Gauss Sphere Problem with Polynomials

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Gauss Sphere Problem with Polynomials"

Transcription

1 Gauss Sphere Problem with Polynomials Fan Zheng July 31, 013 Mathematics Subject Classifications: Primary 11P1; Secondary 11L03, 11L07 SPUR final paper, Summer 013 Mentor: Chenjie Fan Project suggested by David Jerison Abstract This paper provides an estimate of the sum of a homogeneous polynomial P over the lattice points inside a sphere of radius R. The polynomial P is assumed to be of degree ν and have zero mean over the sphere. It is proved that P (x) = O ɛ,p (R ν+83/64+ɛ ) x Z 3 x R MIT, supported by Summer Program of Undergraduate Research 1

2 Contents 1 Introduction: A Historical Review The Method of Chamizo and Iwaniec: Extensions, Improvements and Limitations 4 3 Converting the Long Sum to the Exponential Sum 9 4 Estimating the Exponential Sum 11 5 Estimating the Long Sum 0 6 Estimating the Short Sum 3 7 Appendix A: Modularity of the Theta Function 5 8 Appendix B: Better Results with New Exponent Pairs 30 9 Appendix C: Summary of Proved and Conjectured θ ν Acknowledgements 34 1 Introduction: A Historical Review The Gauss Sphere Problem is a generalization of the famous Gauss Circle Problem to three dimensions. It asks about the number of lattice points in a sphere of radius R. While it is easy to see that the leading term is asymptotically 4πR 3 /3, estimation of the error term is still open. Compared to the two dimensional case, the Gauss Sphere Problem has received less attention, yet it bears relation with a variety of topics in analytic number theory: average class numbers of negative discriminants, estimates of L- functions and Fourier coefficients of modular forms, to name a few. The trivial observation, already known to Gauss, that the error arises only from a shell of constant thickness on the surface of the ball, provides an error term of CR, where C is a calculable (effective) constant. The first breakthrough was made by Van der Corput, who used Poisson summation formula to transform the lattice in physical space to the one in frequency space. In this way, counting lattice points translates to summing

3 the Fourier transform of χ B(R), the characteristic function of the ball of radius R. Although the sum itself diverges, it can be brought convergent by smoothing χ B(R), or equivalently multiplication of a cut-off function in the frequency space. The width H of the range being smoothed, and correspondingly the radius H 1 in the frequency space to be summed, is a parameter that can be adjusted to obtain an optimal error bound. Using trivial estimates, Van der Corput obtained an error CRH 1 for the sum in the frequency space, and an error CR H from the smoothing in the physical space. Balancing these two errors by setting H = R 1/ Van der Corput got an error of CR 3/ for the Gauss Sphere Problem. The basic structure of Van der Corput s argument has remained unchanged ever since. Subsequent improvements came from a more careful analysis of both error terms. In the following discussions we shall use Vinogradov s notations: Definition 1. f = O(g) f g g f C > 0 such that f Cg. f g f g and g f. Subscript variables attached to these symbols mean that the implicit constant depend on the variables. In addition we introduce a short hand for the exponential function. Definition. For any z C. e(z) = exp(πiz). The frequency side was first exploited for improvements, because the Fourier transform of χ B(r) turns out to be (up to some constants) R e(r ξ ) ξ Since the denominator can be removed by Abel summation, the summation in the frequency space essentially involves the partial sum of the exponentials e(r ξ ) ξ Z 3 ξ N Of the numerous ways inverted to deal with such exponential sums, the two most important ones are Van der Corput A and B processes. The A process is also know as Weyl differencing. The B process is Poisson summation and stationary phase, much in the same spirit as discussed above. These two 3

4 processes have been abstracted to give the method of exponent pairs. For more details the reader is referred to Appendix B and [8]. Improvements in the frequency space culminated in the works of Chen [6] and Vinogradov [14], in which they independently improved the estimate of the exponential sum to O ɛ (RH 1/+ɛ ) in a sufficiently large range so that it can be balanced with O(R H) to give the improved error estimate O ɛ (R 4/3+ɛ ). The results of Chen and Vinogradov stood for another several decades before Chamizo and Iwaniec turned their attention to the physical space. Using character sums, they improved the trivial bound O(R H) on the error caused by smoothing to O ɛ (R 15/8+ɛ H 7/8 ), and thus lowered the 4/3 in the exponent further down to 9/ [5]. Currently, the world record on this problem is O ɛ (R 1/16+ɛ ), obtained by Heath-Brown [9] in much the same line as [5]. His step forward is an improved error bound O ɛ (R 11/6+ɛ H 5/6 ) of the character sum. Last but not least, it should be mensioned that current techniques are still insufficient to prove the famous conjecture of the true error bound (if true), which is believed to be O ɛ (R 1+ɛ ). The Method of Chamizo and Iwaniec: Extensions, Improvements and Limitations Chamizo and Iwaniec s method has gained popularity in a number of related problems in recent years. Aside from the above-mentioned [9], the reader is referred to [3] and [4] for more examples, and to [] for a non-technical account. This paper provides another application of this method, along with some improvements. The problem considered here is to sum a homogeneous polynomial of zero mean on the sphere. In other words, we provide an estimate for P (x) (1) x Z 3 x R where P is a homogeneous polynomial in three variables such that P (x) = 0 x =R It is well-known (see Corollary.50 of [7], for example) that P can be written as a linear combination of spherical harmonics times powers of x. The zero 4

5 mean of P ensures that the spherical harmonics involved are all non-constant. Therefore, it suffices to consider only harmonic homogeneous polynomial of degree ν > 0. Since P has zero mean, there is no main term of the form cr ν+3 as in the Gauss Sphere Problem. Thus the natural form of the estimate is P (x) = O ɛ,p (R ν+θν+ɛ ) x Z 3 x R where we have taken into account of the fact that sup x =R P (x) R ν. Normally, we would expect that (by some abuse of notation) θ ν = θ 0. In other words, the error in estimating the sum of a homogeneous polynomial of degree ν scales according to the degree of the polynomial. For example, Van der Corput s estimate x Z 3 x R 1 = 4πR3 3 + O(R 3/ ) easily generalizes to (see the proof of Lemma 3.5 (c) in [11]) P (x) = O P (R ν+3/ ) x Z 3 x R Naively, we would expect Heath-Brown s record-keeping result to give an error of O ɛ,p (R ν+1/16+ɛ ) for our problem. While this is true, the exponent 1/16 can actually be lowered (to 83/64) if we examine Heath-Brown s method more carefully and try to adapt it to the current case. As mentioned in the previous section, Heath-Brown decomposed the sum over lattice points into two parts, the long sum and the short sum. The long sum is essentially a smoothed version of the original sum: S f (R) = x Z 3 1 x f( x ) where f is a cutoff function growing like x when 0 x R and decreasing linearly to 0 when R x R + H, and H is the width of the cutoff function f, a parameter tunable for optimal bounds. 5

6 On the other hand, the short sum is S f (R, H) = x Z3 R x R+H 1 x f( x ) The actual sum (1), when P = 1, is then the difference between S f (R) and S f (R, H), which are estimated in different ways. The estimation of the long sum S f (R) essentially follows [5]. More precisely, in the notation in [8], the operation ABAB is performed to S f (R) to obtain the following estimate (thanks to [4] for pointing out a misprint in [5]) S f (R) = 4πR3 3 + πhr + O ɛ ((RH 1/ + R 11/8 H 1/8 + R 1/16 )H ɛ ) () The short sum, on the other hand, is converted to a character sum, an idea dated back to Gauss (see (1.) of [5]). Its estimation is made by Chamizo and Iwaniec, and improved by Heath-Brown to (see (3) in [9]) S f (R, H) = πr H + O ɛ ((R 11/6 H 5/6 + R 19/15 + R 7/6 H 1/6 )R ɛ ) Balancing S f (R) and S f (R, H) by setting H = R 5/8, we obtain Heath- Brown s bound x Z 3 x R 1 = 4πR3 3 + O ɛ (R 1/16+ɛ ) where, as Heath-Brown has remarked, the exponent 1/16 comes from trading the H factors in the term RH 1/ in S f (R) and the term R 11/6 H 5/6 in S f (R, H). The term R 1/16 in S f (R), on the other hand, is not optimal and has some room for improvement. The approach taken in this paper is essentially the same as that in [5] and [9], but two differences should be remarked, the first one more fundamental than the second. The first difference is in the estimate of the short sum. While character sum is used in the case P = 1, in our case when P is a harmonic homogeneous polynomial of degree ν > 0, modular forms come into play. In more detail, let a n = P (x) x Z3 x =n 6

7 and θ(z) = n N a n e(nz) It is known (Example, P 14 of [1]) that θ is a cusp form of weight k = ν + 3/ with respect to the congruence group {( ) } a b Γ 0 (4) = SL c d (Z), 4 c (when P = 1, θ is a modular form, but not a cusp form.) Therefore some powerful estimates of the Fourier coefficients a n of cusp forms are available, of which we use Blomer-Harcos bound (Corollary of [1]) a n ɛ,θ n k/ 5/16+ɛ (n, ) 5/8 R ν+7/8+ɛ (n, ) 5/8 and the triangle inequality to obtain Theorem : S f,p (R, H) = O ɛ,p (R ν+ɛ (R 15/8 H + R)) (3) which wins a factor of R 1/8 over the trivial short sum estimate O f (R ν+ H). (The GCD term, which means the largest power-of-two factor of n, is absorbed in the process of summation.) The second difference is a slight improvement of the estimate (), which is now necessary because the previously-mentioned improvements on the short sum pushes H up, making R 1/16 dominate RH 1/ in the long sum, so removing the R 1/16 is necessary (and possible, as already hinted by Heath- Brown). This is achieved by optimizing the two Weyl differencing steps (A processes). Specifically, in [5], the lengths of the first and the second Weyl differecing are set to N 1/ ɛ and U. This, however, is not optimal in all cases, especially when N R 6/5, for which the off-diagonal term actually dominates the diagonal term. This paper improves on this by tuning the lengths of the two Weyl differencing steps (Y in Lemma and T in Lemma 4), if possible, to balance the diagonal and off-diagonal terms. Our new estimate is Theorem 1, which for any homogeneous polynomial P of degree ν having zero mean on the sphere, says: S f,p (R) = O ɛ,p (R ν (RH 1/ + R 17/14 H 1/7 )H ɛ ) (4) Now let s see the effect of balancing (3) and (4). Let s ignore the common factor R ν and any factor of the form R ɛ or H ɛ. Moreover, let s assume 7

8 that in the short sum the term R 15/8 H dominates (the other term actually corresponds to θ ν = 1), and that in the long sum the term R 17/14 H 1/7 dominates (which is the very reason we want to optimize it). We obtain R 17/14 H 1/7 = R 15/8 H which gives H = R 37/64 and P (x) = S f,p (R) S f,p (R, H) = O ɛ,p (R ν+83/64+ɛ ) x Z 3 x R The second term in S f,p (R, H) is clearly dominated, while the first term in S f,p (R) is O ɛ,p (RH 1/ ) = O ɛ,p (R ν+165/18+ɛ ) which is also dominated. Therefore we have succeeded in showing θ ν /64, pushing Heath-Brown s exponent (for the purpose of our problem) down by 1/64, or 1/0 in relative terms, which is an improvement of 5%. In Appendix B we use a recent result of Huxley [10] to sketch a proof that θ ν can be further reduced to / Finally let s see how far we could possibly go from here. Assuming Lindelöf Exponent Pair Conjecture [3], we can substitute k = ɛ and l = 1/ + ɛ in (9) in Appendix B to reach θ ν 1 + 7/4, coming from the term RH 1/ in the long sum, which can be traced back to the diagonal term in the first Weyl differencing step. This is probably the best one can expect of the long sum, unless it is redone from scratch in a radically different way. On the other hand, improvements on the short sum may have a larger impact. If we assume Ramanujan s conjecture on modular forms of half integral weight, i.e. (ignoring all the ɛ s in the exponent) and use the triangle inequality we get a n f n k/ 1/ R ν+1/ (R+H) n=r a n f R ν+3/ H Balancing this result with Theorem 1 we obtain a significant better result θ ν 1 + 1/4. If we further assume Lindelöf Exponent Pair conjecture (i.e. k = ɛ and l = 1/ + ɛ) in Theorem 3 we obtain an error bound of O ɛ,p (R 7/6 3k+3l R 10k+10l+6 ) 8

9 Using [10] we can get θ ν /5790. Assuming Lindelöf conjecture we can get θ ν 1 + 5/. Finally we state a conjecture analogous to the famous Gauss Sphere Problem. Conjecture 1. θ ν = 1. In other words. Suppose P is a homogeneous polynomial of degree ν in three variables and P has zero mean on the sphere, then = O ɛ,p (R ν+1+ɛ ) x Z 3 x R A tabular summary of all the proved and conjectured exponents mentioned above can be found in Appendix C. 3 Converting the Long Sum to the Exponential Sum Suppose P is any homogeneous polynomial of degree ν > 0 in three variables, not necessarily having zero mean on the sphere. Definition 3. The long sum refers to the following sum: S f,p (R) = x Z 3 g P (x) where g P (x) = P (x)g(x), g(x) = f( x )/ x, and f is the cutoff function x, x [0, R] f(x) = R(R + H x)/h, x [R, R + H] 0, x R + H Lemma 1. S f,p (R) = P (x)g(x)dx + R 3 + ν 1 +ν +ν 3 =ν ν 1 +ν =ν H ν 1 (R + H) ν R ν 1 ξ Z 3 \0 ξ Z 3 \0 Q ν1 (ξ) sin(πr ξ + πν 1 ) ξ 3+ν 1+ν Q ν1,ν (ξ) sin(πh ξ + πν 1 ) cos(π(r + H) ξ + πν ) ξ 3+ν 1+ν +ν 3 9

10 where Q ν1 and Q ν1,ν are homogeneous polynomials of degree ν. Proof. By Poisson summation formula applied to g (whose validity will be justified later in Lemma 5) S f,p (R) = ξ Z 3 ĝ P (ξ) where the convention of the Fourier transform taken here is ˆf(ξ) = f(x)e( ξ x) R 3 and e(z) is defined to be exp(πiz) for all z C. If ξ = 0, then ĝ P (ξ) = g P (x)dx R 3 is the integral of the smoothed function g P over R 3, which contributes to the main term of the estimate of the long sum, and which actually vanishes if P has zero mean on the sphere. If ξ 0, then by (5.) in [5], we have so ĝ P (ξ) = P ĝ(ξ) = sin(πr ξ ) π ξ 3 R H sin(πh ξ ) π ξ 3 ( ) ( ξ sin(πr ξ ) R πi π ξ 3 H cos(π(r + H) ξ ) ) sin(πh ξ ) cos(π(r + H) ξ ) π ξ 3 By induction on ν, we can show that ( ) sin(πr ξ ) P ( ξ ) = R ν Q ν 1 1 (ξ) sin(πr ξ + πν 1 ) ξ 3 ξ 3+ν 1+ν ν 1 +ν =ν and ( ) sin(πh ξ ) cos(π(r + H) ξ ) P ( ξ ) ξ 3 = H ν 1 Q (R + H) ν ν1,ν (ξ) sin(πh ξ + πν 1 ) cos(π(r + H) ξ + πν ) ξ 3+ν 1+ν +ν 3 ν 1 +ν +ν 3 =ν where Q ν1 and Q ν1,ν are homogeneous polynomials of degree ν. 10

11 Now if we sum over ξ Z 3 \0 and use trigonometric identities, we get sums of the following type ξ Z 3 \0 Q(ξ)e(R ξ ), or ξ m ξ Z 3 \0 Q(ξ)e((R + H) ξ ) ξ m where Q is a homogeneous polynomial of degree ν. By Abel summation, it boils down to estimating sums of the following type Q(ξ)e(R ξ ) ξ Z 3 ξ N This is the sort of exponential sum that will play a key role in the estimation of the long sum. 4 Estimating the Exponential Sum In this section, Q denotes a homogeneous polynomial of degree ν 0 in three variables, not necessarily having zero mean on the sphere. For future convenience (in justifying the convergence of Poisson summation), we introduce a variable h Z 3, but all the estimates in this section are uniform in h. Definition 4. The exponential sum we are going to estimate is the following: Lemma. If R 1 then V N,Q,h (R) = ξ Z3 ξ N Q(ξ)e(R ξ + h ξ) V N,Q,h (R) ɛ,q N ν/+ɛ (min{n 3/, N 5/4 + N 15/14 R 3/14 }) Remark 1. The right hand side N 3/, 1 N R 1/ N ν/+ɛ N 15/14 R 3/14, R 1/ N R 6/5 N 5/4, N R 6/5 11

12 Proof. Clearly it suffices to prove Lemma for Q = a i b j c k with i+j +k = ν. The fact that V N,Q,h (R) N 3/ comes from the trivial bound V N,Q,h (R) ξ Z3 ξ N Q(ξ) #{ξ Z 3, ξ N} sup Q(ξ) N ν/+3/ ξ N To prove the second bound, we transform it into an expression that is the starting place of the estimates in [5]. By dyadic decomposition where so it suffices to show V N,Q,h (R) = V N,Q,h(R) = ξ Z3 ξ N log N k=1 V k,q,h (R) Q(ξ)e(R ξ + h ξ) V N,Q,h(R) ɛ,q N ν/+ɛ (N 5/4 + N 15/14 R 3/14 ) For a + b N, let χ a,b be a piecewise linear function that is equal to 1 on Z [ N a b, N a b ], and 0 on the other integers. Then by Theorem 7.3 in [8], ˆχ a,b (θ) is uniformly bounded by K(θ), where K L 1 (R) log N ɛ N ɛ. Therefore, up to the terms where two of a, b and 1

13 c are identical, which sum to ( N) O(N ν/ ) = O(N ν/+1 ), VN,Q,h(R) e(r a + b + c + ah 1 + bh + ch 3 )a i b j c k a +b +c N a,b c = a,b c a i b j e(ah 1 + bh ) c N e(r a + b + c + ch 3 )χ a,b (c)c k = a i b j e(ah 1 + bh ) e(r a + b + c + ch 3 )c k ˆχ a,b (θ)e(cθ)dθ a,b c c R N = a i b j e(ah 1 + bh ) ˆχ a,b (θ) e(r a + b + c )c k e(c(θ + h 3 ))dθ a,b c (a + b ) (i+j)/ a,b c 0<n=a +b N ɛ N (i+j)/+ɛ R R n (i+j)/ d(n) R R ɛ N (i+j)/+ɛ max θ K(θ) 0<n N c N ˆχ a,b (θ) e(r a + b + c )c k e(c(θ + h 3 ))dθ c N K(θ) e(r n + c )c k e(c(θ + h 3 )) c dθ N e(r n + c )c k e(c(θ + h 3 )) c dθ N e(r n + c )c k e(c(θ + h 3 )) 0<n N c N Now let s apply Weyl differencing: for 1 Y N we have Y e(r n + c )c k e(c(θ + h 3 )) c N d Y d = c N+Y c c+d N e(r n + (c + d) )(c + d) k e((c + d)(θ + h 3 )) d Y c+d N d e(r n + (c + d) )(c + d) k e((c + d)(θ + h 3 )) 13

14 By Cauchy Inequality, Y e(r n + c )c k e(c(θ + h 3 )) c N e(r n + (c + d) c )(c + d) k e((c + d)(θ + h 3 )) N+Y d Y c+d N d =N 1/ e(r( n + (c + d 1 ) n + (c + d ) )) N 1/ c N+Y d 1, Y c+d 1, N d 1, (c + d 1 ) k (c + d ) k e((d 1 d )(θ + h 3 )) =N 1/ (Y d)e(r( n + (m + d) n + (m d) )) d=(d 1 d )/ d Y m=c+(d 1 +d )/ m N d (m + d) k (m d) k e(d(θ + h 3 )) N k+1 Y + N 1/ (Y d)e(r( n + (m + d) n + (m d) )) 1 d Y m N d (m + d) k (m d) k e(d(θ + h 3 )) 14

15 Therefore e(r n + c )c k e(c(θ + h 3 )) 0<n N c N N max θ e(r n + c )c k e(c(θ + h 3 )) 0<n N c N N k N 3 Y 1 + N 3/ Y 1 e(r( n + (m + d) d Y m n + (m d) )) N 0<n N N k N 3 Y 1 + N 3/ Y 1 d(y) e(f(x, y)) y=4md y Y N ɛ N k+ɛ (N 3 Y 1 + N 3/ Y 1 V N,Y N (R)) where f(x, y) = R( x + y x) and V N,D (R) = y D 0<x=n+(m d) N 0<x N e(f(x, y)) Hence we conclude that, for all 1 Y N, V N,Q,h(R) ɛ,q N ν+ɛ (N 3 Y 1 + N 3/ Y 1 V N,Y N (R)) ɛ N ν+ɛ (N 3 Y 1 + R 1/ N Y 1/6 ) The last step follows from Lemma 3. As a result V N,Q,h(R) ɛ,q N ν/+ɛ (N 3/ Y 1/ + R 1/4 NY 1/1 ) If N R 6/5, then we let Y N to get V N,Q,h(R) ɛ,q N ν/+ɛ (N 5/4 + R 1/4 N 5/4 ) N ν/+ɛ N 5/4 If R 1/ N R 6/5, then we let 1 Y N 6/7 R 3/7 N to get V N,Q,h(R) ɛ,q N ν/+ɛ N 15/14 R 3/14 If N R 1/, then N 15/14 R 3/14 N 3/ and Lemma reduces to the trivial bound. 15

16 Lemma 3. If R 1 and 1 D N, then V N,D (R) (log N)(N 3/ + R 1/ D 7/6 N 1/1 ) Proof. By dyadic decomposition where V N,D (R) = log D k=1 If D D 0 = N 3/ R 1, then V N, (R) (log N) max V k N,D 1 D 1 D 1 (R) VN,D(R) = y D 0<x N e(f(x, y)) f x (x, y) = R ( 1 x 1 x + y ) = Ry x x + y( x + x + y) 1 Therefore by Theorem.1 of [8] e(f(x, y)) f x(x, y) 1 N 3/ R 1 D 1 0<x N so V N,D (R) N 3/ R 1 N 3/. Now suppose D 0 D N. This is possible only when N R. By applying the B process of the one-dimensional Van der Corput s method (Poisson summation and stationary phase, Lemma 3.6 of [8] with F = RDN 1/ ) we get 0<x N e(f(x, y)) = ξ f x(x,y) e(g(ξ, y) 1/8) f xx (α(ξ, y), y) 1/ + O(log(RDN 3/ )) + O(R 1/ D 1/ N 5/4 ) + O(1) = e(g(ξ, y) 1/8) f xx (α(ξ, y), y) + O(log R) + 1/ O(R 1/ D 1/ N 5/4 ) ξ f x(x,y) where α(ξ, y) satisfies f x (α(ξ, y), y) = ξ, and g(ξ, y) = f(α(ξ, y), y) α(ξ, y)ξ 16

17 For any n N, x n f(x, y) does not change sign, so (replacing n by n + 1) it is monotone in x. Thus α(ξ, y) and hence f xx (α(ξ, y), y) are monotone in ξ. By Abel summation, we obtain e(f(x, y)) V N,U (y; R) inf ξ U f xx (α(ξ, y), y) + 1/ R 1/ D 1/ N 5/4 + log R 0<x N R 1/ D 1/ N 5/4 V N,U (y; R) + R 1/ D 1/ N 5/4 + log R for U f x (x, y) = RDN 3/, where V N,U (y; R) = e(g(ξ, y)) Hence VN,D(R) = y D 0<x N e(f(x, y)) ξ U R 1/ D 1/ N 5/4 y D V N,U (y; R) + R 1/ D 1/ N 5/4 + D log R R 1/ N 5/4 ( y D V N,U (y; R) ) 1/ + R 1/ N 7/4 + N log R By Lemma 4 below we conclude that V N,D(R) R 1/ N 5/4 (R 1/ DN 3/4 + RD 7/6 N 4/3 ) + R 1/ N 7/4 + N log R N 3/ + R 1/ D 7/6 N 1/1 where we have used 1 D N R to dominate the first two terms over the last two. Lemma 4. If R N and 1 D N, then V N,U (y; R) RD N 3/ + R D 7/3 N 8/3 y D 17

18 Proof. Apply Weyl differencing to V N,U (y; R): for some T [1, U] to be chosen later, T V N,U (y; R) = T 1 e(g(ξ + t, y)) y D y D t=0 U ξ U = U ξ U T 1 t 1,t =0 y D t T(T t ) ξ U U T D + UT U T D + U T where G(ξ, y, t) = g(ξ + t, y) g(ξ, y), and e(g(ξ + t 1, y) g(ξ + t, y)) e(g(ξ, y, t)) y D 1 t T ξ U max 1 t T V N,D (t, ξ; R) = y D e(g(ξ, y, t)) e(g(ξ, y, t)) y D V N,D (t, ξ; R) From the computations in [5] we know that n y G(ξ, y, t) tnd n for n = 1,, 3, so estimates (.3.8) and (.3.9) in [8] are valid (with F replaced by tn and N replace by D). Note that in this case tn D, so the first term in both estimates dominates the second term, yielding V N,D (t, ξ; R) min{t 1/ N 1/, T 1/6 N 1/6 D 1/ } Therefore V N,U (y; R) U (T 1 D + min{t 1/ N 1/, T 1/6 N 1/6 D 1/ }) y D Let s record the numerology of some borderlines. Balancing the first and the second term yields T 1 = D /3 N 1/3. Balancing the first and the third yields T = D 3/7 N 1/7. Balancing the second and the third yields T 3 = D 3/ N 1. Balancing T 1 with U = RDN 3/ 1 yields D 1 = N 7/ R 3. Balancing T with U gives D = N 19/8 R 7/4. Balancing T 3 with U gives 18

19 D 3 = R N 1. Comparing D 0 = N 3/ R 1, D 1, D, D 3 and N gives the following chart: N ordering [R 6/5, R ] D 3 D 0 N, D D 1 [R, R 6/5 ] D 0 D 1,,3 N [1, R] D 1 D 0, N D 3 (1) R 6/5 N R. We always have D 3 D 0 and N D 1. Thus T 1,3 U, so we always take the first argument of the min, which is then dominated by T 1 D. Therefore by setting T = U we get V N,U (y; R) UD = RD N 3/ y D () R N R 6/5. (.1) D 1 D N. Then we have T 1 U, so we balance the first argument of the min with T 1 D by setting T = T 1 D /3 1 N 1/3 = N R 1 to get V N,U (y; R) U D 1/3 N 1/3 = R D 7/3 N 8/3 y D (Although the second argument in the min may be smaller, it does not happen for large D, so we have to balance the first argument with T 1 D in this case.) (.) D 0 D D 1. Then we have U T 1, so we take T = U to reach the same conclusion as in (1). (3) 1 N R. (3.1) N 1/ D N. In this case T 1 1, so we can set T = T 1 to reach the same conclusion as (.1). (3.) 1 D N 1/. In this case we let T = 1: V N,U (y; R) U (D + N 1/6 D 1/ ) = R D 3 N 3 + R D 5/ N 17/6 y D which is again dominated by (.1). Combining (1) through (3) we conclude that for all D N, V N,U (y; R) RD N 3/ + R D 7/3 N 8/3 y D 19

20 5 Estimating the Long Sum Lemma 5. Suppose Q is a homogeneous polynomial of degree ν 0 in three variables, not necessarily having zero mean on the sphere, and m ν + 3, then Q(ξ)e(R ξ + h ξ) lim N ξ m ɛ,q R ɛ 0< ξ N Moreover, the limit on the left hand side converges uniformly (although not absolutely) in h. Proof. By Abel summation where 0< ξ N Q(ξ)e(R ξ + h ξ) ξ m = N n=1 n m/ ξ =n N n m/ 1 V n,q,h (R) + N m/ V N,Q,h (R) n=1 V N,Q,h (R) = ξ N Q(ξ)e(R ξ + h ξ) Q(ξ)e(R ξ + h ξ) and we have ignored the discrepancy at ξ = 0, which is of order O Q (1) and is clearly dominated by other terms. By Lemma we have lim sup Q(ξ)e(R ξ + h ξ) N ξ m 0< ξ N ɛ,q n m/+ν/+1/+ɛ + R 3/14 n m/+ν/+1/14+ɛ 1 n R 1/ R 6/11 n R 6/5 + n m/+ν/+1/4+ɛ + lim N m/+ν/ (N 5/4 + N 15/14 R 3/14 ) N n R 6/5 n ɛ R1/ n=1 + R 3/14 n 3/7+ɛ R1/ n=r 6/5 + n 1/4+ɛ R6/5 n= R ɛ Moreover, for M > N R 6/5 we have Q(ξ)e(R ξ + h ξ) ξ m ɛ,q n 1/4+ɛ N n= + N m/+ν/ (N 5/4 + N 15/14 R 3/14 ) N< ξ M ɛ,q 0, as N 0

21 Theorem 1. Suppose P is a homogeneous polynomial of degree ν 0, not necessarily having zero mean on the sphere, R 1 and H 1, then S f,p (R) = P (x)g(x)dx + O ɛ,p R ν H ɛ (RH 1/ + R 17/14 H 1/7 ) R 3 Proof. Consider the function S f,p (h; R) = P (x)g(x)dx + R 3 ξ Z 3 \0 ĝ P (ξ)e(h ξ) where the summation over ξ in the second term on the right hand side is taken in the sense of Lemma 5, and ĝ P (ξ) (for ξ Z 3 \0) is given by ĝ P (ξ) = + ν 1 +ν =ν ν 1 +ν +ν 3 =ν R ν 1 Q ν 1 (ξ)e(r ξ ) ξ 3+ν 1+ν RH ν 1 1 (R + H) ν Q ν1,ν (ξ) sin(πh ξ + πν 1 ) cos(π(r + H) ξ + πν ) ξ 3+ν 1+ν +ν 3 Since 3 + ν 1 + ν ν + 3 deg Q ν1 + 3, Lemma 5 applies to show that ξ Z 3 \0 ν 1 +ν =ν R ν 1 Q ν 1 (ξ)e(r ξ + h ξ) ξ 3+ν 1+ν ɛ,q R ν+ɛ Similarly, since 3 + ν 1 + ν + ν 3 deg Q ν1,ν + 3, and R + H R, ξ Z 3 \0 ν 1 +ν +ν 3 =ν ν 1 1 ɛ, QR 1+ν +ɛ R ν+ɛ RH ν 1 1 (R + H) ν Q ν1,ν (ξ) sin(πh ξ + πν 1 ) cos(π(r + H) ξ + πν )e(h ξ) ξ 3+ν 1+ν +ν 3 (when ν = 0, i.e. P is constant, this sum actually vanishes), so we conclude that S f,p,h (R) = ξ Z 3 \0 ν +ν 3 =ν + O ɛ,p (R ν+ɛ ) RH 1 (R + H) ν 1 Q 0,ν (ξ) sin(πh ξ ) cos(π(r + H) ξ + πν )e(h ξ) ξ 3+ν +ν 3

22 By Abel summation and Lemma we have 0< ξ H 1 / H /4 sin(πh n) = n 3/+ν /+ν 3 n=1 H /4 = N=1 Q 0,ν (ξ) sin(πh ξ ) cos(π(r + H) ξ + πν )e(h ξ) ξ 3+ν +ν 3 ξ Z 3 ξ =n ( Q 0,ν (ξ) cos ( sin(πh ) N) N N 3/+ν /+ν 3 +O(H 3+ν +ν 3 V H /4,P,h(R)) H ɛ,p H H /4 N=1 ξ Z 3 0< ξ N π(r + H) ξ + πν ( Q 0,ν (ξ) cos N ν/ V N,P,h (R) + H 3+ν V H /4,P,h(R) ) e(h ξ) π(r + H) ξ + πν 1 N H N ɛ (N 3/4 + N 13/14 R 3/14 ) + H 1/ + H 6/7 R 3/14 HN ɛ (N 1/4 + N 1/14 R 3/14 ) H 1 + H 1/ + H 6/7 R 3/14 =H ɛ (H 1/ + H 6/7 R 3/14 ) and similarly ξ >H 1 / = N>H /4 Q 0,ν (ξ) sin(πh ξ ) cos(π(r + H) ξ + πν )e(h ξ) N ( 1 N 3/+ν /+ν 3 ξ 3+ν +ν 3 ) ξ Z 3 0< ξ N N H N 5/ ν/ V N,P,h (R) ɛ,p ( Q 0,ν (ξ) sin(πh ξ ) cos N H N ɛ (N 5/4 + N 10/7 R 3/14 ) N ɛ (N 1/4 + N 3/7 R 3/14 ) H = H ɛ (H 1/ + H 6/7 R 3/14 ) Combining the two parts we get S f,p (h; R) = P (x)g(x)dx + O ɛ,p R ν H ɛ (RH 1/ + R 17/14 H 1/7 ) R 3 ) e(h ξ) π(r + H) ξ + πν ) e(h ξ)

23 By Lemma 5 we know that the sum S f,p (h; R) converges uniformly in h. On the other hand, by Parseval identity we know that the sum converges in L (R 3 /Z 3 ) to g P (h) = x Z 3 P (x + h)g(x + h) Since this is a continuous function, it is identical (everywhere) to the uniform limit S f,p (h; R). In particular, taking h = 0 yields S f,p (R) = x Z 3 P (x)g(x) = S f,p (0; R) = P (x)g(x)dx + O ɛ,p R ν H ɛ (RH 1/ + R 17/14 H 1/7 ) R 3 6 Estimating the Short Sum Now we turn to the short sum. Suppose P is a homogeneous polynomial of degree ν > 0 in three variables, now having zero mean on the sphere. Note that deg P = 0 implies P = 0, which is trivial. Definition 5. By the short sum we mean the following: S f,p (R, H) = x Z3 R x R+H 1 x f( x ) Moreover, we let and define the theta-series a n = x Z3 x =n P (x) θ(z) = n N a n e(nz) = x Z 3 P (x)e( x z) where as usual e(z) = e πiz. First we suppose that P is harmonic, then by Lemma 9 in Appendix, θ is a cusp form of half integral weight k = ν + 3/ 5/ for Γ 0 (4). For all n N we have: 3

24 Lemma 6. ([1], Proposition 1.5.5) Lemma 7. ([1], Corollary ) a n ɛ,θ n k/ 1/4+ɛ a n ɛ,θ n k/ 5/16+ɛ (n, ) 5/8 Theorem. Suppose P is a homogeneou polynomial of degree ν 0 in three variables, having zero mean on the sphere. Then S f,p (R, H) ɛ,p R ν+ɛ (R 15/8 H + R) Proof. By Corollary.50 of [7], we can write [ν/] P (x) = x d P ν d (x) d=0 where P ν d is a homogeneous harmonic polynomial of degree ν d. If ν is odd, then there is no term P 0 in the sum (and actually a n vanishes identically by considering the symmetry x x). If ν is even, then integration over the sphere gives [ν/] 0 = P (x) = P ν d (x) = P 0 S S d=0 so the sum does not include P 0 either. Now by Lemma 6 and Lemma 7, (R+H) (R+H) S f,p (R, H) = f(n)a n n n=r a n n=r [ν/] (R+H) ɛ,p R d (n, ) 5/8 + R ν d+1+ɛ d=0 R ν+ɛ ( R 7/8 R ν d+3/ 5/8+ɛ k log RH R ν+ɛ (R 15/8 H + R) n=r (n, ) RH RH k 5k/8 + R ) 4

25 7 Appendix A: Modularity of the Theta Function Suppose n. Let C[x] denote a polynomial with complex coefficients in the variable x C n. Let C[x] ν be the subspace of C[x] consisting of homogeneous polynomials of degree ν. Let H[x] denote the subspace of harmonic polynomials. Lemma 8. C[x] ν H[x] = span C {( n j=1 a jx j ) ν, (a j ) n j=1 C n, n j=1 a j = 0}. Proof. Define a positive definite inner product on C[x] by letting x α, x β = α!δ αβ. The Laplacian and the multiplication operator M(f) = f x operate on C[x]. It is easy to check that they are adjoints under this inner product. Therefore H = ker = (ran M) We restrict the whole space to C[x] ν, where the inner product is still positive definite, and denote the right hand side by L. It suffices to show that L = (ran M) Since C[x] ν is finite dimensional, it is equivalent to L = ran M For f(x) = α =d c αx α C[x] ν we have ( n ) ν a j x j, f(x) = j=1 Therefore α =d f L f(a i ) = 0, (a i ) C n, α! α! aα x α, α =d c α x α = α! c α a α = α!f(a) α =d n a i = 0 x f(x) f ran M i=1 where we have used Hilbert s Nullstellensatz and the fact that ( x ) is a radical ideal in C[x] when n. (When n 3 it is actually irreducible, or equivalently, prime, in the UFD C[x]. When n = we have x = (x 1 + ix )(x 1 ix ) does not have repeated factors.) 5

26 Now suppose p ν C[x] ν H[x]. Let θ(z) = x Z n p ν (x)e( x z). Then θ is holomorphic on the upper half plane H. Lemma 9. θ is a cusp form of weight ν + n/ on Γ 0 (4)\H, where {( ) } a b Γ 0 (N) = SL c d (Z), N c More precisely, for every γ Γ 0 (4) we have θ(γz) = j(γ, z) ν+n θ(z) where ( c j(γ, z) = d) ɛ 1 d (cz + d)1/ where ( c d) is the Legendre symbol { as extended by Shimura ([13], point 3 in 1, d = 1 mod 4 Notation and Terminology), ɛ d =, and all square roots i, d = 3 mod 4 are taken in the principal branch ( 1 is taken to be e(+1/4).) Proof. If ν is odd then θ = 0 by considering the symmetry x x. Therefore we assume ν to be even. By Lemma 8, ( n ) ν n θ span C a j x j e( x z), a j = 0 x Z n j=1 Therefore we may assume that θ is one of the basis vectors on the right hand side. ( ) a b First we suppose SL c d (Z). If c = 0, then a = d = ±1. In either case we have j(γ, z) = 1, consistent with the fact that θ(z + b) = θ(z) for any b Z. j=1 6

27 Now we suppose c 0, then ( ) ( ) az + b a θ = θ cz + d c 1 c(cz + d) = ( n m (Z/cZ) n x Z n j=1 = ( n e(am /c) m (Z/cZ) n x Z n i=1 ν (( a a j (cx j + m j )) e By Poisson summation formula, ( n ν ( c a j (cx j + m j )) e (cz + d) x Z n j=1 = ( ) ( ) ν im ξ n (π) n/ exp a j ci ξj ( c 4πic ξ πz n j=1 cz+d ( ) ( ) ( n/ n im ξ cz + d =(ci) ν c ic ( n ξ πz n exp c 1 c(cz + d) ν ( a j (cx j + m j )) e x + m c ( ) n/ e j=1 ) 1 πi c cz + d ) cz + d 8πic ξ ) cx + m ) x + m c (5) ) ν ( ( 1 a j ξj e z + d ) ) ξ 16π c We compute the derivative on the rightmost exponential inductively. j=1 where ( n ) ( ( 1 a j ξj e z + d ) ) ( ( 1 ξ = C(z, c, d, a, ξ)e z + d ) ) ξ 16π c 16π c Suppose j=1 C(z, c, d, a, ξ) = i ( z + d ) ( ) n a j ξ j 4π c j=1 ) k ( ( 1 a j ξj e z + d ) ) ( ( 1 ξ = C(z, c, d, a, ξ) k e z + d ) ) ξ 16π c 16π c (6) ) 7

28 Then ( n ) k+1 ( ( 1 a j ξj e z + d ) ) ( ( 1 ξ = C(z, c, d, a, ξ) k+1 e z + d ) ) ξ 16π c 16π c j=1 n +kc(z, c, d, a, ξ) k 1 a j ξj C(z, c, d, a, ξ) Since n j=1 a j = 0, it is easy to see that the second term on the right hand side vanishes, so by induction we have shown that (6) holds for all k N. Therefore the inner sum of (5) is ( 1) ν ξ πz n exp = ( 1)ν (i) n/ ξ Z n e where ( ) ( ) [ ( n/ n im ξ cz + d cz + d c ic 4π j=1 ( ) ( m ξ z + d ) n/ ( ) ν cz + d P (ξ) ν e c c j=1 )] ν ( 1 a j ξ j e ( ( 1 z + d 4 c Now we supppose 4 c and carry out the summation over m in (5). S n (ξ, a, c) = S(ξ j, a, c) = m Z/cZ m (Z/cZ) n e ( ) am + m ξ = c ( ) am + mξ j e = c m Z/cZ n S(ξ j, a, c) j=1 ( ) d(m + mξ j ) e c 16π ) ) ξ We now show that if ξ j is odd, then S(ξ j, a, c) = 0. In fact, since 4 c and (c, d) = 1, d is odd, so S(ξ j, a, c) = [ ( ) ( )] d(m + mξ j ) d((m + c/) + (m + c/)ξ j ) e + e c c m Z/cZ = ( ) d(m + mξ j ) e [1 + e(d(m + c/4 + ξ j /))] = 0 c m Z/cZ ( z + d ) ) ξ c (7) 8

29 Therefore the sum over ξ in (5) is reduced to ( ( 1) ν n ) ( S(ξ (i) n/ j, a, c) z + d c ξ Z n j=1 where the sum over m is reduced to S(ξ j, a, c) = ( ) d(m + mξ j ) e c m Z/cZ ) n/ (cz + d) ν P (ξ) ν e (( z + d c ( ) = e dξ j e c m Z/cZ By the well-known Gauβ sum, (1 + i)ɛ 1 ( d c c ) d, c, d > 0 ( ) dm ( (1 i)ɛ d c c e = d), c > 0, d < 0 ( c (1 i)ɛ m Z/cZ d c c ) d, c < 0, d > 0 ( (1 + i)ɛ 1 d c c d), c, d < 0 the identities ɛ d = iɛ 1 d, 1 + i = i, z + d c c = cz + d, c > 0 z + d c c = i cz + d, c < 0 ) ξ ) ( ) dm and the extension of the Legendre symbol by Shimura, the Gauβ sum can be written uniformly as ( ) dm e = ( c ) ( iɛ 1 d cz + d z + d ) 1/ c d c Therefore, θ m Z/cZ ( ) az + b = ( 1) ν ɛ n d cz + d (cz + d)ν+n/ P (ξ) ν e(z ξ ) ξ Z n Recall that ν is even, so ( 1) ν = ɛ ν d = 1, and ( ) az + b θ = ɛ ν n d (cz + d) ν+n/ P (ξ) ν e(z ξ ) = j(γ, z) ν+n θ(z) cz + d ξ Z n It is clear that θ is a cusp form, because the sum in (7) is absolutely convergent and decays rapidly as Im z + for all γ SL (Z). c 9

30 8 Appendix B: Better Results with New Exponent Pairs Through personal communication with Chamizo, the author realized that the exponent 83/64 in the estimate P (x) = O ɛ,p (R ν+83/64+ɛ ) x Z 3 x R still has some room for improvement using the new exponent pairs recently obtained by Huxley [10]. Exponent pairs are a useful tool in estimating exponential sums of the following type e(f(n)) n N More precisely, suppose f behaves sufficiently close to a power function x s, in the sense that there is a constant c > 0 such that for all r N, d r dr f(x) c dxr dx r x s then for every ɛ > 0, P > 0, and N > N ɛ,p, f is in the class F(N, P, s, c, ɛ) as defined in P 30, [8]. Exponent pairs allow us to give estimates to the above exponential sum. Definition 6. (P 30, [8]) For 0 k 1/ l 1, (k, l) is an exponent pair if we have the following estimate e(f(n)) s (cn s 1 ) k N l + c 1 N s+1 n N Remark. If f cn s 1 1, then the second term is dominated by the first term. Example 1. By the triangle inequality, (k, l) = (0, 1) is an exponent pair. Exponent pairs are abstractions of the Van der Corput A and B processes as carried out in the main part of the paper. Specifically, if (k, l) is an 30

31 exponent pair, then by applying Weyl differencing (and optimization of the length) we can get another exponent pair ( k A(k, l) = k +, k + l + 1 ) k + On the other hand, an application of Poisson summation and stationary phase (the B-process) will give as the pair B(k, l) = (l 1/, k + 1/) For details and proofs we refer the reader to [8]. Example. From (k, l) = (0, 1) we can get B(k, l) = (1/, 1/) and AB(k, l) = (1/6, /3), which are basically the pairs we used to bound V N,D (t, ξ, R). From Van der Corput A and B processes we can get a host of exponent pairs. This is, however, not the whole story. Bombieri and Iwaniec (BI,??), using large sieve inequalities, obtained a new exponent pair (k, l) = (9/56 + ɛ, 37/56 + ɛ) which is unreachable from A and B processes. Their results were subsequently improved by Huxley, giving one more exponent pair (3/05 + ɛ, 69/410 + ɛ) in [10]. New exponent pairs can offer further optimizations. In [3], Chamizo and Cristóbal applied the exponent pair (k, l) = BA (3/05 + ɛ, ɛ) to the following sum V N,D (t, ξ; R) = y D e(g(ξ, y, t)) which occurs in the proof of Lemma 4. The result is Proposition 3.6 of [3], which in our notation says Lemma 10. If (k, l) is an exponent pair, R N and 1 D N, then V N,U (y; R) ɛ RD 3k+l+3 k 3 k+ N k+ + R 1/+ɛ D 3/ N 3/4 y D Plugging Lemma 10 into the final lines of Lemma 3 we get V N,D(R) R 1/ D 1/ N 5/4 y D V N,U (y; R) + R 1/ D 1/ N 5/4 + N log R ɛ N 3/+ɛ + R 1/ D k+l+ k+ N k 1 4k+4 31

32 which implies the same estimate for V N,D (R). Finally, backtracing to Lemma, we get VN,Q,h(R) ɛ,q N ν+ɛ (N 3 Y 1 + R 1/ k+l 1 l + N 4k+4 Y k+ ) (8) Balancing the two term gives Comparing Y 0 with N gives Y 0 = N 3k l+5 4k+l+4 R k+1 k+l+ N 0 = R k+ k l+3 Therefore when N N 0, Y 0 N, so we take Y 0 N and the first term in (8) dominates. Otherwise, when N N 0, we can balance the two terms in (8) by setting Y = Y 0 to get V N,Q,h(R) ɛ,q N ν+ɛ R k+1 k+l+ N + k+3l+1 4k+l+4 Combining the two estimates and adding up dyadic intervals we conclude V N,Q,h (R) ɛ,q N ν/+ɛ (N 5/4 + R k+1 4k+l+4 N 1+ k+3l+1 8k+4l+8 ) which improves Theorem 1 to Theorem 3. If f, P and R are as in Theorem 1, then S f,p (R) = P (x)g(x)dx + O ɛ,p R ν H ɛ (RH 1/ + R 1+ R 3 k+1 4k+l+4 H k+3l 1 4k+l+4 ) Now we balance the error terms in Theorem 3 and Theorem using Lemma.4 of [8] to obtain P (x) = O ɛ,p (R ν+1+ɛ (R 7/4 + R 15k+1l+1 40k+40l+4 )) (9) x Z 3 x R Plugging in the exponent pair (k, l) = BA (3/05 + ɛ, ɛ) = (743/04 + ɛ, 69/506 + ɛ) we get the dominant exponent ν / ɛ which is a further improvement on the previous exponent ν + 83/64 + ɛ. The latter can in turn be recovered by taking the well known exponent pair (k, l) = (1/, 1/) = B(0, 1), 3

33 9 Appendix C: Summary of Proved and Conjectured θ ν This section summarizes all the proved and conjectured exponents mentioned in Section (and some more). For simplicity, we have omitted the normalizing factors R ν, the O symbol and all ɛ s in the exponents. References and decimal values are included in parentheses. The ellipsis refers to terms that are clearly dominated by the main term, and question marks indicate conjectures. The last column refers to the optimal value of α such that setting H = R α gives the desired error bound. The reader is referred to Remark 3 for meaning of the acronyms and to Section for a detailed account of relevant terminology. log H Long sum estimates Short sum estimates θ ν log R Applicability RH 1 (Van der Corput) R H (Trivial) 3/ 1/ P (1.5) (.5) RH 1/ +... R H (Trivial) 4/3 /3 P ([6] and [14]) ( ) (.66667) RH 1/ + R 1/16 R 15/8 H 7/ / 7/11 P = 1 +R 11/8 H 1/8 ([5]) ([5]) ( ) (.63636) RH 1/ + R 1/16 R 11/6 H 5/ /16 5/8 P = 1 +R 11/8 H 1/8 ([5]) ([9]) (1.315) (.65) RH 1/ + R 17/14 H 1/7 R 15/8 H + R 83/64 37/64 S P = 0 (Theorem 1) (Theorem ) (1.9688) (.57813) RH 1/ + R H R 15/ H + R S P = 0 (Theorem 3 with [10]) (Theorem ) (1.9476) (.5804) RH 1/ + R 6/5 H 1/10?? R 15/8 H + R 31/4?? 7/1?? S P = 0 (Theorem 3 with LEP) (Theorem ) (1.9167) (.58333) RH 1/ + R 17/14 H 1/7 R 3/ H 1/?? 3/18?? 4/9?? P = 1 (Theorem 1) (GLH) (1.7778) (.44444) RH 1/ + R 6/5 H 1/10?? R 3/ H 1/?? 5/4?? 1/?? P = 1 (Theorem 3 with LEP) (GLH) (1.5) (.5) RH 1/ + R 17/14 H 1/7 R 3/ H?? 5/4?? 1/4?? S P = 0 (Theorem 1) (RC) (1.5) (.5) RH 1/ + R H R 3/ H?? 5710?? 895?? S P = 0 (Theorem 3 with [10]) (RC) (1.466) (.5338) RH 1/ + R 6/5 H 1/10?? R 3/ H?? 7/?? 3/11?? S P = 0 (Theorem 3 with LEP) (RC) (1.77) (.773) Ultimate Conjecture i.e. Conjecture 1: 1???????? P 33

34 Remark 3. Acronyms: LEP = Lindelöf Exponent Pair Conjecutre [3]. GLH = Generalized Lindelöf Hypothesis [3]. RC = Ramanujan Conjecture [1]. 10 Acknowledgements The author wish to express his thanks to MIT for offering such an incredible program as SPUR, to Prof. David Jerison for suggesting this marvellous topic, to Prof. Etingof and Prof. Fox for overseeing the progress of the topic, to Chenjie Fan for his meticulous mentoring over the six weeks, and to Prof. Chamizo for enlightening and encouraging correspondence. Speaking of the technicalities, credits go to Prof. Etingof for opening the door of modular forms to me, to Prof. Fox for suggesting some connections to combinatorics, to Chenjie Fan for pointing the direction to the proof of Lemma 8 and justification of the convergence of the Poisson summation formula, and for helping the author with some L A TEXing problems. Thanks are also due to Prof. Chamizo for bringing to my attention the latest results in the theory of exponent pairs. References [1] Valentin Blomer and Gergely Harcos. Hybrid bounds for twisted L- functions. Journal für die reine und angewandte Mathematik, 61:53 79, 008. [] F. Chamizo. Lattice point counting and harmonic analysis [3] F. Chamizo and E. Cristóbal. The sphere problem and the L-functions. Acta. Math. Hungar., 01. [4] F. Chamizo, E. Cristóbal, and A. Ubis. Lattice points in rational ellipsoids. Journal of Mathematical Analysis and Applications, 350:83 89, 009. [5] Fernando Chamizo and Henryk Iwaniec. On the sphere problem. Revista Matemática Iberoamericana, 11():417 49,

35 [6] Jing-Run Chen. Improvement on the asymptotic formulas for the number of lattice points in a region of the three dimensions (ii). Sci. Sinica., 1: , [7] Gerald B. Folland. Introduction to Partial Differential Equations. Princeton University Press, [8] S. W. Graham and G. Kolesnik. Van der Corput s Method of Exponential Sums. Cambridge University Press, [9] D. R. Heath-Brown. Lattice points in the sphere. Number Theory in Progress, ():883 89, [10] M. N. Huxley. Exponential sums and the Riemann zeta function V. [11] David Jerison, Lionel Levine, and Scott Sheffield. Internal DLA and the Gaussian free field. Available at [1] Peter Sarnak. Some Applications of Modular Forms. Cambridge University Press, [13] Goro Shimura. On modular forms of half integral weight. Annals of Mathematics, 97(3): , [14] Vinogradov. On the number of integer points in a sphere (russian). Izv. Akad. Nauk. SSSR Ser. Mat., 7: ,

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 =

1 + lim. n n+1. f(x) = x + 1, x 1. and we check that f is increasing, instead. Using the quotient rule, we easily find that. 1 (x + 1) 1 x (x + 1) 2 = Chapter 5 Sequences and series 5. Sequences Definition 5. (Sequence). A sequence is a function which is defined on the set N of natural numbers. Since such a function is uniquely determined by its values

More information

ON SUMS OF PRIMES FROM BEATTY SEQUENCES. Angel V. Kumchev 1 Department of Mathematics, Towson University, Towson, MD , U.S.A.

ON SUMS OF PRIMES FROM BEATTY SEQUENCES. Angel V. Kumchev 1 Department of Mathematics, Towson University, Towson, MD , U.S.A. INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A08 ON SUMS OF PRIMES FROM BEATTY SEQUENCES Angel V. Kumchev 1 Department of Mathematics, Towson University, Towson, MD 21252-0001,

More information

A Smorgasbord of Applications of Fourier Analysis to Number Theory

A Smorgasbord of Applications of Fourier Analysis to Number Theory A Smorgasbord of Applications of Fourier Analysis to Number Theory by Daniel Baczkowski Uniform Distribution modulo Definition. Let {x} denote the fractional part of a real number x. A sequence (u n R

More information

Analytic Number Theory

Analytic Number Theory American Mathematical Society Colloquium Publications Volume 53 Analytic Number Theory Henryk Iwaniec Emmanuel Kowalski American Mathematical Society Providence, Rhode Island Contents Preface xi Introduction

More information

Solutions to Complex Analysis Prelims Ben Strasser

Solutions to Complex Analysis Prelims Ben Strasser Solutions to Complex Analysis Prelims Ben Strasser In preparation for the complex analysis prelim, I typed up solutions to some old exams. This document includes complete solutions to both exams in 23,

More information

Taylor and Laurent Series

Taylor and Laurent Series Chapter 4 Taylor and Laurent Series 4.. Taylor Series 4... Taylor Series for Holomorphic Functions. In Real Analysis, the Taylor series of a given function f : R R is given by: f (x + f (x (x x + f (x

More information

Fourier Transform & Sobolev Spaces

Fourier Transform & Sobolev Spaces Fourier Transform & Sobolev Spaces Michael Reiter, Arthur Schuster Summer Term 2008 Abstract We introduce the concept of weak derivative that allows us to define new interesting Hilbert spaces the Sobolev

More information

Decouplings and applications

Decouplings and applications April 27, 2018 Let Ξ be a collection of frequency points ξ on some curved, compact manifold S of diameter 1 in R n (e.g. the unit sphere S n 1 ) Let B R = B(c, R) be a ball with radius R 1. Let also a

More information

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell Eigenvalues and eigenfunctions of the Laplacian Andrew Hassell 1 2 The setting In this talk I will consider the Laplace operator,, on various geometric spaces M. Here, M will be either a bounded Euclidean

More information

Decoupling course outline Decoupling theory is a recent development in Fourier analysis with applications in partial differential equations and

Decoupling course outline Decoupling theory is a recent development in Fourier analysis with applications in partial differential equations and Decoupling course outline Decoupling theory is a recent development in Fourier analysis with applications in partial differential equations and analytic number theory. It studies the interference patterns

More information

Fourier Series. ,..., e ixn ). Conversely, each 2π-periodic function φ : R n C induces a unique φ : T n C for which φ(e ix 1

Fourier Series. ,..., e ixn ). Conversely, each 2π-periodic function φ : R n C induces a unique φ : T n C for which φ(e ix 1 Fourier Series Let {e j : 1 j n} be the standard basis in R n. We say f : R n C is π-periodic in each variable if f(x + πe j ) = f(x) x R n, 1 j n. We can identify π-periodic functions with functions on

More information

17 The functional equation

17 The functional equation 18.785 Number theory I Fall 16 Lecture #17 11/8/16 17 The functional equation In the previous lecture we proved that the iemann zeta function ζ(s) has an Euler product and an analytic continuation to the

More information

Prime Number Theory and the Riemann Zeta-Function

Prime Number Theory and the Riemann Zeta-Function 5262589 - Recent Perspectives in Random Matrix Theory and Number Theory Prime Number Theory and the Riemann Zeta-Function D.R. Heath-Brown Primes An integer p N is said to be prime if p and there is no

More information

Course Description for Real Analysis, Math 156

Course Description for Real Analysis, Math 156 Course Description for Real Analysis, Math 156 In this class, we will study elliptic PDE, Fourier analysis, and dispersive PDE. Here is a quick summary of the topics will study study. They re described

More information

Large Sieves and Exponential Sums. Liangyi Zhao Thesis Director: Henryk Iwaniec

Large Sieves and Exponential Sums. Liangyi Zhao Thesis Director: Henryk Iwaniec Large Sieves and Exponential Sums Liangyi Zhao Thesis Director: Henryk Iwaniec The large sieve was first intruded by Yuri Vladimirovich Linnik in 1941 and have been later refined by many, including Rényi,

More information

12. Hilbert Polynomials and Bézout s Theorem

12. Hilbert Polynomials and Bézout s Theorem 12. Hilbert Polynomials and Bézout s Theorem 95 12. Hilbert Polynomials and Bézout s Theorem After our study of smooth cubic surfaces in the last chapter, let us now come back to the general theory of

More information

Factorization in Integral Domains II

Factorization in Integral Domains II Factorization in Integral Domains II 1 Statement of the main theorem Throughout these notes, unless otherwise specified, R is a UFD with field of quotients F. The main examples will be R = Z, F = Q, and

More information

THE INVERSE FUNCTION THEOREM

THE INVERSE FUNCTION THEOREM THE INVERSE FUNCTION THEOREM W. PATRICK HOOPER The implicit function theorem is the following result: Theorem 1. Let f be a C 1 function from a neighborhood of a point a R n into R n. Suppose A = Df(a)

More information

PATTERNS OF PRIMES IN ARITHMETIC PROGRESSIONS

PATTERNS OF PRIMES IN ARITHMETIC PROGRESSIONS PATTERNS OF PRIMES IN ARITHMETIC PROGRESSIONS JÁNOS PINTZ Rényi Institute of the Hungarian Academy of Sciences CIRM, Dec. 13, 2016 2 1. Patterns of primes Notation: p n the n th prime, P = {p i } i=1,

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information

NORMAL NUMBERS AND UNIFORM DISTRIBUTION (WEEKS 1-3) OPEN PROBLEMS IN NUMBER THEORY SPRING 2018, TEL AVIV UNIVERSITY

NORMAL NUMBERS AND UNIFORM DISTRIBUTION (WEEKS 1-3) OPEN PROBLEMS IN NUMBER THEORY SPRING 2018, TEL AVIV UNIVERSITY ORMAL UMBERS AD UIFORM DISTRIBUTIO WEEKS -3 OPE PROBLEMS I UMBER THEORY SPRIG 28, TEL AVIV UIVERSITY Contents.. ormal numbers.2. Un-natural examples 2.3. ormality and uniform distribution 2.4. Weyl s criterion

More information

A survey on l 2 decoupling

A survey on l 2 decoupling A survey on l 2 decoupling Po-Lam Yung 1 The Chinese University of Hong Kong January 31, 2018 1 Research partially supported by HKRGC grant 14313716, and by CUHK direct grants 4053220, 4441563 Introduction

More information

Math 321 Final Examination April 1995 Notation used in this exam: N. (1) S N (f,x) = f(t)e int dt e inx.

Math 321 Final Examination April 1995 Notation used in this exam: N. (1) S N (f,x) = f(t)e int dt e inx. Math 321 Final Examination April 1995 Notation used in this exam: N 1 π (1) S N (f,x) = f(t)e int dt e inx. 2π n= N π (2) C(X, R) is the space of bounded real-valued functions on the metric space X, equipped

More information

MATH 220: INNER PRODUCT SPACES, SYMMETRIC OPERATORS, ORTHOGONALITY

MATH 220: INNER PRODUCT SPACES, SYMMETRIC OPERATORS, ORTHOGONALITY MATH 22: INNER PRODUCT SPACES, SYMMETRIC OPERATORS, ORTHOGONALITY When discussing separation of variables, we noted that at the last step we need to express the inhomogeneous initial or boundary data as

More information

Mean square limit for lattice points in a sphere

Mean square limit for lattice points in a sphere ACTA ARITHMETICA LXVIII.4 (994) Mean square limit for lattice points in a sphere by Pavel M. Bleher (Indianapolis, Ind.) and Freeman J. Dyson (Princeton, N.J.). Main result. Let N(R) = #{n Z 3 : n R} be

More information

GAUSS CIRCLE PROBLEM

GAUSS CIRCLE PROBLEM GAUSS CIRCLE PROBLEM 1. Gauss circle problem We begin with a very classical problem: how many lattice points lie on or inside the circle centered at the origin and with radius r? (In keeping with the classical

More information

Notes on Equidistribution

Notes on Equidistribution otes on Equidistribution Jacques Verstraëte Department of Mathematics University of California, San Diego La Jolla, CA, 92093. E-mail: jacques@ucsd.edu. Introduction For a real number a we write {a} for

More information

Gauss and Riemann versus elementary mathematics

Gauss and Riemann versus elementary mathematics 777-855 826-866 Gauss and Riemann versus elementary mathematics Problem at the 987 International Mathematical Olympiad: Given that the polynomial [ ] f (x) = x 2 + x + p yields primes for x =,, 2,...,

More information

Math 229: Introduction to Analytic Number Theory The product formula for ξ(s) and ζ(s); vertical distribution of zeros

Math 229: Introduction to Analytic Number Theory The product formula for ξ(s) and ζ(s); vertical distribution of zeros Math 9: Introduction to Analytic Number Theory The product formula for ξs) and ζs); vertical distribution of zeros Behavior on vertical lines. We next show that s s)ξs) is an entire function of order ;

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K R MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND First Printing, 99 Chapter LINEAR EQUATIONS Introduction to linear equations A linear equation in n unknowns x,

More information

Distribution of Fourier coefficients of primitive forms

Distribution of Fourier coefficients of primitive forms Distribution of Fourier coefficients of primitive forms Jie WU Institut Élie Cartan Nancy CNRS et Nancy-Université, France Clermont-Ferrand, le 25 Juin 2008 2 Presented work [1] E. Kowalski, O. Robert

More information

HECKE OPERATORS ON CERTAIN SUBSPACES OF INTEGRAL WEIGHT MODULAR FORMS.

HECKE OPERATORS ON CERTAIN SUBSPACES OF INTEGRAL WEIGHT MODULAR FORMS. HECKE OPERATORS ON CERTAIN SUBSPACES OF INTEGRAL WEIGHT MODULAR FORMS. MATTHEW BOYLAN AND KENNY BROWN Abstract. Recent works of Garvan [2] and Y. Yang [7], [8] concern a certain family of half-integral

More information

Math Homework 2

Math Homework 2 Math 73 Homework Due: September 8, 6 Suppose that f is holomorphic in a region Ω, ie an open connected set Prove that in any of the following cases (a) R(f) is constant; (b) I(f) is constant; (c) f is

More information

Solutions Final Exam May. 14, 2014

Solutions Final Exam May. 14, 2014 Solutions Final Exam May. 14, 2014 1. (a) (10 points) State the formal definition of a Cauchy sequence of real numbers. A sequence, {a n } n N, of real numbers, is Cauchy if and only if for every ɛ > 0,

More information

Dirichlet s Theorem. Martin Orr. August 21, The aim of this article is to prove Dirichlet s theorem on primes in arithmetic progressions:

Dirichlet s Theorem. Martin Orr. August 21, The aim of this article is to prove Dirichlet s theorem on primes in arithmetic progressions: Dirichlet s Theorem Martin Orr August 1, 009 1 Introduction The aim of this article is to prove Dirichlet s theorem on primes in arithmetic progressions: Theorem 1.1. If m, a N are coprime, then there

More information

A COUNTEREXAMPLE TO AN ENDPOINT BILINEAR STRICHARTZ INEQUALITY TERENCE TAO. t L x (R R2 ) f L 2 x (R2 )

A COUNTEREXAMPLE TO AN ENDPOINT BILINEAR STRICHARTZ INEQUALITY TERENCE TAO. t L x (R R2 ) f L 2 x (R2 ) Electronic Journal of Differential Equations, Vol. 2006(2006), No. 5, pp. 6. ISSN: 072-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) A COUNTEREXAMPLE

More information

Upper Bounds for Partitions into k-th Powers Elementary Methods

Upper Bounds for Partitions into k-th Powers Elementary Methods Int. J. Contemp. Math. Sciences, Vol. 4, 2009, no. 9, 433-438 Upper Bounds for Partitions into -th Powers Elementary Methods Rafael Jaimczu División Matemática, Universidad Nacional de Luján Buenos Aires,

More information

MAT137 Calculus! Lecture 6

MAT137 Calculus! Lecture 6 MAT137 Calculus! Lecture 6 Today: 3.2 Differentiation Rules; 3.3 Derivatives of higher order. 3.4 Related rates 3.5 Chain Rule 3.6 Derivative of Trig. Functions Next: 3.7 Implicit Differentiation 4.10

More information

(τ) = q (1 q n ) 24. E 4 (τ) = q q q 3 + = (1 q) 240 (1 q 2 ) (1 q 3 ) (1.1)

(τ) = q (1 q n ) 24. E 4 (τ) = q q q 3 + = (1 q) 240 (1 q 2 ) (1 q 3 ) (1.1) Automorphic forms on O s+2,2 (R) + and generalized Kac-Moody algebras. Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994), 744 752, Birkhäuser, Basel, 1995. Richard E.

More information

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS SPRING 006 PRELIMINARY EXAMINATION SOLUTIONS 1A. Let G be the subgroup of the free abelian group Z 4 consisting of all integer vectors (x, y, z, w) such that x + 3y + 5z + 7w = 0. (a) Determine a linearly

More information

Math212a1413 The Lebesgue integral.

Math212a1413 The Lebesgue integral. Math212a1413 The Lebesgue integral. October 28, 2014 Simple functions. In what follows, (X, F, m) is a space with a σ-field of sets, and m a measure on F. The purpose of today s lecture is to develop the

More information

Outline of the Seminar Topics on elliptic curves Saarbrücken,

Outline of the Seminar Topics on elliptic curves Saarbrücken, Outline of the Seminar Topics on elliptic curves Saarbrücken, 11.09.2017 Contents A Number theory and algebraic geometry 2 B Elliptic curves 2 1 Rational points on elliptic curves (Mordell s Theorem) 5

More information

Ph.D. Qualifying Exam: Algebra I

Ph.D. Qualifying Exam: Algebra I Ph.D. Qualifying Exam: Algebra I 1. Let F q be the finite field of order q. Let G = GL n (F q ), which is the group of n n invertible matrices with the entries in F q. Compute the order of the group G

More information

2 Infinite products and existence of compactly supported φ

2 Infinite products and existence of compactly supported φ 415 Wavelets 1 Infinite products and existence of compactly supported φ Infinite products.1 Infinite products a n need to be defined via limits. But we do not simply say that a n = lim a n N whenever the

More information

Divergent Series: why = 1/12. Bryden Cais

Divergent Series: why = 1/12. Bryden Cais Divergent Series: why + + 3 + = /. Bryden Cais Divergent series are the invention of the devil, and it is shameful to base on them any demonstration whatsoever.. H. Abel. Introduction The notion of convergence

More information

Problem 1A. Find the volume of the solid given by x 2 + z 2 1, y 2 + z 2 1. (Hint: 1. Solution: The volume is 1. Problem 2A.

Problem 1A. Find the volume of the solid given by x 2 + z 2 1, y 2 + z 2 1. (Hint: 1. Solution: The volume is 1. Problem 2A. Problem 1A Find the volume of the solid given by x 2 + z 2 1, y 2 + z 2 1 (Hint: 1 1 (something)dz) Solution: The volume is 1 1 4xydz where x = y = 1 z 2 This integral has value 16/3 Problem 2A Let f(x)

More information

Roth s Theorem on Arithmetic Progressions

Roth s Theorem on Arithmetic Progressions September 25, 2014 The Theorema of Szemerédi and Roth For Λ N the (upper asymptotic) density of Λ is the number σ(λ) := lim sup N Λ [1, N] N [0, 1] The Theorema of Szemerédi and Roth For Λ N the (upper

More information

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2.

a 11 x 1 + a 12 x a 1n x n = b 1 a 21 x 1 + a 22 x a 2n x n = b 2. Chapter 1 LINEAR EQUATIONS 11 Introduction to linear equations A linear equation in n unknowns x 1, x,, x n is an equation of the form a 1 x 1 + a x + + a n x n = b, where a 1, a,, a n, b are given real

More information

Mid-term Exam Answers and Final Exam Study Guide CIS 675 Summer 2010

Mid-term Exam Answers and Final Exam Study Guide CIS 675 Summer 2010 Mid-term Exam Answers and Final Exam Study Guide CIS 675 Summer 2010 Midterm Problem 1: Recall that for two functions g : N N + and h : N N +, h = Θ(g) iff for some positive integer N and positive real

More information

Complex Analysis, Stein and Shakarchi The Fourier Transform

Complex Analysis, Stein and Shakarchi The Fourier Transform Complex Analysis, Stein and Shakarchi Chapter 4 The Fourier Transform Yung-Hsiang Huang 2017.11.05 1 Exercises 1. Suppose f L 1 (), and f 0. Show that f 0. emark 1. This proof is observed by Newmann (published

More information

A NEW UPPER BOUND FOR FINITE ADDITIVE BASES

A NEW UPPER BOUND FOR FINITE ADDITIVE BASES A NEW UPPER BOUND FOR FINITE ADDITIVE BASES C SİNAN GÜNTÜRK AND MELVYN B NATHANSON Abstract Let n, k denote the largest integer n for which there exists a set A of k nonnegative integers such that the

More information

Chapter One. The Calderón-Zygmund Theory I: Ellipticity

Chapter One. The Calderón-Zygmund Theory I: Ellipticity Chapter One The Calderón-Zygmund Theory I: Ellipticity Our story begins with a classical situation: convolution with homogeneous, Calderón- Zygmund ( kernels on R n. Let S n 1 R n denote the unit sphere

More information

arxiv: v1 [math.ca] 31 Dec 2018

arxiv: v1 [math.ca] 31 Dec 2018 arxiv:181.1173v1 [math.ca] 31 Dec 18 Some trigonometric integrals and the Fourier transform of a spherically symmetric exponential function Hideshi YAMANE Department of Mathematical Sciences, Kwansei Gakuin

More information

1.3.1 Definition and Basic Properties of Convolution

1.3.1 Definition and Basic Properties of Convolution 1.3 Convolution 15 1.3 Convolution Since L 1 (R) is a Banach space, we know that it has many useful properties. In particular the operations of addition and scalar multiplication are continuous. However,

More information

Zeros and Nodal Lines of Modular Forms

Zeros and Nodal Lines of Modular Forms Zeros and Nodal Lines of Modular Forms Peter Sarnak Mahler Lectures 2011 Zeros of Modular Forms Classical modular forms Γ = SL 2 (Z) acting on H. z γ az + b [ ] a b cz + d, γ = Γ. c d (i) f (z) holomorphic

More information

Real Analysis Problems

Real Analysis Problems Real Analysis Problems Cristian E. Gutiérrez September 14, 29 1 1 CONTINUITY 1 Continuity Problem 1.1 Let r n be the sequence of rational numbers and Prove that f(x) = 1. f is continuous on the irrationals.

More information

One of the Eight Numbers ζ(5),ζ(7),...,ζ(17),ζ(19) Is Irrational

One of the Eight Numbers ζ(5),ζ(7),...,ζ(17),ζ(19) Is Irrational Mathematical Notes, vol. 70, no. 3, 2001, pp. 426 431. Translated from Matematicheskie Zametki, vol. 70, no. 3, 2001, pp. 472 476. Original Russian Text Copyright c 2001 by V. V. Zudilin. One of the Eight

More information

ELEMENTARY LINEAR ALGEBRA

ELEMENTARY LINEAR ALGEBRA ELEMENTARY LINEAR ALGEBRA K. R. MATTHEWS DEPARTMENT OF MATHEMATICS UNIVERSITY OF QUEENSLAND Second Online Version, December 1998 Comments to the author at krm@maths.uq.edu.au Contents 1 LINEAR EQUATIONS

More information

On a diophantine inequality involving prime numbers

On a diophantine inequality involving prime numbers ACTA ARITHMETICA LXI.3 (992 On a diophantine inequality involving prime numbers by D. I. Tolev (Plovdiv In 952 Piatetski-Shapiro [4] considered the following analogue of the Goldbach Waring problem. Assume

More information

Modular forms, combinatorially and otherwise

Modular forms, combinatorially and otherwise Modular forms, combinatorially and otherwise p. 1/103 Modular forms, combinatorially and otherwise David Penniston Sums of squares Modular forms, combinatorially and otherwise p. 2/103 Modular forms, combinatorially

More information

Results and open problems related to Schmidt s Subspace Theorem. Jan-Hendrik Evertse

Results and open problems related to Schmidt s Subspace Theorem. Jan-Hendrik Evertse Results and open problems related to Schmidt s Subspace Theorem Jan-Hendrik Evertse Universiteit Leiden 29 ièmes Journées Arithmétiques July 6, 2015, Debrecen Slides can be downloaded from http://pub.math.leidenuniv.nl/

More information

Topics in Harmonic Analysis Lecture 1: The Fourier transform

Topics in Harmonic Analysis Lecture 1: The Fourier transform Topics in Harmonic Analysis Lecture 1: The Fourier transform Po-Lam Yung The Chinese University of Hong Kong Outline Fourier series on T: L 2 theory Convolutions The Dirichlet and Fejer kernels Pointwise

More information

Recall that any inner product space V has an associated norm defined by

Recall that any inner product space V has an associated norm defined by Hilbert Spaces Recall that any inner product space V has an associated norm defined by v = v v. Thus an inner product space can be viewed as a special kind of normed vector space. In particular every inner

More information

Quadratic reciprocity (after Weil) 1. Standard set-up and Poisson summation

Quadratic reciprocity (after Weil) 1. Standard set-up and Poisson summation (December 19, 010 Quadratic reciprocity (after Weil Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ I show that over global fields k (characteristic not the quadratic norm residue symbol

More information

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2014

Department of Mathematics, University of California, Berkeley. GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2014 Department of Mathematics, University of California, Berkeley YOUR 1 OR 2 DIGIT EXAM NUMBER GRADUATE PRELIMINARY EXAMINATION, Part A Fall Semester 2014 1. Please write your 1- or 2-digit exam number on

More information

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial.

Considering our result for the sum and product of analytic functions, this means that for (a 0, a 1,..., a N ) C N+1, the polynomial. Lecture 3 Usual complex functions MATH-GA 245.00 Complex Variables Polynomials. Construction f : z z is analytic on all of C since its real and imaginary parts satisfy the Cauchy-Riemann relations and

More information

Derivatives of Harmonic Bergman and Bloch Functions on the Ball

Derivatives of Harmonic Bergman and Bloch Functions on the Ball Journal of Mathematical Analysis and Applications 26, 1 123 (21) doi:1.16/jmaa.2.7438, available online at http://www.idealibrary.com on Derivatives of Harmonic ergman and loch Functions on the all oo

More information

1.5 Approximate Identities

1.5 Approximate Identities 38 1 The Fourier Transform on L 1 (R) which are dense subspaces of L p (R). On these domains, P : D P L p (R) and M : D M L p (R). Show, however, that P and M are unbounded even when restricted to these

More information

l(y j ) = 0 for all y j (1)

l(y j ) = 0 for all y j (1) Problem 1. The closed linear span of a subset {y j } of a normed vector space is defined as the intersection of all closed subspaces containing all y j and thus the smallest such subspace. 1 Show that

More information

20 The modular equation

20 The modular equation 18.783 Elliptic Curves Spring 2015 Lecture #20 04/23/2015 20 The modular equation In the previous lecture we defined modular curves as quotients of the extended upper half plane under the action of a congruence

More information

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space.

Hilbert Spaces. Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Hilbert Spaces Hilbert space is a vector space with some extra structure. We start with formal (axiomatic) definition of a vector space. Vector Space. Vector space, ν, over the field of complex numbers,

More information

MATH 205C: STATIONARY PHASE LEMMA

MATH 205C: STATIONARY PHASE LEMMA MATH 205C: STATIONARY PHASE LEMMA For ω, consider an integral of the form I(ω) = e iωf(x) u(x) dx, where u Cc (R n ) complex valued, with support in a compact set K, and f C (R n ) real valued. Thus, I(ω)

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

HASSE-MINKOWSKI THEOREM

HASSE-MINKOWSKI THEOREM HASSE-MINKOWSKI THEOREM KIM, SUNGJIN 1. Introduction In rough terms, a local-global principle is a statement that asserts that a certain property is true globally if and only if it is true everywhere locally.

More information

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE

MATH 311: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE MATH 3: COMPLEX ANALYSIS CONTOUR INTEGRALS LECTURE Recall the Residue Theorem: Let be a simple closed loop, traversed counterclockwise. Let f be a function that is analytic on and meromorphic inside. Then

More information

HOW TO LOOK AT MINKOWSKI S THEOREM

HOW TO LOOK AT MINKOWSKI S THEOREM HOW TO LOOK AT MINKOWSKI S THEOREM COSMIN POHOATA Abstract. In this paper we will discuss a few ways of thinking about Minkowski s lattice point theorem. The Minkowski s Lattice Point Theorem essentially

More information

NOTES Edited by William Adkins. On Goldbach s Conjecture for Integer Polynomials

NOTES Edited by William Adkins. On Goldbach s Conjecture for Integer Polynomials NOTES Edited by William Adkins On Goldbach s Conjecture for Integer Polynomials Filip Saidak 1. INTRODUCTION. We give a short proof of the fact that every monic polynomial f (x) in Z[x] can be written

More information

A LeVeque-type lower bound for discrepancy

A LeVeque-type lower bound for discrepancy reprinted from Monte Carlo and Quasi-Monte Carlo Methods 998, H. Niederreiter and J. Spanier, eds., Springer-Verlag, 000, pp. 448-458. A LeVeque-type lower bound for discrepancy Francis Edward Su Department

More information

MATH 1A, Complete Lecture Notes. Fedor Duzhin

MATH 1A, Complete Lecture Notes. Fedor Duzhin MATH 1A, Complete Lecture Notes Fedor Duzhin 2007 Contents I Limit 6 1 Sets and Functions 7 1.1 Sets................................. 7 1.2 Functions.............................. 8 1.3 How to define a

More information

= 10 such triples. If it is 5, there is = 1 such triple. Therefore, there are a total of = 46 such triples.

= 10 such triples. If it is 5, there is = 1 such triple. Therefore, there are a total of = 46 such triples. . Two externally tangent unit circles are constructed inside square ABCD, one tangent to AB and AD, the other to BC and CD. Compute the length of AB. Answer: + Solution: Observe that the diagonal of the

More information

Roots of Polynomials in Subgroups of F p and Applications to Congruences

Roots of Polynomials in Subgroups of F p and Applications to Congruences Roots of Polynomials in Subgroups of F p and Applications to Congruences Enrico Bombieri, Jean Bourgain, Sergei Konyagin IAS, Princeton, IAS Princeton, Moscow State University The decimation problem Let

More information

0 Sets and Induction. Sets

0 Sets and Induction. Sets 0 Sets and Induction Sets A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write a A to denote that a is an element of the set

More information

20 The modular equation

20 The modular equation 18.783 Elliptic Curves Spring 2015 Lecture #20 04/23/2015 20 The modular equation In the previous lecture we defined modular curves as quotients of the extended upper half plane under the action of a congruence

More information

I teach myself... Hilbert spaces

I teach myself... Hilbert spaces I teach myself... Hilbert spaces by F.J.Sayas, for MATH 806 November 4, 2015 This document will be growing with the semester. Every in red is for you to justify. Even if we start with the basic definition

More information

f(x)dx = lim f n (x)dx.

f(x)dx = lim f n (x)dx. Chapter 3 Lebesgue Integration 3.1 Introduction The concept of integration as a technique that both acts as an inverse to the operation of differentiation and also computes areas under curves goes back

More information

Topics in Fourier analysis - Lecture 2.

Topics in Fourier analysis - Lecture 2. Topics in Fourier analysis - Lecture 2. Akos Magyar 1 Infinite Fourier series. In this section we develop the basic theory of Fourier series of periodic functions of one variable, but only to the extent

More information

Local Fields. Chapter Absolute Values and Discrete Valuations Definitions and Comments

Local Fields. Chapter Absolute Values and Discrete Valuations Definitions and Comments Chapter 9 Local Fields The definition of global field varies in the literature, but all definitions include our primary source of examples, number fields. The other fields that are of interest in algebraic

More information

Quantitative Oppenheim theorem. Eigenvalue spacing for rectangular billiards. Pair correlation for higher degree diagonal forms

Quantitative Oppenheim theorem. Eigenvalue spacing for rectangular billiards. Pair correlation for higher degree diagonal forms QUANTITATIVE DISTRIBUTIONAL ASPECTS OF GENERIC DIAGONAL FORMS Quantitative Oppenheim theorem Eigenvalue spacing for rectangular billiards Pair correlation for higher degree diagonal forms EFFECTIVE ESTIMATES

More information

THE MATTILA INTEGRAL ASSOCIATED WITH SIGN INDEFINITE MEASURES. Alex Iosevich and Misha Rudnev. August 3, Introduction

THE MATTILA INTEGRAL ASSOCIATED WITH SIGN INDEFINITE MEASURES. Alex Iosevich and Misha Rudnev. August 3, Introduction THE MATTILA INTEGRAL ASSOCIATED WITH SIGN INDEFINITE MEASURES Alex Iosevich and Misha Rudnev August 3, 005 Abstract. In order to quantitatively illustrate the role of positivity in the Falconer distance

More information

PUTNAM TRAINING PROBLEMS

PUTNAM TRAINING PROBLEMS PUTNAM TRAINING PROBLEMS (Last updated: December 3, 2003) Remark This is a list of Math problems for the NU Putnam team to be discussed during the training sessions Miguel A Lerma 1 Bag of candies In a

More information

Daniel M. Oberlin Department of Mathematics, Florida State University. January 2005

Daniel M. Oberlin Department of Mathematics, Florida State University. January 2005 PACKING SPHERES AND FRACTAL STRICHARTZ ESTIMATES IN R d FOR d 3 Daniel M. Oberlin Department of Mathematics, Florida State University January 005 Fix a dimension d and for x R d and r > 0, let Sx, r) stand

More information

Horocycle Flow at Prime Times

Horocycle Flow at Prime Times Horocycle Flow at Prime Times Peter Sarnak Mahler Lectures 2011 Rotation of the Circle A very simple (but by no means trivial) dynamical system is the rotation (or more generally translation in a compact

More information

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem Chapter 1 Introduction to prime number theory 1.1 The Prime Number Theorem In the first part of this course, we focus on the theory of prime numbers. We use the following notation: we write f( g( as if

More information

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem

Chapter 1. Introduction to prime number theory. 1.1 The Prime Number Theorem Chapter 1 Introduction to prime number theory 1.1 The Prime Number Theorem In the first part of this course, we focus on the theory of prime numbers. We use the following notation: we write f( g( as if

More information

Chapter 7: Bounded Operators in Hilbert Spaces

Chapter 7: Bounded Operators in Hilbert Spaces Chapter 7: Bounded Operators in Hilbert Spaces I-Liang Chern Department of Applied Mathematics National Chiao Tung University and Department of Mathematics National Taiwan University Fall, 2013 1 / 84

More information

VISCOSITY SOLUTIONS. We follow Han and Lin, Elliptic Partial Differential Equations, 5.

VISCOSITY SOLUTIONS. We follow Han and Lin, Elliptic Partial Differential Equations, 5. VISCOSITY SOLUTIONS PETER HINTZ We follow Han and Lin, Elliptic Partial Differential Equations, 5. 1. Motivation Throughout, we will assume that Ω R n is a bounded and connected domain and that a ij C(Ω)

More information

Character sums with Beatty sequences on Burgess-type intervals

Character sums with Beatty sequences on Burgess-type intervals Character sums with Beatty sequences on Burgess-type intervals William D. Banks Department of Mathematics University of Missouri Columbia, MO 65211 USA bbanks@math.missouri.edu Igor E. Shparlinski Department

More information

Topics in Harmonic Analysis Lecture 6: Pseudodifferential calculus and almost orthogonality

Topics in Harmonic Analysis Lecture 6: Pseudodifferential calculus and almost orthogonality Topics in Harmonic Analysis Lecture 6: Pseudodifferential calculus and almost orthogonality Po-Lam Yung The Chinese University of Hong Kong Introduction While multiplier operators are very useful in studying

More information

Quadratic reciprocity (after Weil) 1. Standard set-up and Poisson summation

Quadratic reciprocity (after Weil) 1. Standard set-up and Poisson summation (September 17, 010) Quadratic reciprocity (after Weil) Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ I show that over global fields (characteristic not ) the quadratic norm residue

More information