Collision-free scheduling: Complexity of Interference Models

Size: px
Start display at page:

Download "Collision-free scheduling: Complexity of Interference Models"

Transcription

1 Collision-free scheduling: Complexity of Interference Models Anil Vullikanti Department of Computer Science, and Virginia Bioinformatics Institute, Virginia Tech Anil Vullikanti (Virginia Tech) 1/12

2 Link Scheduling u 1 v 1 v 2 u 2 e u 3 v 3 e 2 1 e 3 u 4 v 4 e 4 I : a conflict-free link set - all links in I can be scheduled simultaneously I: set of all possible conflict-free link sets Link Scheduling Problem: choose largest subset I I Max-weight Link Scheduling Problem: choosei I s.t. wt(i )= e I wt(e) is maximized subroutine for maximizing throughput capacity ab Scheduling Complexity c of a set E of links (sc(e )): smallest k such that E = I 1... I k,where each I j is a conflict-free link set a [Tassiulas and Ephremides, 1992] b [Georgiadis, Neely and Tassiulas, 2006] c [Mosciborda, Wattenhofer and Zollinger, MobiHoc 2006] Anil Vullikanti (Virginia Tech) 2/12

3 Interference Models Disk based interference u 1 v 2 e u 2 u3 v 3 1 e 2 e3 v 1 u 4 v 4 e 4 Transmission radius for u i : r(u i )=c (J(e i )) 1/α Edges e 1 and e 2 interfere if they are within interference range in the resulting graph. Physical model: based on SINR constraints u 1 v 1 v 2 u 2 e u 3 v 3 e 2 1 e 3 u 4 v 4 e 4 Links e i can transmit simultaneously using power level J(e i )if i, J(e i ) d(u i,v i ) α N + j i J(e j ) d(u j,v i ) α β Anil Vullikanti (Virginia Tech) 3/12

4 Collision-free scheduling: models matter All interference models are NP-complete to solve optimally in general - need to explore polynomial time approximations Disk based models: Greedy works well: O(1) approximation Efficient distributed algorithms with low overhead Physical model: Natural Greedy schemes do not work well Constant factor approximations not known (yet) in general Performance estimates depend crucially on interference model, and whether or not power levels are fixed to be the same in both models Performance in Physical model can be related to static graph measures in some cases Anil Vullikanti (Virginia Tech) 4/12

5 Advantages and Disadvantages of Disk based interference models u 1 v 1 u 2 v 2 Underestimate: close-by links cannot simultaneously transmit Overestimate: far-away links cannot influence a specific link transmission Local model: Simple distributed scheduling algorithms based on local degree Anil Vullikanti (Virginia Tech) 5/12

6 Complexity of Link Scheduling Disk based models NP-complete Uniform power levels: greedy gives O(1) approximation Non-uniform power levels: Inductive Scheduling for O(1) approximation Polynomial time approximation schemes Distributed algorithms in radio broadcast model with O(log n) time Physical interference model NP-complete O(log log n) approximation to length of schedule in general, where = maxe l(e) min e l(e ) O(log ) approximation for fixed uniform/linear power levels Scheduling complexity of connectivity for any set of nodes: O(log 2 n) Anil Vullikanti (Virginia Tech) 6/12

7 Greedy heuristics for scheduling in Physical interference model Generic Greedy Heuristic: While edges in current set E are not conflict-free Remove ( edges e k satisfying CON from E Let Z = d(ui,v i ) α d(u i,v j ) α ) SRA 1 :max{ j Z kj, j Z jk} is minimized SMIRA 2 :max{ j k J(e j)z kj, j k J(e k)z jk } WCRP 3 ;LISRA 4 Instances where all these heuristics have performance Ω(n) relative to OPT 1 [Zander, 1992] 2 [Lee et al., 1995] 3 [Wang et al., 2005] 4 [Zander, 1992] Anil Vullikanti (Virginia Tech) 7/12

8 Performance Limits: Physical vs Disk Based models Power levels allowed to differ Instances Γ with sc disk (Γ) = Ω(n) foranychoice of power levels Instances Γ where uniform/linear power levels sc Phy (Γ) = Θ(n) For any instance Γ, sc Phy (Γ) = O(log 2 n)in Physical model, using non-linear power levels Same power levels in both models Uniform power level for each link: There is an instance Γ for which sc Phy (Γ) sc disk (Γ) = O(1/n) Linear power level for each link (J(e) =c l(e) α ): There is an instance Γ for which sc Phy (Γ) sc disk (Γ) =Ω(n) Anil Vullikanti (Virginia Tech) 8/12

9 Graph measures to characterize performance in Physical model Any set Γ of links can be scheduled in O(χ ρ log n) time, where χ ρ is the ρ-disturbance 5 ρ-disturbance of a link e i =(u i, v i ), χ ρ (e i ): # senders close to u i ρ-disturbance of Γ: max ei χ ρ (e i ) Can be much larger than OPT Different congestion measure based on Inductive Scheduling 6 7 C(e) ={e =(u, v ) Γ:l(e ) l(e),l(e ) c d(u, u )} OPT max e {C(e)}/ log n Set Γ can be scheduled in O(OPT log log n) time Scheduled in a distributed manner in polylogarithmic rounds 5 [Moscibroda, Oswald and Wattenhofer, 2007] 6 [Chafekar, Anil Kumar, Marathe, Parthasarathy, Srinivasan, MobiHoc 2007] 7 [Chafekar, Anil Kumar, Marathe, Parthasarathy, Srinivasan, INFOCOM 2008] Anil Vullikanti (Virginia Tech) 9/12

10 Graph measures to characterize performance in Physical model Scheduling complexity of any set Γ of links is O(I in (Γ) log n) in Physical model 8 Topology control algorithms to construct set of links with low I in Directed links: there exists connected set Γ with I in (Γ) = O(log n) for any set V of nodes Symmetric links: instances where I in =Ω( n). 8 [Moscibroda, Wattenhofer and Zollinger, MobiHoc 2006] Anil Vullikanti (Virginia Tech) 10 / 12

11 Collision-free scheduling: summary Approximate solutions necessary Computationally, Disk based models much simpler than Physical Performance estimates in disk model can be significantly different from Physical model; relative performance inconsistent Performance in Physical model can be related to static graph measures in some cases Anil Vullikanti (Virginia Tech) 11 / 12

12 Open problems Improving bounds for Physical model: graph based models with non-uniform power levels Distributed algorithms for scheduling Anil Vullikanti (Virginia Tech) 12 / 12

Approximation Algorithms for Computing Capacity of Wireless Networks with SINR constraints

Approximation Algorithms for Computing Capacity of Wireless Networks with SINR constraints Approximation Algorithms for Computing Capacity of Wireless Networks with SINR constraints Deepti Chafekar, V. S. Anil Kumar, Madhav V. Marathe,, Srinivasan Parthasarathy and Aravind Srinivasan Department

More information

A Constant-Factor Approximation for Wireless Capacity Maximization with Power Control in the SINR Model

A Constant-Factor Approximation for Wireless Capacity Maximization with Power Control in the SINR Model A Constant-Factor Approximation for Wireless Capacity Maximization with Power Control in the SINR Model Thomas Kesselheim October 17, 2010 Abstract In modern wireless networks devices are able to set the

More information

Packet Scheduling with Interference

Packet Scheduling with Interference Computer Science Computer Science Department Thomas Keßelheim Packet Scheduling with Interference Diploma Thesis January 3, 2009 Thesis advisor: Second advisor: Prof. Dr. Berthold Vöcking Prof. Dr. Petri

More information

Shortest Link Scheduling with Power Control under Physical Interference Model

Shortest Link Scheduling with Power Control under Physical Interference Model 2010 Sixth International Conference on Mobile Ad-hoc and Sensor Networks Shortest Link Scheduling with Power Control under Physical Interference Model Peng-Jun Wan Xiaohua Xu Department of Computer Science

More information

Wireless Link Scheduling under Physical Interference Model

Wireless Link Scheduling under Physical Interference Model This paper was presented as part of the main technical program at IEEE INFOCOM 2011 Wireless Link Scheduling under Physical Interference Model Peng-Jun Wan, Ophir Frieder, Xiaohua Jia, Frances Yao, Xiaohua

More information

Radio Network Clustering from Scratch

Radio Network Clustering from Scratch Radio Network Clustering from Scratch Fabian Kuhn, Thomas Moscibroda, Roger Wattenhofer {kuhn,moscitho,wattenhofer}@inf.ethz.ch Department of Computer Science, ETH Zurich, 8092 Zurich, Switzerland Abstract.

More information

Interference in Cellular Networks: The Minimum Membership Set Cover Problem

Interference in Cellular Networks: The Minimum Membership Set Cover Problem Interference in Cellular Networks: The Minimum Membership Set Cover Problem Fabian Kuhn 1, Pascal von Rickenbach 1, Roger Wattenhofer 1, Emo Welzl 2, and Aaron Zollinger 1 kuhn@tikeeethzch, pascalv@tikeeethzch,

More information

Multiflows in Multi-Channel Multi-Radio Multihop Wireless Networks

Multiflows in Multi-Channel Multi-Radio Multihop Wireless Networks This paper was presented as part of the main technical program at IEEE INFOCOM 2011 Multiflows in Multi-Channel Multi-Radio Multihop Wireless Networks Peng-Jun Wan, Yu Cheng, Zhu Wang and Frances Yao Department

More information

Fairness and Optimal Stochastic Control for Heterogeneous Networks

Fairness and Optimal Stochastic Control for Heterogeneous Networks λ 91 λ 93 Fairness and Optimal Stochastic Control for Heterogeneous Networks sensor network wired network wireless 9 8 7 6 5 λ 48 λ 42 4 3 0 1 2 λ n R n U n Michael J. Neely (USC) Eytan Modiano (MIT) Chih-Ping

More information

TRANSMISSION STRATEGIES FOR SINGLE-DESTINATION WIRELESS NETWORKS

TRANSMISSION STRATEGIES FOR SINGLE-DESTINATION WIRELESS NETWORKS The 20 Military Communications Conference - Track - Waveforms and Signal Processing TRANSMISSION STRATEGIES FOR SINGLE-DESTINATION WIRELESS NETWORKS Gam D. Nguyen, Jeffrey E. Wieselthier 2, Sastry Kompella,

More information

Maximum-Weighted Subset of Communication Requests Schedulable without Spectral Splitting

Maximum-Weighted Subset of Communication Requests Schedulable without Spectral Splitting Maximum-Weighted Subset of Communication Requests Schedulable without Spectral Splitting Peng-Jun Wan, Huaqiang Yuan, Xiaohua Jia, Jiliang Wang, and Zhu Wang School of Computer Science, Dongguan University

More information

Radio Network Distributed Algorithms in the Unknown Neighborhood Model

Radio Network Distributed Algorithms in the Unknown Neighborhood Model Radio Network Distributed Algorithms in the Unknown Neighborhood Model Bilel Derbel and El-Ghazali Talbi Laboratoire d Informatique Fondamentale de Lille LIFL Université des Sciences et Technologies de

More information

Maximizing Capacity with Power Control under Physical Interference Model in Simplex Mode

Maximizing Capacity with Power Control under Physical Interference Model in Simplex Mode Maximizing Capacity with Power Control under Physical Interference Model in Simplex Mode Peng-Jun Wan, Chao Ma, Shaojie Tang, and Boliu Xu Illinois Institute of Technology, Chicago, IL 60616 Abstract.

More information

Interference Minimization in Asymmetric Sensor Networks

Interference Minimization in Asymmetric Sensor Networks Interference Minimization in Asymmetric Sensor Networks Yves Brise 1, Kevin Buchin 2, Dustin Eversmann 3, Michael Hoffmann 1, and Wolfgang Mulzer 3 1 ETH Zürich, Switzerland, hoffmann@inf.ethz.ch 2 TU

More information

Feasible rate allocation in wireless networks

Feasible rate allocation in wireless networks Feasible rate allocation in wireless networks Ramakrishna Gummadi gummadi2@uiuc.edu Kyomin Jung kmjung@mit.edu Devavrat Shah devavrat@mit.edu Ramavarapu Sreenivas rsree@uiuc.edu Abstract Rate allocation

More information

Understanding the Capacity Region of the Greedy Maximal Scheduling Algorithm in Multi-hop Wireless Networks

Understanding the Capacity Region of the Greedy Maximal Scheduling Algorithm in Multi-hop Wireless Networks Understanding the Capacity Region of the Greedy Maximal Scheduling Algorithm in Multi-hop Wireless Networks Changhee Joo, Xiaojun Lin, and Ness B. Shroff Abstract In this paper, we characterize the performance

More information

Understanding the Capacity Region of the Greedy Maximal Scheduling Algorithm in Multi-hop Wireless Networks

Understanding the Capacity Region of the Greedy Maximal Scheduling Algorithm in Multi-hop Wireless Networks Understanding the Capacity Region of the Greedy Maximal Scheduling Algorithm in Multi-hop Wireless Networks Changhee Joo Departments of ECE and CSE The Ohio State University Email: cjoo@ece.osu.edu Xiaojun

More information

Structuring Unreliable Radio Networks

Structuring Unreliable Radio Networks Structuring Unreliable Radio Networks Keren Censor-Hillel Seth Gilbert Fabian Kuhn Nancy Lynch Calvin Newport August 25, 2013 Abstract In this paper we study the problem of building a constant-degree connected

More information

Distributed Distance-Bounded Network Design Through Distributed Convex Programming

Distributed Distance-Bounded Network Design Through Distributed Convex Programming Distributed Distance-Bounded Network Design Through Distributed Convex Programming OPODIS 2017 Michael Dinitz, Yasamin Nazari Johns Hopkins University December 18, 2017 Distance Bounded Network Design

More information

Information in Aloha Networks

Information in Aloha Networks Achieving Proportional Fairness using Local Information in Aloha Networks Koushik Kar, Saswati Sarkar, Leandros Tassiulas Abstract We address the problem of attaining proportionally fair rates using Aloha

More information

Queue Length Stability in Trees under Slowly Convergent Traffic using Sequential Maximal Scheduling

Queue Length Stability in Trees under Slowly Convergent Traffic using Sequential Maximal Scheduling 1 Queue Length Stability in Trees under Slowly Convergent Traffic using Sequential Maximal Scheduling Saswati Sarkar and Koushik Kar Abstract In this paper, we consider queue-length stability in wireless

More information

Distributed Approaches for Proportional and Max-Min Fairness in Random Access Ad Hoc Networks

Distributed Approaches for Proportional and Max-Min Fairness in Random Access Ad Hoc Networks Distributed Approaches for Proportional and Max-Min Fairness in Random Access Ad Hoc Networks Xin Wang, Koushik Kar Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute,

More information

Half-Duplex Gaussian Relay Networks with Interference Processing Relays

Half-Duplex Gaussian Relay Networks with Interference Processing Relays Half-Duplex Gaussian Relay Networks with Interference Processing Relays Bama Muthuramalingam Srikrishna Bhashyam Andrew Thangaraj Department of Electrical Engineering Indian Institute of Technology Madras

More information

On Approximating Minimum 3-connected m-dominating Set Problem in Unit Disk Graph

On Approximating Minimum 3-connected m-dominating Set Problem in Unit Disk Graph 1 On Approximating Minimum 3-connected m-dominating Set Problem in Unit Disk Graph Bei Liu, Wei Wang, Donghyun Kim, Senior Member, IEEE, Deying Li, Jingyi Wang, Alade O. Tokuta, Member, IEEE, Yaolin Jiang

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Machine Minimization for Scheduling Jobs with Interval Constraints

Machine Minimization for Scheduling Jobs with Interval Constraints Machine Minimization for Scheduling Jobs with Interval Constraints Julia Chuzhoy Sudipto Guha Sanjeev Khanna Joseph (Seffi) Naor Abstract The problem of scheduling jobs with interval constraints is a well-studied

More information

Dominating Set. Chapter 26

Dominating Set. Chapter 26 Chapter 26 Dominating Set In this chapter we present another randomized algorithm that demonstrates the power of randomization to break symmetries. We study the problem of finding a small dominating set

More information

Dominating Set. Chapter Sequential Greedy Algorithm 294 CHAPTER 26. DOMINATING SET

Dominating Set. Chapter Sequential Greedy Algorithm 294 CHAPTER 26. DOMINATING SET 294 CHAPTER 26. DOMINATING SET 26.1 Sequential Greedy Algorithm Chapter 26 Dominating Set Intuitively, to end up with a small dominating set S, nodes in S need to cover as many neighbors as possible. It

More information

Spectral Clustering - Survey, Ideas and Propositions

Spectral Clustering - Survey, Ideas and Propositions Spectral Clustering - Survey, Ideas and Propositions Manu Bansal, CSE, IITK Rahul Bajaj, CSE, IITB under the guidance of Dr. Anil Vullikanti Networks Dynamics and Simulation Sciences Laboratory Virginia

More information

Multiflows in Multihop Wireless Networks

Multiflows in Multihop Wireless Networks Multiflows in Multihop Wireless Networks [Extended Abstract] Peng-Jun Wan Department of Computer Science Illinois Institute of Technology Chicago, IL 6066 wan@cs.iit.edu ABSTRACT This paper studies maximum

More information

Approximation Algorithms and Hardness of Integral Concurrent Flow

Approximation Algorithms and Hardness of Integral Concurrent Flow Approximation Algorithms and Hardness of Integral Concurrent Flow Parinya Chalermsook Julia Chuzhoy Alina Ene Shi Li May 16, 2012 Abstract We study an integral counterpart of the classical Maximum Concurrent

More information

The maximum edge-disjoint paths problem in complete graphs

The maximum edge-disjoint paths problem in complete graphs Theoretical Computer Science 399 (2008) 128 140 www.elsevier.com/locate/tcs The maximum edge-disjoint paths problem in complete graphs Adrian Kosowski Department of Algorithms and System Modeling, Gdańsk

More information

Continuous-Model Communication Complexity with Application in Distributed Resource Allocation in Wireless Ad hoc Networks

Continuous-Model Communication Complexity with Application in Distributed Resource Allocation in Wireless Ad hoc Networks Continuous-Model Communication Complexity with Application in Distributed Resource Allocation in Wireless Ad hoc Networks Husheng Li 1 and Huaiyu Dai 2 1 Department of Electrical Engineering and Computer

More information

Initializing Newly Deployed Ad Hoc and Sensor Networks

Initializing Newly Deployed Ad Hoc and Sensor Networks Initializing Newly Deployed Ad Hoc and Sensor Networks Fabian Kuhn Computer Engineering and Networks Laboratory ETH Zurich, Switzerland kuhn@tikeeethzch Thomas Moscibroda Computer Engineering and Networks

More information

On Asynchronous Node Coloring in the SINR Model

On Asynchronous Node Coloring in the SINR Model On Asynchronous Node Coloring in the SINR Model Fabian Fuchs Institute of Theoretical Informatics Karlsruhe Institute of Technology Karlsruhe, Germany fabian.fuchs@kit.edu Abstract In this work we extend

More information

On the stability of flow-aware CSMA

On the stability of flow-aware CSMA On the stability of flow-aware CSMA Thomas Bonald, Mathieu Feuillet To cite this version: Thomas Bonald, Mathieu Feuillet. On the stability of flow-aware CSMA. Performance Evaluation, Elsevier, 010, .

More information

A Faster Distributed Radio Broadcast Primitive (Extended Abstract)

A Faster Distributed Radio Broadcast Primitive (Extended Abstract) A Faster Distributed Radio Broadcast Primitive (Extended Abstract Bernhard Haeupler Carnegie Mellon University haeupler@cs.cmu.edu David Wajc Carnegie Mellon University wajc@cs.cmu.edu ABSTRACT We present

More information

CMPUT 675: Approximation Algorithms Fall 2014

CMPUT 675: Approximation Algorithms Fall 2014 CMPUT 675: Approximation Algorithms Fall 204 Lecture 25 (Nov 3 & 5): Group Steiner Tree Lecturer: Zachary Friggstad Scribe: Zachary Friggstad 25. Group Steiner Tree In this problem, we are given a graph

More information

Node-based Distributed Optimal Control of Wireless Networks

Node-based Distributed Optimal Control of Wireless Networks Node-based Distributed Optimal Control of Wireless Networks CISS March 2006 Edmund M. Yeh Department of Electrical Engineering Yale University Joint work with Yufang Xi Main Results Unified framework for

More information

More Approximation Algorithms

More Approximation Algorithms CS 473: Algorithms, Spring 2018 More Approximation Algorithms Lecture 25 April 26, 2018 Most slides are courtesy Prof. Chekuri Ruta (UIUC) CS473 1 Spring 2018 1 / 28 Formal definition of approximation

More information

On the complexity of maximizing the minimum Shannon capacity in wireless networks by joint channel assignment and power allocation

On the complexity of maximizing the minimum Shannon capacity in wireless networks by joint channel assignment and power allocation On the complexity of maximizing the minimum Shannon capacity in wireless networks by joint channel assignment and power allocation Mikael Fallgren Royal Institute of Technology December, 2009 Abstract

More information

Approximating Minimum-Power Degree and Connectivity Problems

Approximating Minimum-Power Degree and Connectivity Problems Approximating Minimum-Power Degree and Connectivity Problems Guy Kortsarz Vahab S. Mirrokni Zeev Nutov Elena Tsanko Abstract Power optimization is a central issue in wireless network design. Given a graph

More information

Optimization in Wireless Communication

Optimization in Wireless Communication Zhi-Quan (Tom) Luo Department of Electrical and Computer Engineering University of Minnesota 200 Union Street SE Minneapolis, MN 55455 2007 NSF Workshop Challenges Optimization problems from wireless applications

More information

Effective Carrier Sensing in CSMA Networks under Cumulative Interference

Effective Carrier Sensing in CSMA Networks under Cumulative Interference INFOCOM 2010 Effective Carrier Sensing in MA Networks under Cumulative Interference Liqun Fu Soung Chang Liew Jianwei Huang Department of Information Engineering, The Chinese University of Hong Kong Introduction

More information

Understanding the Capacity Region of the Greedy Maximal Scheduling Algorithm in Multi-hop Wireless Networks

Understanding the Capacity Region of the Greedy Maximal Scheduling Algorithm in Multi-hop Wireless Networks 1 Understanding the Capacity Region of the Greedy Maximal Scheduling Algorithm in Multi-hop Wireless Networks Changhee Joo, Member, IEEE, Xiaojun Lin, Member, IEEE, and Ness B. Shroff, Fellow, IEEE Abstract

More information

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1

5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 5 Integer Linear Programming (ILP) E. Amaldi Foundations of Operations Research Politecnico di Milano 1 Definition: An Integer Linear Programming problem is an optimization problem of the form (ILP) min

More information

Efficient Algorithms to Solve a Class of Resource Allocation Problems in Large Wireless Networks

Efficient Algorithms to Solve a Class of Resource Allocation Problems in Large Wireless Networks Efficient Algorithms to Solve a Class of Resource Allocation Problems in Large Wireless Networks Jun Luo School of Computer Engineering Nanyang Technological University Singapore 639798 Email: junluo@ntu.edu.sg

More information

New algorithms for Disjoint Paths and Routing Problems

New algorithms for Disjoint Paths and Routing Problems New algorithms for Disjoint Paths and Routing Problems Chandra Chekuri Dept. of Computer Science Univ. of Illinois (UIUC) Menger s Theorem Theorem: The maximum number of s-t edgedisjoint paths in a graph

More information

TOUR: Time-sensitive Opportunistic Utility- based Routing in Delay Tolerant Networks

TOUR: Time-sensitive Opportunistic Utility- based Routing in Delay Tolerant Networks TEMPLE UNIVERSITY TOUR: Time-sensitive Opportunistic Utility- based Routing in Delay Tolerant Networks Mingjun Xiao a,b, Jie Wu b, Cong Liu c, and Liusheng Huang a a University of Science and Technology

More information

Qiang-Sheng Hua. Yuexuan Wang*

Qiang-Sheng Hua. Yuexuan Wang* Improved MLAS in Wireless Sensor Networks under the SINR Model 1 Improved Minimum Latency Aggregation Scheduling in Wireless Sensor Networks under the SINR Model Zhaoquan Gu Institute for Interdisciplinary

More information

A Note on Node Coloring in the SINR Model

A Note on Node Coloring in the SINR Model A Note on Node Coloring in the SINR Model Bilel Derbel, El-Ghazali Talbi To cite this version: Bilel Derbel, El-Ghazali Talbi. A Note on Node Coloring in the SINR Model. [Research Report] RR-7058, INRIA.

More information

New Approximations for Broadcast Scheduling via Variants of α-point Rounding

New Approximations for Broadcast Scheduling via Variants of α-point Rounding New Approximations for Broadcast Scheduling via Variants of α-point Rounding Sungjin Im Maxim Sviridenko Abstract We revisit the pull-based broadcast scheduling model. In this model, there are n unit-sized

More information

A Polynomial-Time Algorithm for Pliable Index Coding

A Polynomial-Time Algorithm for Pliable Index Coding 1 A Polynomial-Time Algorithm for Pliable Index Coding Linqi Song and Christina Fragouli arxiv:1610.06845v [cs.it] 9 Aug 017 Abstract In pliable index coding, we consider a server with m messages and n

More information

Maximizing System Throughput Using Cooperative Sensing in Multi-Channel Cognitive Radio Networks

Maximizing System Throughput Using Cooperative Sensing in Multi-Channel Cognitive Radio Networks !"#$%&'''%()*+,-,*.,%)*%/,.0#0)*%*2%()*$-)3 /,.,45,-%"67"89%:6":;%?009%@AB Maximizing System Throughput Using Cooperative Sensing in Multi-Channel Cognitive Radio Networks Shuang Li, Zizhan Zheng,

More information

Computing and Communicating Functions over Sensor Networks

Computing and Communicating Functions over Sensor Networks Computing and Communicating Functions over Sensor Networks Solmaz Torabi Dept. of Electrical and Computer Engineering Drexel University solmaz.t@drexel.edu Advisor: Dr. John M. Walsh 1/35 1 Refrences [1]

More information

arxiv: v1 [cs.dc] 22 May 2017

arxiv: v1 [cs.dc] 22 May 2017 Symmetry Breaking in the Congest Model: Timeand Message-Efficient Algorithms for Ruling Sets Shreyas Pai, Gopal Pandurangan 2, Sriram V. Pemmaraju, Talal Riaz, and Peter Robinson 3 arxiv:705.0786v [cs.dc]

More information

On the Complexity of Budgeted Maximum Path Coverage on Trees

On the Complexity of Budgeted Maximum Path Coverage on Trees On the Complexity of Budgeted Maximum Path Coverage on Trees H.-C. Wirth An instance of the budgeted maximum coverage problem is given by a set of weighted ground elements and a cost weighted family of

More information

An Ins t Ins an t t an Primer

An Ins t Ins an t t an Primer An Instant Primer Links from Course Web Page Network Coding: An Instant Primer Fragouli, Boudec, and Widmer. Network Coding an Introduction Koetter and Medard On Randomized Network Coding Ho, Medard, Shi,

More information

Characterization of SINR Region for Interfering Links with Constrained Power

Characterization of SINR Region for Interfering Links with Constrained Power SUBMITTED TO IEEE TRANSACTIONS ON INFORMATION THEORY Characterization of SINR Region for Interfering Links with Constrained Power Hajar Mahdavi-Doost, Masoud Ebrahimi, and Amir K. Khandani Abstract In

More information

Visual Correlation-Based Image Gathering for Wireless Multimedia Sensor Networks

Visual Correlation-Based Image Gathering for Wireless Multimedia Sensor Networks This paper was presented as part of the main technical program at IEEE INFOCOM 2011 Visual Correlation-Based Image Gathering for Wireless Multimedia Sensor Networks Pu Wang, Rui Dai, and Ian F. Akyildiz

More information

Networks: space-time stochastic models for networks

Networks: space-time stochastic models for networks Mobile and Delay Tolerant Networks: space-time stochastic models for networks Philippe Jacquet Alcatel-Lucent Bell Labs France Plan of the talk Short history of wireless networking Information in space-time

More information

Minimum Latency Link Scheduling under Protocol Interference Model

Minimum Latency Link Scheduling under Protocol Interference Model Minimum Latency Link Scheduling under Protocol Interference Model Peng-Jun Wan wan@cs.iit.edu Peng-Jun Wan (wan@cs.iit.edu) Minimum Latency Link Scheduling under Protocol Interference Model 1 / 31 Outline

More information

A Distributed CSMA Algorithm for Wireless Networks based on Ising Model

A Distributed CSMA Algorithm for Wireless Networks based on Ising Model A Distributed CSMA Algorithm for Wireless Networks based on Ising Model Yi Wang and Ye Xia Department of Computer and Information Science and Engineering University of Florida, Gainesville, FL 32611, USA

More information

Data Gathering and Personalized Broadcasting in Radio Grids with Interferences

Data Gathering and Personalized Broadcasting in Radio Grids with Interferences Data Gathering and Personalized Broadcasting in Radio Grids with Interferences Jean-Claude Bermond a,b,, Bi Li b,a,c, Nicolas Nisse b,a, Hervé Rivano d, Min-Li Yu e a Univ. Nice Sophia Antipolis, CNRS,

More information

Topology Control with Limited Geometric Information

Topology Control with Limited Geometric Information Topology Control with Limited Geometric Information Kevin Lillis and Sriram V. Pemmaraju Department of Computer Science The University of Iowa, Iowa City, IA 52242-1419, USA, [lillis, sriram]@cs.uiowa.edu

More information

CSE 421 Dynamic Programming

CSE 421 Dynamic Programming CSE Dynamic Programming Yin Tat Lee Weighted Interval Scheduling Interval Scheduling Job j starts at s(j) and finishes at f j and has weight w j Two jobs compatible if they don t overlap. Goal: find maximum

More information

1 Primals and Duals: Zero Sum Games

1 Primals and Duals: Zero Sum Games CS 124 Section #11 Zero Sum Games; NP Completeness 4/15/17 1 Primals and Duals: Zero Sum Games We can represent various situations of conflict in life in terms of matrix games. For example, the game shown

More information

4. How to prove a problem is NPC

4. How to prove a problem is NPC The reducibility relation T is transitive, i.e, A T B and B T C imply A T C Therefore, to prove that a problem A is NPC: (1) show that A NP (2) choose some known NPC problem B define a polynomial transformation

More information

Dominating Set. Chapter 7

Dominating Set. Chapter 7 Chapter 7 Dominating Set In this chapter we present another randomized algorithm that demonstrates the power of randomization to break symmetries. We study the problem of finding a small dominating set

More information

Dynamic Power Allocation and Routing for Time Varying Wireless Networks

Dynamic Power Allocation and Routing for Time Varying Wireless Networks Dynamic Power Allocation and Routing for Time Varying Wireless Networks X 14 (t) X 12 (t) 1 3 4 k a P ak () t P a tot X 21 (t) 2 N X 2N (t) X N4 (t) µ ab () rate µ ab µ ab (p, S 3 ) µ ab µ ac () µ ab (p,

More information

A Local Broadcast Layer for the SINR Network Model

A Local Broadcast Layer for the SINR Network Model A Local Broadcast Layer for the SINR Network Model Magnús M. Halldórsson mmh@ru.is Reykjavik University Stephan Holzer holzer@csail.mit.edu MIT Nancy Lynch lynch@csail.mit.edu MIT arxiv:505.0454v [cs.dc]

More information

On the Throughput-Optimality of CSMA Policies in Multihop Wireless Networks

On the Throughput-Optimality of CSMA Policies in Multihop Wireless Networks Technical Report Computer Networks Research Lab Department of Computer Science University of Toronto CNRL-08-002 August 29th, 2008 On the Throughput-Optimality of CSMA Policies in Multihop Wireless Networks

More information

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016

U.C. Berkeley CS294: Spectral Methods and Expanders Handout 11 Luca Trevisan February 29, 2016 U.C. Berkeley CS294: Spectral Methods and Expanders Handout Luca Trevisan February 29, 206 Lecture : ARV In which we introduce semi-definite programming and a semi-definite programming relaxation of sparsest

More information

Data Gathering and Personalized Broadcasting in Radio Grids with Interferences

Data Gathering and Personalized Broadcasting in Radio Grids with Interferences Data Gathering and Personalized Broadcasting in Radio Grids with Interferences Jean-Claude Bermond a,, Bi Li a,b, Nicolas Nisse a, Hervé Rivano c, Min-Li Yu d a Coati Project, INRIA I3S(CNRS/UNSA), Sophia

More information

Minimizing Interference in Wireless Networks. Yves Brise, ETH Zürich, Joint work with Marek, Michael, and Tobias.

Minimizing Interference in Wireless Networks. Yves Brise, ETH Zürich, Joint work with Marek, Michael, and Tobias. Minimizing Interference in Wireless Networks Yves Brise, ETH Zürich, 20100302 Joint work with Marek, Michael, and Tobias. The Problem The Problem Formal Description Input: Output: Set V of n vertices in

More information

Characterization of Rate Region in Interference Channels with Constrained Power

Characterization of Rate Region in Interference Channels with Constrained Power Characterization of Rate Region in Interference Channels with Constrained Power Hajar Mahdavi-Doost, Masoud Ebrahimi, and Amir K. Khandani Coding & Signal Transmission Laboratory Department of Electrical

More information

This means that we can assume each list ) is

This means that we can assume each list ) is This means that we can assume each list ) is of the form ),, ( )with < and Since the sizes of the items are integers, there are at most +1pairs in each list Furthermore, if we let = be the maximum possible

More information

FAIRNESS FOR DISTRIBUTED ALGORITHMS

FAIRNESS FOR DISTRIBUTED ALGORITHMS FAIRNESS FOR DISTRIBUTED ALGORITHMS A Dissertation submitted to the Faculty of the Graduate School of Arts and Sciences of Georgetown University in partial fulfillment of the requirements for the degree

More information

Clique Number vs. Chromatic Number in Wireless Interference Graphs: Simulation Results

Clique Number vs. Chromatic Number in Wireless Interference Graphs: Simulation Results The University of Kansas Technical Report Clique Number vs. Chromatic Number in Wireless Interference Graphs: Simulation Results Pradeepkumar Mani, David W. Petr ITTC-FY2007-TR-41420-01 March 2007 Project

More information

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved.

Chapter 11. Approximation Algorithms. Slides by Kevin Wayne Pearson-Addison Wesley. All rights reserved. Chapter 11 Approximation Algorithms Slides by Kevin Wayne. Copyright @ 2005 Pearson-Addison Wesley. All rights reserved. 1 Approximation Algorithms Q. Suppose I need to solve an NP-hard problem. What should

More information

Scheduling in switching networks

Scheduling in switching networks Scheduling in switching networks Leonidas Tsepenekas National Technical University of Athens June 10, 2015 Leonidas Tsepenekas (NTUA) Theory of Computation June 10, 2015 1 / 16 Overview 1 Introduction

More information

Node-based Service-Balanced Scheduling for Provably Guaranteed Throughput and Evacuation Time Performance

Node-based Service-Balanced Scheduling for Provably Guaranteed Throughput and Evacuation Time Performance Node-based Service-Balanced Scheduling for Provably Guaranteed Throughput and Evacuation Time Performance Yu Sang, Gagan R. Gupta, and Bo Ji Member, IEEE arxiv:52.02328v2 [cs.ni] 8 Nov 207 Abstract This

More information

Distributed Scheduling Algorithms for Optimizing Information Freshness in Wireless Networks

Distributed Scheduling Algorithms for Optimizing Information Freshness in Wireless Networks Distributed Scheduling Algorithms for Optimizing Information Freshness in Wireless Networks Rajat Talak, Sertac Karaman, and Eytan Modiano arxiv:803.06469v [cs.it] 7 Mar 208 Abstract Age of Information

More information

Computing Large Independent Sets in a Single Round

Computing Large Independent Sets in a Single Round Computing Large Independent Sets in a Single Round Magnús M. Halldórsson and Christian Konrad 2 ICE-TCS, School of Computer Science, Reykjavik University, Menntavegur, 0 Reykjavik, Iceland, mmh@ru.is 2

More information

On the Design of Efficient CSMA Algorithms for Wireless Networks

On the Design of Efficient CSMA Algorithms for Wireless Networks On the Design of Efficient CSMA Algorithms for Wireless Networks J. Ghaderi and R. Srikant Department of ECE and Coordinated Science Lab. University of Illinois at Urbana-Champaign {jghaderi, rsrikant}@illinois.edu

More information

The k-neighbors Approach to Interference Bounded and Symmetric Topology Control in Ad Hoc Networks

The k-neighbors Approach to Interference Bounded and Symmetric Topology Control in Ad Hoc Networks The k-neighbors Approach to Interference Bounded and Symmetric Topology Control in Ad Hoc Networks Douglas M. Blough Mauro Leoncini Giovanni Resta Paolo Santi Abstract Topology control, wherein nodes adjust

More information

Lecture 15 (Oct 6): LP Duality

Lecture 15 (Oct 6): LP Duality CMPUT 675: Approximation Algorithms Fall 2014 Lecturer: Zachary Friggstad Lecture 15 (Oct 6): LP Duality Scribe: Zachary Friggstad 15.1 Introduction by Example Given a linear program and a feasible solution

More information

Approximation Algorithms for the k-set Packing Problem

Approximation Algorithms for the k-set Packing Problem Approximation Algorithms for the k-set Packing Problem Marek Cygan Institute of Informatics University of Warsaw 20th October 2016, Warszawa Marek Cygan Approximation Algorithms for the k-set Packing Problem

More information

On the Complexity of Radio Communication

On the Complexity of Radio Communication On the Complexity of Radio Communication Extended Abstract) Noga Alon Amotz Bar-Noy Nathan Linial David Peleg Abstract A radio network is a synchronous network of processors that communicate by transmitting

More information

On queueing in coded networks queue size follows degrees of freedom

On queueing in coded networks queue size follows degrees of freedom On queueing in coded networks queue size follows degrees of freedom Jay Kumar Sundararajan, Devavrat Shah, Muriel Médard Laboratory for Information and Decision Systems, Massachusetts Institute of Technology,

More information

CSE 417. Chapter 4: Greedy Algorithms. Many Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved.

CSE 417. Chapter 4: Greedy Algorithms. Many Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. CSE 417 Chapter 4: Greedy Algorithms Many Slides by Kevin Wayne. Copyright 2005 Pearson-Addison Wesley. All rights reserved. 1 Greed is good. Greed is right. Greed works. Greed clarifies, cuts through,

More information

Flow-level performance of wireless data networks

Flow-level performance of wireless data networks Flow-level performance of wireless data networks Aleksi Penttinen Department of Communications and Networking, TKK Helsinki University of Technology CLOWN seminar 28.8.08 1/31 Outline 1. Flow-level model

More information

Broadcasting With Side Information

Broadcasting With Side Information Department of Electrical and Computer Engineering Texas A&M Noga Alon, Avinatan Hasidim, Eyal Lubetzky, Uri Stav, Amit Weinstein, FOCS2008 Outline I shall avoid rigorous math and terminologies and be more

More information

Minimizing the Number of Tardy Jobs

Minimizing the Number of Tardy Jobs Minimizing the Number of Tardy Jobs 1 U j Example j p j d j 1 10 10 2 2 11 3 7 13 4 4 15 5 8 20 Ideas: Need to choose a subset of jobs S that meet their deadlines. Schedule the jobs that meet their deadlines

More information

Contention Resolution on a Fading Channel

Contention Resolution on a Fading Channel Contention Resolution on a Fading Channel ABSTRACT Jeremy T. Fineman Georgetown University jfineman@cs.georgetown.edu Fabian Kuhn U. of Freiburg, Germany kuhn@cs.uni-freiburg.de In this paper, we study

More information

Approximation algorithms for conflict-free channel assignment in wireless ad hoc networks

Approximation algorithms for conflict-free channel assignment in wireless ad hoc networks WIRELESS COMMUNICATIONS AND MOBILE COMPUTING Wirel. Commun. Mob. Comput. 2006; 6:201 211 Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/wcm.380 Approximation algorithms

More information

Scheduling on Unrelated Machines under Tree-Like Precedence Constraints

Scheduling on Unrelated Machines under Tree-Like Precedence Constraints Scheduling on Unrelated Machines under Tree-Like Precedence Constraints V.S. Anil Kumar 1 Madhav V. Marathe 2 Srinivasan Parthasarathy 3 Aravind Srinivasan 4 Abstract We present polylogarithmic approximations

More information

Recursion. Computational complexity

Recursion. Computational complexity List. Babes-Bolyai University arthur@cs.ubbcluj.ro Overview List 1 2 List Second Laboratory Test List Will take place week 12, during the laboratory You will receive one problem statement, from what was

More information

2.2 Asymptotic Order of Growth. definitions and notation (2.2) examples (2.4) properties (2.2)

2.2 Asymptotic Order of Growth. definitions and notation (2.2) examples (2.4) properties (2.2) 2.2 Asymptotic Order of Growth definitions and notation (2.2) examples (2.4) properties (2.2) Asymptotic Order of Growth Upper bounds. T(n) is O(f(n)) if there exist constants c > 0 and n 0 0 such that

More information

arxiv: v1 [cs.dc] 4 Oct 2018

arxiv: v1 [cs.dc] 4 Oct 2018 Distributed Reconfiguration of Maximal Independent Sets Keren Censor-Hillel 1 and Mikael Rabie 2 1 Department of Computer Science, Technion, Israel, ckeren@cs.technion.ac.il 2 Aalto University, Helsinki,

More information