geometry

Semidefinite Programming, Combinatorial Optimization and Real Algebraic Geometry Semidefinite Programming, Combinatorial Optimization and Real Algebraic Geometry assoc. prof., Ph.D. 1 1 UNM - Faculty of information studies Edinburgh, 16. September 2014 Outline Introduction Definition

More information

Modal occupation measures and LMI relaxations for nonlinear switched systems control

Modal occupation measures and LMI relaxations for nonlinear switched systems control Modal occupation measures and LMI relaxations for nonlinear switched systems control Mathieu Claeys 1, Jamal Daafouz 2, Didier Henrion 3,4,5 Draft of April 17, 2014 Abstract This paper presents a linear

More information

Stability and Robustness Analysis of Nonlinear Systems via Contraction Metrics and SOS Programming

Stability and Robustness Analysis of Nonlinear Systems via Contraction Metrics and SOS Programming arxiv:math/0603313v1 [math.oc 13 Mar 2006 Stability and Robustness Analysis of Nonlinear Systems via Contraction Metrics and SOS Programming Erin M. Aylward 1 Pablo A. Parrilo 1 Jean-Jacques E. Slotine

More information

Distributionally Robust Convex Optimization

Distributionally Robust Convex Optimization Submitted to Operations Research manuscript OPRE-2013-02-060 Authors are encouraged to submit new papers to INFORMS journals by means of a style file template, which includes the journal title. However,

More information

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming

E5295/5B5749 Convex optimization with engineering applications. Lecture 5. Convex programming and semidefinite programming E5295/5B5749 Convex optimization with engineering applications Lecture 5 Convex programming and semidefinite programming A. Forsgren, KTH 1 Lecture 5 Convex optimization 2006/2007 Convex quadratic program

More information

arxiv: v2 [math.oc] 31 May 2010

arxiv: v2 [math.oc] 31 May 2010 A joint+marginal algorithm for polynomial optimization Jean B. Lasserre and Tung Phan Thanh arxiv:1003.4915v2 [math.oc] 31 May 2010 Abstract We present a new algorithm for solving a polynomial program

More information

Chapter III. Stability of Linear Systems

Chapter III. Stability of Linear Systems 1 Chapter III Stability of Linear Systems 1. Stability and state transition matrix 2. Time-varying (non-autonomous) systems 3. Time-invariant systems 1 STABILITY AND STATE TRANSITION MATRIX 2 In this chapter,

More information

Introduction to Semidefinite Programming I: Basic properties a

Introduction to Semidefinite Programming I: Basic properties a Introduction to Semidefinite Programming I: Basic properties and variations on the Goemans-Williamson approximation algorithm for max-cut MFO seminar on Semidefinite Programming May 30, 2010 Semidefinite

More information

Advances in Convex Optimization: Theory, Algorithms, and Applications

Advances in Convex Optimization: Theory, Algorithms, and Applications Advances in Convex Optimization: Theory, Algorithms, and Applications Stephen Boyd Electrical Engineering Department Stanford University (joint work with Lieven Vandenberghe, UCLA) ISIT 02 ISIT 02 Lausanne

More information

Optimal transportation and optimal control in a finite horizon framework

Optimal transportation and optimal control in a finite horizon framework Optimal transportation and optimal control in a finite horizon framework Guillaume Carlier and Aimé Lachapelle Université Paris-Dauphine, CEREMADE July 2008 1 MOTIVATIONS - A commitment problem (1) Micro

More information

5.7 Differential Equations: Separation of Variables Calculus

5.7 Differential Equations: Separation of Variables Calculus 5.7 DIFFERENTIAL EQUATIONS: SEPARATION OF VARIABLES In the last section we discussed the method of separation of variables to solve a differential equation. In this section we have 4 basic goals. (1) Verif

More information

Linear Quadratic Zero-Sum Two-Person Differential Games

Linear Quadratic Zero-Sum Two-Person Differential Games Linear Quadratic Zero-Sum Two-Person Differential Games Pierre Bernhard To cite this version: Pierre Bernhard. Linear Quadratic Zero-Sum Two-Person Differential Games. Encyclopaedia of Systems and Control,

More information

IE 521 Convex Optimization

IE 521 Convex Optimization Lecture 14: and Applications 11th March 2019 Outline LP SOCP SDP LP SOCP SDP 1 / 21 Conic LP SOCP SDP Primal Conic Program: min c T x s.t. Ax K b (CP) : b T y s.t. A T y = c (CD) y K 0 Theorem. (Strong

More information

Lecture 14 Barrier method

Lecture 14 Barrier method L. Vandenberghe EE236A (Fall 2013-14) Lecture 14 Barrier method centering problem Newton decrement local convergence of Newton method short-step barrier method global convergence of Newton method predictor-corrector

More information

Journal of Computational and Applied Mathematics

Journal of Computational and Applied Mathematics Journal of Computational and Applied Mathematics 234 (2) 538 544 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam

More information

Lecture 4. Chapter 4: Lyapunov Stability. Eugenio Schuster. Mechanical Engineering and Mechanics Lehigh University.

Lecture 4. Chapter 4: Lyapunov Stability. Eugenio Schuster. Mechanical Engineering and Mechanics Lehigh University. Lecture 4 Chapter 4: Lyapunov Stability Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 4 p. 1/86 Autonomous Systems Consider the autonomous system ẋ

More information

Optimal switching control design for polynomial systems: an LMI approach

Optimal switching control design for polynomial systems: an LMI approach Optimal switching control design for polynomial systems: an LMI approach Didier Henrion 1,2,3, Jamal Daafouz 4, Mathieu Claeys 1 arxiv:133.1988v1 [math.oc] 8 Mar 213 Draft of June 22, 218 Abstract We propose

More information

EE 227A: Convex Optimization and Applications October 14, 2008

EE 227A: Convex Optimization and Applications October 14, 2008 EE 227A: Convex Optimization and Applications October 14, 2008 Lecture 13: SDP Duality Lecturer: Laurent El Ghaoui Reading assignment: Chapter 5 of BV. 13.1 Direct approach 13.1.1 Primal problem Consider

More information

Formal Proofs, Program Analysis and Moment-SOS Relaxations

Formal Proofs, Program Analysis and Moment-SOS Relaxations Formal Proofs, Program Analysis and Moment-SOS Relaxations Victor Magron, Postdoc LAAS-CNRS 15 July 2014 Imperial College Department of Electrical and Electronic Eng. y b sin( par + b) b 1 1 b1 b2 par

More information

Minimum volume semialgebraic sets for robust estimation

Minimum volume semialgebraic sets for robust estimation Minimum volume semialgebraic sets for robust estimation Fabrizio Dabbene 1, Didier Henrion 2,3,4 October 31, 2018 arxiv:1210.3183v1 [math.oc] 11 Oct 2012 Abstract Motivated by problems of uncertainty propagation

More information

Interior Point Algorithms for Constrained Convex Optimization

Interior Point Algorithms for Constrained Convex Optimization Interior Point Algorithms for Constrained Convex Optimization Chee Wei Tan CS 8292 : Advanced Topics in Convex Optimization and its Applications Fall 2010 Outline Inequality constrained minimization problems

More information

Jitka Dupačová and scenario reduction

Jitka Dupačová and scenario reduction Jitka Dupačová and scenario reduction W. Römisch Humboldt-University Berlin Institute of Mathematics http://www.math.hu-berlin.de/~romisch Session in honor of Jitka Dupačová ICSP 2016, Buzios (Brazil),

More information

4. Algebra and Duality

4. Algebra and Duality 4-1 Algebra and Duality P. Parrilo and S. Lall, CDC 2003 2003.12.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone

More information

APPROXIMATE VOLUME AND INTEGRATION FOR BASIC SEMI-ALGEBRAIC SETS

APPROXIMATE VOLUME AND INTEGRATION FOR BASIC SEMI-ALGEBRAIC SETS APPROXIMATE VOLUME AND INTEGRATION FOR BASIC SEMI-ALGEBRAIC SETS D. HENRION, J. B. LASSERRE, AND C. SAVORGNAN Abstract. Given a basic compact semi-algebraic set K R n, we introduce a methodology that generates

More information

Formula Sheet for Optimal Control

Formula Sheet for Optimal Control Formula Sheet for Optimal Control Division of Optimization and Systems Theory Royal Institute of Technology 144 Stockholm, Sweden 23 December 1, 29 1 Dynamic Programming 11 Discrete Dynamic Programming

More information

Time Delay Margin Analysis for an Adaptive Controller

Time Delay Margin Analysis for an Adaptive Controller Time Delay Margin Analysis for an Adaptive Controller Andrei Dorobantu, Peter Seiler, and Gary J. Balas Department of Aerospace Engineering & Mechanics University of Minnesota, Minneapolis, MN, 55455,

More information

Probabilistic and Set-based Model Invalidation and Estimation Using LMIs

Probabilistic and Set-based Model Invalidation and Estimation Using LMIs Preprints of the 19th World Congress The International Federation of Automatic Control Probabilistic and Set-based Model Invalidation and Estimation Using LMIs Stefan Streif Didier Henrion Rolf Findeisen

More information

Convex Computation of the Reachable Set for Controlled Polynomial Hybrid Systems

Convex Computation of the Reachable Set for Controlled Polynomial Hybrid Systems Convex Computation of the Reachable Set for Controlled Polynomial Hybrid Systems Victor Shia, Ram Vasudevan, Ruzena Bajcsy, and Russ Tedrake Abstract This paper presents an approach to computing the time-limited

More information

Lecture Note 5: Semidefinite Programming for Stability Analysis

Lecture Note 5: Semidefinite Programming for Stability Analysis ECE7850: Hybrid Systems:Theory and Applications Lecture Note 5: Semidefinite Programming for Stability Analysis Wei Zhang Assistant Professor Department of Electrical and Computer Engineering Ohio State

More information

Distributed Stability Analysis and Control of Dynamic Networks

Distributed Stability Analysis and Control of Dynamic Networks Distributed Stability Analysis and Control of Dynamic Networks M. Anghel and S. Kundu Los Alamos National Laboratory, USA August 4, 2015 Anghel & Kundu (LANL) Distributed Analysis & Control of Networks

More information

Robust Stability. Robust stability against time-invariant and time-varying uncertainties. Parameter dependent Lyapunov functions

Robust Stability. Robust stability against time-invariant and time-varying uncertainties. Parameter dependent Lyapunov functions Robust Stability Robust stability against time-invariant and time-varying uncertainties Parameter dependent Lyapunov functions Semi-infinite LMI problems From nominal to robust performance 1/24 Time-Invariant

More information

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma

Example: feasibility. Interpretation as formal proof. Example: linear inequalities and Farkas lemma 4-1 Algebra and Duality P. Parrilo and S. Lall 2006.06.07.01 4. Algebra and Duality Example: non-convex polynomial optimization Weak duality and duality gap The dual is not intrinsic The cone of valid

More information

Analysis and synthesis: a complexity perspective

Analysis and synthesis: a complexity perspective Analysis and synthesis: a complexity perspective Pablo A. Parrilo ETH ZürichZ control.ee.ethz.ch/~parrilo Outline System analysis/design Formal and informal methods SOS/SDP techniques and applications

More information

ON THE ESSENTIAL BOUNDEDNESS OF SOLUTIONS TO PROBLEMS IN PIECEWISE LINEAR-QUADRATIC OPTIMAL CONTROL. R.T. Rockafellar*

ON THE ESSENTIAL BOUNDEDNESS OF SOLUTIONS TO PROBLEMS IN PIECEWISE LINEAR-QUADRATIC OPTIMAL CONTROL. R.T. Rockafellar* ON THE ESSENTIAL BOUNDEDNESS OF SOLUTIONS TO PROBLEMS IN PIECEWISE LINEAR-QUADRATIC OPTIMAL CONTROL R.T. Rockafellar* Dedicated to J-L. Lions on his 60 th birthday Abstract. Primal and dual problems of

More information

Deterministic Dynamic Programming

Deterministic Dynamic Programming Deterministic Dynamic Programming 1 Value Function Consider the following optimal control problem in Mayer s form: V (t 0, x 0 ) = inf u U J(t 1, x(t 1 )) (1) subject to ẋ(t) = f(t, x(t), u(t)), x(t 0

More information

Double Smoothing technique for Convex Optimization Problems with Linear Constraints

Double Smoothing technique for Convex Optimization Problems with Linear Constraints 1 Double Smoothing technique for Convex Optimization Problems with Linear Constraints O. Devolder (F.R.S.-FNRS Research Fellow), F. Glineur and Y. Nesterov Center for Operations Research and Econometrics

More information

Inverse optimal control with polynomial optimization

Inverse optimal control with polynomial optimization Inverse optimal control with polynomial optimization Edouard Pauwels 1,2, Didier Henrion 1,2,3, Jean-Bernard Lasserre 1,2 Draft of March 20, 2014 Abstract In the context of optimal control, we consider

More information

Complex Dynamic Systems: Qualitative vs Quantitative analysis

Complex Dynamic Systems: Qualitative vs Quantitative analysis Complex Dynamic Systems: Qualitative vs Quantitative analysis Complex Dynamic Systems Chiara Mocenni Department of Information Engineering and Mathematics University of Siena (mocenni@diism.unisi.it) Dynamic

More information

An Introduction to Polynomial and Semi-Algebraic Optimization

An Introduction to Polynomial and Semi-Algebraic Optimization An Introduction to Polynomial and Semi-Algebraic Optimization This is the first comprehensive introduction to the powerful moment approach for solving global optimization problems (and some related problems)

More information