On-Line Construction. of Suffix Trees. Overview. Suffix Trees. Notations. goo. Suffix tries

Size: px
Start display at page:

Download "On-Line Construction. of Suffix Trees. Overview. Suffix Trees. Notations. goo. Suffix tries"

Transcription

1 On-Line Cnstrutin Overview Suffix tries f Suffix Trees E. Ukknen On-line nstrutin f suffix tries in qudrti time Suffix trees On-line nstrutin f suffix trees in liner time Applitins 1 2 Suffix Trees A suffix tree is trie-like dt struture representing ll suffixes f string. Nttins Let T = t 1 t n be string. Fr 0 i n, let T i = t 1 t i dente the g g i-length prefix f T. Fr 1 i n + 1, let T i = t i t n dente the suffix f T tht strts t the i th psitin. 3 Let σ(t) = {T i 1 i n + 1}. 4

2 Suffix Tries The suffix trie f T, dented by STrie(T), is trie representing σ(t). Suffix Tries (nt.) Definitin: STrie(T) is n ugmented DFA, STrie(T) = (Q { }, rt, F, g, f) where: 5 Q = {x x is substring f T} is the set f the sttes f the DFA. is n uxiliry stte. rt is the initil stte, rrespnding t the empty string ε. F = σ(t) is the set f finite sttes. 6 Suffix Tries (nt.) g : Q { } Σ Q ( prtil funtin) is the trnsitin funtin, defined s fllws: g(x,) = y fr ll x,y Q nd Σ, s.t. y = x. g(,) = rt fr ll Σ. f : Q Q { } is the suffix funtin defined s fllws: f(x) = y fr ll x,y Q, x rt, s.t Σ, s.t. x = y. f(rt) =. 7 An Exmple STrie() Σ ε 8

3 The Size f Suffix Tries Therem: The size f STrie(T), where T = n, is O(n 2 ). Prf: The size f STrie(T) is liner in the number f substrings f T. T hs t mst O(n 2 ) substrings. Thus the size f STrie(T) is O(n 2 ). 9 On-Line Cnstrutin f Suffix Tries Let T = t 1 t n. 1 i n, the lgrithm nstruts STrie(T i ). First we nstrut STrie(T 0 ) = STrie(ε). Then, 1 i n, we btin STrie(T i ) frm STrie(T i-1 ). 10 On-Line Cnstrutin f Suffix Tries (nt.) Observtin 1: σ(t i ) = {xt i x σ(ti-1 )} {ε}. Observtin 2: The suffixes f T i n be fund by strting t the stte T i nd fllwing the suffix links, until ε. Thus, σ(t i ) = {f j (T i ) 0 j i}. Definitin: The pth frm T i t fllwing the suffix links is lled the bundry pth 11 f STrie(T i ). On-Line Cnstrutin f Suffix Tries (nt.) Σ ε 12

4 STrie(T i-1 ) STrie(T i ) The Algrithm Σ rete STrie(ε) tp ε fr i 1 t n d r tp while g(r,t i ) is undefined d rete new stte r nd g(r,t i ) r if r tp then f(ld-r ) r ld-r r r f(r) f(ld-r ) g(r,t i ) tp g(tp,t i ) The Algrithm (nt.) Running Time Σ Therem: The running time f the lgrithm is liner in the size f STrie(T), whih is, in wrst se, O( T 2 )

5 Running Time (nt.) rete STrie(ε) tp ε fr i 1 t n d r tp while g(r, t i ) is undefined d rete new stte r nd g(r, t i ) r if r tp then f(ld-r ) r ld-r r r f(r) f(ld-r ) g(r, t i ) O(1) fr eh nde dded t STrie(T) 17 Suffix Trees A suffix tree STree(T) represents STrie(T) in spe liner in T. This is hieved by representing nly subset f Q { } f Q { }, lled the expliit sttes. 18 Expliit nd Impliit Sttes Definitin: A stte q is lled expliit in the fllwing ses: q is lef q is brnhing stte (hs t lest tw trnsitins) rt nd re ls defined t be brnhing sttes. Otherwise (if q hs extly ne trnsitins nd is nt the rt r ), q is lled impliit. 19 Expliit nd Impliit Sttes (nt). Σ 20

6 Generlized Trnsitin Funtin The string w spelled ut by the trnsitin pth in STrie(T) between tw expliit sttes s nd r is represented in STree(T) s generlized trnsitin g (s,w) = r. STrie(T) STree(T) Σ A generlized trnsitin g (s,w) = r is lled n -trnsitin if Σ nd v Σ* s.t. w = v. Nte tht fr eh expliit stte s nd Σ 21 there is t mst ne -trnsitin frm s. 22 STrie(T) STree(T) Σ STrie(T) STree(T) Σ 23 24

7 Suffix Links Definitin: If x Q is brnhing stte nd x = y, where Σ, then the suffix link f x is defined by f (x) = y, nd f (ε) =. Prpsitin: If x Q is brnhing stte nd f (x) = y then y is ls brnhing stte. STree(T) STree(T) = (Q { }, rt, g, f ). Σ Prf: b Σ s.t. x nd xb re substrings f T. y is suffix f x. Thus y nd yb re 25 ls substrings f T. 26 The Size f Suffix Trees Referene Pirs Therem: The size f STree(T), where T = n, is O(n). Prf: Sine we represent eh substring w = t k t p f T by pir pinters (k,p), the size f STree(T) is liner in the number f expliit sttes. STree(T) hs t mst n leves, nd thus t mst n - 1 brnhing sttes. Therefre, the size f STree(T) is Definitin: Let r be n expliit r impliit stte. (s,w) is lled referene pir fr r if: s is n expliit stte nd n nestr f r. w is the string spelled ut by the trnsitins frm s t r in the rrespnding suffix trie. Definitin: A referene pir (s,w) fr r is lled nnil if s is the lsest expliit nestr f r (r r itself, if it is expliit). O(n)

8 Ative Pint nd Endpint Ative Pint nd Endpint (nt.) Let s 1 = T i-1, s 2,, s i = rt, s i+1 = be the bundry pth f STrie(T i-1 ). The endpint Σ Definitin: s j is lled the tive pint f STrie(T i-1 ) if j is the smllest index fr whih s j is nt lef. Definitin: s j is lled the endpint f The tive pint STrie(T i-1 ) if j is the smllest index fr Ative Pint nd Endpint (nt.) Adding t i -Trnsitins t STrie(T i-1 ) Prpsitin: s j nd s j re well defined nd Prf: j j. rt is nt lef s j is defined. g(,t i ) is defined s j is defined. g(s j,t i ) is defined s j is nt lef Lemm: When btining STrie(T i ) frm STrie(T i-1 ) the lgrithm dds t i -trnsitin t eh stte s h s.t. 1 h < j, nd nly t these sttes, s fllws: Fr 1 h < j, the new trnsitin expnds n ld brnh f the trie tht ends t s h. Fr j h < j, the new trnsitin initites new brnh frm s h. j j

9 Adding t i -Trnsitins t STrie(T i-1 ) (nt.) The endpint Σ On-Line Cnstrutin f Suffix Trees We rete STree(ε), nd then 1 i n we btin STree(T i ) frm STree(T i-1 ). The tive pint When btining STree(T i ) frm STree(T i-1 ), we updte STree(T i-1 ) rding t the trnsitins we wuld dd t STrie(T i-1 ). 33 Nte tht s 1,,s i-1 re nt neessrily expliit sttes. 34 On-Line Cnstrutin f Suffix Trees (nt.) On-Line Cnstrutin f Suffix Trees (nt.) Fr 1 h < j: Fr j h < j : s h is lef. Thus, s, 0 k i-1 s.t. g (s, (k,i-1)) = s h. We reple this trnsitin by g (s,(k,i)) = s h. If s h is n impliit stte, we turn it int n expliit stte by splitting the trnsitin ntining it. This wuld tke t muh time. Thus, we dente trnsitins f the type g (s,(k,i-1)) in STree(T i-1 ) by g (s,(k, )). Hene, n 35 updtes re needed. We rete new lef s h t i nd dd new trnsitin g (s h,(i, )). 36

10 On-Line Cnstrutin f Suffix Trees (nt.) Lemm 1 Σ EPAP EP Σ EP Lemm 1: Let (s,(k,p)) be sme referene pir fr stte r. Then s, k s.t. (s,(k,p)) is the nnil referene pir fr r. AP Prf: Let s be the lsest expliit nestr f r, r r itself if r is expliit. t k t p is the pth frm the expliit stte s t r. Thus, the pth frm s t r is suffix t k t p f 37 t k t p. 38 Lemm 2 Lemm 3 Lemm 2: Let r be stte n the bundry pth f STrie(T i ). Then s, k s.t. (s,(k,i)) is the nnil referene pir fr r. Lemm 3: Let (s,(k,i-1)) be referene pir fr the endpint f STrie(T i-1 ). Then (s, (k,i)) is referene pir fr the tive pint f STrie(T i ). Prf: r is n the bundry pth f STrie(T i ). r refers t sme suffix t k t i f T i. (ε,(k,i)) is referene pir fr r. the lim hlds by lemm Prf: s j is the tive pint f STrie(T i-1 ) iff t j t i-1 is the lngest suffix f T i-1 tht urs t lest twie in T i-1. 40

11 Lemm 3 (nt.) The Algrithm Prf (nt.): s j is the endpint f STrie(T i-1 ) iff t j t i-1 is the lngest suffix f T i-1 suh tht t j t i-1 t i is substring f T i-1. Thus, if s j is the endpint f STrie(T i-1 ), then t j t i-1 t i is the lngest suffix f T i tht urs t lest twie in T i. rete STree(ε) s rt Therefre, s j t i is the tive pint f k 1 fr i 1 t n d (s,k) updte(s,(k,i)) (s,k) nnize(s,(k,i)) Trnsfrms STree(T i-1 ) int STree(T i ). Input: (s,(k,i)) s.t. (s,(k,i-1) is the tive pint f STrie(T i-1 ). Output: (s,k ) s.t. (s,(k,i-1) is the endpint f STrie(T i-1 ). Input: referene pir (s,(k,p)) fr sme stte r. Output: (s,k ) s.t. (s, (k,p)) is the nnil referene pir fr r. updte(s,(k,i)) ld-r rt (endpint,r) test-nd-split(s,(k,i-1),t i ) while nt endpint d rete new stte r ; g (r,(i, )) r if ld-r rt then f (ld-r) r ld-r r (s,k) nnize(f (s),(k,i-1)) Input: the nnil referene pir fr sme stte r, nd t i. Output: true/flse if r is the endpint r nt, nd the expliit stte r (reting it if needed). (endpint,r) test-nd-split(s,(k,i-1),t i ) updte (3, ) (1, ) (1,2) Σ (5, ) (5, ) (2,2) (2, ) (5, ) (3, ) s s = = rt k = i = if ld-r rt then f (ld-r) s return (s,k) 43 44

12 test-nd-split(s,(k,p),t) nnize(s,(k,p)) if k p then if p < k then return (s,k) find the t k -trnsitin g (s,(k,p )) = s frm s else if t = t k +p-k+1 then return (true,s) find the t k -trnsitin g (s,(k,p )) = s frm s else while p k p k d rete new stte r k k + p k + 1 reple g (s,(k,p )) = s by g (s,(k,k +p-k)) = r s s nd g (r,(k +p-k+1,p )) = s if k p then return (flse,r) find the t k -trnsitin g (s,(k,p )) = s frm s else if t-trnsitin frm s then return (flse,s) 45 return (s,k) 46 Running Time Therem: The running time f the lgrithm is O(n). Prf: We divide the running time int tw mpnents: 1. The ttl time f the predure nnize. 2. The rest. 47 updte ld-r rt (endpint,r) test-nd-split(s,(k,i-1),t i ) while nt endpint d rete new stte r ; g (r,(i, )) r if ld-r rt then f (ld-r) r ld-r r Clled n times (s,k) nnize(f (s),(k,i-1)) (endpint,r) test-nd-split(s,(k,i-1),t i ) O(1) if ld-r rt then f (ld-r) s In eh exeutin f the lp, new stte is reted. 48

13 nnize if p < k then return (s,k) else find the t k -trnsitin g (s,(k,p )) = s frm s In eh while p k p k d exeutin f the lp, the vlue f k k + p k + 1 k inreses. s s frm s if k p then Clled O(n) times find the t k -trnsitin g (s,(k,p )) = s 49 Applitins - Ext String Mthing Input: tw strings: text T nd pttern P. Output: ll the urrenes f P in T. This prblem n be slved in O( T + P ) time (Byer-Mre, Knuth-Mrris-Prtt). 50 Applitins - Ext String Mthing (nt.) Applitins - Ext String Mthing (nt.) We lk t the se where we hve text T first, nd then sequene f ptterns P 1,,P r. This prblem n be slved using suffix trees. Prepressing time: O( T ). Finding pttern P: O( P +k), where k is the bbbbb b bbb# # b # b bb# b bb# b# b # # bbb# number f urrenes f P in T

14 Applitins in Bilgy Finding Repets in DNA The DNA ntins mny repetitive sequenes with different bilgil funtins. We wnt t find ll mximl repets in DNA sequene. ACCAGTTCGCGCATGAACGTTCGACCGGTTCGAT Finding Repets in DNA (nt.) Therem: All mximl repets in sequene T n be fund in O( T ) time using suffix trees. Finding Repets in DNA (nt.) Lemm: If w is mximl repet in T, then the stte w in STree(T) is expliit. Prf: If w is mximl repet then there re t lest tw urrenes f w in T s.t. the hrter fllwing w is different. Thus w is brnhing stte, nd therefre it is expliit

15 Finding Repets in DNA (nt.) Crllry: There re t mst O( T ) mximl repets in T. Finding Repets in DNA (nt.) Definitin: The left hrter f lef t i t n f STree(T) is t i-1. Prf: By the bve lemm, eh mximl repet rrespnds t n expliit stte. Sine STree(T) hs O( T ) expliit sttes, T hs O( T ) mximl repets. Definitin: A nde w f STree(T) is lled left diverse if there re t lest tw leves in w s subtree with different left hrters. 57 Nte tht, by definitin, left diverse nde 58 is nt lef. Finding Repets in DNA (nt.) Finding Repets in DNA (nt.) Lemm: A substring w f T is mximl repet iff w is left diverse expliit stte in STree(T). 59 Prf: 1. Suppse w is mximl repet. i. By the previus lemm w is expliit. ii. b Σ s.t w nd bw re substrings f T. Let wu nd bwv be the rrespnding suffixes. wu nd wv re tw leves in the subtree f w with different left hrters. 60

16 Finding Repets in DNA (nt.) 2. Suppse tht w is expliit nd left diverse. (i) (ii) w w w wd bw bwd bw 61 Finding Repets in DNA (nt.) CAGCATAGC LD GCAT AGC# - G A TAGC# G # GC C ATAGC# # C LD LD LD T A TAGC# C LD GC ATAGC# The mximl repets: ε, C, CA, A, AGC A A # TAGC# # 62 A C A Bibligrphy On-Line Cnstrutin f Suffix Trees E. Ukknen Algrithms n String, Trees, nd Sequenes Dn Gusfield 63

MAT 1275: Introduction to Mathematical Analysis

MAT 1275: Introduction to Mathematical Analysis MAT 75: Intrdutin t Mthemtil Anlysis Dr. A. Rzenlyum Trignmetri Funtins fr Aute Angles Definitin f six trignmetri funtins Cnsider the fllwing girffe prlem: A girffe s shdw is 8 meters. Hw tll is the girffe

More information

Global alignment. Genome Rearrangements Finding preserved genes. Lecture 18

Global alignment. Genome Rearrangements Finding preserved genes. Lecture 18 Computt onl Biology Leture 18 Genome Rerrngements Finding preserved genes We hve seen before how to rerrnge genome to obtin nother one bsed on: Reversls Knowledge of preserved bloks (or genes) Now we re

More information

Suffix Trees. Philip Bille

Suffix Trees. Philip Bille Suffix Trees Philip Bille Outline String ictinr prlem Tries Suffix trees Applictins f suffix trees Cnstructing suffix trees Suffix srting String Dictinries String Dictinr Prlem The string ictinr prlem:

More information

Ternary Directed Acyclic Word Graphs

Ternary Directed Acyclic Word Graphs Ternry Direted Ayli Wrd Grphs Stru Miymt, Shunsuke Ineng,, Msyuki Tked,, nd Ayumi Shinhr, Deprtment f Infrmtis, Kyushu University 33, Fukuk 812-8581, Jpn PRESTO, Jpn Siene nd Tehnlgy Crprtin (JST) E-mil:

More information

Data Structures and Algorithm. Xiaoqing Zheng

Data Structures and Algorithm. Xiaoqing Zheng Dt Strutures nd Algorithm Xioqing Zheng zhengxq@fudn.edu.n String mthing prolem Pttern P ours with shift s in text T (or, equivlently, tht pttern P ours eginning t position s + in text T) if T[s +... s

More information

Automata and Languages

Automata and Languages Automt nd Lnguges Prof. Mohmed Hmd Softwre Engineering Lb. The University of Aizu Jpn Grmmr Regulr Grmmr Context-free Grmmr Context-sensitive Grmmr Regulr Lnguges Context Free Lnguges Context Sensitive

More information

Prefix-Free Regular-Expression Matching

Prefix-Free Regular-Expression Matching Prefix-Free Regulr-Expression Mthing Yo-Su Hn, Yjun Wng nd Derik Wood Deprtment of Computer Siene HKUST Prefix-Free Regulr-Expression Mthing p.1/15 Pttern Mthing Given pttern P nd text T, find ll sustrings

More information

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α

Discrete Structures, Test 2 Monday, March 28, 2016 SOLUTIONS, VERSION α Disrete Strutures, Test 2 Mondy, Mrh 28, 2016 SOLUTIONS, VERSION α α 1. (18 pts) Short nswer. Put your nswer in the ox. No prtil redit. () Consider the reltion R on {,,, d with mtrix digrph of R.. Drw

More information

Anatomy of a Deterministic Finite Automaton. Deterministic Finite Automata. A machine so simple that you can understand it in less than one minute

Anatomy of a Deterministic Finite Automaton. Deterministic Finite Automata. A machine so simple that you can understand it in less than one minute Victor Admchik Dnny Sletor Gret Theoreticl Ides In Computer Science CS 5-25 Spring 2 Lecture 2 Mr 3, 2 Crnegie Mellon University Deterministic Finite Automt Finite Automt A mchine so simple tht you cn

More information

OVERVIEW Using Similarity and Proving Triangle Theorems G.SRT.4

OVERVIEW Using Similarity and Proving Triangle Theorems G.SRT.4 OVRVIW Using Similrity nd Prving Tringle Therems G.SRT.4 G.SRT.4 Prve therems ut tringles. Therems include: line prllel t ne side f tringle divides the ther tw prprtinlly, nd cnversely; the Pythgren Therem

More information

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6

CS311 Computational Structures Regular Languages and Regular Grammars. Lecture 6 CS311 Computtionl Strutures Regulr Lnguges nd Regulr Grmmrs Leture 6 1 Wht we know so fr: RLs re losed under produt, union nd * Every RL n e written s RE, nd every RE represents RL Every RL n e reognized

More information

SMARANDACHE GROUPOIDS

SMARANDACHE GROUPOIDS SMARANDACHE GROUPOIDS W. B. Vsnth Kndsmy Deprtment f Mthemtics Indin Institute f Technlgy Mdrs Chenni - 6 6 Indi. E-mil: vsntk@md.vsnl.net.in Astrct: In this pper we study the cncept f Smrndche Grupids

More information

MAT 1275: Introduction to Mathematical Analysis

MAT 1275: Introduction to Mathematical Analysis 1 MT 1275: Intrdutin t Mtemtil nlysis Dr Rzenlyum Slving Olique Tringles Lw f Sines Olique tringles tringles tt re nt neessry rigt tringles We re ging t slve tem It mens t find its si elements sides nd

More information

1.4 Nonregular Languages

1.4 Nonregular Languages 74 1.4 Nonregulr Lnguges The number of forml lnguges over ny lphbet (= decision/recognition problems) is uncountble On the other hnd, the number of regulr expressions (= strings) is countble Hence, ll

More information

Chapter Summary. Mathematical Induction Strong Induction Recursive Definitions Structural Induction Recursive Algorithms

Chapter Summary. Mathematical Induction Strong Induction Recursive Definitions Structural Induction Recursive Algorithms Chapter 5 1 Chapter Summary Mathematical Inductin Strng Inductin Recursive Definitins Structural Inductin Recursive Algrithms Sectin 5.1 3 Sectin Summary Mathematical Inductin Examples f Prf by Mathematical

More information

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of:

22: Union Find. CS 473u - Algorithms - Spring April 14, We want to maintain a collection of sets, under the operations of: 22: Union Fin CS 473u - Algorithms - Spring 2005 April 14, 2005 1 Union-Fin We wnt to mintin olletion of sets, uner the opertions of: 1. MkeSet(x) - rete set tht ontins the single element x. 2. Fin(x)

More information

7. SOLVING OBLIQUE TRIANGLES: THE LAW OF SINES

7. SOLVING OBLIQUE TRIANGLES: THE LAW OF SINES 7 SOLVING OLIQUE TRINGLES: THE LW OF SINES n ique tringe is ne withut n nge f mesure 90 When either tw nges nd side re knwn (S) in the tringe r tw sides nd the nge ppsite ne f them (SS) is given, then

More information

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages

Grammar. Languages. Content 5/10/16. Automata and Languages. Regular Languages. Regular Languages 5//6 Grmmr Automt nd Lnguges Regulr Grmmr Context-free Grmmr Context-sensitive Grmmr Prof. Mohmed Hmd Softwre Engineering L. The University of Aizu Jpn Regulr Lnguges Context Free Lnguges Context Sensitive

More information

11.2. Infinite Series

11.2. Infinite Series .2 Infinite Series 76.2 Infinite Series An infinite series is the sum f n infinite seuence f numbers + 2 + 3 + Á + n + Á The gl f this sectin is t understnd the mening f such n infinite sum nd t develp

More information

The Laws of Sines and Cosines

The Laws of Sines and Cosines The Lws f Sines nd sines I The Lw f Sines We hve redy seen tht with the ute nge hs re: re sin In se is tuse, then we hve re h where sin 80 h 0 h sin 80 S re Thus, the frmu: 0 h sin y the Suppementry nge

More information

Minimal DFA. minimal DFA for L starting from any other

Minimal DFA. minimal DFA for L starting from any other Miniml DFA Among the mny DFAs ccepting the sme regulr lnguge L, there is exctly one (up to renming of sttes) which hs the smllest possile numer of sttes. Moreover, it is possile to otin tht miniml DFA

More information

Module 9: Tries and String Matching

Module 9: Tries and String Matching Module 9: Tries nd String Mtching CS 240 - Dt Structures nd Dt Mngement Sjed Hque Veronik Irvine Tylor Smith Bsed on lecture notes by mny previous cs240 instructors Dvid R. Cheriton School of Computer

More information

Module 9: Tries and String Matching

Module 9: Tries and String Matching Module 9: Tries nd String Mtching CS 240 - Dt Structures nd Dt Mngement Sjed Hque Veronik Irvine Tylor Smith Bsed on lecture notes by mny previous cs240 instructors Dvid R. Cheriton School of Computer

More information

System Validation (IN4387) November 2, 2012, 14:00-17:00

System Validation (IN4387) November 2, 2012, 14:00-17:00 System Vlidtion (IN4387) Novemer 2, 2012, 14:00-17:00 Importnt Notes. The exmintion omprises 5 question in 4 pges. Give omplete explntion nd do not onfine yourself to giving the finl nswer. Good luk! Exerise

More information

CS 491G Combinatorial Optimization Lecture Notes

CS 491G Combinatorial Optimization Lecture Notes CS 491G Comintoril Optimiztion Leture Notes Dvi Owen July 30, August 1 1 Mthings Figure 1: two possile mthings in simple grph. Definition 1 Given grph G = V, E, mthing is olletion of eges M suh tht e i,

More information

1.3 Regular Expressions

1.3 Regular Expressions 56 1.3 Regulr xpressions These hve n importnt role in describing ptterns in serching for strings in mny pplictions (e.g. wk, grep, Perl,...) All regulr expressions of lphbet re 1.Ønd re regulr expressions,

More information

STRAND F: GEOMETRY F1 Angles and Symmetry

STRAND F: GEOMETRY F1 Angles and Symmetry PRIMRY Mthemtis SKE, Strn F UNIT F1 ngles n Symmetry: Text STRND F: GEOMETRY F1 ngles n Symmetry Text ntents Setin F1.1 Mesuring ngles F1.2 Line n Rttinl Symmetry F1.3 ngle Gemetry F1.4 ngles with Prllel

More information

Computational Biology Lecture 18: Genome rearrangements, finding maximal matches Saad Mneimneh

Computational Biology Lecture 18: Genome rearrangements, finding maximal matches Saad Mneimneh Computtionl Biology Leture 8: Genome rerrngements, finding miml mthes Sd Mneimneh We hve seen how to rerrnge genome to otin nother one sed on reversls nd the knowledge of the preserved loks or genes. Now

More information

exact matching: topics

exact matching: topics Exc Mching exc mching: pics exc mching serch pern P in ex T (P,T srings) Knuh Mrris Pr preprcessing pern P Ah Crsick pern f severl srings P = { P 1,, P r } Suffix Trees preprcessing ex T r severl exs dse

More information

CS 573 Automata Theory and Formal Languages

CS 573 Automata Theory and Formal Languages Non-determinism Automt Theory nd Forml Lnguges Professor Leslie Lnder Leture # 3 Septemer 6, 2 To hieve our gol, we need the onept of Non-deterministi Finite Automton with -moves (NFA) An NFA is tuple

More information

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018

Finite Automata Theory and Formal Languages TMV027/DIT321 LP4 2018 Finite Automt Theory nd Forml Lnguges TMV027/DIT321 LP4 2018 Lecture 10 An Bove April 23rd 2018 Recp: Regulr Lnguges We cn convert between FA nd RE; Hence both FA nd RE ccept/generte regulr lnguges; More

More information

Solutions to Assignment 1

Solutions to Assignment 1 MTHE 237 Fll 2015 Solutions to Assignment 1 Problem 1 Find the order of the differentil eqution: t d3 y dt 3 +t2 y = os(t. Is the differentil eqution liner? Is the eqution homogeneous? b Repet the bove

More information

Chapter 2 Finite Automata

Chapter 2 Finite Automata Chpter 2 Finite Automt 28 2.1 Introduction Finite utomt: first model of the notion of effective procedure. (They lso hve mny other pplictions). The concept of finite utomton cn e derived y exmining wht

More information

Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1

Non-Deterministic Finite Automata. Fall 2018 Costas Busch - RPI 1 Non-Deterministic Finite Automt Fll 2018 Costs Busch - RPI 1 Nondeterministic Finite Automton (NFA) Alphbet ={} q q2 1 q 0 q 3 Fll 2018 Costs Busch - RPI 2 Nondeterministic Finite Automton (NFA) Alphbet

More information

Math 105: Review for Exam I - Solutions

Math 105: Review for Exam I - Solutions 1. Let f(x) = 3 + x + 5. Math 105: Review fr Exam I - Slutins (a) What is the natural dmain f f? [ 5, ), which means all reals greater than r equal t 5 (b) What is the range f f? [3, ), which means all

More information

Statistical modeling with stochastic processes. Alexandre Bouchard-Côté Lecture 11, Monday April 4

Statistical modeling with stochastic processes. Alexandre Bouchard-Côté Lecture 11, Monday April 4 Sttistil mdeling with sthsti presses Alexndre Buhrd-Côté Leture 11, Mndy April 4 1 Prgrm fr tdy Bet, Pissn nd Gmm presses DDP nd sequene memizer 2 Pitmn-Yr press Pitmn-Yr press: Strt with the CRP, nd bst

More information

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers. Mehryar Mohri Courant Institute and Google Research

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers. Mehryar Mohri Courant Institute and Google Research Speech Recognition Lecture 2: Finite Automt nd Finite-Stte Trnsducers Mehryr Mohri Cournt Institute nd Google Reserch mohri@cims.nyu.com Preliminries Finite lphet Σ, empty string. Set of ll strings over

More information

Convert the NFA into DFA

Convert the NFA into DFA Convert the NF into F For ech NF we cn find F ccepting the sme lnguge. The numer of sttes of the F could e exponentil in the numer of sttes of the NF, ut in prctice this worst cse occurs rrely. lgorithm:

More information

Tries and suffixes trees

Tries and suffixes trees Trie: A dt-structure for set of words Tries nd suffixes trees Alon Efrt Comuter Science Dertment University of Arizon All words over the lhet Σ={,,..z}. In the slides, let sy tht the lhet is only {,,c,d}

More information

11.1 Finite Automata. CS125 Lecture 11 Fall Motivation: TMs without a tape: maybe we can at least fully understand such a simple model?

11.1 Finite Automata. CS125 Lecture 11 Fall Motivation: TMs without a tape: maybe we can at least fully understand such a simple model? CS125 Lecture 11 Fll 2016 11.1 Finite Automt Motivtion: TMs without tpe: mybe we cn t lest fully understnd such simple model? Algorithms (e.g. string mtching) Computing with very limited memory Forml verifiction

More information

CS 275 Automata and Formal Language Theory

CS 275 Automata and Formal Language Theory CS 275 Automt nd Forml Lnguge Theory Course Notes Prt II: The Recognition Problem (II) Chpter II.5.: Properties of Context Free Grmmrs (14) Anton Setzer (Bsed on book drft by J. V. Tucker nd K. Stephenson)

More information

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers

Speech Recognition Lecture 2: Finite Automata and Finite-State Transducers Speech Recognition Lecture 2: Finite Automt nd Finite-Stte Trnsducers Eugene Weinstein Google, NYU Cournt Institute eugenew@cs.nyu.edu Slide Credit: Mehryr Mohri Preliminries Finite lphet, empty string.

More information

NON-DETERMINISTIC FSA

NON-DETERMINISTIC FSA Tw o types of non-determinism: NON-DETERMINISTIC FS () Multiple strt-sttes; strt-sttes S Q. The lnguge L(M) ={x:x tkes M from some strt-stte to some finl-stte nd ll of x is proessed}. The string x = is

More information

Greedy Algorithms. Kye Halsted. Edited by Chuck Cusack. These notes are based on chapter 17 of [1] and lectures from CSCE423/823, Spring 2001.

Greedy Algorithms. Kye Halsted. Edited by Chuck Cusack. These notes are based on chapter 17 of [1] and lectures from CSCE423/823, Spring 2001. #! Greedy Algrithms Kye Halsted Edited by Chuk Cusak These ntes are based n hapter 17 f [1] and letures frm CCE423/823, pring 2001. Greedy algrithms slve prblems by making the hie that seems best at the

More information

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution

Technische Universität München Winter term 2009/10 I7 Prof. J. Esparza / J. Křetínský / M. Luttenberger 11. Februar Solution Tehnishe Universität Münhen Winter term 29/ I7 Prof. J. Esprz / J. Křetínský / M. Luttenerger. Ferur 2 Solution Automt nd Forml Lnguges Homework 2 Due 5..29. Exerise 2. Let A e the following finite utomton:

More information

FINITE BOOLEAN ALGEBRA. 1. Deconstructing Boolean algebras with atoms. Let B = <B,,,,,0,1> be a Boolean algebra and c B.

FINITE BOOLEAN ALGEBRA. 1. Deconstructing Boolean algebras with atoms. Let B = <B,,,,,0,1> be a Boolean algebra and c B. FINITE BOOLEAN ALGEBRA 1. Decnstructing Blean algebras with atms. Let B = be a Blean algebra and c B. The ideal generated by c, (c], is: (c] = {b B: b c} The filter generated by c, [c), is:

More information

Chapter 4 State-Space Planning

Chapter 4 State-Space Planning Leture slides for Automted Plnning: Theory nd Prtie Chpter 4 Stte-Spe Plnning Dn S. Nu CMSC 722, AI Plnning University of Mrylnd, Spring 2008 1 Motivtion Nerly ll plnning proedures re serh proedures Different

More information

CMSC 330: Organization of Programming Languages. DFAs, and NFAs, and Regexps (Oh my!)

CMSC 330: Organization of Programming Languages. DFAs, and NFAs, and Regexps (Oh my!) CMSC 330: Orgniztion of Progrmming Lnguges DFAs, nd NFAs, nd Regexps (Oh my!) CMSC330 Spring 2018 Types of Finite Automt Deterministic Finite Automt (DFA) Exctly one sequence of steps for ech string All

More information

Finite State Automata and Determinisation

Finite State Automata and Determinisation Finite Stte Automt nd Deterministion Tim Dworn Jnury, 2016 Lnguges fs nf re df Deterministion 2 Outline 1 Lnguges 2 Finite Stte Automt (fs) 3 Non-deterministi Finite Stte Automt (nf) 4 Regulr Expressions

More information

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite!

Solutions for HW9. Bipartite: put the red vertices in V 1 and the black in V 2. Not bipartite! Solutions for HW9 Exerise 28. () Drw C 6, W 6 K 6, n K 5,3. C 6 : W 6 : K 6 : K 5,3 : () Whih of the following re iprtite? Justify your nswer. Biprtite: put the re verties in V 1 n the lk in V 2. Biprtite:

More information

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points:

Algorithms & Data Structures Homework 8 HS 18 Exercise Class (Room & TA): Submitted by: Peer Feedback by: Points: Eidgenössishe Tehnishe Hohshule Zürih Eole polytehnique fédérle de Zurih Politenio federle di Zurigo Federl Institute of Tehnology t Zurih Deprtement of Computer Siene. Novemer 0 Mrkus Püshel, Dvid Steurer

More information

Subsequence Automata with Default Transitions

Subsequence Automata with Default Transitions Susequene Automt with Defult Trnsitions Philip Bille, Inge Li Gørtz, n Freerik Rye Skjoljensen Tehnil University of Denmrk {phi,inge,fskj}@tu.k Astrt. Let S e string of length n with hrters from n lphet

More information

AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton

AUTOMATA AND LANGUAGES. Definition 1.5: Finite Automaton 25. Finite Automt AUTOMATA AND LANGUAGES A system of computtion tht only hs finite numer of possile sttes cn e modeled using finite utomton A finite utomton is often illustrted s stte digrm d d d. d q

More information

Balanced binary search trees

Balanced binary search trees 02110 Inge Li Gørtz Overview Blnced binry serch trees: Red-blck trees nd 2-3-4 trees Amortized nlysis Dynmic progrmming Network flows String mtching String indexing Computtionl geometry Introduction to

More information

A new Type of Fuzzy Functions in Fuzzy Topological Spaces

A new Type of Fuzzy Functions in Fuzzy Topological Spaces IOSR Jurnal f Mathematics (IOSR-JM e-issn: 78-578, p-issn: 39-765X Vlume, Issue 5 Ver I (Sep - Oct06, PP 8-4 wwwisrjurnalsrg A new Type f Fuzzy Functins in Fuzzy Tplgical Spaces Assist Prf Dr Munir Abdul

More information

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs

Counting Paths Between Vertices. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs. Isomorphism of Graphs Isomorphism of Grphs Definition The simple grphs G 1 = (V 1, E 1 ) n G = (V, E ) re isomorphi if there is ijetion (n oneto-one n onto funtion) f from V 1 to V with the property tht n re jent in G 1 if

More information

CS241 Week 6 Tutorial Solutions

CS241 Week 6 Tutorial Solutions 241 Week 6 Tutoril olutions Lnguges: nning & ontext-free Grmmrs Winter 2018 1 nning Exerises 1. 0x0x0xd HEXINT 0x0 I x0xd 2. 0xend--- HEXINT 0xe I nd ER -- MINU - 3. 1234-120x INT 1234 INT -120 I x 4.

More information

Running an NFA & the subset algorithm (NFA->DFA) CS 350 Fall 2018 gilray.org/classes/fall2018/cs350/

Running an NFA & the subset algorithm (NFA->DFA) CS 350 Fall 2018 gilray.org/classes/fall2018/cs350/ Running n NFA & the suset lgorithm (NFA->DFA) CS 350 Fll 2018 gilry.org/lsses/fll2018/s350/ 1 NFAs operte y simultneously exploring ll pths nd epting if ny pth termintes t n ept stte.!2 Try n exmple: L

More information

Prefix-Free Subsets of Regular Languages and Descriptional Complexity

Prefix-Free Subsets of Regular Languages and Descriptional Complexity Prefix-Free Susets of Regulr Lnguges nd Descriptionl Complexity Jozef Jirásek Jurj Šeej DCFS 2015 Prefix-Free Susets of Regulr Lnguges nd Descriptionl Complexity Jozef Jirásek, Jurj Šeej 1/22 Outline Mximl

More information

Non Deterministic Automata. Linz: Nondeterministic Finite Accepters, page 51

Non Deterministic Automata. Linz: Nondeterministic Finite Accepters, page 51 Non Deterministic Automt Linz: Nondeterministic Finite Accepters, pge 51 1 Nondeterministic Finite Accepter (NFA) Alphbet ={} q 1 q2 q 0 q 3 2 Nondeterministic Finite Accepter (NFA) Alphbet ={} Two choices

More information

5. (±±) Λ = fw j w is string of even lengthg [ 00 = f11,00g 7. (11 [ 00)± Λ = fw j w egins with either 11 or 00g 8. (0 [ ffl)1 Λ = 01 Λ [ 1 Λ 9.

5. (±±) Λ = fw j w is string of even lengthg [ 00 = f11,00g 7. (11 [ 00)± Λ = fw j w egins with either 11 or 00g 8. (0 [ ffl)1 Λ = 01 Λ [ 1 Λ 9. Regulr Expressions, Pumping Lemm, Right Liner Grmmrs Ling 106 Mrch 25, 2002 1 Regulr Expressions A regulr expression descries or genertes lnguge: it is kind of shorthnd for listing the memers of lnguge.

More information

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations

More Foundations. Undirected Graphs. Degree. A Theorem. Graphs, Products, & Relations Mr Funtins Grphs, Pruts, & Rltins Unirt Grphs An unirt grph is pir f 1. A st f ns 2. A st f gs (whr n g is st f tw ns*) Friy, Sptmr 2, 2011 Ring: Sipsr 0.2 ginning f 0.4; Stughtn 1.1.5 ({,,,,}, {{,}, {,},

More information

Synchronization of regular automata

Synchronization of regular automata Synhrniztin f regulr utmt Didier Cul IM CNRS Université Pris-Est ul@univ-mlv.fr strt. Funtinl grph grmmrs re finite devies whih generte the lss f regulr utmt. We rell the ntin f synhrniztin y grmmrs, nd

More information

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions.

T b a(f) [f ] +. P b a(f) = Conclude that if f is in AC then it is the difference of two monotone absolutely continuous functions. Rel Vribles, Fll 2014 Problem set 5 Solution suggestions Exerise 1. Let f be bsolutely ontinuous on [, b] Show tht nd T b (f) P b (f) f (x) dx [f ] +. Conlude tht if f is in AC then it is the differene

More information

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University

CS415 Compilers. Lexical Analysis and. These slides are based on slides copyrighted by Keith Cooper, Ken Kennedy & Linda Torczon at Rice University CS415 Compilers Lexicl Anlysis nd These slides re sed on slides copyrighted y Keith Cooper, Ken Kennedy & Lind Torczon t Rice University First Progrmming Project Instruction Scheduling Project hs een posted

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

CS 360 Exam 2 Fall 2014 Name

CS 360 Exam 2 Fall 2014 Name CS 360 Exm 2 Fll 2014 Nme 1. The lsses shown elow efine singly-linke list n stk. Write three ifferent O(n)-time versions of the reverse_print metho s speifie elow. Eh version of the metho shoul output

More information

Alignment of Long Sequences. BMI/CS Spring 2016 Anthony Gitter

Alignment of Long Sequences. BMI/CS Spring 2016 Anthony Gitter Alignment of Long Sequences BMI/CS 776 www.biostt.wisc.edu/bmi776/ Spring 2016 Anthony Gitter gitter@biostt.wisc.edu Gols for Lecture Key concepts how lrge-scle lignment differs from the simple cse the

More information

Lecture 6: Coding theory

Lecture 6: Coding theory Leture 6: Coing theory Biology 429 Crl Bergstrom Ferury 4, 2008 Soures: This leture loosely follows Cover n Thoms Chpter 5 n Yeung Chpter 3. As usul, some of the text n equtions re tken iretly from those

More information

State Minimization for DFAs

State Minimization for DFAs Stte Minimiztion for DFAs Red K & S 2.7 Do Homework 10. Consider: Stte Minimiztion 4 5 Is this miniml mchine? Step (1): Get rid of unrechle sttes. Stte Minimiztion 6, Stte is unrechle. Step (2): Get rid

More information

Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh

Finite Automata. Informatics 2A: Lecture 3. John Longley. 22 September School of Informatics University of Edinburgh Lnguges nd Automt Finite Automt Informtics 2A: Lecture 3 John Longley School of Informtics University of Edinburgh jrl@inf.ed.c.uk 22 September 2017 1 / 30 Lnguges nd Automt 1 Lnguges nd Automt Wht is

More information

Homology groups of disks with holes

Homology groups of disks with holes Hmlgy grups f disks with hles THEOREM. Let p 1,, p k } be a sequence f distinct pints in the interir unit disk D n where n 2, and suppse that fr all j the sets E j Int D n are clsed, pairwise disjint subdisks.

More information

Regular expressions, Finite Automata, transition graphs are all the same!!

Regular expressions, Finite Automata, transition graphs are all the same!! CSI 3104 /Winter 2011: Introduction to Forml Lnguges Chpter 7: Kleene s Theorem Chpter 7: Kleene s Theorem Regulr expressions, Finite Automt, trnsition grphs re ll the sme!! Dr. Neji Zgui CSI3104-W11 1

More information

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true.

1. For each of the following theorems, give a two or three sentence sketch of how the proof goes or why it is not true. York University CSE 2 Unit 3. DFA Clsses Converting etween DFA, NFA, Regulr Expressions, nd Extended Regulr Expressions Instructor: Jeff Edmonds Don t chet y looking t these nswers premturely.. For ech

More information

NFAs and Regular Expressions. NFA-ε, continued. Recall. Last class: Today: Fun:

NFAs and Regular Expressions. NFA-ε, continued. Recall. Last class: Today: Fun: CMPU 240 Lnguge Theory nd Computtion Spring 2019 NFAs nd Regulr Expressions Lst clss: Introduced nondeterministic finite utomt with -trnsitions Tody: Prove n NFA- is no more powerful thn n NFA Introduce

More information

Deterministic Finite-State Automata

Deterministic Finite-State Automata Deterministic Finite-Stte Automt Deepk D Souz Deprtment of Computer Science nd Automtion Indin Institute of Science, Bnglore. 12 August 2013 Outline 1 Introduction 2 Exmple DFA 1 DFA for Odd number of

More information

a n = 1 58 a n+1 1 = 57a n + 1 a n = 56(a n 1) 57 so 0 a n+1 1, and the required result is true, by induction.

a n = 1 58 a n+1 1 = 57a n + 1 a n = 56(a n 1) 57 so 0 a n+1 1, and the required result is true, by induction. MAS221(216-17) Exm Solutions 1. (i) A is () bounded bove if there exists K R so tht K for ll A ; (b) it is bounded below if there exists L R so tht L for ll A. e.g. the set { n; n N} is bounded bove (by

More information

Logic Synthesis and Verification

Logic Synthesis and Verification Logi Synthesis nd Verifition SOPs nd Inompletely Speified Funtions Jie-Hong Rolnd Jing 江介宏 Deprtment of Eletril Engineering Ntionl Tiwn University Fll 2010 Reding: Logi Synthesis in Nutshell Setion 2 most

More information

CHAPTER 1 Regular Languages. Contents. definitions, examples, designing, regular operations. Non-deterministic Finite Automata (NFA)

CHAPTER 1 Regular Languages. Contents. definitions, examples, designing, regular operations. Non-deterministic Finite Automata (NFA) Finite Automt (FA or DFA) CHAPTER Regulr Lnguges Contents definitions, exmples, designing, regulr opertions Non-deterministic Finite Automt (NFA) definitions, equivlence of NFAs DFAs, closure under regulr

More information

Distributions, spatial statistics and a Bayesian perspective

Distributions, spatial statistics and a Bayesian perspective Distributins, spatial statistics and a Bayesian perspective Dug Nychka Natinal Center fr Atmspheric Research Distributins and densities Cnditinal distributins and Bayes Thm Bivariate nrmal Spatial statistics

More information

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications

AP CALCULUS Test #6: Unit #6 Basic Integration and Applications AP CALCULUS Test #6: Unit #6 Bsi Integrtion nd Applitions A GRAPHING CALCULATOR IS REQUIRED FOR SOME PROBLEMS OR PARTS OF PROBLEMS IN THIS PART OF THE EXAMINATION. () The ext numeril vlue of the orret

More information

Exercises Chapter 1. Exercise 1.1. Let Σ be an alphabet. Prove wv = w + v for all strings w and v.

Exercises Chapter 1. Exercise 1.1. Let Σ be an alphabet. Prove wv = w + v for all strings w and v. 1 Exercises Chpter 1 Exercise 1.1. Let Σ e n lphet. Prove wv = w + v for ll strings w nd v. Prove # (wv) = # (w)+# (v) for every symol Σ nd every string w,v Σ. Exercise 1.2. Let w 1,w 2,...,w k e k strings,

More information

Where did dynamic programming come from?

Where did dynamic programming come from? Where did dynmic progrmming come from? String lgorithms Dvid Kuchk cs302 Spring 2012 Richrd ellmn On the irth of Dynmic Progrmming Sturt Dreyfus http://www.eng.tu.c.il/~mi/cd/ or50/1526-5463-2002-50-01-0048.pdf

More information

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition

Data Structures LECTURE 10. Huffman coding. Example. Coding: problem definition Dt Strutures, Spring 24 L. Joskowiz Dt Strutures LEURE Humn oing Motivtion Uniquel eipherle oes Prei oes Humn oe onstrution Etensions n pplitions hpter 6.3 pp 385 392 in tetook Motivtion Suppose we wnt

More information

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 4 1. UsetheproceduredescriedinLemm1.55toconverttheregulrexpression(((00) (11)) 01) into n NFA. Answer: 0 0 1 1 00 0 0 11 1 1 01 0 1 (00)

More information

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation

1.1. Linear Constant Coefficient Equations. Remark: A differential equation is an equation 1 1.1. Liner Constnt Coefficient Equtions Section Objective(s): Overview of Differentil Equtions. Liner Differentil Equtions. Solving Liner Differentil Equtions. The Initil Vlue Problem. 1.1.1. Overview

More information

Section 1.3 Triangles

Section 1.3 Triangles Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior

More information

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.1: The Radial Probability Density. Ron Reifenberger Professor of Physics Purdue University

Modern Physics. Unit 6: Hydrogen Atom - Radiation Lecture 6.1: The Radial Probability Density. Ron Reifenberger Professor of Physics Purdue University Mdern Physics Unit 6: Hydrgen Atm - Rditin Lecture 6.1: The Rdil Prbbility Density Rn Reifenberger Prfessr f Physics Purdue University 1 Prbbility Density Prbbility Density * ΨΨ = Ψ In 1-D, the prbbility

More information

Bisimulation, Games & Hennessy Milner logic

Bisimulation, Games & Hennessy Milner logic Bisimultion, Gmes & Hennessy Milner logi Leture 1 of Modelli Mtemtii dei Proessi Conorrenti Pweł Soboiński Univeristy of Southmpton, UK Bisimultion, Gmes & Hennessy Milner logi p.1/32 Clssil lnguge theory

More information

Page 1

Page 1 nswers: (997-9 HKMO Het vents) reted by: Mr. Frncis Hung Lst updted: 0 ecember 0 97-9 Individul 0 6 66 7 9 9 0 7 7 6 97-9 Grup 6 7 9 0 0 9 Individul vents I Given tht + + is divisible by ( ) nd ( ), where

More information

Finite Automata. Informatics 2A: Lecture 3. Mary Cryan. 21 September School of Informatics University of Edinburgh

Finite Automata. Informatics 2A: Lecture 3. Mary Cryan. 21 September School of Informatics University of Edinburgh Finite Automt Informtics 2A: Lecture 3 Mry Cryn School of Informtics University of Edinburgh mcryn@inf.ed.c.uk 21 September 2018 1 / 30 Lnguges nd Automt Wht is lnguge? Finite utomt: recp Some forml definitions

More information

NFA and regex. the Boolean algebra of languages. non-deterministic machines. regular expressions

NFA and regex. the Boolean algebra of languages. non-deterministic machines. regular expressions NFA nd regex l the Boolen lger of lnguges non-deterministi mhines regulr expressions Informtis The intersetion of two regulr lnguges is regulr Run oth mhines in prllel? Build one mhine tht simultes two

More information

19 Optimal behavior: Game theory

19 Optimal behavior: Game theory Intro. to Artificil Intelligence: Dle Schuurmns, Relu Ptrscu 1 19 Optiml behvior: Gme theory Adversril stte dynmics hve to ccount for worst cse Compute policy π : S A tht mximizes minimum rewrd Let S (,

More information

Tree Structured Classifier

Tree Structured Classifier Tree Structured Classifier Reference: Classificatin and Regressin Trees by L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stne, Chapman & Hall, 98. A Medical Eample (CART): Predict high risk patients

More information

Finite Automata-cont d

Finite Automata-cont d Automt Theory nd Forml Lnguges Professor Leslie Lnder Lecture # 6 Finite Automt-cont d The Pumping Lemm WEB SITE: http://ingwe.inghmton.edu/ ~lnder/cs573.html Septemer 18, 2000 Exmple 1 Consider L = {ww

More information

Closure Properties of Regular Languages

Closure Properties of Regular Languages Closure Properties of Regulr Lnguges Regulr lnguges re closed under mny set opertions. Let L 1 nd L 2 e regulr lnguges. (1) L 1 L 2 (the union) is regulr. (2) L 1 L 2 (the conctention) is regulr. (3) L

More information

Compression of Palindromes and Regularity.

Compression of Palindromes and Regularity. Compression of Plinromes n Regulrity. Kyoko Shikishim-Tsuji Center for Lierl Arts Eution n Reserh Tenri University 1 Introution In [1], property of likstrem t t view of tse is isusse n it is shown tht

More information

Pre-Lie algebras, rooted trees and related algebraic structures

Pre-Lie algebras, rooted trees and related algebraic structures Pre-Lie lgers, rooted trees nd relted lgeri strutures Mrh 23, 2004 Definition 1 A pre-lie lger is vetor spe W with mp : W W W suh tht (x y) z x (y z) = (x z) y x (z y). (1) Exmple 2 All ssoitive lgers

More information

PYTHAGORAS THEOREM WHAT S IN CHAPTER 1? IN THIS CHAPTER YOU WILL:

PYTHAGORAS THEOREM WHAT S IN CHAPTER 1? IN THIS CHAPTER YOU WILL: PYTHAGORAS THEOREM 1 WHAT S IN CHAPTER 1? 1 01 Squres, squre roots nd surds 1 02 Pythgors theorem 1 03 Finding the hypotenuse 1 04 Finding shorter side 1 05 Mixed prolems 1 06 Testing for right-ngled tringles

More information