Thermal simulation of a complete vehicle using manikin models
|
|
- Phoebe Dawson
- 1 years ago
- Views:
Transcription
1 Thermal simulation of a complete vehicle using manikin models Dr. Stefan Paulke, Dr. Daniel Köster, Dr. Regina Hass (P+Z Engineering GmbH) Dr. Viktor Bader, Dr. Stephan Menzel, Andreas Gubalke (Volkswagen AG) SIMVEC Simulation und Erprobung in der Fahrzeugentwicklung November 18th -19th, 2014, Baden-Baden, Germany
2 Motivation Promoted Project STROM BMBF (German Federal Ministry of Education and Research): Sponsorship in the topic "Key Technologies for Electromobility (STROM)" Project group: Innovative air conditioning and thermal comfort concepts for the range optimization of electric vehicles (E-Komfort) Time span: 3 years up to June 2014 e-golf Partners/ Competence: Volkswagen AG Vehicle OEM Fraunhofer IBP Measurement of thermal comfort (DRESSMAN) P+Z Eng. GmbH Thermal cabin simulation (THESEUS-FE + OpenFOAM) page 2
3 Overview 1. Creation of baseline thermal simulation model 2. Simplified simulation model 3. Concepts for zonal climatization 4. IR radiators and local thermal comfort 5. Validation of coupled cabin simulation page 3
4 Creation of baseline thermal simulation model Starting point: FE model for side impact crash simulation material names, thicknesses, density connector elements: welding spots, adhesives Model enhancement: Remeshing of missing parts Volume meshing of important parts Thermal contacts and bridges Cavity convection effects Thermal/solar radiative heat transfer Creation of a thermal material database:,, c p,,, Detail: B-column section page 4
5 Creation of baseline thermal simulation model Connector elements Heat bridges Adhesive lines Welding spot page 5
6 Creation of baseline thermal simulation model Shell element remeshing page 6
7 Creation of baseline thermal simulation model Remeshing with volume elements Seals: page 7
8 Creation of baseline thermal simulation model Example of: Volume element meshing Contacts Firewall Carpet Liners Sheet metal Thermal contacts page 8
9 Conduction Creation of baseline thermal simulation model Mechanisms of heat transfer Reflection, transmission, absorption of wind screen solar shortwave radiation direct H 2 O diffuse convective exchange with surrounding air T sky longwave radiation exchange with sky... with cabin air T cabin T air v air solar ground reflection page 9
10 Creation of baseline thermal simulation model Example: Transmissivity (standard glass) dependency on wave length and incidence angle page 10
11 Creation of baseline thermal simulation model Climate chamber model (summer load case) page 11
12 z pipe Creation of baseline thermal simulation model Cabin air zonal modelling each airzone has an average air temperature and humidity as degree of freedom Dash board Cabin air (top) Engine space Trunk z x Cabin air (bottom) page 12
13 [mm] Cabin air average temp. Temperatur [ C] Creation of baseline thermal simulation model Validation of summer load case Pull-Down - Baseline Messung Measurement Simulation Simulation with manikin Simulation mit Manikin t [sec] t= Temperatur[ C] page 13
14 z pipe Cabin air average temp. Creation of baseline thermal simulation model Sommer-Lastfall Validation of summer load case Pull-Down - Baseline Solar roof panel powering passive ventilation, t<0 Reduction by 6-7 C t [sec] page 14
15 z-rohr Temperatur [ C] Creation of baseline thermal simulation model Validation of summer load case Solid part temperature, t=t max (Simulation) t max Messung T Simulation Simulation mit Manikin t [sec] T max E 6.10E E E E+07 T min 5.70E E+07 FE Energy 5.50E page 15
16 Creation of baseline thermal simulation model Baseline model statistics Number of FEs # Shells: 2.1 million # Facets: 4.2 million # Solids: 1.1 million # 1D-Verbindungen: 0.2 million # DOF: 4.3 million Material data # Properties: # Materials: 90 Computation time # 4 CPUs: 2-5h Model creation effort Several months, including research of material parameters page 16
17 Part 2: Simplified simulation model page 17
18 Simplified simulation model Cabin average air temperature Winter load case "Heat up" Area correction factor x A A Generator GeneratorModel (no area correction) Generatormodel (with area correction) Baseline model GeneratorModel (THESEUS-FE) Airzone 2 Airzone 3 Time[sec] Airzone 1 Airzone 4 page 18
19 Simplified simulation model 1D heat conduction modelling Layer configuration: mm steel sheet (c 1, 1, 1 ) mm liner mm air mm canvas Air layer:. T in Kelvin page 19
20 Airzone 2 Airzone 3 Airzone 1 Airzone 4 occupied zone Part 3 Concepts for zonal climatization page 20
21 Concepts for zonal climatization Winter load case "Heat up" Face outlets Zone 1+2: Driver + Passenger Zone 3+4 T env = -7 C Bottom Fond CFD: with OpenFOAM Steady-state flow assumed CFD Volume flow rates through zone borders Constant outlet temperature assumed Overall goal: raise temperature in driver zone to 24.7 C after 10 min (corresponds roughly to PMV=0) page 21
22 Concepts for zonal climatization Winter load case Variants Baseline: Variant 1: Fond Bottom Bottom T env = -7 C Variant 2: (assym.) Variant 3: (assym.) Bottom Bottom page 22
23 Concepts for zonal climatization Winter load case Variants 55 C 55 C 38 C Baseline: Variant 1: Zone 2 Passenger 24.7 C Zone 1 Driver 24.7 C Zone 3 Rear = 20.2 C Energy usage = 100 % Variant 2: asymmetric Zone 2 Passenger 5.1 C Zone 1 Driver 24.7 C Zone 3 Rear =13.5 C Energy usage = 73 % 44 C 44 C T env = -7 C 54 C Zone 2 Passenger 24.7 C Zone 3 Rear Zone 1 =13.1 C Driver 24.7 C Energy usage = 83 % Variant 3: asymmetric Zone 2 Passenger 11.3 C Zone 3 Rear Zone 1 =16.7 C Driver 24.7 C Energy usage = 98 % page 23
24 Concepts for zonal climatization Basis Variant 1 Variant 2 Variant 3 page 24
25 Part 4: 1. IR radiators and local thermal comfort page 25
26 IR radiators and local thermal comfort Winter load case Variants with reduced outlet temperature Baseline without IR emitters Var. 1 with IR emitters above Var. 2 with IR emitters above and below T eq ISO page 26
27 IR radiators and local thermal comfort Coupled comfort simulations Q convection A h T fluid T wall h CFD Data exchange with OpenFOAM via mapping Simulation Thermophysiology model: FIALA-FE (OpenFOAM) - Heat conduction within body - Circulatory system, metabolism, shivering - Contact heat flow, clothing, respiration, transpiration, sweating (incl. humidity exchange with OpenFOAM),T fluid T wall Therm. Simulation (THESEUS-FE) Thermal comfort evaluation for human model FIALA-FE: PMV, DTS, Teq, ISO , Zhang 3D heat conduction in solids with THESEUS-FE 3D radiation thermal and solar in THESEUS-FE page 27
28 IR radiators and local thermal comfort Coupled comfort simulations What data is exchanged during co-simulation? Parameter Units Source Target Wall temperature T wall C THESEUS-FE OpenFOAM field Local convective coefficient of heat transfer h W/(m 2 K) OpenFOAM THESEUS-FE field Adjacent fluid temperature T fluid C OpenFOAM THESEUS-FE field Current time increment Δt S THESEUS-FE OpenFOAM scalar Rate of water vapor generation J kg/(m 2 s) THESEUS-FE OpenFOAM field Mass fraction of water vapor Y H2O - OpenFOAM THESEUS-FE field Air pressure p Pa OpenFOAM THESEUS-FE field Avg. inlet temperature T in C AC model OpenFOAM scalar Avg. water vapor fraction X H2O,in - AC model OpenFOAM scalar Avg. outlet temperature T out C OpenFOAM AC model scalar Avg. water vapor fraction X H2O,out - OpenFOAM AC model scalar PMV (=global comfort index) - THESEUS-FE AC model scalar page 28
29 Part 5: Validation of coupled cabin simulation OpenFOAM THESEUS-FE page 29
30 Validation of coupled cabin simulation Local air temperature Local air temperature Validation summer load case ("pull-down") page 30
31 Validation of coupled cabin simulation Lokale Lufttemperatur Validation summer load case VDA_Kopf_vo VDA Head front VDA Head rear VDA head front VDA front rear page 31
Numerical Simulation of the Air Flow and Thermal Comfort in a Train Cabin
Paper 328 Numerical Simulation of the Air Flow and Thermal Comfort in a Train Cabin M. Konstantinov 1 and C. Wagner 1,2 1 Institute of Thermodynamics and Fluid Mechanics University of Technology Ilmenau,
Simulation of the Interior Cabin Warm-up and Cool Down using CFD
Simulation of the Interior Cabin Warm-up and Cool Down using CFD Dr Karamjit Sandhu Climate Control Systems Jaguar Land Rover Limited Overview Introduction Modeling Results Summary & Conclusions 2 Introduction
THERMAL COMFORT SIMULATION IN MODERN AIRCRAFT COCKPITS
THERMAL COMFORT SIMULATION IN MODERN AIRCRAFT COCKPITS Paul Mathis 1, Rita Streblow 1, Dirk Müller 1, Gunnar Grün², Andreas Wick³, Jean-Christophe Thalabart³ 1 Institute for Energy Efficient Buildings
Cooling Load Calculation and Thermal Modeling for Vehicle by MATLAB
Cooling Load Calculation and Thermal Modeling for Vehicle by MATLAB OumSaad Abdulsalam 1, Budi Santoso 2, Dwi Aries 2 1 P. G. Student, Department of Mechanical Engineering, Sebelas Maret University, Indonesia
ROOM AVERAGE VELOCITY EQUATION A TOOL TO IMPROVE DESIGN OF THERMAL COMFORT CONDITIONS
ROOM AVERAGE VELOCITY EQUATION A TOOL TO IMPROVE DESIGN OF THERMAL COMFORT CONDITIONS K Hagström *, O Hakkola and T Moilanen Halton Solutions, Kausala, Finland ABSTRACT For a long time PPD index defined
UNIT FOUR SOLAR COLLECTORS
ME 476 Solar Energy UNIT FOUR SOLAR COLLECTORS Flat Plate Collectors Outline 2 What are flat plate collectors? Types of flat plate collectors Applications of flat plate collectors Materials of construction
AN APPROACH TO THE MODELLING OF A VIRTUAL THERMAL MANIKIN
THERMAL SCIENCE: Year 2014, Vol. 18, No. 4, pp. 1413-1423 1413 AN APPROACH TO THE MODELLING OF A VIRTUAL THERMAL MANIKIN by Dragan A. RU I] a* and Siniša M. BIKI] b a Department for Mechanization and Design
Thermal Systems Design MARYLAND. Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects
Thermal Systems Design Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects Internal power generation Environmental temperatures Conduction Thermal system components
Thermal Systems Design MARYLAND. Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects
Fundamentals of heat transfer Radiative equilibrium Surface properties Non-ideal effects Internal power generation Environmental temperatures Conduction Thermal system components 2002 David L. Akin - All
ESTIMATION OF AUTOMOBILE COOLING LOADS FOR AIR CONDITIONING SYSTEM DESIGN
Nigerian Research Journal of Engineering and Environmental Sciences 596 Original Research Article ESTIMATION OF AUTOMOBILE COOLING LOADS FOR AIR CONDITIONING SYSTEM DESIGN *Omo-Oghogho, E., Aliu, S.A.,
Numerical Analysis of Comfort and Energy Performance of Radiant Heat Emission Systems
Numerical Analysis of Comfort and Energy Performance of Radiant Heat Emission Systems. Fabian Ochs, Mara Magni, Michele Bianchi Janetti, Dietmar Siegele Unit for Energy Efficient Buildings, UIBK z / [m]....3...9
Outline. Stock Flow and temperature. Earth as a black body. Equation models for earth s temperature. Balancing earth s energy flows.
Outline Stock Flow and temperature Earth as a black body Equation models for earth s temperature { { Albedo effect Greenhouse effect Balancing earth s energy flows Exam questions How does earth maintain
ADVANCED ROOF COATINGS: MATERIALS AND THEIR APPLICATIONS
ADVANCED ROOF COATINGS: MATERIALS AND THEIR APPLICATIONS Abstract J.M. Bell 1 and G.B. Smith 2 The use of low emittance and high solar reflectance coatings is widespread in window glazings, wall and roof
Individualisation of virtual thermal manikin models for predicting thermophysical responses
Proceeding of: Indoor Air Conference, June, 2011, Austin, TX Individualisation of virtual thermal manikin models for predicting thermophysical responses Daniel Wölki 1,*, Christoph van Treeck 1, Yi Zhang
Radiation Effects On Exterior Surfaces
Radiation Effects On Exterior Surfaces Kehrer Manfred, Dipl.-ng., Hygrothermics Department, Fraunhofer BP; Manfred.Kehrer@ibp.fraunhofer.de Schmidt Thoma Dipl.-Phys., Hygrothermics Department, Fraunhofer
Computational Modelling of the Impact of Solar Irradiance on Chemical Degradation of Painted Wall Hangings in an Historic Interior
Computational Modelling of the Impact of Solar Irradiance on Chemical Degradation of Painted Wall Hangings in an Historic Interior Z. Huijbregts *1, A.W.M. van Schijndel 1, H.L. Schellen 1, K. Keune 2,
Solar Flat Plate Thermal Collector
Solar Flat Plate Thermal Collector INTRODUCTION: Solar heater is one of the simplest and basic technologies in the solar energy field. Collector is the heart of any solar heating system. It absorbs and
International Journal of Scientific & Engineering Research, Volume 8, Issue 2, February-2017 ISSN
ISSN 2229-5518 916 Laser Damage Effect Studies with Hollow Metallic Targets Satyender Kumar, S Jain, K C Sati, S Goyal, R Malhotra, R Rajan, N R Das & A K Srivastava Laser Science & Technology Centre Metcalfe
WUFI Workshop NBI / SINTEF 2008 Radiation Effects On Exterior Surfaces
WUFI Workshop NBI / SINTEF 2008 Radiation Effects On Exterior Surfaces Manfred Kehrer Content: Introduction; Importance of Radiation Short Trip into Radiation Physics Typical Handling of Radiation on Exterior
A Simulation Tool for Radiative Heat Exchangers
Purdue University Purdue e-pubs International Refrigeration and Air Conditioning Conference School of Mechanical Engineering 2012 A Simulation Tool for Radiative Heat Exchangers Yunho Hwang yhhwang@umd.edu
5. Thermal Design. Objective: Control heat flow to: Maintain comfortable indoor conditions
5. Thermal Design Objective: Control heat flow to: 2. Maintain comfortable indoor conditions 3. Reduce heating/cooling loads, which reduces operating costs 4. Control vapor movement/condensation 5. Design
TIR100-2 Measurement of Thermal Emissivity
TIR100-2 Measurement of Thermal Emissivity Dr. Thomas Meisel INGLAS GmbH & Co. KG Introduction Some basic physics Principles of measurement pren 15976 Working with the TIR100-2 Practical course INGLAS
HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION
HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION 11 Fourier s Law of Heat Conduction, General Conduction Equation Based on Cartesian Coordinates, Heat Transfer Through a Wall, Composite Wall
Experimental Performance and Numerical Simulation of Double Glass Wall Thana Ananacha
Experimental Performance and Numerical Simulation of Double Glass Wall Thana Ananacha Abstract This paper reports the numerical and experimental performances of Double Glass Wall are investigated. Two
3.0 FINITE ELEMENT MODEL
3.0 FINITE ELEMENT MODEL In Chapter 2, the development of the analytical model established the need to quantify the effect of the thermal exchange with the dome in terms of a single parameter, T d. In
CZECH TECHNICAL UNIVERSITY IN PRAGUE FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF ENVIRONMENTAL ENGINEERING
CZECH TECHNICAL UNIVERSITY IN PRAGUE FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF ENVIRONMENTAL ENGINEERING APPLICABILITY OF CHILLED BEAM-SYSTEM IN THE MIDDLE EAST BACHELOR THESIS JACQUES MATTA 2 EE
1D-HAM. Coupled Heat, Air and Moisture Transport in Multi-layered Wall Structures. Manual with brief theory and an example. Version 2.
1D-HAM Coupled Heat, Air and Moisture Transport in Multi-layered Wall Structures. Manual with brief theory and an example. Version 2.0 30 t=70 days (1680 h) 100 Temperatures ( C) v (g/m³) 25 20 15 10 5
1D and 3D Simulation. C. Hochenauer
Solar thermal flat-plate l t collectors 1D and 3D Simulation C. Hochenauer Introduction Description of a solar thermal flat-plate collector 1D Simulation - Description of the model - Simulation vs. measurement
Composition, Structure and Energy. ATS 351 Lecture 2 September 14, 2009
Composition, Structure and Energy ATS 351 Lecture 2 September 14, 2009 Composition of the Atmosphere Atmospheric Properties Temperature Pressure Wind Moisture (i.e. water vapor) Density Temperature A measure
Calculating equation coefficients
Solar Energy 1 Calculating equation coefficients Construction Conservation Equation Surface Conservation Equation Fluid Conservation Equation needs flow estimation needs radiation and convection estimation
An Investigation on the Human Thermal Comfort from a Glass Window
Article An Investigation on the Human Thermal Comfort from a Glass Window Nopparat Khamporn a and Somsak Chaiyapinunt b Department of Mechanical Engineering, Faculty of Engineering, Chulalongkorn niversity,
Heat Loss from Cavity Receiver for Solar Micro- Concentrating Collector
Heat Loss from Cavity Receiver for Solar Micro- Concentrating Collector Tanzeen Sultana 1, Graham L Morrison 1, Andrew Tanner 2, Mikal Greaves 2, Peter Le Lievre 2 and Gary Rosengarten 1 1 School of Mechanical
In the News:
In the News: http://www.nytimes.com/2009/09/04/science/earth/04arctic.html?hp In the News: Reversal in Arctic cooling trend Kaufman et al. 2009, Science http://www.nytimes.com/2009/09/0 4/science/earth/04arctic.html?hp
Appendix 5.A11: Derivation of solar gain factors
Thermal design, plant sizing and energy consumption: Additional appendices A11-1 Appendix 5.A11: Derivation of solar gain factors 5.A11.1 Notation Symbols used in this appendix are as follows. a Fraction
Analytical Design of Isolations for Cryogenic Tankers
, July 3-5, 2013, London, U.K. Analytical Design of Isolations for Cryogenic Tankers R. Miralbes, D. Valladares, L. Castejon, J. Abad, J.L. Santolaya, Member, IAENG Abstract In this paper it is presented
VALIDATION OF CFD-MODELS FOR NATURAL CONVECTION, HEAT TRANSFER AND TURBULENCE PHENOMENA. J. Stewering, B. Schramm, M. Sonnenkalb
VALIDATION OF CFD-MODELS FOR NATURAL CONVECTION, HEAT TRANSFER AND TURBULENCE PHENOMENA J. Stewering, B. Schramm, M. Sonnenkalb Gesellschaft für Anlagen- und Reaktorsicherheit (GRS) mbh, Schwertnergasse
CFD-Modeling of Turbulent Flows in a 3x3 Rod Bundle and Comparison to Experiments
CFD-Modeling of Turbulent Flows in a 3x3 Rod Bundle and Comparison to Experiments C. Lifante 1, B. Krull 1, Th. Frank 1, R. Franz 2, U. Hampel 2 1 PBU, ANSYS Germany, Otterfing 2 Institute of Safety Research,
THERMO-MECHANICAL ANALYSIS OF A COPPER VAPOR LASER
THERMO-MECHANICAL ANALYSIS OF A COPPER VAPOR LASER E.mail: rchaube@cat.ernet.in R. CHAUBE, B. SINGH Abstract The thermal properties of the laser head such as temperature distribution, thermal gradient
Numerical Analysis of the Thermal Behavior of a Hermetic Reciprocating Compressor
Journal of Earth Science and Engineering 7 (2017) 1-9 doi: 10.17265/2159-581X/2017.01.001 D DAVID PUBLISHING Numerical Analysis of the Thermal Behavior of a Hermetic Reciprocating Compressor Stefan Posch
IDA ICE CIBSE-Validation Test of IDA Indoor Climate and Energy version 4.0 according to CIBSE TM33, issue 3
FHZ > FACHHOCHSCHULE ZENTRALSCHWEIZ HTA > HOCHSCHULE FÜR TECHNIK+ARCHITEKTUR LUZERN ZIG > ZENTRUM FÜR INTEGRALE GEBÄUDETECHNIK IDA ICE CIBSE-Validation Test of IDA Indoor Climate and Energy version 4.0
Project 2. Introduction: 10/23/2016. Josh Rodriguez and Becca Behrens
Project 2 Josh Rodriguez and Becca Behrens Introduction: Section I of the site Dry, hot Arizona climate Linen supply and cleaning facility Occupied 4am-10pm with two shifts of employees PHOENIX, ARIZONA
Design of Partial Enclosures. D. W. Herrin, Ph.D., P.E. University of Kentucky Department of Mechanical Engineering
D. W. Herrin, Ph.D., P.E. Department of Mechanical Engineering Reference 1. Ver, I. L., and Beranek, L. L. (2005). Control Engineering: Principles and Applications. John Wiley and Sons. 2. Sharp, B. H.
Determination of installed thermal resistance into a roof of TRISO-SUPER 12 BOOST R
INSTITUTE OF ARCHITECTURE AND CONSTRUCTION OF KAUNAS UNIVERSITY OF TECHNOLOGY LABORATORY OF BUILDING PHYSICS Notified Body number: 2018 TEST REPORT No. 037-10/11(C) SF/15 Date: 26 of November 2015 page
17/02/02 IMAPS Thermal Management La Rochelle
17/02/02 La Rochelle Coupling Effects during Thermo- Fluidic Analysis of Flip-Chip Devices with Peripheral Components CFD Simulation and Experimental Study - Torsten Nowak - IMAPS Thermal TORSTEN.NOWAK@B-TU.DE
Thermo-mechanical Investigation of Ventilated Disc Brake with Finite Element Analysis
Thermo-mechanical Investigation of Ventilated Disc Brake with Finite Element Analysis Arifin #1, Mohammad Tauviqirrahman #2, Muchammad *3, J. Jamari #, A.P. Bayuseno # # Laboratory for Engineering Design
The Heat Budget for Mt. Hope Bay
The School for Marine Science and Technology The Heat Budget for Mt. Hope Bay Y. Fan and W. Brown SMAST, UMassD SMAST Technical Report No. SMAST-03-0801 The School for Marine Science and Technology University
Calculating equation coefficients
Fluid flow Calculating equation coefficients Construction Conservation Equation Surface Conservation Equation Fluid Conservation Equation needs flow estimation needs radiation and convection estimation
CRYOGENIC CONDUCTION COOLING TEST OF REMOVABLE PANEL MOCK-UP FOR ITER CRYOSTAT THERMAL SHIELD
CRYOGENIC CONDUCTION COOLING TEST OF REMOVABLE PANEL MOCK-UP FOR ITER CRYOSTAT THERMAL SHIELD K. Nam, a D. K. Kang, a W. Chung, a C. H. Noh, a J. Yu, b N. I. Her, b C. Hamlyn-Harris, b Y. Utin, b and K.
IMPROVING THE ACOUSTIC PERFORMANCE OF EXPANSION CHAMBERS BY USING MICROPERFORATED PANEL ABSORBERS
Proceedings of COBEM 007 Copyright 007 by ABCM 9th International Congress of Mechanical Engineering November 5-9, 007, Brasília, DF IMPROVING THE ACOUSTIC PERFORMANCE OF EXPANSION CHAMBERS BY USING MICROPERFORATED
Heat Transfer Modeling
Heat Transfer Modeling Introductory FLUENT Training 2006 ANSYS, Inc. All rights reserved. 2006 ANSYS, Inc. All rights reserved. 7-2 Outline Energy Equation Wall Boundary Conditions Conjugate Heat Transfer
UC Berkeley Indoor Environmental Quality (IEQ)
UC Berkeley Indoor Environmental Quality (IEQ) Title Thermal sensation and comfort models for non-uniform and transient environments: Part I: local sensation of individual body parts Permalink https://escholarship.org/uc/item/3sw061xh
Physics 101: Lecture 26 Conduction, Convection, Radiation
Final Physics 101: Lecture 26 Conduction, Convection, Radiation Today s lecture will cover Textbook Chapter 14.4-14.9 Physics 101: Lecture 26, Pg 1 Review Heat is FLOW of energy Flow of energy may increase
SUPER-INSULATED LONG-TERM HOT WATER STORAGE
SUPER-INSULATED LONG-TERM HOT WATER STORAGE Dr. rer. nat. T. Beikircher, Dr.-Ing. F. Buttinger, M. Demharter ZAE Bayern, Dept. 1 Walther Meißner Str. 6, 85748 Garching Phone: +49/89/329442-49 beikircher@muc.zae-bayern.de
General Physics (PHY 2130)
General Physics (PHY 2130) Lecture 34 Heat Heat transfer Conduction Convection Radiation http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Thermal physics Heat. Specific
Absorptivity, Reflectivity, and Transmissivity
cen54261_ch21.qxd 1/25/4 11:32 AM Page 97 97 where f l1 and f l2 are blackbody functions corresponding to l 1 T and l 2 T. These functions are determined from Table 21 2 to be l 1 T (3 mm)(8 K) 24 mm K
Radiation, Sensible Heat Flux and Evapotranspiration
Radiation, Sensible Heat Flux and Evapotranspiration Climatological and hydrological field work Figure 1: Estimate of the Earth s annual and global mean energy balance. Over the long term, the incoming
A SIMPLE MODEL FOR THE DYNAMIC COMPUTATION OF BUILDING HEATING AND COOLING DEMAND. Kai Sirén AALTO UNIVERSITY
A SIMPLE MODEL FOR THE DYNAMIC COMPUTATION OF BUILDING HEATING AND COOLING DEMAND Kai Sirén AALTO UNIVERSITY September 2016 CONTENT 1. FUNDAMENTALS OF DYNAMIC ENERGY CALCULATIONS... 3 1.1. Introduction...
The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy
Energy Balance The inputs and outputs of energy within the earth-atmosphere system that determines the net energy available for surface processes is the Energy Balance Electromagnetic Radiation Electromagnetic
Supply air window PAZIAUD : Comparison of two numerical models for integration in thermal building simulation
Supply air window PAZIAUD : Comparison of two numerical models for integration in thermal building simulation Abstract F. Gloriant 1, P. Tittelein 2, A. Joulin 3, S. Lassue 4 The principle of a supply
Radiative Effects of Contrails and Contrail Cirrus
Radiative Effects of Contrails and Contrail Cirrus Klaus Gierens, DLR Oberpfaffenhofen, Germany Contrail-Cirrus, other Non-CO2 Effects and Smart Flying Workshop, London, 22 Oktober 2015 Two closely related
STUDY OF COOLING SYSTEM WITH WATER MIST SPRAYERS FUNDAMENTAL EXAMINATION OF PARTICLE SIZE DISTRIBUTION AND COOLING EFFECTS
STUDY OF COOLING SYSTEM WITH WATER MIST SPRAYERS FUNDAMENTAL EXAMINATION OF PARTICLE SIZE DISTRIBUTION AND COOLING EFFECTS Yamada Hideki 1, Yoon Gyuyoug 1 Okumiya Masaya 1, Okuyama Hiroyasu 2 1 Graduate
Solar Radiation Protections on Façades: A Case Study in a Hot Semi-Humid Climate
Solar Radiation Protections on Façades: A Case Study in a Hot Semi-Humid Climate ADRIANA LIRA-OLIVER 1, JORGE ROJAS 2, GUADALUPE HUELSZ 2, GUILLERMO BARRIOS 2, FRANCISCO ROJAS 2 1 3S-Consulting for Sustainable
Tutorial 1. Where Nu=(hl/k); Reynolds number Re=(Vlρ/µ) and Prandtl number Pr=(µCp/k)
Tutorial 1 1. Explain in detail the mechanism of forced convection. Show by dimensional analysis (Rayleigh method) that data for forced convection may be correlated by an equation of the form Nu = φ (Re,
K n. III. Gas flow. 1. The nature of the gas : Knudsen s number. 2. Relative flow : Reynold s number R = ( dimensionless )
III. Gas flow. The nature of the gas : Knudsen s number K n λ d 2. Relative flow : U ρ d η U : stream velocity ρ : mass density Reynold s number R ( dimensionless ) 3. Flow regions - turbulent : R > 2200
Thermal Analysis. with SolidWorks Simulation 2013 SDC. Paul M. Kurowski. Better Textbooks. Lower Prices.
Thermal Analysis with SolidWorks Simulation 2013 Paul M. Kurowski SDC PUBLICATIONS Schroff Development Corporation Better Textbooks. Lower Prices. www.sdcpublications.com Visit the following websites to
Honors Physics. Notes Nov 16, 20 Heat. Persans 1
Honors Physics Notes Nov 16, 20 Heat Persans 1 Properties of solids Persans 2 Persans 3 Vibrations of atoms in crystalline solids Assuming only nearest neighbor interactions (+Hooke's law) F = C( u! u
ME 476 Solar Energy UNIT TWO THERMAL RADIATION
ME 476 Solar Energy UNIT TWO THERMAL RADIATION Unit Outline 2 Electromagnetic radiation Thermal radiation Blackbody radiation Radiation emitted from a real surface Irradiance Kirchhoff s Law Diffuse and
Report of Performance Test according to EN for a Glazed Solar Collector
Institut für Solarenergieforschung GmbH Hameln / Emmerthal Test Centre for Solar Thermal Components and Systems Am Ohrberg 1. 31860 Emmerthal. Germany Report of Performance Test according to EN 12975-2
Energy Balance and Temperature. Ch. 3: Energy Balance. Ch. 3: Temperature. Controls of Temperature
Energy Balance and Temperature 1 Ch. 3: Energy Balance Propagation of Radiation Transmission, Absorption, Reflection, Scattering Incoming Sunlight Outgoing Terrestrial Radiation and Energy Balance Net
THERMAL ACTIONS. Milan Holický and Jana Marková. Czech Technical University in Prague, Czech Republic
THERMAL ACTIONS Milan Holický and Jana Marková Czech Technical University in Prague, Czech Republic Summary Changes in temperatures may cause additional deformations and stresses and may, in some cases,
HAWK. Building Physics
HAWK UNIVERSITY OF APPLIED SCIENCES AND ARTS Building Construction and Building Physics in the Faculty of Building Engineering Hildesheim-Germany Building Physics Introduction Heat Transport and Heat Protection
Cosimulation MotionView ST Activate
Cosimulation MotionView ST Activate for thermal analysis and stopping distance of a motor vehicle Ing. Nicolò Indovina ANKERS juss-amg: presentation ANKERS Juss- Amg is a consulting company with a great
Active Cooling and Thermal Management of a Downhole Tool Electronics Section
Downloaded from orbit.dtu.dk on: Dec 09, 2017 Active Cooling and Thermal Management of a Downhole Tool Electronics Section Soprani, Stefano; Engelbrecht, Kurt; Just Nørgaard, Anders Published in: Proceedings
Solar Insolation and Earth Radiation Budget Measurements
Week 13: November 19-23 Solar Insolation and Earth Radiation Budget Measurements Topics: 1. Daily solar insolation calculations 2. Orbital variations effect on insolation 3. Total solar irradiance measurements
CFD MODELLING OF CONVECTIVE HEAT TRANSFER FROM A WINDOW WITH ADJACENT VENETIAN BLINDS
Ninth International IBPSA Conference Montréal, Canada August 15-18, 2005 CFD MODELLING OF CONVECTIVE HEAT TRANSFER FROM A WINDOW WITH ADJACENT VENETIAN BLINDS Ljiljana Marjanovic 1,2, Malcom Cook 2, Vic
Thermal Comfort; Operative Temperature in the Sun
Thermal Comfort; Operative Temperature in the Sun Ida Bryn (Ph.d) Marit Smidsrød (MSc) Erichsen&Horgen AS, Postboks 4464 Nydalen, 0403 Oslo, E-mail: ihb@erichsen-horgen.no, telephone: 47 22026333, telefax:
Collector test according to EN ,2:2006
Test Report: KTB Nr. 2007-41-en Collector test according to EN 12975-1,2:2006 for: SOLAR ENERGY,LTD, Brand name: SCM-Series Responsible for testing: Dipl.-Ing. (FH) K. Kramer Date: 26th October 2007 Address:
Analysis of Heat Transfer in Pipe with Twisted Tape Inserts
Proceedings of the 2 nd International Conference on Fluid Flow, Heat and Mass Transfer Ottawa, Ontario, Canada, April 30 May 1, 2015 Paper No. 143 Analysis of Heat Transfer in Pipe with Twisted Tape Inserts
CFD Simulation of high pressure real gas flows
CFD Simulation of high pressure real gas flows on the progress form art to physics :o) Maria Magdalena Poschner Prof. Dr. rer. nat. Pfitzner UNIVERSITÄT DER BUNDESWEHR MÜNCHEN Fakultät für Luft und Raumfahrt
HEAT EXCHANGER. Objectives
HEAT EXCHANGER Heat exchange is an important unit operation that contributes to efficiency and safety of many processes. In this project you will evaluate performance of three different types of heat exchangers
Lecture 9 Thermal Analysis
Lecture 9 Thermal Analysis 16.0 Release Introduction to ANSYS Mechanical 1 2015 ANSYS, Inc. February 27, 2015 Chapter Overview In this chapter, performing steady-state thermal analyses in Mechanical will
Chapter 11. Energy in Thermal Processes
Chapter 11 Energy in Thermal Processes Energy Transfer When two objects of different temperatures are placed in thermal contact, the temperature of the warmer decreases and the temperature of the cooler
Chapter 3. Basic Principles. Contents
Chapter 3. Basic Principles Contents 3.1 Introduction 3.2 Heat 3.3 Sensible Heat 3.4 Latent Heat 3.5 Evaporative Cooling 3.6 Convection 3.7 Transport 3.8 Energy Transfer Mediums 3.9 Radiation 3.10 Greenhouse
Lecture notes: Interception and evapotranspiration
Lecture notes: Interception and evapotranspiration I. Vegetation canopy interception (I c ): Portion of incident precipitation (P) physically intercepted, stored and ultimately evaporated from vegetation
IBHS Roof Aging Program Data and Condition Summary for 2015
IBHS Roof Aging Program Data and Condition Summary for 2015 Ian M. Giammanco Tanya M. Brown-Giammanco 1 Executive Summary In 2013, the Insurance Institute for Business & Home Safety (IBHS) began a long-term
Monthly performance of passive and active solar stills for different Indian climatic conditions
Monthly performance of passive and active solar stills for different Indian climatic conditions H.N. Singh, G.N.Tiwari* Centre for Energy Studies, llt Delhi, Haus Khas, New Delhi 11 O0 16, India Fax: +91
VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES. 1. Introduction
ARCHIVES OF ACOUSTICS 31, 4 (Supplement), 53 58 (2006) VIBRATION ENERGY FLOW IN WELDED CONNECTION OF PLATES J. CIEŚLIK, W. BOCHNIAK AGH University of Science and Technology Department of Robotics and Mechatronics
L 18 Thermodynamics [3] Heat flow. Conduction. Convection. Thermal Conductivity. heat conduction. Heat transfer
L 18 Thermodynamics [3] Heat transfer convection conduction emitters of seeing behind closed doors Greenhouse effect Heat Capacity How to boil water Heat flow HEAT the energy that flows from one system
THERMAL PERFORMANCE OF WIND TURBINE POWER SYSTEM S ENGINE ROOM
Fourth International Symposium on Physics of Fluids (ISPF4) International Journal of Modern Physics: Conference Series Vol. 19 (2012) 424 434 World Scientific Publishing Company DOI: 10.1142/S2010194512009026
Thermal Analysis with SOLIDWORKS Simulation 2015 and Flow Simulation 2015
Thermal Analysis with SOLIDWORKS Simulation 2015 and Flow Simulation 2015 Paul M. Kurowski SDC PUBLICATIONS Better Textbooks. Lower Prices. www.sdcpublications.com Powered by TCPDF (www.tcpdf.org) Visit
The PRECIS Regional Climate Model
The PRECIS Regional Climate Model General overview (1) The regional climate model (RCM) within PRECIS is a model of the atmosphere and land surface, of limited area and high resolution and locatable over
Prediction of Thermal Comfort and Ventilation Efficiency for Small and Large Enclosures by Combined Simulations
Institute for Thermodynamics and Building Energy Systems, Dresden University of Technology Prediction of Thermal Comfort and Ventilation Efficiency for Small and Large Enclosures by Combined Simulations
Parametric Effect on Performance Enhancement of Offset Finned Absorber Solar Air Heater
Parametric Effect on Performance Enhancement of Offset Finned Absorber Solar Air Heater Er. Vivek Garg Gateway Institute of Engineering and Technology, Sonipat Mechanical Engineering Department Dr. Shalini
Physics 5D PRACTICE FINAL EXAM Fall 2013
Print your name: Physics 5D PRACTICE FINAL EXAM Fall 2013 Real Exam is Wednesday December 11 Thimann Lecture 3 4:00-7:00 pm Closed book exam two 8.5x11 sheets of notes ok Note: Avogadro s number N A =
Analysis of wind and radiant environment in street canyons for production of urban climate maps at district scale
Academic Article Journal of Heat Island Institute International Vol. 12-2 (217) Analysis of wind and radiant environment in street canyons for production of urban climate maps at district scale Hideki
Thermal Field in a NMR Cryostat. Annunziata D Orazio Agostini Chiara Simone Fiacco
Thermal Field in a NMR Cryostat Annunziata D Orazio Agostini Chiara Simone Fiacco Overall Objective of Research Program The main objective of the present work was to study the thermal field inside the
Bernoulli s Principle. Application: Lift. Bernoulli s Principle. Main Points 3/13/15. Demo: Blowing on a sheet of paper
Bernoulli s Principle Demo: Blowing on a sheet of paper Where the speed of a fluid increases, internal pressure in the fluid decreases. Due to continuous flow of a fluid: what goes in must come out! Fluid
Temperature Change. Heat (Q) Latent Heat. Latent Heat. Heat Fluxes Transfer of heat in/out of the ocean Flux = Quantity/(Area Time) Latent heat
Heat (Q) 1 calorie = 4.18 Joule Heat : Total Kinetic Energy Temperature: Average Kinetic Energy Heat that causes a change in temperature: Sensible Heat Temperature Change ΔQ = m c water ΔT Q in Joules