Energy Density and Thermal Diffusivity of Ioffe-Regel Confined Vibrations

Size: px
Start display at page:

Download "Energy Density and Thermal Diffusivity of Ioffe-Regel Confined Vibrations"

Transcription

1 (carolinesgorham.com) Energy Density and Thermal Diffusivity of Ioffe-Regel Confined Vibrations Caroline S. Gorham MRS Fall Meeting Symposium ii8: Phonons in Nano and Bulk Materials Session Chair(s): J. Khurgin and G. Sun December 03, 2015

2 Motivation [1] Energy Generation on Interplanetary Spaceflight *not to scale Thermo photovoltaic generators: HIGH T IR-Resonant Thermoelectric Highlight: Thermoelectric - Low, glass-like, thermal conductivity, κ, desired 2 IR-photovoltaic σs T ZT = κ [1]

3 Motivation: Glass-like thermal properties [2] Lower-temp (two-level) Higher-temp (random-walk) [2] Sidebottom, D. L. Fundamentals of Condensed Matter and Crystalline Physics: An Introduction for Students of Physics and Materials Science. Cambridge University Press, 2012.

4 Starting place: What do we know? [3] Perfect crystal Disordered material propagating phonons localized vibrations two-level system [2] Sidebottom, D. L. Fundamentals of Condensed Matter and Crystalline Physics: An Introduction for Students of Physics and Materials Science. Cambridge University Press, 2012.

5 Starting place: Whose shoulders do we stand on? (1) [4] A. Einstein (1911): * Original formulation of thermal conductivity, κ, using vibrations and a random walk [3]. In doing so - discovered (and used) first set of elementary excitations [4]. D. Cahill, S. Watson & R. Pohl (1992): Using a Debye spectrum, showed that Einstein s model applies to glasses [5]. [3] Einstein,. "Elementare Betrachtungen über die thermische Molekularbewegung in festen Körpern." Annalen der Physik (1911): [4] Anderson, P. W. Concepts in solids: lectures on the theory of solids. Vol. 58. World Scientific, [5] Cahill, David G., Susan K. Watson, and Robert O. Pohl. "Lower limit to the thermal conductivity of disordered crystals." Physical Review B (1992): 6131.

6 Confinement by Strong Scattering: Mode Lifetime, τ [5] S(k) = 1 N Σ jk S(k) = ρ e ik(r j Rk ) V Γ dre ikr g(r) J. M. Larkin and A. J. H. McGaughey (2014): 20 Frequency [THz] [6] Larkin, J. M., and A. JH McGaughey. "Thermal conductivity accumulation in amorphous silica and amorphous silicon." Physical Review B (2014): τ = I-R 2π Γ k/ <Γ>

7 Confinement by Strong Scattering: Piecewise linear Γ : [6] Γ(k) = a k + b 5 Linewidth, Linewidth, <Γ> <Γ> [THz] [THz] k/k k/ max [6] Larkin, J. M., and A. JH McGaughey. "Thermal conductivity accumulation in amorphous silica and amorphous silicon." Physical Review B (2014):

8 Specific contribution(s): Case: Γ Vitreous silica [7] 1. Define characteristics of confined quasiparticle from. Γ 2. Describe a confining potential, µ. 3. Derive expressions for the density of states/heat capacity and thermal diffusivity resulting from confined quasiparticles.

9 1. Theory: Redundant forms of τ [8] Redundantly: τ = Λ v g = 2π Γ At the Ioffe-Regel Threshold ( Λ = λ = 2π ) [7]: k ω k = Γ(k) k [7] Ioffe, A. F., and A. R. Regel. "Non-crystalline, amorphous and liquid electronic semiconductors." Prog. Semicond 4 (1960):

10 2. Theory: Effective energy, ω [9]! ω = a# " k $! &+b log# % " k $ &+R % Where, R is $ R = Γ mid a k mid & % ' $ )+b log k mid & ( % log(ω/ω max ) ' ) ( log(k/ )

11 3. Theory: 2 nd -order log fit to the effective energy [10] " log ω ω % " 0 $ ' = g log$ # & # ω max This simplifies to: " ω = H(k) ω max $ # Where, H(k) is k % ' & k m % ' & 2 +ω 0 " + m log$ # log(ω/ω max ) k % ' & g = m =1.25 ω 0 = THz H(k) =! # " k $ & % 2g log(k/ )

12 4. Theory: Dispersion character [11] Group Curvature: velocity: dω = (m + 2g)ω max dk 2 k v (km/s) 10 1 Note, Effective mass: k/! # " v g v p $ & % (m+2 g) d 2 ω = (m + 2g)(m + 2g 1)ω k " max $ k 2 # m *! = 2 ω k 2 Effective mass, m* (MeV/c 2 ) k % ' & k/ (m+2 g)

13 5. Theory: Implications on µ [12 ] Confining potential: µ(k) =!k(v p v p eff ) Confined Bose-Einstein Distribution: ( ) 1 " f BE = e #$ (E µ) k B T Implies [8]: * Conservation of particle number * Conservation of mass % &' k/ [8] Chandler, David, and Jerome K. Percus. "Introduction to modern statistical mechanics." Physics Today (2008): (E - μ) [THz]

14 1. Results: Density of states: Boson peak (D/ω 2 ) [13] Energy density of states as a function of the effective frequency, D(ω) = ω 2 2π 2 v 3 dω D D / 3N / / 3N 3N [1/THz] / ω / ω Boson peak: deviation from elastic crystal as linear in D/ω Frequency, ω [THz] [6] Larkin, J. M., and A. JH McGaughey. "Thermal conductivity accumulation in amorphous silica and amorphous silicon." Physical Review B (2014):

15 2. Results: Heat capacity, C [14] Grand-canonical form: C = 3 1 (E(k) µ(k)) 2 k 2 2π 2 k B T 2 k IR " e $ # ( " * e $ ) # (E(k) µ(k)) k B T (E(k) µ(k)) k B T % ' & % + ' 1- &, 2 dk Heat Capacity, C [J g -1 K -1 ] Temperature (K) [9] Zeller, R. C., and R. O. Pohl. "Thermal conductivity and specific heat of noncrystalline solids." Physical Review B 4.6 (1971): 2029.

16 3. Results: [15] Thermal diffusivity, Φ From basic kinetic theory: Φ = vλ At the Ioffe-Regel threshold: Φ = v 2π k Thermal Diffusivity, Φ [cm 2 s -1 ] Frequency [THz] [6] Larkin, J. M., and A. JH McGaughey. "Thermal conductivity accumulation in amorphous silica and amorphous silicon." Physical Review B (2014):

17 Summary and Conclusions [16] Confinement of vibration implies a finite and conserved mass. Boson peak in DOS is the result of confined vibrations. Self-consistent thermal diffusivity results from strong scattering of confined vibrations.

18 Acknowledgements: [A1] A sincere thank you for unbounded inspiration goes out to: - Prof. David E. University I am grateful for funding from the NASA Office of Graduate Research through the Space Technology Research Fellowship.

19 References: [A2] [1] [2] Sidebottom, D. L. Fundamentals of Condensed Matter and Crystalline Physics: An Introduction for Students of Physics and Materials Science. Cambridge University Press, [3] Einstein,. "Elementare Betrachtungen über die thermische Molekularbewegung in festen Körpern." Annalen der Physik (1911): [4] Anderson, P. W. Concepts in solids: lectures on the theory of solids. Vol. 58. World Scientific, [5] Cahill, David G., Susan K. Watson, and Robert O. Pohl. "Lower limit to the thermal conductivity of disordered crystals." Physical Review B (1992): [6] Larkin, J. M., and A. JH McGaughey. "Thermal conductivity accumulation in amorphous silica and amorphous silicon." Physical Review B (2014): [7] Ioffe, A. F., and A. R. Regel. "Non-crystalline, amorphous and liquid electronic semiconductors." Prog. Semicond 4 (1960): [8] Chandler, David, and Jerome K. Percus. "Introduction to modern statistical mechanics." Physics Today (2008): [9] Zeller, R. C., and R. O. Pohl. "Thermal conductivity and specific heat of noncrystalline solids." Physical Review B 4.6 (1971): *

20 4. Results: Thermal conductivity, κ [xtra] κ = C v 2 τ = C Φ Thermal Thermal Conductivity, Conductivity, κ [W [W m K ] ] Temperature [K] [8] Zeller, R. C., and R. O. Pohl. "Thermal conductivity and specific heat of noncrystalline solids." Physical Review B 4.6 (1971): 2029.

PHONON HEAT CAPACITY

PHONON HEAT CAPACITY Solid State Physics PHONON HEAT CAPACITY Lecture 11 A.H. Harker Physics and Astronomy UCL 4.5 Experimental Specific Heats Element Z A C p Element Z A C p J K 1 mol 1 J K 1 mol 1 Lithium 3 6.94 24.77 Rhenium

More information

Olivier Bourgeois Institut Néel

Olivier Bourgeois Institut Néel Olivier Bourgeois Institut Néel Outline Introduction: necessary concepts: phonons in low dimension, characteristic length Part 1: Transport and heat storage via phonons Specific heat and kinetic equation

More information

Statistical Physics 1

Statistical Physics 1 Statistical Physics 1 Prof. Sigrist, FS 2013 05/02/2014, 15:30-16:00, Sylvain DE LESELEUC Summary In Prof. office, exam on the table, prof and assistant are sitting at the table Description of the content:

More information

Phonon II Thermal Properties

Phonon II Thermal Properties Phonon II Thermal Properties Physics, UCF OUTLINES Phonon heat capacity Planck distribution Normal mode enumeration Density of states in one dimension Density of states in three dimension Debye Model for

More information

Relevance of jamming to the mechanical properties of solids Sidney Nagel University of Chicago Capri; September 12, 2014

Relevance of jamming to the mechanical properties of solids Sidney Nagel University of Chicago Capri; September 12, 2014 Relevance of jamming to the mechanical properties of solids Sidney Nagel University of Chicago Capri; September 1, 014 What is role of (dis)order for mechanical behavior? Andrea J. Liu Carl Goodrich Justin

More information

Lecture 11 - Phonons II - Thermal Prop. Continued

Lecture 11 - Phonons II - Thermal Prop. Continued Phonons II - hermal Properties - Continued (Kittel Ch. 5) Low High Outline Anharmonicity Crucial for hermal expansion other changes with pressure temperature Gruneisen Constant hermal Heat ransport Phonon

More information

Phonons II: Thermal properties

Phonons II: Thermal properties Phonons II: Thermal properties specific heat of a crystal density of state Einstein mode Debye model anharmonic effect thermal conduction A technician holding a silica fibre thermal insulation tile at

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Superfluidity and Condensation

Superfluidity and Condensation Christian Veit 4th of June, 2013 2 / 29 The discovery of superfluidity Early 1930 s: Peculiar things happen in 4 He below the λ-temperature T λ = 2.17 K 1938: Kapitza, Allen & Misener measure resistance

More information

Liquid helium in confinement

Liquid helium in confinement J Phys. IVFrance 10 (2000) O EDP Sciences, Les Ulis Liquid helium in confinement B. Fgk, 0. Plantevin and H.R. Glyde* Depattement de Recherche Fondamentale sur la Matiere Condensee, SPSMS/MDN, CEA Grenoble,

More information

Physics Nov Bose-Einstein Gases

Physics Nov Bose-Einstein Gases Physics 3 3-Nov-24 8- Bose-Einstein Gases An amazing thing happens if we consider a gas of non-interacting bosons. For sufficiently low temperatures, essentially all the particles are in the same state

More information

Motivation. Confined acoustics phonons. Modification of phonon lifetimes Antisymmetric Bulk. Symmetric. 10 nm

Motivation. Confined acoustics phonons. Modification of phonon lifetimes Antisymmetric Bulk. Symmetric. 10 nm Motivation Confined acoustics phonons Modification of phonon lifetimes 0 0 Symmetric Antisymmetric Bulk 0 nm A. Balandin et al, PRB 58(998) 544 Effect of native oxide on dispersion relation Heat transport

More information

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases

Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases Bahram M. Askerov Sophia R. Figarova Thermodynamics, Gibbs Method and Statistical Physics of Electron Gases With im Figures Springer Contents 1 Basic Concepts of Thermodynamics and Statistical Physics...

More information

Laser cooling and trapping

Laser cooling and trapping Laser cooling and trapping William D. Phillips wdp@umd.edu Physics 623 14 April 2016 Why Cool and Trap Atoms? Original motivation and most practical current application: ATOMIC CLOCKS Current scientific

More information

MASTER OF SCIENCE IN PHYSICS

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCE IN PHYSICS The Master of Science in Physics program aims to develop competent manpower to fill the demands of industry and academe. At the end of the program, the students should have

More information

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between:

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between: Physics with Neutrons I, WS 2015/2016 Lecture 11, 11.1.2016 MLZ is a cooperation between: Organization Exam (after winter term) Registration: via TUM-Online between 16.11.2015 15.1.2015 Email: sebastian.muehlbauer@frm2.tum.de

More information

Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.

Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2. EECS Winter 2006 Nanophotonics and Nano-scale Fabrication P.C. Lecture 10 Light-Matter Interaction Part 4 Surface Polaritons 2 EECS 598-002 Winter 2006 Nanophotonics and Nano-scale Fabrication P.C.Ku Schedule for the rest of the semester Introduction to light-matter

More information

In-class exercises. Day 1

In-class exercises. Day 1 Physics 4488/6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ Material for Week 8 Exercises due Mon March 19 Last correction at March 5, 2018, 8:48 am c 2017, James Sethna,

More information

Vibrational properties and phonon transport of amorphous solids

Vibrational properties and phonon transport of amorphous solids June 29th (Fri.), 2018 Yukawa Institute for Theoretical Physics, Kyoto University, Japan Rheology of disordered particles suspensions, glassy and granular materials 10:15-11:05, 40mins. talk and 10mins.

More information

Introduction to phonon transport

Introduction to phonon transport Introduction to phonon transport Ivana Savić Tyndall National Institute, Cork, Ireland Materials for a Sustainable Energy Future Tutorials, Institute for Pure & Applied Mathematics, UCLA September 12,

More information

Thermal Energy at the Nanoscale Homework Solution - Week 3

Thermal Energy at the Nanoscale Homework Solution - Week 3 Thermal Energy at the Nanoscale Homework Solution - Week 3 Spring 3. Graphene ZA mode specific heat (a) The cutoff wavevector K Q is found by equating the number of states in k-space within a circle of

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2014 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 POP QUIZ Phonon dispersion relation:

More information

introduction of thermal transport

introduction of thermal transport Subgroup meeting 2010.12.07 introduction of thermal transport members: 王虹之. 盧孟珮 introduction of thermal transport Phonon effect Electron effect Lattice vibration phonon Debye model of lattice vibration

More information

Physics with Neutrons II, SS Lecture 1, MLZ is a cooperation between:

Physics with Neutrons II, SS Lecture 1, MLZ is a cooperation between: Physics with Neutrons II, SS 2016 Lecture 1, 11.4.2016 MLZ is a cooperation between: Organization Lecture: Monday 12:00 13:30, PH227 Sebastian Mühlbauer (MLZ/FRM II) Sebastian.muehlbauer@frm2.tum.de Tel:089/289

More information

DEPARTMENT OF PHYSICS

DEPARTMENT OF PHYSICS Department of Physics 1 DEPARTMENT OF PHYSICS Office in Engineering Building, Room 124 (970) 491-6206 physics.colostate.edu (http://www.physics.colostate.edu) Professor Jacob Roberts, Chair Undergraduate

More information

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W Lattice Vibrations Chris J. Pickard 500 400 300 ω (cm -1 ) 200 100 L K W X 0 W L Γ X W K The Breakdown of the Static Lattice Model The free electron model was refined by introducing a crystalline external

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2009 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2009 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 Spring 2009 POP QUIZ

More information

EC 577 / MS 577: Electrical Optical and Magnetic Properties of Materials Professor Theodore. D. Moustakas Fall Semester 2012

EC 577 / MS 577: Electrical Optical and Magnetic Properties of Materials Professor Theodore. D. Moustakas Fall Semester 2012 EC 577 / MS 577: Electrical Optical and Magnetic Properties of Materials Professor Theodore. D. Moustakas Fall Semester 2012 Office: 8 St. Mary s Street, Room no: 835 Phone: 353-5431 e-mail: tdm@bu.edu

More information

Phonons Thermal energy Heat capacity Einstein model Density of states Debye model Anharmonic effects Thermal expansion Thermal conduction by phonons

Phonons Thermal energy Heat capacity Einstein model Density of states Debye model Anharmonic effects Thermal expansion Thermal conduction by phonons 3b. Lattice Dynamics Phonons Thermal energy Heat capacity Einstein model Density of states Debye model Anharmonic effects Thermal expansion Thermal conduction by phonons Neutron scattering G. Bracco-Material

More information

Theory of Disordered Condensed-Matter Systems

Theory of Disordered Condensed-Matter Systems Electronic hopping transport in disordered semiconductors Theory of Disordered Condensed-Matter Systems Walter Schirmacher University of Mainz, Germany Summer School on Soft Matters and Biophysics, SJTU

More information

Lecture 12: Phonon heat capacity

Lecture 12: Phonon heat capacity Lecture 12: Phonon heat capacity Review o Phonon dispersion relations o Quantum nature of waves in solids Phonon heat capacity o Normal mode enumeration o Density of states o Debye model Review By considering

More information

ET3034TUx Utilization of band gap energy

ET3034TUx Utilization of band gap energy ET3034TUx - 3.3.1 - Utilization of band gap energy In the last two weeks we have discussed the working principle of a solar cell and the external parameters that define the performance of a solar cell.

More information

Functional properties

Functional properties Functional properties Stéphane Gorsse ICMCB gorsse@icmcb-bordeaux.cnrs.fr Action Nationale de Formation en Métallurgie 22-25/10/2012 - Aussois Functional properties and microstructural features in ceramics

More information

Physics 213. Practice Final Exam Spring The next two questions pertain to the following situation:

Physics 213. Practice Final Exam Spring The next two questions pertain to the following situation: The next two questions pertain to the following situation: Consider the following two systems: A: three interacting harmonic oscillators with total energy 6ε. B: two interacting harmonic oscillators, with

More information

Physics 541: Condensed Matter Physics

Physics 541: Condensed Matter Physics Physics 541: Condensed Matter Physics In-class Midterm Exam Wednesday, October 26, 2011 / 14:00 15:20 / CCIS 4-285 Student s Name: Instructions There are 23 questions. You should attempt all of them. Mark

More information

Electronic and thermal properties of disordered materials

Electronic and thermal properties of disordered materials Electronic and thermal properties of disordered materials Joakim Bergli FYS3410, Spring 2018 Outline 1) Thermal properties of glasses: Two-level systems, heat capacity and termal conduction 2) Localization

More information

Lecture 11: Periodic systems and Phonons

Lecture 11: Periodic systems and Phonons Lecture 11: Periodic systems and Phonons Aims: Mainly: Vibrations in a periodic solid Complete the discussion of the electron-gas Astrophysical electrons Degeneracy pressure White dwarf stars Compressibility/bulk

More information

3. LATTICE VIBRATIONS. 3.1 Sound Waves

3. LATTICE VIBRATIONS. 3.1 Sound Waves 3. LATTIC VIBRATIONS Atoms in lattice are not stationary even at T 0K. They vibrate about particular equilibrium positions at T 0K ( zero-point energy). For T > 0K, vibration amplitude increases as atoms

More information

1 Fluctuations of the number of particles in a Bose-Einstein condensate

1 Fluctuations of the number of particles in a Bose-Einstein condensate Exam of Quantum Fluids M1 ICFP 217-218 Alice Sinatra and Alexander Evrard The exam consists of two independant exercises. The duration is 3 hours. 1 Fluctuations of the number of particles in a Bose-Einstein

More information

Monte Carlo Study of Thermal Transport of Direction and Frequency Dependent Boundaries in High Kn Systems

Monte Carlo Study of Thermal Transport of Direction and Frequency Dependent Boundaries in High Kn Systems Monte Carlo Study of Thermal Transport of Direction and Frequency Dependent Boundaries in High Kn Systems N.A. Roberts and D.G. Walker Department of Mechanical Engineering Vanderbilt University May 30,

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 5: Specific Heat of Lattice Waves Outline Review Lecture 4 3-D Elastic Continuum 3-D Lattice Waves Lattice Density of Modes Specific Heat of Lattice Specific

More information

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University

Physics of disordered materials. Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Physics of disordered materials Gunnar A. Niklasson Solid State Physics Department of Engineering Sciences Uppsala University Course plan Familiarity with the basic description of disordered structures

More information

Understanding. Solid State Physics. Sharon Ann Holgate. CRC Press Taylor & Francis Group Boca Raton London NewYork

Understanding. Solid State Physics. Sharon Ann Holgate. CRC Press Taylor & Francis Group Boca Raton London NewYork Understanding Solid State Physics Sharon Ann Holgate (И CRC Press Taylor & Francis Group Boca Raton London NewYork CRC Press is an imprint of the Taylor & Francis Group, an informa business A TAYLORS FRANCIS

More information

The Dulong-Petit (1819) rule for molar heat capacities of crystalline matter c v, predicts the constant value

The Dulong-Petit (1819) rule for molar heat capacities of crystalline matter c v, predicts the constant value I believe that nobody who has a reasonably reliable sense for the experimental test of a theory will be able to contemplate these results without becoming convinced of the mighty logical power of the quantum

More information

9.3. Total number of phonon modes, total energy and heat capacity

9.3. Total number of phonon modes, total energy and heat capacity Phys50.nb 6 E = n = n = exp - (9.9) 9... History of the Planck distribution or the Bose-Einstein distribution. his distribution was firstly discovered by Planck in the study of black-body radiation. here,

More information

Physics 607 Final Exam

Physics 607 Final Exam Physics 607 Final Exam Please be well-organized, and show all significant steps clearly in all problems You are graded on your work, so please do not ust write down answers with no explanation! o state

More information

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons

Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Nanoscale Energy Transport and Conversion A Parallel Treatment of Electrons, Molecules, Phonons, and Photons Gang Chen Massachusetts Institute of Technology OXFORD UNIVERSITY PRESS 2005 Contents Foreword,

More information

Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris

Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris Terahertz acoustics with multilayers and superlattices Bernard Perrin Institut des NanoSciences de Paris Daniel Lanzillotti-Kimura CNEA Bariloche & INSP Paris Florencia Pascual-Winter CNEA Bariloche &

More information

HARVESTING HEAT TO CREATE ELECTRICITY: A NEW WORLD RECORD

HARVESTING HEAT TO CREATE ELECTRICITY: A NEW WORLD RECORD HARVESTING HEAT TO CREATE ELECTRICITY: A NEW WORLD RECORD Approximately 90% of world s electricity is generated in turbines moved by hot steam, which, unfortunately, operate only at 30 to 40 percent efficiency.

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-Thermodynamics & Statistical Mechanics 1. Kinetic theory of gases..(1-13) 1.1 Basic assumption of kinetic theory 1.1.1 Pressure exerted by a gas 1.2 Gas Law for Ideal gases: 1.2.1 Boyle s Law 1.2.2

More information

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles

Ultracold Fermi and Bose Gases and Spinless Bose Charged Sound Particles October, 011 PROGRESS IN PHYSICS olume 4 Ultracold Fermi Bose Gases Spinless Bose Charged Sound Particles ahan N. Minasyan alentin N. Samoylov Scientific Center of Applied Research, JINR, Dubna, 141980,

More information

Physics 127a: Class Notes

Physics 127a: Class Notes Physics 127a: Class Notes Lecture 15: Statistical Mechanics of Superfluidity Elementary excitations/quasiparticles In general, it is hard to list the energy eigenstates, needed to calculate the statistical

More information

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p.

Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. Metals: the Drude and Sommerfeld models p. 1 Introduction p. 1 What do we know about metals? p. 1 The Drude model p. 2 Assumptions p. 2 The relaxation-time approximation p. 3 The failure of the Drude model

More information

Non-Continuum Energy Transfer: Phonons

Non-Continuum Energy Transfer: Phonons Non-Continuum Energy Transfer: Phonons D. B. Go Slide 1 The Crystal Lattice The crystal lattice is the organization of atoms and/or molecules in a solid simple cubic body-centered cubic hexagonal a NaCl

More information

Improving Efficiency of Thermoelectric Devices Made of Si-Ge, Si-Sn, Ge-Sn, and Si-Ge-Sn Binary and Ternary Alloys

Improving Efficiency of Thermoelectric Devices Made of Si-Ge, Si-Sn, Ge-Sn, and Si-Ge-Sn Binary and Ternary Alloys University of Massachusetts Amherst ScholarWorks@UMass Amherst Masters Theses Dissertations and Theses 2016 Improving Efficiency of Thermoelectric Devices Made of Si-Ge, Si-Sn, Ge-Sn, and Si-Ge-Sn Binary

More information

Photoemission Studies of Strongly Correlated Systems

Photoemission Studies of Strongly Correlated Systems Photoemission Studies of Strongly Correlated Systems Peter D. Johnson Physics Dept., Brookhaven National Laboratory JLab March 2005 MgB2 High T c Superconductor - Phase Diagram Fermi Liquid:-Excitations

More information

Heat conduction and phonon localization in disordered harmonic lattices

Heat conduction and phonon localization in disordered harmonic lattices Heat conduction and phonon localization in disordered harmonic lattices Anupam Kundu Abhishek Chaudhuri Dibyendu Roy Abhishek Dhar Joel Lebowitz Herbert Spohn Raman Research Institute NUS, Singapore February

More information

PHY 6500 Thermal and Statistical Physics - Fall 2017

PHY 6500 Thermal and Statistical Physics - Fall 2017 PHY 6500 Thermal and Statistical Physics - Fall 2017 Time: M, F 12:30 PM 2:10 PM. From 08/30/17 to 12/19/17 Place: Room 185 Physics Research Building Lecturer: Boris Nadgorny E-mail: nadgorny@physics.wayne.edu

More information

Lecture 4: Superfluidity

Lecture 4: Superfluidity Lecture 4: Superfluidity Kicking Bogoliubov quasiparticles FIG. 1. The Bragg and condensate clouds. (a) Average of two absorption images after 38 msec time of flight, following a resonant Bragg pulse with

More information

Ultralow thermal conductivity and the thermal conductance of interfaces

Ultralow thermal conductivity and the thermal conductance of interfaces Ultralow thermal conductivity and the thermal conductance of interfaces David G. Cahill, C. Chiritescu, Y.-K. Koh, X. Zheng, W.-P. Hsieh Materials Research Lab and Department of Materials Science, U. of

More information

RESEARCH ARTICLE. Rationalizing phonon dispersion for lattice thermal conductivity of solids

RESEARCH ARTICLE. Rationalizing phonon dispersion for lattice thermal conductivity of solids RESEARCH ARTICLE National Science Review 5: 888 894, 2018 doi: 10.1093/nsr/nwy097 Advance access publication 20 September 2018 1 Interdisciplinary Materials Research Center, School of Materials Science

More information

GeSi Quantum Dot Superlattices

GeSi Quantum Dot Superlattices GeSi Quantum Dot Superlattices ECE440 Nanoelectronics Zheng Yang Department of Electrical & Computer Engineering University of Illinois at Chicago Nanostructures & Dimensionality Bulk Quantum Walls Quantum

More information

Thermal Conductivity in Superlattices

Thermal Conductivity in Superlattices 006, November Thermal Conductivity in Superlattices S. Tamura Department of pplied Physics Hokkaido University Collaborators and references Principal Contributors: K. Imamura Y. Tanaka H. J. Maris B. Daly

More information

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1

PHYSICS-PH (PH) Courses. Physics-PH (PH) 1 Physics-PH (PH) 1 PHYSICS-PH (PH) Courses PH 110 Physics of Everyday Phenomena (GT-SC2) Credits: 3 (3-0-0) Fundamental concepts of physics and elementary quantitative reasoning applied to phenomena in

More information

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physics 607 Exam Please be well-organized, and show all significant steps clearly in all problems. You are graded on your work, so please do not just write down answers with no explanation! Do all your

More information

Modeling of a 2D Integrating Cell using CST Microwave Studio

Modeling of a 2D Integrating Cell using CST Microwave Studio Modeling of a 2D Integrating Cell using CST Microwave Studio Lena Simone Fohrmann, Gerrit Sommer, Alexander Yu. Petrov, Manfred Eich, CST European User Conference 2015 1 Many gases exhibit absorption lines

More information

Survey on Laser Spectroscopic Techniques for Condensed Matter

Survey on Laser Spectroscopic Techniques for Condensed Matter Survey on Laser Spectroscopic Techniques for Condensed Matter Coherent Radiation Sources for Small Laboratories CW: Tunability: IR Visible Linewidth: 1 Hz Power: μw 10W Pulsed: Tunabality: THz Soft X-ray

More information

Double Transition Effect in Anderson Transition

Double Transition Effect in Anderson Transition Turk J Phys 25 2001), 431 438. c TÜBİTAK Double Transition Effect in Anderson Transition Hüseyin AKTAŞ Department of Physics, Faculty of Sciences and Arts, University of Kırıkkale, Kırıkkale-TURKEY Received

More information

Road map (Where are we headed?)

Road map (Where are we headed?) Road map (Where are we headed?) oal: Fairly high level understanding of carrier transport and optical transitions in semiconductors Necessary Ingredients Crystal Structure Lattice Vibrations Free Electron

More information

arxiv:cond-mat/ v1 [cond-mat.str-el] 30 Dec 1997

arxiv:cond-mat/ v1 [cond-mat.str-el] 30 Dec 1997 Resistivity of Doped Two-Leg Spin Ladders Gilson Carneiro and Pascal Lederer + + Departamento de Física, PUC-Rio, C. P. 3871, Rio de Janeiro and +, Instituto de Física, Universidade Federal do Rio de Janeiro,

More information

Basic cell design. Si cell

Basic cell design. Si cell Basic cell design Si cell 1 Concepts needed to describe photovoltaic device 1. energy bands in semiconductors: from bonds to bands 2. free carriers: holes and electrons, doping 3. electron and hole current:

More information

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA

Spectroscopy of. Semiconductors. Luminescence OXFORD IVAN PELANT. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Luminescence Spectroscopy of Semiconductors IVAN PELANT Institute ofphysics, v.v.i. Academy ofsciences of the Czech Republic, Prague JAN VALENTA Department of Chemical Physics and Optics Charles University,

More information

Physics Nov Cooling by Expansion

Physics Nov Cooling by Expansion Physics 301 19-Nov-2004 25-1 Cooling by Expansion Now we re going to change the subject and consider the techniques used to get really cold temperatures. Of course, the best way to learn about these techniques

More information

Part II Statistical Physics

Part II Statistical Physics Part II Statistical Physics Theorems Based on lectures by H. S. Reall Notes taken by Dexter Chua Lent 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Lecture 4. Diffusing photons and superradiance in cold gases

Lecture 4. Diffusing photons and superradiance in cold gases Lecture 4 Diffusing photons and superradiance in cold gases Model of disorder-elastic mean free path and group velocity. Dicke states- Super- and sub-radiance. Scattering properties of Dicke states. Multiple

More information

MIT Amorphous Materials

MIT Amorphous Materials MIT 3.071 Amorphous Materials 10: Electrical and Transport Properties Juejun (JJ) Hu 1 After-class reading list Fundamentals of Inorganic Glasses Ch. 14, Ch. 16 Introduction to Glass Science and Technology

More information

221B Lecture Notes Spontaneous Symmetry Breaking

221B Lecture Notes Spontaneous Symmetry Breaking B Lecture Notes Spontaneous Symmetry Breaking Spontaneous Symmetry Breaking Spontaneous Symmetry Breaking is an ubiquitous concept in modern physics, especially in condensed matter and particle physics.

More information

Strongly Localized Photonic Mode in 2D Periodic Structure Without Bandgap

Strongly Localized Photonic Mode in 2D Periodic Structure Without Bandgap Strongly Localized Photonic Mode in D Periodic Structure Without Bandgap V. M. APALKOV M. E. RAIKH Physics Department, University of Utah The work was supported by: the Army Research Office under Grant

More information

Size-dependent model for thin film and nanowire thermal conductivity

Size-dependent model for thin film and nanowire thermal conductivity AIP/23-QED Size-dependent model for thin film and nanowire thermal conductivity Alan J. H. McGaughey,, a) Eric S. Landry,, 2 Daniel P. Sellan, 3 and Cristina H. Amon, 3 ) Department of Mechanical Engineering,

More information

Study Plan for Ph.D in Physics (2011/2012)

Study Plan for Ph.D in Physics (2011/2012) Plan Study Plan for Ph.D in Physics (2011/2012) Offered Degree: Ph.D in Physics 1. General Rules and Conditions:- This plan conforms to the regulations of the general frame of the higher graduate studies

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Problem 1: Ripplons Problem Set #11 Due in hand-in box by 4:00 PM, Friday, May 10 (k) We have seen

More information

Rb, which had been compressed to a density of 1013

Rb, which had been compressed to a density of 1013 Modern Physics Study Questions for the Spring 2018 Departmental Exam December 3, 2017 1. An electron is initially at rest in a uniform electric field E in the negative y direction and a uniform magnetic

More information

extremes of heat conduction: Pushing the boundaries of the thermal conductivity of materials

extremes of heat conduction: Pushing the boundaries of the thermal conductivity of materials extremes of heat conduction: Pushing the boundaries of the thermal conductivity of materials David G. Cahill C. Chiritescu, W.-P. Hsieh, B. Chen, D. Li, G. Hohensee Department of Materials Science and

More information

Structure and Dynamics : An Atomic View of Materials

Structure and Dynamics : An Atomic View of Materials Structure and Dynamics : An Atomic View of Materials MARTIN T. DOVE Department ofearth Sciences University of Cambridge OXFORD UNIVERSITY PRESS Contents 1 Introduction 1 1.1 Observations 1 1.1.1 Microscopic

More information

Proceedings of the ASME th Micro/Nanoscale Heat & Mass Transfer International Conference MNHMT2013 December 11-14, 2013, Hong Kong, China

Proceedings of the ASME th Micro/Nanoscale Heat & Mass Transfer International Conference MNHMT2013 December 11-14, 2013, Hong Kong, China Proceedings of the ASME 2013 4th Micro/Nanoscale Heat & Mass Transfer International Conference MNHMT2013 December 11-14, 2013, Hong Kong, China MNHMT2013-22030 THE FOURIER LAW AT MACRO AND NANOSCALES Thomas

More information

Disordered Hyperuniformity: Liquid-like Behaviour in Structural Solids, A New Phase of Matter?

Disordered Hyperuniformity: Liquid-like Behaviour in Structural Solids, A New Phase of Matter? Disordered Hyperuniformity: Liquid-like Behaviour in Structural Solids, A New Phase of Matter? Kabir Ramola Martin Fisher School of Physics, Brandeis University August 19, 2016 Kabir Ramola Disordered

More information

Crystals. Peter Košovan. Dept. of Physical and Macromolecular Chemistry

Crystals. Peter Košovan. Dept. of Physical and Macromolecular Chemistry Crystals Peter Košovan peter.kosovan@natur.cuni.cz Dept. of Physical and Macromolecular Chemistry Lecture 1, Statistical Thermodynamics, MC26P15, 5.1.216 If you find a mistake, kindly report it to the

More information

Semiconductor Physical Electronics

Semiconductor Physical Electronics Semiconductor Physical Electronics Sheng S. Li Department of Electrical Engineering University of Florida Gainesville, Florida Plenum Press New York and London Contents CHAPTER 1. Classification of Solids

More information

Lecture 10 Planck Distribution

Lecture 10 Planck Distribution Lecture 0 Planck Distribution We will now consider some nice applications using our canonical picture. Specifically, we will derive the so-called Planck Distribution and demonstrate that it describes two

More information

In an electric field R and magnetic field B, the force on an electron (charge e) is given by:

In an electric field R and magnetic field B, the force on an electron (charge e) is given by: Lecture 17 Electric conduction Electrons motion in magnetic field Electrons thermal conductivity Brief review In solid state physics, we do not think about electrons zipping around randomly in real space.

More information

The photoelectric effect with phonon emission

The photoelectric effect with phonon emission The photoelectric effect with phonon emission Miroslav Pardy Department of Physical Electronics Masaryk University Kotlářská 2, 611 37 Brno, Czech Republic e-mail:pamir@physics.muni.cz October 25, 2017

More information

Nanoscale Heat Transfer and Information Technology

Nanoscale Heat Transfer and Information Technology Response to K.E. Goodson Nanoscale Heat Transfer and Information Technology Gang Chen Mechanical Engineering Department Massachusetts Institute of Technology Cambridge, MA 02139 Rohsenow Symposium on Future

More information

Thermal Neutron Scattering in Graphite

Thermal Neutron Scattering in Graphite Thermal Neutron Scattering in Graphite by Iyad I. Al-Qasir Department of Physics University of Jordan Amman, Jordan Supervisor Dr. Ayman I. Hawari Department of Nuclear Engineering North Carolina State

More information

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS

ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS ELECTRONS AND PHONONS IN SEMICONDUCTOR MULTILAYERS В. К. RIDLEY University of Essex CAMBRIDGE UNIVERSITY PRESS Contents Introduction 1 Simple Models of the Electron-Phonon Interaction 1.1 General remarks

More information

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI Department of Physics MID SEMESTER EXAMINATION Statistical Mechanics: PH704 Solution

INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI Department of Physics MID SEMESTER EXAMINATION Statistical Mechanics: PH704 Solution INDIAN INSTITUTE OF TECHNOLOGY GUWAHATI Department of Physics MID SEMESTER EXAMINATION Statistical Mechanics: PH74 Solution. There are two possible point defects in the crystal structure, Schottky and

More information

Conduction. Metals, Semiconductors and Interconnects. Fig 2.1

Conduction. Metals, Semiconductors and Interconnects. Fig 2.1 Conduction Metals, Semiconductors and Interconnects Fig 2.1 Metal interconnects are used in microelectronics to wire the devices within the chip, the intergraded circuit. Multilevel interconnects are used

More information

The energy of this state comes from the dispersion relation:

The energy of this state comes from the dispersion relation: Homework 6 Solutions Problem 1: Kittel 7-2 a The method is the same as for the nonrelativistic gas. A particle confined in a box of volume L 3 is described by a the set of wavefunctions ψ n sinn x πx/l

More information

Lecture 2: Background dconcepts

Lecture 2: Background dconcepts Optoelectronics I Lecture : Background dconcepts M. Soroosh Assistant Professor of Electronics Shahid Chamran University 1 Face Centered Crystal (FCC) Body Centered Crystal (BCC) Bragg s Law William Lawrence

More information

Chapter 2. Spinelektronik: Grundlagen und Anwendung spinabhängiger Transportphänomene. Winter 05/06

Chapter 2. Spinelektronik: Grundlagen und Anwendung spinabhängiger Transportphänomene. Winter 05/06 Winter 05/06 : Grundlagen und Anwendung spinabhängiger Transportphänomene Chapter 2 : Grundlagen und Anwendung spinabhängiger Transportphänomene 1 Winter 05/06 2.0 Scattering of charges (electrons) In

More information