Absolute Extrema. Joseph Lee. Metropolitan Community College

Size: px
Start display at page:

Download "Absolute Extrema. Joseph Lee. Metropolitan Community College"

Transcription

1 Metropolitan Community College

2 Let f be a function defined over some interval I. An absolute minimum occurs at c if f (c) f (x) for all x in I. An absolute maximum occurs at c if f (c) f (x) for all x in I.

3 Extreme Value Theorem If f is a continuous function on a closed interval [a, b], then f possesses both an absolute minimum and an absolute maximum.

4 Relative Minima and Maxima Let c be a real number in the open interval (a, b). A relative minimum occurs at c if f (c) f (x) for all x in (a, b). A relative maximum occurs at c if f (x) f (x) for all x in (a, b).

5 Critical Numbers Let f (c) be defined. Then c is called a critical number of f if f (c) = 0 or f (c) is undefined.

6 Example 1. Find the absolute extrema on the closed interval [ 3, 3]. f (x) = x 2 x 6

7 Example 1. Find the absolute extrema on the closed interval [ 3, 3]. f (x) = x 2 x 6 f (x) = 2x 1

8 Example 1. Find the absolute extrema on the closed interval [ 3, 3]. f (x) = x 2 x 6 f (x) = 2x 1 0 = 2x 1

9 Example 1. Find the absolute extrema on the closed interval [ 3, 3]. f (x) = x 2 x 6 f (x) = 2x 1 0 = 2x = x

10 Example 1. Find the absolute extrema on the closed interval [ 3, 3]. f (x) = x 2 x 6 f (x) = 2x 1 0 = 2x 1 f ( 3) = 6 f 1 2 = x ( ) 1 = f (3) = 0

11 Example 1. Find the absolute extrema on the closed interval [ 3, 3]. f (x) = x 2 x 6 f (x) = 2x 1 0 = 2x = x ( ) 1 f ( 3) = 6 f = 25 f (3) = ( ) 1 Absolute Minimum: 2, 25 Absolute Maximum: (3, 6) 4

12 Example 2. Find the absolute extrema on the closed interval [0, 2π]. g(x) = sin x

13 Example 2. Find the absolute extrema on the closed interval [0, 2π]. g(x) = sin x g (x) = cos x

14 Example 2. Find the absolute extrema on the closed interval [0, 2π]. g(x) = sin x g (x) = cos x 0 = cos x

15 Example 2. Find the absolute extrema on the closed interval [0, 2π]. g(x) = sin x g (x) = cos x 0 = cos x x = π 2, 3π 2

16 Example 2. Find the absolute extrema on the closed interval [0, 2π]. g(x) = sin x g (x) = cos x 0 = cos x g(0) = 0 x = π 2, 3π 2 ( π ) ( ) 3π g = 1 g = 1 g(2π) = 0 2 2

17 Example 2. Find the absolute extrema on the closed interval [0, 2π]. g(x) = sin x g (x) = cos x 0 = cos x g(0) = 0 Absolute Minimum: ( π ) g = 1 g 2 ( ) 3π 2, 1 x = π 2, 3π 2 ( ) 3π = 1 g(2π) = 0 2 ( π ) 2, 1 Absolute Maximum:

18 Example 3. Find the absolute extrema on the closed interval [ 1 2, 5]. h(x) = x x

19 Example 3. Find the absolute extrema on the closed interval [ 1 2, 5]. h(x) = x x h(x) = x + 1 x

20 Example 3. Find the absolute extrema on the closed interval [ 1 2, 5]. h(x) = x x h(x) = x + 1 x h (x) = 1 1 x 2

21 Example 3. Find the absolute extrema on the closed interval [ 1 2, 5]. h(x) = x x h(x) = x + 1 x h (x) = 1 1 x 2 0 = 1 1 x 2

22 Example 3. Find the absolute extrema on the closed interval [ 1 2, 5]. h(x) = x x h(x) = x + 1 x h (x) = 1 1 x 2 0 = 1 1 x 2 x = ±1

23 Example 3. Find the absolute extrema on the closed interval [ 1 2, 5]. h(x) = x x h(x) = x + 1 x h (x) = 1 1 x 2 0 = 1 1 x 2 h ( ) 1 = x = ±1 h(1) = 2 h(5) = 26 5

24 Example 3. (continued) Find the absolute extrema on the closed interval [ 1 2, 5]. h ( ) 1 = h(x) = x x h(1) = 2 h(5) = 26 5

25 Example 3. (continued) Find the absolute extrema on the closed interval [ 1 2, 5]. h ( ) 1 = Absolute Minimum: (1, 2) h(x) = x x h(1) = 2 h(5) = 26 5 ( Absolute Maximum: 5, 26 ) 5

26 Example 4. Find the absolute extrema on the closed interval [0, 5]. k(x) = x 3

27 Example 4. Find the absolute extrema on the closed interval [0, 5]. k(x) = x 3 k(x) = { x 3 x 3 (x 3) x < 3

28 Example 4. Find the absolute extrema on the closed interval [0, 5]. k(x) = x 3 k(x) = k (x) = { x 3 x 3 (x 3) x < 3 { 1 x > 3 1 x < 3

29 Example 4. Find the absolute extrema on the closed interval [0, 5]. k(x) = x 3 k(x) = k (x) = { x 3 x 3 (x 3) x < 3 { 1 x > 3 1 x < 3 k (x) 0

30 Example 4. Find the absolute extrema on the closed interval [0, 5]. k(x) = x 3 k(x) = k (x) = { x 3 x 3 (x 3) x < 3 { 1 x > 3 1 x < 3 k (x) 0 k(0) = 3 k(3) = 0 k(5) = 2

31 Example 4. Find the absolute extrema on the closed interval [0, 5]. k(x) = x 3 k(x) = k (x) = { x 3 x 3 (x 3) x < 3 { 1 x > 3 1 x < 3 k (x) 0 k(0) = 3 k(3) = 0 k(5) = 2 Absolute Minimum: (3, 0) Absolute Maximum: (0, 3)

x x implies that f x f x.

x x implies that f x f x. Section 3.3 Intervals of Increase and Decrease and Extreme Values Let f be a function whose domain includes an interval I. We say that f is increasing on I if for every two numbers x 1, x 2 in I, x x implies

More information

= c, we say that f ( c ) is a local

= c, we say that f ( c ) is a local Section 3.4 Extreme Values Local Extreme Values Suppose that f is a function defined on open interval I and c is an interior point of I. The function f has a local minimum at x= c if f ( c) f ( x) for

More information

Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 CCBC Dundalk Bob Brown Math 251 Calculus 1 Chapter 4, Section 1 Completed 1 Absolute (or Global) Minima and Maxima Def.: Let x = c be a number in the domain of a function f. f has an absolute (or, global ) minimum

More information

1 Lecture 25: Extreme values

1 Lecture 25: Extreme values 1 Lecture 25: Extreme values 1.1 Outline Absolute maximum and minimum. Existence on closed, bounded intervals. Local extrema, critical points, Fermat s theorem Extreme values on a closed interval Rolle

More information

Name Date Period. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Name Date Period. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. AB Fall Final Exam Review 200-20 Name Date Period MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. ) The position of a particle

More information

Kevin James. MTHSC 102 Section 4.3 Absolute Extreme Points

Kevin James. MTHSC 102 Section 4.3 Absolute Extreme Points MTHSC 102 Section 4.3 Absolute Extreme Points Definition (Relative Extreme Points and Relative Extreme Values) Suppose that f(x) is a function defined on an interval I (possibly I = (, ). 1 We say that

More information

Name: Date: Block: Quarter 2 Summative Assessment Revision #1

Name: Date: Block: Quarter 2 Summative Assessment Revision #1 Name: Date: Block: Multiple Choice Non-Calculator Quarter Summative Assessment Revision #1 1. The graph of y = x x has a relative maximum at (a) (0,0) only (b) (1,) only (c) (,4) only (d) (4, 16) only

More information

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a)

Test 3 Review. y f(a) = f (a)(x a) y = f (a)(x a) + f(a) L(x) = f (a)(x a) + f(a) MATH 2250 Calculus I Eric Perkerson Test 3 Review Sections Covered: 3.11, 4.1 4.6. Topics Covered: Linearization, Extreme Values, The Mean Value Theorem, Consequences of the Mean Value Theorem, Concavity

More information

Kevin James. MTHSC 102 Section 4.2 Relative Extreme Points

Kevin James. MTHSC 102 Section 4.2 Relative Extreme Points MTHSC 102 Section 4.2 Relative Extreme Points Definition (Relative Extreme Points and Relative Extreme Values) Suppose that f(x) is a function defined on an interval I. 1 We say that f attains a relative

More information

DA 4: Maximum and Minimum Values

DA 4: Maximum and Minimum Values Differentiation Applications : Maximum and Minimum Values 7 DA : Maximum and Minimum Values Model : Stage of 0 Tour de France Summary Box DA. For a function f on a domain D, there is a global maximum at

More information

1.2. Functions and Their Properties. Copyright 2011 Pearson, Inc.

1.2. Functions and Their Properties. Copyright 2011 Pearson, Inc. 1.2 Functions and Their Properties Copyright 2011 Pearson, Inc. What you ll learn about Function Definition and Notation Domain and Range Continuity Increasing and Decreasing Functions Boundedness Local

More information

MAC College Algebra

MAC College Algebra MAC 05 - College Algebra Name Review for Test 2 - Chapter 2 Date MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Find the exact distance between the

More information

Solve the problem. Determine the center and radius of the circle. Use the given information about a circle to find its equation.

Solve the problem. Determine the center and radius of the circle. Use the given information about a circle to find its equation. Math1314-TestReview2-Spring2016 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Solve the problem. 1) Is the point (-5, -3) on the circle defined

More information

AP Calculus. Analyzing a Function Based on its Derivatives

AP Calculus. Analyzing a Function Based on its Derivatives AP Calculus Analyzing a Function Based on its Derivatives Student Handout 016 017 EDITION Click on the following link or scan the QR code to complete the evaluation for the Study Session https://www.surveymonkey.com/r/s_sss

More information

Calculus 221 worksheet

Calculus 221 worksheet Calculus 221 worksheet Graphing A function has a global maximum at some a in its domain if f(x) f(a) for all other x in the domain of f. Global maxima are sometimes also called absolute maxima. A function

More information

Math 180, Final Exam, Fall 2012 Problem 1 Solution

Math 180, Final Exam, Fall 2012 Problem 1 Solution Math 80, Final Exam, Fall 0 Problem Solution. Find the derivatives of the following functions: (a) ln(ln(x)) (b) x 6 + sin(x) e x (c) tan(x ) + cot(x ) (a) We evaluate the derivative using the Chain Rule.

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculus 1 Instructor: James Lee Practice Exam 3 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Determine from the graph whether the function

More information

Student Study Session Topic: Interpreting Graphs

Student Study Session Topic: Interpreting Graphs Student Study Session Topic: Interpreting Graphs Starting with the graph of a function or its derivative, you may be asked all kinds of questions without having (or needing) and equation to work with.

More information

Math 121 Winter 2010 Review Sheet

Math 121 Winter 2010 Review Sheet Math 121 Winter 2010 Review Sheet March 14, 2010 This review sheet contains a number of problems covering the material that we went over after the third midterm exam. These problems (in conjunction with

More information

What makes f '(x) undefined? (set the denominator = 0)

What makes f '(x) undefined? (set the denominator = 0) Chapter 3A Review 1. Find all critical numbers for the function ** Critical numbers find the first derivative and then find what makes f '(x) = 0 or undefined Q: What is the domain of this function (especially

More information

Section 2.1. Increasing, Decreasing, and Piecewise Functions; Applications

Section 2.1. Increasing, Decreasing, and Piecewise Functions; Applications Section 2.1 Increasing, Decreasing, and Piecewise Functions; Applications Features of Graphs Intervals of Increase and Decrease A function is increasing when the graph goes up as you travel along it from

More information

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 1 CCBC Dundalk

Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 1 CCBC Dundalk Bob Brown Math 251 Calculus 1 Chapter 4, Section 4 1 A Function and its Second Derivative Recall page 4 of Handout 3.1 where we encountered the third degree polynomial f(x) = x 3 5x 2 4x + 20. Its derivative

More information

4.2: What Derivatives Tell Us

4.2: What Derivatives Tell Us 4.2: What Derivatives Tell Us Problem Fill in the following blanks with the correct choice of the words from this list: Increasing, decreasing, positive, negative, concave up, concave down (a) If you know

More information

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then

Suppose that f is continuous on [a, b] and differentiable on (a, b). Then Lectures 1/18 Derivatives and Graphs When we have a picture of the graph of a function f(x), we can make a picture of the derivative f (x) using the slopes of the tangents to the graph of f. In this section

More information

MATH 151, FALL 2017 COMMON EXAM III - VERSION B

MATH 151, FALL 2017 COMMON EXAM III - VERSION B MATH 151, FALL 2017 COMMON EXAM III - VERSION B LAST NAME(print): FIRST NAME(print): INSTRUCTOR: SECTION NUMBER: DIRECTIONS: 1. The use of a calculator, laptop or computer is prohibited. 2. TURN OFF cell

More information

Announcements. Topics: Homework: - sections , 6.1 (extreme values) * Read these sections and study solved examples in your textbook!

Announcements. Topics: Homework: - sections , 6.1 (extreme values) * Read these sections and study solved examples in your textbook! Announcements Topics: - sections 5.2 5.7, 6.1 (extreme values) * Read these sections and study solved examples in your textbook! Homework: - review lecture notes thoroughly - work on practice problems

More information

Limits: An Intuitive Approach

Limits: An Intuitive Approach Limits: An Intuitive Approach SUGGESTED REFERENCE MATERIAL: As you work through the problems listed below, you should reference Chapter. of the recommended textbook (or the equivalent chapter in your alternative

More information

Section 1.3 Rates of Change and Behavior of Graphs

Section 1.3 Rates of Change and Behavior of Graphs Section 1. Rates of Change and Behavior of Graphs 5 Section 1. Rates of Change and Behavior of Graphs Since functions represent how an output quantity varies with an input quantity, it is natural to ask

More information

2.6. Graphs of Rational Functions. Copyright 2011 Pearson, Inc.

2.6. Graphs of Rational Functions. Copyright 2011 Pearson, Inc. 2.6 Graphs of Rational Functions Copyright 2011 Pearson, Inc. Rational Functions What you ll learn about Transformations of the Reciprocal Function Limits and Asymptotes Analyzing Graphs of Rational Functions

More information

A.P. Calculus Holiday Packet

A.P. Calculus Holiday Packet A.P. Calculus Holiday Packet Since this is a take-home, I cannot stop you from using calculators but you would be wise to use them sparingly. When you are asked questions about graphs of functions, do

More information

MATH 1241 FINAL EXAM FALL 2012 Part I, No Calculators Allowed

MATH 1241 FINAL EXAM FALL 2012 Part I, No Calculators Allowed MATH 11 FINAL EXAM FALL 01 Part I, No Calculators Allowed 1. Evaluate the limit: lim x x x + x 1. (a) 0 (b) 0.5 0.5 1 Does not exist. Which of the following is the derivative of g(x) = x cos(3x + 1)? (a)

More information

McGILL UNIVERSITY FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS A CALCULUS I EXAMINER: Professor K. K. Tam DATE: December 11, 1998 ASSOCIATE

McGILL UNIVERSITY FACULTY OF SCIENCE FINAL EXAMINATION MATHEMATICS A CALCULUS I EXAMINER: Professor K. K. Tam DATE: December 11, 1998 ASSOCIATE NOTE TO PRINTER (These instructions are for the printer. They should not be duplicated.) This examination should be printed on 8 1 2 14 paper, and stapled with 3 side staples, so that it opens like a long

More information

Test 2 Review Math 1111 College Algebra

Test 2 Review Math 1111 College Algebra Test 2 Review Math 1111 College Algebra 1. Begin by graphing the standard quadratic function f(x) = x 2. Then use transformations of this graph to graph the given function. g(x) = x 2 + 2 *a. b. c. d.

More information

Precalculus Lesson 4.1 Polynomial Functions and Models Mrs. Snow, Instructor

Precalculus Lesson 4.1 Polynomial Functions and Models Mrs. Snow, Instructor Precalculus Lesson 4.1 Polynomial Functions and Models Mrs. Snow, Instructor Let s review the definition of a polynomial. A polynomial function of degree n is a function of the form P(x) = a n x n + a

More information

Math 141: Section 4.1 Extreme Values of Functions - Notes

Math 141: Section 4.1 Extreme Values of Functions - Notes Math 141: Section 4.1 Extreme Values of Functions - Notes Definition: Let f be a function with domain D. Thenf has an absolute (global) maximum value on D at a point c if f(x) apple f(c) for all x in D

More information

Shape of a curve. Nov 15, 2016

Shape of a curve. Nov 15, 2016 Shape of a curve Nov 15, 2016 y = f(x) Where does the curve of f attain its maximum or minimum value? Where does the curve of f increase or decrease? What is its sketch? Some definitions Def: Absolute

More information

1.18 Multiple Choice Questions on Limits

1.18 Multiple Choice Questions on Limits 24 The AP CALCULUS PROBLEM BOOK 3x 4 2x + 33. lim x 7x 8x 5 =.8 Multiple Choice Questions on Limits A) B) C) 0 D) 3 7 E) 3 8 34. lim x 0 x = A) B) C) 0 D) E) does not exist 9x 2 35. lim x /3 3x = A) B)

More information

Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values

Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values Math 2204 Multivariable Calculus Chapter 14: Partial Derivatives Sec. 14.7: Maximum and Minimum Values I. Review from 1225 A. Definitions 1. Local Extreme Values (Relative) a. A function f has a local

More information

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing:

NO CALCULATOR 1. Find the interval or intervals on which the function whose graph is shown is increasing: AP Calculus AB PRACTICE MIDTERM EXAM Read each choice carefully and find the best answer. Your midterm exam will be made up of 8 of these questions. I reserve the right to change numbers and answers on

More information

MATH 2053 Calculus I Review for the Final Exam

MATH 2053 Calculus I Review for the Final Exam MATH 05 Calculus I Review for the Final Exam (x+ x) 9 x 9 1. Find the limit: lim x 0. x. Find the limit: lim x + x x (x ).. Find lim x (x 5) = L, find such that f(x) L < 0.01 whenever 0 < x

More information

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS Math 473: Practice Problems for Test 1, Fall 011, SOLUTIONS Show your work: 1. (a) Compute the Taylor polynomials P n (x) for f(x) = sin x and x 0 = 0. Solution: Compute f(x) = sin x, f (x) = cos x, f

More information

TRIGONOMETRIC RATIOS AND GRAPHS

TRIGONOMETRIC RATIOS AND GRAPHS Mathematics Revision Guides Trigonometric Ratios and Graphs Page 1 of 15 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C2 Edexcel: C2 OCR: C2 OCR MEI: C2 TRIGONOMETRIC RATIOS

More information

Math 131. Increasing/Decreasing Functions and First Derivative Test Larson Section 3.3

Math 131. Increasing/Decreasing Functions and First Derivative Test Larson Section 3.3 Math 131. Increasing/Decreasing Functions and First Derivative Test Larson Section 3.3 Increasing and Decreasing Functions. A function f is increasing on an interval if for any two numbers x 1 and x 2

More information

Math 4200, Problem set 3

Math 4200, Problem set 3 Math, Problem set 3 Solutions September, 13 Problem 1. ẍ = ω x. Solution. Following the general theory of conservative systems with one degree of freedom let us define the kinetic energy T and potential

More information

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places. 4) x3-6x + 3 = 0 (-5,5) 4)

Use a graphing utility to approximate the real solutions, if any, of the equation rounded to two decimal places. 4) x3-6x + 3 = 0 (-5,5) 4) Advanced College Prep Pre-Calculus Midyear Exam Review Name Date Per List the intercepts for the graph of the equation. 1) x2 + y - 81 = 0 1) Graph the equation by plotting points. 2) y = -x2 + 9 2) List

More information

1.1 Functions. Input (Independent or x) and output (Dependent or y) of a function. Range: Domain: Function Rule. Input. Output.

1.1 Functions. Input (Independent or x) and output (Dependent or y) of a function. Range: Domain: Function Rule. Input. Output. 1.1 Functions Function Function: A rule for a relationship between an input, or independent, quantity and an output, or dependent, quantity in which each input value uniquely determines one output value.

More information

7 + 8x + 9x x + 12x x 6. x 3. (c) lim. x 2 + x 3 x + x 4 (e) lim. (d) lim. x 5

7 + 8x + 9x x + 12x x 6. x 3. (c) lim. x 2 + x 3 x + x 4 (e) lim. (d) lim. x 5 Practice Exam 3 Fundamentals of Calculus, ch. 1-5 1 A falling rock has a height (in meters) as a function of time (in seconds) given by h(t) = pt 2 + qt + r, where p, q, and r are constants. (a) Infer

More information

Optimization. f 0, relative maximum

Optimization. f 0, relative maximum Relative or Local Extrema highest or lowest point in the neighborhood First derivative test o Candidates critical numbers (x-values that make f zero or undefined where f is defined) o Test (1) set up an

More information

Maxima and Minima of Functions

Maxima and Minima of Functions Maxima and Minima of Functions Outline of Section 4.2 of Sullivan and Miranda Calculus Sean Ellermeyer Kennesaw State University October 21, 2015 Sean Ellermeyer (Kennesaw State University) Maxima and

More information

Section 3.2 Polynomial Functions and Their Graphs

Section 3.2 Polynomial Functions and Their Graphs Section 3.2 Polynomial Functions and Their Graphs EXAMPLES: P (x) = 3, Q(x) = 4x 7, R(x) = x 2 + x, S(x) = 2x 3 6x 2 10 QUESTION: Which of the following are polynomial functions? (a) f(x) = x 3 + 2x +

More information

LESSON 23: EXTREMA OF FUNCTIONS OF 2 VARIABLES OCTOBER 25, 2017

LESSON 23: EXTREMA OF FUNCTIONS OF 2 VARIABLES OCTOBER 25, 2017 LESSON : EXTREMA OF FUNCTIONS OF VARIABLES OCTOBER 5, 017 Just like with functions of a single variable, we want to find the minima (plural of minimum) and maxima (plural of maximum) of functions of several

More information

Waves Part 3A: Standing Waves

Waves Part 3A: Standing Waves Waves Part 3A: Standing Waves Last modified: 24/01/2018 Contents Links Contents Superposition Standing Waves Definition Nodes Anti-Nodes Standing Waves Summary Standing Waves on a String Standing Waves

More information

CALCULUS OPTIONAL SUMMER WORK

CALCULUS OPTIONAL SUMMER WORK NAME JUNE 016 CALCULUS OPTIONAL SUMMER WORK PART I - NO CALCULATOR I. COORDINATE GEOMETRY 1) Identify the indicated quantities for -8x + 15y = 0. x-int y-int slope ) A line has a slope of 5/7 and contains

More information

Summer Review for Students Taking Calculus in No calculators allowed. To earn credit: Be sure to show all work in the area provided.

Summer Review for Students Taking Calculus in No calculators allowed. To earn credit: Be sure to show all work in the area provided. Summer Review for Students Taking Calculus in 2016-2017 No calculators allowed. To earn credit: Be sure to show all work in the area provided. 1 Graph each equation on the axes provided. Include any relevant

More information

Lecture 4: Optimization. Maximizing a function of a single variable

Lecture 4: Optimization. Maximizing a function of a single variable Lecture 4: Optimization Maximizing or Minimizing a Function of a Single Variable Maximizing or Minimizing a Function of Many Variables Constrained Optimization Maximizing a function of a single variable

More information

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph.

1) The line has a slope of ) The line passes through (2, 11) and. 6) r(x) = x + 4. From memory match each equation with its graph. Review Test 2 Math 1314 Name Write an equation of the line satisfying the given conditions. Write the answer in standard form. 1) The line has a slope of - 2 7 and contains the point (3, 1). Use the point-slope

More information

Calculus Example Exam Solutions

Calculus Example Exam Solutions Calculus Example Exam Solutions. Limits (8 points, 6 each) Evaluate the following limits: p x 2 (a) lim x 4 We compute as follows: lim p x 2 x 4 p p x 2 x +2 x 4 p x +2 x 4 (x 4)( p x + 2) p x +2 = p 4+2

More information

6.1 Composition of Functions

6.1 Composition of Functions 6. Composition of Functions SETTING THE STAGE Explore the concepts in this lesson in more detail using Exploration on page 579. Recall that composition was introduced as the result of substituting one

More information

Determine whether the formula determines y as a function of x. If not, explain. Is there a way to look at a graph and determine if it's a function?

Determine whether the formula determines y as a function of x. If not, explain. Is there a way to look at a graph and determine if it's a function? 1.2 Functions and Their Properties Name: Objectives: Students will be able to represent functions numerically, algebraically, and graphically, determine the domain and range for functions, and analyze

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BENG (HONS) CIVIL ENGINEERING SEMESTER TWO EXAMINATION 2015/2016

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BENG (HONS) CIVIL ENGINEERING SEMESTER TWO EXAMINATION 2015/2016 OCD74 UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE BENG (HONS) CIVIL ENGINEERING SEMESTER TWO EXAMINATION 015/016 MATHEMATICS AND STRUCTURAL DESIGN MODULE NO: CIE401 Date: Saturday 8 May 016

More information

Georgia Department of Education Common Core Georgia Performance Standards Framework CCGPS Advanced Algebra Unit 2

Georgia Department of Education Common Core Georgia Performance Standards Framework CCGPS Advanced Algebra Unit 2 Polynomials Patterns Task 1. To get an idea of what polynomial functions look like, we can graph the first through fifth degree polynomials with leading coefficients of 1. For each polynomial function,

More information

Day 4 ~ Increasing/Decreasing, and Extrema. A Graphical Approach

Day 4 ~ Increasing/Decreasing, and Extrema. A Graphical Approach Day 4 ~ Increasing/Decreasing, and Extrema A Graphical Approach Warm Up ~ Day 4 1) Find the a) domain b) x & y intercepts c) range d) discontinuities e) end behavior using limit notation ) g( x) 3x 7x

More information

MAT 122 Homework 7 Solutions

MAT 122 Homework 7 Solutions MAT 1 Homework 7 Solutions Section 3.3, Problem 4 For the function w = (t + 1) 100, we take the inside function to be z = t + 1 and the outside function to be z 100. The derivative of the inside function

More information

Polynomial functions right- and left-hand behavior (end behavior):

Polynomial functions right- and left-hand behavior (end behavior): Lesson 2.2 Polynomial Functions For each function: a.) Graph the function on your calculator Find an appropriate window. Draw a sketch of the graph on your paper and indicate your window. b.) Identify

More information

AP * Calculus Review. Limits, Continuity, and the Definition of the Derivative

AP * Calculus Review. Limits, Continuity, and the Definition of the Derivative AP * Calculus Review Limits, Continuity, and the Definition of the Derivative Teacher Packet Advanced Placement and AP are registered trademark of the College Entrance Examination Board. The College Board

More information

Math 16A Second Midterm 6 Nov NAME (1 pt): Name of Neighbor to your left (1 pt): Name of Neighbor to your right (1 pt):

Math 16A Second Midterm 6 Nov NAME (1 pt): Name of Neighbor to your left (1 pt): Name of Neighbor to your right (1 pt): Math 16A Second Mierm 6 Nov 2008 NAME (1 pt): TA (1 pt): Name of Neighbor to your left (1 pt): Name of Neighbor to your right (1 pt): Instructions: This is a closed book, closed notes, closed calculator,

More information

Warm Up Lesson Presentation Lesson Quiz. Holt Algebra 2 2

Warm Up Lesson Presentation Lesson Quiz. Holt Algebra 2 2 6-7 Warm Up Lesson Presentation Lesson Quiz 2 Warm Up Identify all the real roots of each equation. 1. x 3 7x 2 + 8x + 16 = 0 1, 4 2. 2x 3 14x 12 = 0 1, 2, 3 3. x 4 + x 3 25x 2 27x = 0 4. x 4 26x 2 + 25

More information

A function is actually a simple concept; if it were not, history would have replaced it with a simpler one by now! Here is the definition:

A function is actually a simple concept; if it were not, history would have replaced it with a simpler one by now! Here is the definition: 1.2 Functions and Their Properties A function is actually a simple concept; if it were not, history would have replaced it with a simpler one by now! Here is the definition: Definition: Function, Domain,

More information

14.7: Maxima and Minima

14.7: Maxima and Minima 14.7: Maxima and Minima Marius Ionescu October 29, 2012 Marius Ionescu () 14.7: Maxima and Minima October 29, 2012 1 / 13 Local Maximum and Local Minimum Denition Marius Ionescu () 14.7: Maxima and Minima

More information

April 9, 2009 Name The problems count as marked. The total number of points available is 160. Throughout this test, show your work.

April 9, 2009 Name The problems count as marked. The total number of points available is 160. Throughout this test, show your work. April 9, 009 Name The problems count as marked The total number of points available is 160 Throughout this test, show your work 1 (15 points) Consider the cubic curve f(x) = x 3 + 3x 36x + 17 (a) Build

More information

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables

Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables Math 1314 Lesson 24 Maxima and Minima of Functions of Several Variables We learned to find the maxima and minima of a function of a single variable earlier in the course We had a second derivative test

More information

AP Calculus AB Summer Assignment

AP Calculus AB Summer Assignment AP Calculus AB 017-018 Summer Assignment Congratulations! You have been accepted into Advanced Placement Calculus AB for the next school year. This course will count as a math credit at Freedom High School

More information

Function: exactly Functions as equations:

Function: exactly Functions as equations: Function: - a connection between sets in which each element of the first set corresponds with exactly one element of the second set o the reverse is not necessarily true, but if it is, the function is

More information

Sections Practice AP Calculus AB Name

Sections Practice AP Calculus AB Name Sections 4.1-4.5 Practice AP Calculus AB Name Be sure to show work, giving written explanations when requested. Answers should be written exactly or rounded to the nearest thousandth. When the calculator

More information

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx

Math 180, Exam 2, Practice Fall 2009 Problem 1 Solution. f(x) = arcsin(2x + 1) = sin 1 (3x + 1), lnx Math 80, Exam, Practice Fall 009 Problem Solution. Differentiate the functions: (do not simplify) f(x) = x ln(x + ), f(x) = xe x f(x) = arcsin(x + ) = sin (3x + ), f(x) = e3x lnx Solution: For the first

More information

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions

Sections 4.1 & 4.2: Using the Derivative to Analyze Functions Sections 4.1 & 4.2: Using the Derivative to Analyze Functions f (x) indicates if the function is: Increasing or Decreasing on certain intervals. Critical Point c is where f (c) = 0 (tangent line is horizontal),

More information

Answers for Calculus Review (Extrema and Concavity)

Answers for Calculus Review (Extrema and Concavity) Answers for Calculus Review 4.1-4.4 (Extrema and Concavity) 1. A critical number is a value of the independent variable (a/k/a x) in the domain of the function at which the derivative is zero or undefined.

More information

Spring 2015 Sample Final Exam

Spring 2015 Sample Final Exam Math 1151 Spring 2015 Sample Final Exam Final Exam on 4/30/14 Name (Print): Time Limit on Final: 105 Minutes Go on carmen.osu.edu to see where your final exam will be. NOTE: This exam is much longer than

More information

Section 4.2 The Mean Value Theorem

Section 4.2 The Mean Value Theorem Section 4.2 The Mean Value Theorem Ruipeng Shen October 2nd Ruipeng Shen MATH 1ZA3 October 2nd 1 / 11 Rolle s Theorem Theorem (Rolle s Theorem) Let f (x) be a function that satisfies: 1. f is continuous

More information

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2

AB CALCULUS SEMESTER A REVIEW Show all work on separate paper. (b) lim. lim. (f) x a. for each of the following functions: (b) y = 3x 4 x + 2 AB CALCULUS Page 1 of 6 NAME DATE 1. Evaluate each it: AB CALCULUS Show all work on separate paper. x 3 x 9 x 5x + 6 x 0 5x 3sin x x 7 x 3 x 3 5x (d) 5x 3 x +1 x x 4 (e) x x 9 3x 4 6x (f) h 0 sin( π 6

More information

Calculus. Applications of Differentiations (II)

Calculus. Applications of Differentiations (II) Calculus Applications of Differentiations (II) Outline 1 Maximum and Minimum Values Absolute Extremum Local Extremum and Critical Number 2 Increasing and Decreasing First Derivative Test Outline 1 Maximum

More information

1.2 Functions and Their Properties Name:

1.2 Functions and Their Properties Name: 1.2 Functions and Their Properties Name: Objectives: Students will be able to represent functions numerically, algebraically, and graphically, determine the domain and range for functions, and analyze

More information

Sudoku Puzzle A.P. Exam (Part B) Questions are from the 1997 and 1998 A.P. Exams A Puzzle by David Pleacher

Sudoku Puzzle A.P. Exam (Part B) Questions are from the 1997 and 1998 A.P. Exams A Puzzle by David Pleacher Sudoku Puzzle A.P. Exam (Part B) Questions are from the 1997 and 1998 A.P. Exams A Puzzle by David Pleacher Solve the 4 multiple-choice problems below. A graphing calculator is required for some questions

More information

AP Calculus 2004 AB FRQ Solutions

AP Calculus 2004 AB FRQ Solutions AP Calculus 4 AB FRQ Solutions Louis A. Talman, Ph. D. Emeritus Professor of Mathematics Metropolitan State University of Denver July, 7 Problem. Part a The function F (t) = 8 + 4 sin(t/) gives the rate,

More information

Math 115 Second Midterm March 25, 2010

Math 115 Second Midterm March 25, 2010 Math 115 Second Midterm March 25, 2010 Name: EXAM SOLUTIONS Instructor: Section: 1. Do not open this exam until you are told to do so. 2. This exam has 9 pages including this cover. There are 8 problems.

More information

Math 241 Homework 7 Solutions

Math 241 Homework 7 Solutions Math 241 Homework 7 s Section 4.2 Problem 1. Find the value or values c that satisfy the equation = f (c) in the conclusion of the Mean Value Theorem for functions and intervals: f(b) f(a) b a f(x) = x

More information

Bozeman Public Schools Mathematics Curriculum Calculus

Bozeman Public Schools Mathematics Curriculum Calculus Bozeman Public Schools Mathematics Curriculum Calculus Process Standards: Throughout all content standards described below, students use appropriate technology and engage in the mathematical processes

More information

Continuity. MATH 161 Calculus I. J. Robert Buchanan. Fall Department of Mathematics

Continuity. MATH 161 Calculus I. J. Robert Buchanan. Fall Department of Mathematics Continuity MATH 161 Calculus I J. Robert Buchanan Department of Mathematics Fall 2017 Intuitive Idea A process or an item can be described as continuous if it exists without interruption. The mathematical

More information

PRACTICE PROBLEM SET

PRACTICE PROBLEM SET PRACTICE PROBLEM SET NOTE: On the exam, you will have to show all your work (unless told otherwise), so write down all your steps and justify them. Exercise. Solve the following inequalities: () x < 3

More information

+ 1 for x > 2 (B) (E) (B) 2. (C) 1 (D) 2 (E) Nonexistent

+ 1 for x > 2 (B) (E) (B) 2. (C) 1 (D) 2 (E) Nonexistent dx = (A) 3 sin(3x ) + C 1. cos ( 3x) 1 (B) sin(3x ) + C 3 1 (C) sin(3x ) + C 3 (D) sin( 3x ) + C (E) 3 sin(3x ) + C 6 3 2x + 6x 2. lim 5 3 x 0 4x + 3x (A) 0 1 (B) 2 (C) 1 (D) 2 (E) Nonexistent is 2 x 3x

More information

Chapter 3: Inequalities, Lines and Circles, Introduction to Functions

Chapter 3: Inequalities, Lines and Circles, Introduction to Functions QUIZ AND TEST INFORMATION: The material in this chapter is on Quiz 3 and Exam 2. You should complete at least one attempt of Quiz 3 before taking Exam 2. This material is also on the final exam and used

More information

Lecture 9 - Increasing and Decreasing Functions, Extrema, and the First Derivative Test

Lecture 9 - Increasing and Decreasing Functions, Extrema, and the First Derivative Test Lecture 9 - Increasing and Decreasing Functions, Extrema, and the First Derivative Test 9.1 Increasing and Decreasing Functions One of our goals is to be able to solve max/min problems, especially economics

More information

Section 4.1 Relative Extrema 3 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I

Section 4.1 Relative Extrema 3 Lectures. Dr. Abdulla Eid. College of Science. MATHS 101: Calculus I Section 4.1 Relative Extrema 3 Lectures College of Science MATHS 101: Calculus I (University of Bahrain) Extrema 1 / 16 Application of Differentiation One of the most important applications of differential

More information

f ', the first derivative of a differentiable function, f. Use the

f ', the first derivative of a differentiable function, f. Use the f, f ', and The graph given to the right is the graph of graph to answer the questions below. f '' Relationships and The Extreme Value Theorem 1. On the interval [0, 8], are there any values where f(x)

More information

1-1 Functions < x 64 SOLUTION: 9. { 0.25, 0, 0.25, 0.50, } SOLUTION: 12. all multiples of 8 SOLUTION: SOLUTION:

1-1 Functions < x 64 SOLUTION: 9. { 0.25, 0, 0.25, 0.50, } SOLUTION: 12. all multiples of 8 SOLUTION: SOLUTION: Write each set of numbers in set-builder and interval notation, if possible. 3. x 4 The set includes all real numbers less than or equal to 4. In set-builder notation this set can be described as {x x

More information

Chapter 5B - Rational Functions

Chapter 5B - Rational Functions Fry Texas A&M University Math 150 Chapter 5B Fall 2015 143 Chapter 5B - Rational Functions Definition: A rational function is The domain of a rational function is all real numbers, except those values

More information

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 2) h(x) = x2-5x + 5

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. 2) h(x) = x2-5x + 5 Assignment 7 Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Using the derivative of f(x) given below, determine the critical points of f(x).

More information

2x (x 2 + y 2 + 1) 2 2y. (x 2 + y 2 + 1) 4. 4xy. (1, 1)(x 1) + (1, 1)(y + 1) (1, 1)(x 1)(y + 1) 81 x y y + 7.

2x (x 2 + y 2 + 1) 2 2y. (x 2 + y 2 + 1) 4. 4xy. (1, 1)(x 1) + (1, 1)(y + 1) (1, 1)(x 1)(y + 1) 81 x y y + 7. Homework 8 Solutions, November 007. (1 We calculate some derivatives: f x = f y = x (x + y + 1 y (x + y + 1 x = (x + y + 1 4x (x + y + 1 4 y = (x + y + 1 4y (x + y + 1 4 x y = 4xy (x + y + 1 4 Substituting

More information

APPM 1350 Exam 2 Fall 2016

APPM 1350 Exam 2 Fall 2016 APPM 1350 Exam 2 Fall 2016 1. (28 pts, 7 pts each) The following four problems are not related. Be sure to simplify your answers. (a) Let f(x) tan 2 (πx). Find f (1/) (5 pts) f (x) 2π tan(πx) sec 2 (πx)

More information

1-4 Extrema and Average Rates of Change

1-4 Extrema and Average Rates of Change Use the graph of each function to estimate intervals to the nearest 0.5 unit on which the function is increasing, decreasing, or constant. Support the answer numerically. 6. 3. When the graph is viewed

More information