(SPSS 11.0 for windows) א א :

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "(SPSS 11.0 for windows) א א :"

Transcription

1 א : א א א א א א ( ) א מ א א : /. جوان

2 2

3 : 3

4 : : 4

5 א Metacognition. ( ) Achievement Motive : : א ) ( ): ( ) ( : : א توجد علاقة ارتباط موجبة ودالة إحصاي يا بين الوعي بالعمليات المعرفية ودافع الا نجاز الدراسي. درجة الوعي بالعمليات المعرفية ودرجة دافع الا نج از الدراس ي.(4 1 ) ( ) ( ) (2 (1 : א א. : 763 א :.( ) ( ) ( ) (SPSS 11.0 for windows) א א : Crosstabs Pearson Correlation :. Analysis of variance ANOVA One Way (0,74) : : א. (0,01).. (4 1 ).1 : א : (1.. (2 (3.. (4 (5. 5

6 Abstract This study investigated the relationship between metacognition (processes) and school achievement motive in teacher training students in Algiers. Research problem: This can be summarized in the three following questions: 1) Is there any correlation relationship between metacognition (processes) and school achievement motive scores? 2) Are there any statistically significant differences between students according to sex, stream (Art, science) and level of studies (first and fourth years) in metacognition and school achievement motive scores? Research hypotheses: This research aimed at testing the following hypotheses: 1 There is a positive and statistically significant correlation relationship between metacognition and school achievement motive. 2 There are no statistically significant differences in metacognition and school achievement motive scores between the students groups studied. Research Instrument: Two tests were deviced for this purpose: The first was devoted to metacognition processes and the second to school achievement motive. Both tests were subjected to psychometric analysis to test for validity and reliability. Research Sample: It consisted of 763 teacher training students split as follows: (562 females and 201 males) (420 students of science stream and 343 of art stream) (342 first year and 421 fourth year students). Statistical analysis: Pearson correlation, crosstabs, One Way Analysis of variance (ANOVA). were performed on basis of SPSS 11.0 for Windows. Results: Research results reported a coefficient of correlation of (0.74) between metacognition and school achievement motive scores, which is statistically significant at (0.01) of significance. - There are differences between males and females in both of metacognition and school achievement motive scores to the advantage of females. - There are differences between science and Art streams an the two variables scores to the advantage of Art stream students. - There are differences between first and fourth year students on both variables in favour of first year students. Recommendations: The research came up with the following recommendations: 1) Building of training programs aiming at developing metacognition processes and school achievement motive for different school levels. 2) Design standardised tests for measuring m metacognition and school achievement motive. 3) Carry out experimental studies for measuring the effects of the training programs for metacognition and school achievement motive. 4) Reformation of school programs so that they contribute to the development of metacognition. 5) Train teachers on teaching skills based on metacognition and school achievement motive application. 6

7 (01) א א א : (07) (15) (15) (17) (17) (18) (20) (34) (36) (37) (38) (38) (40) (41) א א : : : : : : : : : : (1 : (2 : (3 : (4 :Gestalt Theory : : 7

8 (42) (43) (44) (45) (46) (47) (47) (49) (50) (51) (53) (54) (55) (56) (56) (58) (58) (59) (60) (60) (61) (62) (62) : : : :Field theory : : : : :...:( Ausubel, ) : : : : : : : ( Bruner, J.S ) : : : : : : : : : : ( Rotter, J.B )... : (63)...: (65) (66) : : : 8

9 (67) (67) (68) (69) (72) (72) (72) (74) (78) (80) (82) (82) (83) (85) (88) (90) (90) (91) (92) (93) (94) (95)... : ( Bandura, A ) : : : : : :Information processing : : Metacognition : : : א א : : : : : Metacognition : : : : Metacognitive skills : : : : : K W L H technique (1 (96) : Activating prior Knowledge Strategy. (2 (97) (99) (100) (103)... : Self - Questioning Strategy. ( : P.S. Q. 5 R Strategy (4 :Thinking Aloud Strategy (5 :Brain Storming (6 9

10 : (106)... : Normal Learning cycle : ( ) : (108).:Metacognitive Learning cycle : : (110) (110) (111) (112) : : : : א א א : (114) (120) : : (122)... : (130) (134) (137) (139) א א : : : : : (142)... : : (161)... : : (177) (187) (191) (193) (193) (194) (196) (196)... : : : א א : : : : : : : : : 10

11 (200) (200) (201) (204) (206) (206) (208) (208) (209) : : : : : : : : : : : : : : א א : (212)...: : (241)...: : (243)...: : (256)...: (263)...: (257)...: (260) א א :... א א מ (1). א מ (2) א מ (3). א מ (4) א מ (5) א מ (6) א מ (7) SPSS 11

12 א מ (8) SPSS 12

13 א א א : (73)... (74) (89) (94) (107) (108) (108) (111) (01) (02) ( 03) (04) (05) (06) (07) (08) (224).. (09) : (110)... ( 01) (193). (02) (195)... ( 03 ) (197)... ( 04 ) (198)... (05) (199)... (06) (199)... (07) (201) (202) (08) (09) (203)... (10) (203)... (11) (205)... (12) (207) (13) (208) (209) (210) (213) (14) (15) (16) (Pearson Correlation): : (17) (213).. ( ) ( ) : (18) (214)... (19) (214)... ( ) ( ) : (20) (215)... (21) 13

14 (216).( ) ( ) (22) (216)... (23) (217) (217)... ( ) ( ) (24)... ( 25) (218) ( ) ( ) 4 1 (26) (219) (219) (27) ( ) ( ) 4 1 (28) (220)... ( 29) (221)... (30) (222)... (31) (223)... (32) (225)... (33) (226)... (34) (227)... (35) (228)... (36) (229)... (37) (230)... (38)... (39) (231) (232)... (40) (233)... (41) (234)... (42)... (43) (235) (236) (44) (45) (237) 14

15 .. 1 (2000 ) (1995 ) 14 (1998 ) 15

16 Cognition Metacognition 19 (1999 )» : Metacognition " ". Metacognition» : «(1998 ) (1997 ) 36 (1998 ) ) (Flavell, J.H 1976 ) (Schoenfeld, A.H 16

17 42 (Oxford, R.I 1996 ). 33 (2006 ) 27 (Paris, S & Winograd, P1990 ) : :... (Flavell, J.H 1976 )» «(250 / 1998 ) 20 (Prins, F 2002 ) :

18 (Zemmerman, B 1989 ) :. (Wong,B 1986 ) ) (.. 34 (2006 ). ( ) (2005 ). ( ) ( ). (2005 )» : 171 (1988 ) 86 (1992, ) «!, : 18

19 ): ( : א א :. א א :... א א :... א א א :... א א :. א א :. א א :. 19

20

21 : (Metacognition). (1997 ) (1997 ) (2000 ) (Paris,S.G & Wrinogard,P 1990) (Borkowski et al 1990) (Bondy,E1984Costa,A.L 1984) «thinking about thinking» : ] :.. [ ] Wang,J1989/Gordon,J1996/Lan,W.Y1996/HollingWorth,R&McLoughlin,C2000/Alexand er,j.m&carr,m.s.p 1995/ Hacker,D.J1998/O Shea,L & Ohea,D1994/ Chamot,A 1988a ] : Metacognition (. :... 21

22 ... ( ). : [... Deney,J Hull,C.L Thorndike,E.L ] (Reflection action) : ( ) (Glover, J and Ronning, R, 1987) Lewin,K Gestalt ]: Bandura,A Rotter,J.B Bruner,G.S Ausubel,D.P [.... Flavell,J Vygotsky,L (Flavell,J 1976 ).. : ( ) (1. (2 (Flavell, J, 1985) (3 22

23 .... ). 15 (2002 (Taylor,S 1999) (Gustone, R 1993) (Beeth, M.E 1998) (Fisher, R 1998) (Glaser, R 1990). (Baker, D &.(Bass, K & Duke, M 1994) Piburn, M 1997) : (Lindstrom, C 1995). : (Veenman, M.V & Elshout, J.J & Meiger, J 1997). 23

24 (Thomas, A 1993) 189 (1999 )..(Plantevin,Y 1997).(Baker,L and Browen,A 1984) (1997 ). ] : 1989 ) [ (Wang, J Metacognition Thinking Lowd. 24

25 ( Alshamag,Q 1998, Wilson,J.M ) (2001 ). ) : (. (1. (2 (3 (2001 ) «thinking about thinking» (Omally,P et Al, 1976) 404 ( 2000 ). لدى الطال ب. 171 (1988 ) 25

26 ,86 (1992 )!, /Parrish,J.&Rethlingshater,D.A1954 ] /Weiss et al 1959 /Burgess,L.1957 /McClelland,D.C1955.[Vhlinger,C.A & Stephens, M.W1960 (Entwistle,N 1981). " " McClleland,D.C :.. Atkinson,J.W Moslov,M Muray,H 89 (1977 )... : (McClleland,D.C ) ( the achieving society 1961 ) ]: 26

27 [ (1988 ). (Sydney) (Macquarie University) (1988) (1990 )...(McCombs,P1994) 27

28 (Nathawat, Singh and Singh, 1997). (1999 ) ) ( (1979 ). ) : (Nolen & Nicholls,1993) (.. ( ) (1981 ). 28

29 : : (1 ( 1)( ) (2 ( ) (3 (4 (5 (6 : א א : ) ( /( ) /( ) : ( ) ( א א : 1 29

30 2001 ] : / / 2005 / 2005 / 2006 / 2005 / 2006 / 2002 / 2000 / 1996 / 2004 / 2001 Gordon, J, 1996 / / 2003 / 2000 O'Shea, L et al, 1994 / Chamot, A, 1988 / Alescander, J.M et al, 1995 / Browen, A.L, 1980 / Flavell, J, 1976, 1979 / Wang, J, 1989 / Harris, D.M, 1998 / Paris, S.G et al, 1990 / Borkowski, J.G, 1987, 1992 / Osman, M.E, and Hannafi, M.G, 1992 / Barell, J, 1991 / Rikey, D et al, 2000 / Hanly, G, 1995 / Koch, A, 2000 / Schoenfeld, A.H, 1992 / Horak, W.J, 1992 / Ashman, A.F et al, 1994 / Nolan, M.B, ) : (Otero, J et al, 1992 / Shia, R.M, 1979 /2003» «( ). ) ( 30

31 . : : א א (1.. ( / : ) ( / : ) (2 (3.( / : ) א א :.( ) א א :. א א :. א א :. א א א : :. 31

32 :. א א : ( ). ( ) א א : א א : : א : (1 ( ) : ( ).. : (2.. ( ) ( ( :. : : ( ) ( ) (3 (4. 32

33 א א 1964 ( ) : / /1999 ( ) : ( + ) (1 ( + ) (2 :.. ( ) : / ) : (.( 5 + ) ( 4 + ). 33

34 א א א א מ א מ... Metacognition (1. Cognitive learning (2.Motivation (3. Achievement motive (4. Academic Achievement motive (5 :Metacognition א א מ (I Metacognition.. :.( ) : ) Metacognition» : (1971 (Flavell,1979) (Flavell, J.H & Wellman, H.M, 1977 Flavell, J.H «.. )» : Cognition (Hallahan, D.P & Kauffman, J.M, ( ) «about cognition )» : 166 (2004 ).«34

35 : (Paris, S & Cross, P 1983 )».«Strategic thinking» : (Vickil,C2005 ) (Vickl, C, 1998, P 32). : (2002 ) ).«51 (2002» : (2000 ) (Awareness) 186 (2000 ). : (2001 )» : 06 (2001 ).«: (Hacker,D.J 1998 )» :.«35

36 » : 105 (2000 ).«: Meta perception. Meta Understanding. Meta memory. : (Garner, R, 1988) Metacognition ) (Metacognition :. (1...( ) ( ) ( ) (2 ".. (3. "» : (4. «Metacognition : " " " " ( ) 52 (2002 ).. 36

37 (Sternberg,R.J 1985, 1988 ) (3 (2 (1 : : : :Planning ( : : Monitoring and Controlling ( : :Assessment ( (2002 ) (Borkowski,J et al, ) 37

38 : (Borkowski,J et al, 1990, p 115). (Brown, A.L, 1989) (Barell, J, 1991) (2002 ). " : א מ א מ (II " 8 (2000 ).» : ).«8 (2000 :... 38

39 ... (Bransford, J and Stein, B, 1984 ) : " :Motivation א א א א מ (III ). ( (2000 ).(.. ) ) (Motive ) (Motivation (Atkinson, J. W, 1964) ( ). 419 (1990 (2003 ) 39

40 201 ( ).»: (1996 ) (1996 ) «452 : : (1 ) Psychoanalysis : :. " 75 (1998 " 177 (1999 ). : (2 ( ) ( ) ) (1998 ). : p519. Biehler, R and Snoman, J 1990 : (3 ( 40

41 235 (1998 ). (Buring, S et al, 1995) :.. ( Biehler, R and Snoman, J 1990 ) p520. : (Weiner, B, ). : (4 " " ( ) ). 220 (2004 : 172 (1999 ). 41

42 6 ( /1988 ) (Weinberger, J, and Mc Clleland, D.C, 1990). : א א : (Mc Clleland, D.C & Atkinson, J.W 1976 ). א א :. ( ) (1995 ) : Achievement motive : א א מ (IV : " " " ". " ".» ( Adler,A.1917 ) : «42

43 165 (Hall,C.S & Lindzey,G 1969 )» (Lewin, K 1944 ) ) 13 (1990 ) «Aspiration Need» (Murray,H.A1938 «Achievement Explorations in Personality )»: 78 (1995 «( ) 1965 ) ( ) (Atkinson, J.W»: :.45 (1979 ) «(Murray, H ) :.... ). ( ) 79 (1995 (Mc Clelland et al, 1976 )» : : 43

44 80 (1995 ).«325 (Atkinson, J.W,& Raynor,J.O 1978 ) ( ). ( ) (Atkinson, J.W, 1964 ) :. (1. (2 96 ( ). (3» : (1987 ) ) «5 (1987» : (Heckausen, H 1976 ).«: ( ) (1. ( ) (2. ( ) (3 ). 44

45 23 ( ( )1989 ) 135 (1986 " "... : )(1979 (Hermans,H.J.M 1970 )(Murray,H.A 1938 ) (1988 ) (1986 ) (1983 : (1996 ).. ) (Murray, H, 1938 ) (Atkinson, J.W, et al 1978 ) (Mc Clelland et al, 1953 (Mitchell,D 1961 ) ) (1983 ) (Jackson,D et al 1976 )..(1993 (.. ). : (1993 )» 45

46 .«:Academic Achievement motive א א א א מ (V :.. ). 360 (1995» : (2002 ).«179 (2002 ).» : «) 256 (2004 ). :» : ( Mc Clelland,et al1953 ) 46

47 .«( ) (1977 ) : א א : : :.. א א : : : (1995 ). 47

48 » א א א מ א א א : : :Metacognition (1.. ( )».«: :Cognitive learning (2 )...«:Motivation ( (... ) (3.. :Achievement motive ( :Academic Achievement motive (5.. 48

49 Gestalt Theory Field theory : : ( Ausubel, D.P ) : : ( Bruner, J.S ) : : ( Rotter, J.B ) : ( Bandura, A ) : Information processing : Mnemonics Strategies 49

50 : مفهوم التعلم المعرفي: (I ( ) ( ) ( ) ( ) ( ) :» (2001 ). «(.. ) 190 (1994 ) (1994 ) ) 1994 ص)

51 (Bransfrod,J.D & Stein,B.S 1984 ) : (1 (2 (3 65 (Block,J1981 ) (4 ) : (. :Structural Approach (1 : Information Processing 354 (2001 ) (2. : خصاي ص العمليات المعرفية (II : : (1. : (

52 (3 (Affirmative) : (Negative)..... : (4 :.... : 398 (1995 ),D.p 1968 ) : التعلم المعرفي والبنية المعرفية (III (Ausubel. 250 ( Keil,F.C 1984 ). Cognitive Strategies : التعلم المعرفي والاستراتيجيات المعرفية (IV ) 325 (

53 : (1996 ). 325 (1995 ). 325 (1995 ). :.275 (Gagne,E.D1985 )... 53

54 : (1995 ) א מ א. GESTALT THEORY א : ( ) : ( )( Kohler, W.L ) ( )( Werthemer, M ) ( )( Koffka, K ) ) " " ( ) 347 (1993 : : א א א (1. ( ).. ). (1996 : א א (2 :.. 54

55 . :. :.. : א א א א (3 ) (1996 ) Rationalists... (1983 א מ א א א : : ) : :Gestalt (1 (.. :. :Insight (2». «55

56 » :Meaning (3.«: Cognitive Equilibrium or cognitive consistency (4,. :Perceptual reorganization (5 ( Gazada, M.G,& Covsini,R.J 1980 ). : מ א : (1. (2. (3. (4 (1996 ). : א א : 56

57 : (1 :. : :Figure :Ground direction :Principle of continuity Good continuation.. :principle of proximity (2 (3. :Principle of inclusiveness ( :Principle of Similarity (5. : Principle of Enclosure (6.. ( ) : א מ א : : (1. 57

58 : (2. : (3. : ( ) (4. : (5. א מ א ( ) (... ) : : (1... :. 58

59 : (2 ) (. : (3 ( ). : (4. (5... Field theory א : : Whold Situation. ( ) (Lewin, K ). ) : ( ) ( (Johnson, D.W & Johnson, R.T, 1997 ). 59

60 المفاهيم والمصطلحات المستخدمة في نظرية المجال: ( ). :Life Space (1 : : ( Lewin ). 234 :Life Space topology (1967 ) (2 :.. : : B = F ( P x E ). P. E. B. F... 60

61 :Positive Valence (3. :Negative Valence (4.... أهم الفرضيات التي تقوم عليها نظرية المجال: (Field of forces) :.(Psychological field) (define it) (change it) (move it).(substance) (stability) : : (External forces) (Internal forces). التعلم حسب نظرية المجال: " " :.... : :. ( Lewin ) 61

62 : :. :.. : : : ( Lewin ).. Level of aspiration conflict. ( ) א א : ( : :( ) (1. :( ) (2. :( ) (3.... :Level of aspiration א ( 62

63 » : (Nicolls, J.G, 1979 ).«:.( ) (1.( ) (2. (3. (4. : :. א ( Lewin ).. 63

64 :.... ) ( ) (1967 ) (1996 ). (2001 א מ א א א מ א : (Ausubel, D.P ) : ) : ( ) (Ausubel, D.P.. (Ausubel,D.P 1978 ), :... 64

65 :(Ausubel,D.P 1978 (1988 ). العوامل المساعدة على التعلم وفق نظرية ) ( ) : : (1.. (Ausubel et Al, 1978 ) P 59. : (2..(1996 ). : (3. א מ א ) (Ausubel, D.P : : (1 ) Hilgard,E.R & ).( (Brower,G.H,1975 : " " 65

66 (1984 ). (Ausubel, D.P 1978 ) :... : : (. : (. : (. ( Ausubel et Al, 1978 ) P : (2 : :Combinatorial Learning ( 66

67 . :Integrative relationship (. :Correlative relationship (..... :Meaning (3..» : (Ausubel, D.P ).«" " : :. :( ) מ א : :Advance organizers (1... :Explanative advance organizers (2. :Comparative advance organizers (3 67

68 :. (. ( :( ) מ א א מ :. :. :. : :... : ( ) : ( ) מ א :Meaning reception (1. :Rote reception (2.. 68

69 :Meaning full Discovery Learning. (3 ( ). :Rote Discovery (4. ( ) מ א מ א ( ).., : : (1. : (2 ) (.. (3. Assimilation (4 69

70 א... ( ) (5 :Advance organizers. מ א : (Bruner, J.S ) : ( ) Bruner, J.S : : ( ) " ". ( ) : (Bruner, J.S ) א מ א» :toward a theory of instruction ( ).«: ( )... :the active mode of learning (I : 70

71 :the Iconic mode of learning. :.. ) (... :the symbolic mode of learning :... :the function of categorization (IIא מ א א מ ( ) ( ). : ( ) : (1 ( ).. : (2. ( ) (3 71

72 ( ) :. : ( ) : ( ) מ א (III :the principle of motivation (1 ( ). :the principle of cognitive structure (2 ( ) ( ).. : (3. : (4... : ( ). ( (... (.. ) ( (.. ). ( ) :( ) מ א א מ (IV 72

73 : :. : : :... :... :. ( ). א מ»: ( ) :( ) «. ( ) :.. (. (. ) ( 73 (V

74 .( (.. : ( ) מ א. :. :.. ( ) :( ) מ א מ א א (VI : ( ).... :. (. ( (. (. מ א 74

75 (Bruner, J.S ) :. : (1. (2... (3. (4. 75

76 א א מ א : (Rotter, J.B ) ) : 1916 (Rotter, J.B (Adler, R ).(University of Indiana ) 1941 : (Rotter, J.B א א ) : : ( ) (1 Motivation Cognition Behavior.. ( ) (2 :... (3 ( ). א א :( ) : ( ) : : (I). ( ). 76

77 .. : :.. :. : :... : :.. א מ א א א ) ). :Expectancy (E) (1. 77

78 :Behavior potential (B.P) (2. :Reinforcement Value (R.V) (3. ( ) ( ) (1 External reinforcement Internal reinforcement ( ). (2. : ( ) ( ). Recognition status Dominance Independence protection - dependency Love an affection physical confort :Need Components ( ) (1 (2 (3 (4 (5 (6 א : Freedom of movement (F.M). Need potential (N.P). Need value (N.V) : (1 (1 (2 (3 78

79 . :. : (3 : P33 (Rotter, & Chance & Phares, 1972 ) (2. א מ ( ) :( ) : ( ).....( ) : ( ).( ). : (1. : ( ) (2. 2 ( ) : (3 : ( ) :control Internal-External Locus of 79. (2

80 (1. ) (2.( (3 ( ).( ).. : (4. : (5 (.. ) (.. ). א מ א (Rotter, J.B ) ( ) Cognition Behavior :.. Motivation ( ) 80

81 ( ) (1 ص نف حي ث ) ( :. (1. (2. (3. (4. א מ א : ( Bandura, A ( א (Bandura, A ) : ( ) University of Iowa (Social Learning theory ) : א א א מ א : ) (Cignition ) (Behavior ).(Environment. 81

82 P B E א מ א א א : : :Social Learning (1. :Modeling or observational Learning (2.Modeling :Self control or Self regulation (3. ( ) :Cognitive processes (4 ( ). :Processes of observational Learning (5. א א א מ ( א) : :.( ) 82

83 :... :. :. :. :. :.. א א א מ א א מ א : : :Observational Learning effect (. :Inhibitory Disinhibitory effects ( (.. ) 83

84 . : ).(.. :Social Facilitation Effect (... :Extrinsic feed Back ( ). : מ א א ( ) :.. ( ). א א (א ) :Vicarious reinforcement.. 84

85 (Bandura, A )...( ) :Informative function (1. :Motivational function (2. :Emotional Learning :Influemceability function (3. (4. :Modification function (5. :Valuation function (6. :.( ) ( ) (Bandura, A, 1977) 85

86 א מ א ( Bandura, A ( א ( ) :..... Information processing א :. א א א א : (1. (2 86

87 . : (3. (4. : (5 Retrieval Storing Processing (1 ) Acquisition : (6 : (1 (2 (3 (4 (5 (6 395 (1996 ). : Sensory registers Focal attention Speed of processing 87

88 303 ( ). : א ] [ ( Shiffren & Atkinson 1971 ) : ( ) ( ) ( ) 15. (1971 ) ( 02 ) 334 (1983 ). :Sensory Registers [Sensory memory(s.m)]( ) : 88

89 ( ). ( ) :. 407 (1996 ) : Short-term memory (S.T.M) ( ) : ( 20). (2±) (... ) Working memory ( ) :.... :. (1 : (

90 : Encoding : (1 ( ) :. Organizition : (2 :..... Rehearsal : ( ) ( ( ) : ( : Long-term memory (LTM) 130 (1992 ) : 90

91 " " : ( ) : ( ( ).( ) : ( ( ) ( ) ( ) ( ). 136 (1983 ) : Mnemonics Strategies. א א א א. (Lindsay,P.H & Norman,D.A 1977 ) 91

92 :. (1 (2. (3 ) 370 (1977 : : Imageny :. : :. (1. (2. (3 (4. (5 (6 ). : Chain Method 370 (2001 : : Link Method. 92

93 : Keyword Method : connections : :. :» : «372 (2001 ). : Pegword Method : א : : Acronyms : [North Atlantic Treaty Organization (NATO)]:. : Loci Method : :... : Meaning : ( ) 93

94 298 (1998 )... ( ) א.. : (2005 ) (1996 ). 94

95 Metacognition Metacognition : Metacognitive skills K W L H technique (1 Activating prior Knowledge Strategy. Self - Questioning Strategy P.S. Q. 5 R Strategy Thinking Aloud Strategy. Brain Storming. (2. (3 (4 (5 (6 95

96 Metacognition : Metacognition : ) : (Flavell, J.H : :. ) (Flavell, J.H 1979» : (Hacker,D.J 1998 ).«(Flavell, J.H 1979 ) : א א א : : : (I. (1. (2 96

97 (3. : (II. : (III. : (IV 51 (2006 ). (Flavell,J.H1979 ) : א א : ) (Schraw,G&Dennison,S1994) (2004 ) (2001 : : : Declarative Knowledge :( ) (1. Procedural Knowledge : (2. Conditional Knowledge : (3. : : Planing : (1. 97

98 Information Management : (2.( ) Monitoring : (3. Debugging : (4. Evaluation : (5 10 (2001 ) 169 (2004 ). ) (Brown, A.L, 1980), (Korosky, 1978), (Hatt, 1980) (... (Borkowski, J.G, 1992), (Klow, 1982) (Brown, A.L, 1980) ( ) ( ). ( ) (Klow, 1982) (Paris,S.G & Winograd, P,1990) (Klow). 98

99 (Brokowski, J.G, 1992). ( ).. (Schraw, G and Dennison, R.S, 1994) (Schoenfeld, A.H, 1987) ( ) 17 (2002 ). (Rikey, D, & Stacy, A.M, 2000) (Harris, D.M, 1998). (... ) ) (Chiang, L.H, 1998). 19 (2002 (Brown, A.L, 1989) (Barell, J, 1991). ) Metacognition : א א מ ( 99

100 : : (Paris, S.G and Winogsrd, P 1990) (Borkowski, J et Al, 1987) : : ( Flavell, J.H, 1976 ): (Osman, M.E & Hamnfin, M.J, 1992) (Biggs, J.B and Moore, P.J, 1993) : : ) (Shoenfeld, A.H, 1992) : 25 (2002 Metacognitive Activities :... ( ). 25 (2002 ). ( ) : (Henson, K.T and Eller, B.F, 1999) :.. 100

101 . (2002 ). (Omrod, K, 2000) (Hyerle, D, 2000) (Biggs, R and Moore, : : P, 1993).. ) : (Sternberg, R.J) (Assessment /Monitoring and Controlling /Planning 56 (2002 ). Self- regulated Learning.»: 53 (2006 ).«( ) :.( ) 101

102 Personal Knowledge : (1. : (2. : (3 168 (2004 ). : א א : :Knowledge and Control of self (1 : Metacognitive self-control. :Knowledge and Control of process (2 (Marxano, R.J et Al, 1988) :. (. ( Procedural Declarative ( ) : Conditional 102

103 .. :. ) : 26 (2002 ( 03 ). ). 28 (

104 : א א מ א : ). (1 49 (2002 (2 210 (2003 ).. (3 (4 (Koch, A, 2000) (1996 ). (5 ) (1997 ).. (6 (Wilson, E, (7 (8 (Holden, T.G and Yore, D, 1996). ). (9 (Hanly, G, (10. (11 :Metacognitive skills א א א» : (Nolan, M.B, 2000).«] :» : 104

105 «] : (Ashman, A.F and et Al, 1994). [ : א א א א מ א א : : :Determine learning objectives (1. ( ) :Manage time in learning (2. :Understand sequence (3. :Determine prerequisites (4. ( ) :Use learning Resources (5. :Self monitoring (6 (Horak, W.J, 1991). 105

106 :. (1. (2. (3. (4. (5. (6 (Gama, C, 2001). (7 : (Maning, B.H and Payne, B.D, 1996). (1999 ) א א א : : :Process (1. :Reflectivity (2. :Functionality (3. :Self-Diagnosis (4. :Scaffolding (5 106

107 :Preconception :Cooperation :Goal.... (1999 ) :Learning conception. : א א א א א א 179 (2004 ) (6 (7 (8 (9 ( ). ( ) :. (Robert, M.J, 1993) Questioning Self - Questioning 107

108 179 (2004 ). Self Monitoring ) ( ( ) Concept mapping :. ( 04 ) (Blakay, E et Al,1998) א א א א : (1 :.. 108

109 K.( ) W L H technique Activating prior Knowledge Strategy. (2 Self - Questioning Strategy. ) Thinking Aloud Strategy P.S. Q. 5 R Strategy (3 (4.(. Brain Storming... (5 (6 (1 א א : K. W. L. H technique (NCREL, 1995). : (K W L H) What we know about : (Know) : K the subject?. : (Want) : W What we want to find out?. What we learned? (Learn) : L. :(How) : H 109

110 (2002 ). : (1998 : / ).... Activating prior knowledge strategy 185.(2003 ). (2 א א א א : ( ) 110

111 188 (2003 ). : : ( ) ( ) ( ) :.... :.. : (3 א א א א א : Self - Questioning Strategy 111

112 (Baker, D.R, and Pebum, M.D, 1987). 74 (2001 ). : : Self - help Strategies 256 (2000 ) ( Marzano.. Self Planning Self - Regularing. Self - Reflecting 1998 ) : ( ) : : (1.( ) (.( ) (.( ) ( ) (.( : : (2 ( ( ( ( ) ( : : (3 ( ( 112

113 ( ( ( ( ( ) ) 22 ( (2000 ). (Gunstone, R & Nothfield, J1994) P (2000 (4 א א ) :(P S Q 5 R) (. : Purpose (P) : Survey (S).. : Question (Q) 113

114 ..(R) (5 R) Read Selectibely (R). : Recite (R) ( ).. : Reduce Record (R). :Reflect (R).. :Review (R) (Meichen baum, D 2003). (5 א א א :thinking aloud strategy. (Hartman, H.J 2001) : 114

115 pair problem solving (2003 ) 205 : (2004 ). :

116 (Hartman, H.J, 2001) P 35. :... ) (1 (2 (3 ( ) (4.... (Hartman, H.J, 2001)P 39 (5 (.. (Serran, G 2002).. (Mc Guire, K et Al 1996) (Jimeney, R et Al, 1994)..

117 :Brain storming א א א א (6 16 (2002 ) (2003 ).. :

118 ). 165 (2000 : : :. : : (10 7). ( ) :. : : ( ). :... : : ).(.. 118

119 . : :. : :. : : : (1 (2 (3 (4 119

120 (5 (6 : : ). 18.(2002 : א א א א : (1... (2... (3.. (4. : א א א מ א א מ א Normal Learning cycle : ( ) : 158 (2002 ) (Piaget,J ) ) (2000 ) (Odom, K, 2001) (Martin, J.C, 1991) :(1995 ) ((1996 (1 120

121 Explaration (3 Concept application (2 Concept introduction (Blank, M.L, 2000) (05) ( ) :Exploration phase : (1 ( ). :Concept indradution phase : (2 (2002 ) :Concept Application : (3 : (Odom, K, 2001). ( ) ( ) ( ) ( ) ( ) ( ). 121

122 ( ) (Odom, K,. 2001)... ( 06 ) Metacognitive Learning : : :cycle (Piaget, J ) : Concept Assessment status check Concept Application status check Concept introduction status check Concept Exploration 122

123 (Blank, M.L, 2000) ( 07 ) :Concept Explaration (1 : ) 120 (2002 :Concept introduction status check (2. : (Blank, M.L, 2000) :Concept Application status check (3 : :Concept Assessment status check (4 : 123

124 (Blank, M.L, 2000) : : א א א א מ א : ( 01) : א א א א א :. 124

125 ( 2002 ). : א א א :... (Romainville, M 1994) ( Spence, D.J and et Al 1995) ( El-Hindi, A.E 1996) (Schraw, G 1998 ) ( Symons, S & Reynolds, P.L 1999) (08). 4 3 ( ) 2 1 ( 08 ) /

126 א א א א א א : :. :( ) :. :( ) :. : : (2002 ). (3 2 1) :. : :. : (Gredler, M.E, 1997) P

127

128 : :. (1 دافعية الا نجاز والمفاهيم المتصلة بها : ] [.... ) 7 ( (Granich,L1932 ) 6 ( ) 6 ( ) 128

129 ( (1995 (McClelland,D.C & Atkinson,J.W ) :. (1. (2. (3. (4 ). (5 ) (1953 McClelland ) (Atkinson ) ]: ) [ 99 (1995 ( Litwin,G.H & Stringer,R.A 1975 ) : (1. (2... (3 (4 129

130 (5. (6 ).41 ( (MaClelland,D.C & Atkinson,J.W 1972 ) Entwistle,N.J ) ) : ( & Wilson (1993 ). ( (1995 ) :. ( ) (1. ( ) (2. (3 ( (1995 ). (1979 ) : 130

131 ) (1979 ).. (1 (2 (3 (4 (Murray,H.A 1938 ) 79 (1995 ) (.. (McClelland,D.C1961 )»: 175 (1988 ) «: (Atkinson,J.W 1964 ) ( ) (. ( ) (. :.43 (1979 ) ( McClelland,D.C 1951 ) 131

132 (Affective Continuum)» : «: (1979 ) ( the Expectancy Value Approach ) (Katz, I 1968 ) :. 97 (1995 ) (Atkinson,J.W1964 ) ( ) :. (44 /2). =. = = + : = + (Korman 1974 ) ) (Mahone,C.H (1995 ) ) ( ).46 ( 132

133 ) (1993) : (.. ) ( ) ( (1993). (Veroff,J 1971 ). 260 (1984 ) (Husaini,B1976 ).259 (1984 ) :.261 (1984 ) 133

134 : (Weiner,B ).48 (1993 ) 134 2) تطور مفهوم» دافعية الا نجاز «: (Heckhawsen 1967 ).44 (1986 ) (Teevan,R.C 1972 ) : ( ) (1. (2.. ) 161 (1977 )

135 : (Atkinson,J.W, 1975 : : (1. : (2.103 (1995 ) ( Purkey, N.W 1970 ) (Kardiner 1970 ) 260 (1984 ). ) (1993 ) : : (.. ). (Farquhar 1971 ) 37 7 (1990 ( Marley,R,O 1979 ) 260 (1984 ) ). ) (McDermott,R1977 ) 559 (1988 (Brophy,J&Good,T

136 .. (Winterbotton, M.R1958 : ) 46 (1987 ). 3) العوامل المو ثرة في دافعية الا نجاز :... ) 187 ( (1 : ( ) (1982. (Winterbotton, M.R1958. ) :. ) 40 ( Rosen, B.C 1959 ) ( ) 136

137 ( 11 9) ( ) 8 : (1 (2 : (McClelland,D.C 1961 ) 198 (1961 ) 137

138 .160 (1961 ) : 198 (1961 ) (1989 ) ) (1998 ).159 ( ). 145 (1998. ) ( 171 (1992 ) 138

139 . : : (1.... ( ( ) (3 (Hurlock 1967 ) 257 ( ). ( ) (1961 ) : (2 ) ( ) ( : ( McClelland, D.C 1953 ) 139

140 (Veroff,J 1975).262 (1984 ) ).262 ( (1984 ). (Tohidi, N 1984 ) ) ) : (.. ). 27 (Tohidi, N 1984 : (3 140

141 166 (1988 ) (McClelland,D.C ) (1988 ) Mac Kinnon,D.W ) 183 (1962 ) 256 ( ( Cortes,F 1967 ) 257 (1984 ) 141

142 ) 23 (1984 ) (Johnson, W.H1977 ) : (..20 (Johnson, W.H1977 ) ( ) ( ) ) : (McClelland,D.C1961 ) 166 (1977 ). ( : 40 (1986 ) (1984 ) (1977 ) 142

143 : (1 171 (1988 ) ( ) (2 ( )... : (1986 ) ( ).. 52 (1986 ) ( Bloom, B 1976 ) (Bloom ) ) (1998 ): 92 ( ) : ( 97 (1998 ) ) 49 ( 143

144 ( ).172 (1988 ) ( ) : (1995 ) 16 (1995 ) 4) خصاي ص ومميزات الشخصية الا نجازية : : :( Hemans, H.J.M1970 ). 144 (1...

145 ( Hemans, H.J.M1970 ).10 (1977 ) : (Muray,H A 1938 ) ( (1986) :(1986) ( : (1988) (

146 .165 (1988).. : (1979) ( (1979 ). (1995) : ( 12)...( )...( ).( ) (1995 ) ( Feather,N.T 1961 ) 146

147 (1995 ) ) : (Lowel, E.L 1952 ) (.47 (1986 ) (1984 ) 5) خصاي ص ومميزات المجتمع الا نجازي : Antecedents ). 172 (

148 (McClelland,D.C 1961 ) (the Achieving Society 1961 ) (1975 ) ] ( ) 6 (1995 ) [ : 15 (1961 ) 23 (1961 ) 65 (1961 ) 71 (1961 ) 97 (1961 ) (McClelland,D.C 1961 ) : 148

149 : (1 15 (1961 ) ( ) ! : (2.. ) (1940 ) (Martin Luther ) Max Weber (Joe Kelvin 58 (1961 )...!! 65 (1961 ) : (3 149

150 .90 (1961 ).( :1975 ) 1 (1961 ) : (4 8 (1978 ) :. : ) 17 (1961 ) ( ) (McClelland,D.C 1961 ( ) ( 362 ( ) 475) 85 (1961 ). ) ) (1991 ( 150

151 . 33 (1991 ). 6) قياس دافعية الا نجاز : ) :.198 (1992 الفي ة الا ولى :... )... (... (Thematic Apperception Test ) (TAT) 20 ( ) : (1 (2 (3 151

152 ) 19 ( ) (4 (McClelland,D.C et al 1949 ).88 ( 04 (TAT ) 156 (1977 ) (TAT).88 ( ) ). ( (McClelland 1953 ) 0, ( ) (Entwisle 1972 ) 0,96.88 (Edwards, E ) ( TAT) ) (Mahrabian, A ) (Pesonal perferance Shedule).88 ( ) (1977 Marlowe1959) (Winstein 1969 ) ( ) 0,4 152

153 الفي ة الثانية : : Mehrabian ) ( (Hermans 1970 ) 153 Weiner ) (1968. : ( / / / / ).( / / / / ). 7) فكرة عن تنمية دافعية الا نجاز :.. :.173 (1988 ) (El Kind, D1978 )...58 (1986 )

154 .197 (1992 ).. ) (1992 ( ) )..46 (

155 . :. :. : :.. 155

156 : : : (1. (2. (3... حول الوعي بالعمليات المعرفية : دراسات (1983) Wingenbach, N.G א (1 ( metacogntion ) (1 : ( ) (2. ( : «the Lowa tests ل وا» (1: 156

157 (2. (3.. (1985) Wittman, M.A א (2 63 (1 : (2. :. (3. ( ) ( ) ) 13 ( (1 :. (2 (3.. : (1989) Wang א : א (3 ( ) : Metacognition 157

158 30) ( 30) ( 60). ( Thinking Loud.. (1990) Mayer, M.K א ( : ( ) (1: (2. (3. (4. (5. (6.. : (1992) א א (5. 158

159 ( 474) : / ( 682) (16) (11) : (1993) א א מ א א (6 :. ) ( : ) (. : (1999) א : א (7 :. : (11) (9) (7). ( ) (11) : (9) (7) 440.( ) )

160 : ( (11) (9) (7) = (3 18) :. : ) (.... : (2000) א : א (8. : ( 45) ( 48) : :. ( ) 12).( 40) : :.(. ) ( ). ( :

161 " " : :... (1 :. (2. (3. (4.. : (2001) א א : א (9. : ( 40)..( 40) ( : (1 :. (. : (2. ( 08) ]:. ( 04) 161 ( 45) ( 32)

162 2000 ( 15) 2001 :.[... :.. : (2001) א : א (10 :. / / ) : ( 35) :.( (1] :.( 36) ( 31).( 34). (3/ (2/ :. (1 :. (2. 162

163 (3.. : ( /2002) א מ א : א (11 :. ] : ( ).[ ( ) : 45) 90 :.( ) ( 45) ( :.2002 ( ).. ( ). : ( ) ( ). ( ) :

164 : ( /2002) א מ א : א (12 : :. 120 :. (1 : (3 40 (2 40 :. 40 :.( ) ( ) (1) (1. (2) (2. ( ) (3. ( ) (4. (5 ( ). :... : (2002) א : א (13. : 164

165 . ( 35) 1 : 2.( ) : ( 33). 2001).(2002 / ) 3 9..( :. ( ) :.... : (2002) Al Shaye S.S א : א (14 46 : : :

166 (1 : (2. (3.. (4 :.. (2003) : א (15 :. (1 : ( ) (2.( ). :. ). : ) : (. :. ( ( 38) : (1 :.( 38) (2. : (3.. ( ) (1 : 166

167 (2. (3. :.... : (2003) א : א (16 :.( ) ( ) ( ) 136) ( 134) 270 : :.( ) (...Raven : :. 167

168 ... : (2003) א א : א (17. ( 34). (1:. (2. ( ) : (1 : :( 03) : (2.... (3.. : :

169 : (2004) א מ : א (18 : ( 58) ( ). :. (0,05 = ). :.. : (2004) : א (19 :. ( 40 = ( 40 ) : 80 = ) (1 :. ) (3 (2 ( :. 169

170 .. :.... (2004) Berkowitz, E א (20 10 (1: (2. (3. (4. (5. (6. (7. (8. 170

171 . : (2005) : א (21 : :. (1 :. (2. :.. : : (2005) א : א (22. (1 : ( ) (2 ) (3 ( 171

172 ) 145 ( 2 (2 2) :.( ) 2 ( ) 79 ( :. (. (. :. (..... (2006) מ א : א (23.. : 172

173 (140) : (1:.( 69 ) ( 71 ). (3. (2... :.( ).... :.... ) (2006) : א (24 :.( (1: 80 :. (2. (1:.( : ) : (2. (..( ). 173

174 :.. :.... : دراسات حول دافعية الا نجاز : (1977) Johnson,w.h א (25 Non - cognitive cognitive achievement achievement Open space classrooms 318 : :. : :

175 (1:. (2.. : (1984)Tohidi,N א (26. Achiever ( URSS ) 220 : ( ) ) : :.(.. ) (. :. :.. % 37. ( ) 175

176 : (1987) א : א (27 :. : : 235. :. :.1978 (Caughrem) (0,01)... ( + ).( + ). (1988) א : א (28 176

177 : ,2 «Raven, J. C 1938 ( (3.(1986)» (1 : ,5 : ( ) :. :. (n.ach ).(n.aff ) ( : (. :.. ( ). Kolb. (,D.A 1965) 177

178 .... : (1990) Siry, J. M א (29..( 31 28) 59. :. :. : (1993) א א : א (30 :. : : 220 : ) (1 :. :. (2.(

179 ....( ) :.. : (1993) : א (31 :. ( ). ( / ) (1: (2 (Crandall,V1963 : ( ) 709 : I A R ) (3.(Smith.J1973) : ( ) : 50) (0,05 α) ( ). ( 75) :. ( (0,0001 α).. (0,0001 α). ( ) :. 179

180 . : (1994) : א (32 :. : : 10) (11 13) (14 17) (18 :.. :.. 238): ( 714) 238) ( 238) (. ( (1 :. : (0,01) (2. (0,05) (0,05) (3. (0,01). : (1995) א א : א (33 : 180

181 (1 : ( ) 346. (2 (0,01) : ) :.(.... : (1996) א א : א (34 :. ( ) ( ). ( ) : (632) (1 :.( ) (2.( ) : (1= ) (2= ) (3= ) (4= ) (5= ) :... ( ) ( ). : (1997) א א : א (35 181

182 :. / ) ( ) ( ) (. ( ) ( ) 570 (186 ) (191 ) (193 ) ( ) (1:. (2 (1 : (2. ( ) (3. ) ( (4. ( ) ) :. ( : (1998) : א (36 : ( ) 40 (1:

183 (2. 17, ,5 Dolye 1978 ) : 9 (&Moen ]:.[. (1 : : (2. (3.. (1 : (2. (3. (4. (5.. (6 183

184 (7. (8. (9. (10. (11. (12.. (1998) Leonadri & Syngollito א א (37 (289) " ( 143 " Myers 146) " " Rosenberg ).( ) (. :. (73,81) (26,19).. (1999) א : א (38 184

185 ( ) ( ) ( ) 435 : 85) 197 ( ) ( ) 238 ( , " (1 : (1999) : " Pintrich,P &Garcia,T :. ( : (2000) א : א (39. : ( ) ( ) ( ) (420) : 16) ( 18 ( ) ) (1 :.(1991 ) (2.(1981 : 185

186 ( ). ( ) ( )... : (2000) א א : א (40. :. ) 144 ) ( ) ( 48 (.( ) : 14) ( 15 :... ( ). (2001) א א א : א (41 :. ( ) : ( 242). ( ) (1 : (1,89) ( 20,93) 186

187 ) ) (2 (1987 :.(1978 ( ) ). (. ( ). : (2001) א : א (42 :. ) ( ) ( ( ) 200 (Hermans, H.J.M 1970) : (Speilberger,C.D et al : 1987.(1984 ) 1970). ( ) ( )..( ). 187

188 .. :... : (2001) א מ : א (43 : 270 (160) (110).( ). (2. (1 : (5. (4. (3 :..... EVI : (2002) : א (44 :. ( 200) 188

189 (1 :. ( (3. 08 Bobbi, ) : (4.10 :. 30 (Fibbel,W & Hall, D.( ) ( ).( ). : : دراسات حول العلاقة بين: الوعي بالعمليات المعرفية ودافع الا نجاز الدراسي : (1980) א (45 :. ( ) 199 ( ) : ( 21,3 ) (RAVEN,J.C 1978 ) Progresive Matrices (1 : ( 60 ) 189

190 5,25 05 ) 5,11 ). 8,25. 0,01 ( ). 05 : 0,05 0, ]: (1981) א : א (46 [. (1 :. ( : 14,42 (F ) : (Dotson,B 1981 ).. 190

191 ( ) 167,17 :. (1. (2. (3 ]: (1988) א (47 : [ ( ) ( ) :. ( 165). (2. (1 : (5. (4. (3. :. ( ).. 191

192 ( ) ( ). ( ). ( ). : (1989) א : א (48 : : :. (2. ( ) : (1. Gordon,L.V : : (3 :

193 . :. ( ) ( ).. ] : (1993) א : א (49 :. [ ( 180) Motivational Components : (1: (22) Self - Regulated ( 17 15) Scale (2. (23) learning Strategies Scale (3 :

194 :.... : :.. :. (1993) א מ א א : א (50 [ ] : : ( 159):. :. 14,03 :. 194

195 :.. ]: (1998) א : א (51 : [ Weiner,B 1989 :. ( 200) ( 30) (1 :. ( 30). (2. (1 : (2. (3. 195

196 (4.. ] : :(1998) Lehman. F א (52 ( ) : [ ( 60) ( 74) (120) : the Bloomer lerning test. : :.. (2003) Bandalos, et al, א (53 ( / ) ( ) 176. (Med Western University ) (Roedel, et al1994) (MSLQ) Pintrich & ( ) 196

197 .1990 DeGroot. : ) :.( / /.. :.. (2006 ). (2003) Schmidt & Ford, א (54 ) ) ( / / 79. ( 22 (Med Western University ). %

198 . :.( ) ( ). ( ) ) ( ) ( ( ) ( ) ( ) ( ) ( ) (2006 ). AL-Emadi,A 2003 א א (55 ) ( ) / /. ( ) 153 ( ) Elliot & Chruch : Elliot, et al /. /. /. 198

199 . / 199

200 א א א : ( ) :. : א א א א א : : :... (1.. (2.. (3 ) ( ) (... : 200

201 (1.... (2 : ).. ( ) ( (.. ) : (3.. ) ( : א א א א א א א : : (1. : (2 201

202 (3. (4 ( ). ( : (6 ( ).. 202

203 .. ( ).. : א א א : : א א א א א א א : (1... (2 (3. (4. ) (5 (... (6... (7 : 203

204 ( ). : א א א א א א :. 204

205 .. Metacognition :.. : : : Achievement Motive :.. :.. : : 205

206 : ( ) :. : א : ( 02 ) % % % % 17, % 21, % 08, % 49, % 50, % 47, % 27, % 31, % 21, % 24, % 23, % 26, % 29, % 30, % 26, % 26, % 26, % 26, % 20, % 22, % 15, % 38, % 39, % 38, % 27, % 29, % 23, ( ) : א (4 1 ) ( ) ( ) %27, = (%27,99) 420 = : (% 29,03) 562 = (% 23,79) 201 = : (%38,77) 421 = (% 20,17) 342 = : (% 26,80) 343 = ( ). : : : «Metacognition» I 206

207 «Achievement Motive» II : «Metacognition א א» : 2 1] 50 [ : (Likert ) : «א א» א א א : ) : ( (2004 ) ) (1992 ) (Wolfs,J.L 1998) : ) (2000 ) (1993 ) (2004 ) (1997 ) (1994 ) (2001 ) (2003 ) (2002 ) (1994 ) (1983 ) (1993 Costa,A.L 1985 ) (1990 ) (1991 ) (1993 (Peirce, W, (Hacker, D.J, 1997) (Cooper, S, 2004) (King, K, 2001) (1998 (Shia, R.M, 1999) (Suicegood, M.M, 1994) (Livigiston, J.A, 1997) 2003) (Romacnvillle,M, & Noel, B, 2003) (Partoune,C,1999) (Papaleontiou, L.E, 2003) (Pirot,L, & De Keyel, J.M, 2000) (Otero, J, & Companario, J.M Hopkins,D. K 1992). (Perrin, J.P, 2005) א א : ) ( ) ( : 207

208 [ [ [ / [ / / / /. א א :» «: :(Flavell, H 1985 ) (1 / /. :(Wolfs,J.L 1998 ) (2.[ / / / / :(Brawen, A 1978 ). [ / :(Paris, S.G, and Winograd, P 1990 ) (3.[ / :(Strenberg, 1985 ).(Hennessy,M.G 1999) (2000 ) [ (4 (5 [ / / ] (6 : ( / ( ):[ ( [ )/ ).[ / :[ : ( :. ( 03 ) (-) (+)

209 (3) א א א : ) (. א א :. : : : מ א (1 : (1 (2 (- ) (3 (+ ) (4 (4). : ( 3. / /.. ( 209 4

210 א מ : :.. ( ) " ( (1 (2 (3. " (4. : (5. ( 04 ) (-) (+) א ( ) : ( (%50 ). (Danielson,W.A ) Coefficient of Reliability the average percentage of agreement

211 (05) : : % % 20 % 00 % % 00 % 20 % 00 % 80 % % % % % 00 % 20 % 00 % 80 % 00 % % 00 % % 00 % % % 80 % % 20 % % % % % % % 00 % % % % 00 % 00 % 00 % 100 % % % % % 00 % 20 % 00 % 80 % % 20 % 00 % % % 40 % % % 00 % % 00 % % 00 % % % 80 % 00 % % 00 % % 00 % 20 % 00 % 80 % % % % % 00 % % 00 %73.33 % 00 % 20 % 00 % % 00 % 00 % 00 % 100 % 00 % 20 % 00 % % 00 % % 00 % % 00 % % 00 % % 00 % 20 % %73.33 % % % 00 % % 00 % % %73.33 % 00 % 00 % % % % % 00 % % 00 % % % % 00 % % 00 %73.33 % % % 00 % % 00 % 20 % % % % % 00 % % % 20 % 00 % % % % 00 % % % 20 % % 60 % % 00 % 00 % % % 20 % 20 % % % % % % 00 % % 00 % % 00 % 20 % 00 % % 00 % % % % 00 % 20 % 00 % % % % 00 % 60 % 00 % % 00 % % 00 % 20 % 00 % 80 % % 20 % % % 00 % % % ) (05) ( ) ( : ( )/ ( )/ (-)/( ) (+) ( ) 211

212 :.... ( 5). : א א א ( 2 : ( ) ) ( ) : (2006 ) ( (06) (%100) 235 (%63.82) 150 (%36.17) 85 : (%100) 235 (%17.02) 40 (%34.04) 80 (%11.06) 26 (%37.87) 89 : (%100) 235 (%07.23) 17 (%49.78) 117 (%42.97) 101 : : א א א א א א :. ( 5 212

213 : 213

214 (07) א א א : 323 (2002 ) א א מ :.... א א :... א א מ :. א א א מ :.. א א (Reliability) :(Alpha ) : א : ( : (SPSS). (,81) ( ) : ( 214

215 ),80 (. (Validity) : א א : (1993 ) (1978 ). 118 (1987 ).(Anastasi, A1976) " " : (08) 1,51**,52 **,55 **,60 **,54 **,58 **,60 **,41 **,54 **,44 ** 1,74 **,84 **,78 **,71 **,78 ** ** correlation is significant at the 0.01 level (2 tailed) ( 08 )..(09) 215

216 (09) א א.364**.375** **.290** **.391** **.470** **.353** **.564** **.511** 19 :.276**.283** **.469** **.278** 21 א.337**.476** **.538** 26 : א מ.577**.604** 34 א.430** ** ( 11).529**.549** **.487** 32 א א.434**.505** **.466** 36 ( 14).528**.635** **.353** **.486** **.496** **.283** **.408** **.588** **.352** **.590** 15 :.361**.452** **.557** **.757** 02 א א.401**.563** **.714** 07 : מ א.390**.468** 30 א.493** ** ( 09).360**.538** **.666** 17 מ א.231**.206** **.614** 22 ( 06).353**.546** **.642** **.412** **.617** 08 N = 235 ** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed)..311**.573** 13 :.571**.530** 18 א.423**.523** 23 א.391**.424** 28 ( א 10).401**.419** **.598** **.525** **.436** 49 (09) 216

217 . (10) א א,27. 16, ,25. 05, : 05 (11)

218 [ (52) : א א א א (II : (Likert ) : : : א א : ] : / ( 1987) / ( 1987) / (1977) (1987) / (1984) / (1988) / (1993) / (1991) / (1993) (Hermans, H.J.M 1970 ) / (1992) /(Eccles, J 1983, Pintrisk, P.R 1989 ) (1998) / (1987).[ (1988) / (1979) א א :... א א : : ( ) (Hermans, H.J.M 1970 ) (1 / [ : 10 / / / / / /.[ / / ] : (1998) (2 / / / / / / /.[ / : (1997) (3 218

219 [ / / / /. / : (1988) (4.[ / / (Foster, S.F et Al the international study skills inventory 1985 ) (5 : / / ]:.[ / (1983) (6 ]: 18 / / / / / / / / / / / / /.[ / / / / : (12) (1 א א א א :. 219

220 א א א א : (2. א א מ :. : א א א. : א א א א : ) ( 15 69). : א א א א א 84 (2006 ) א א : (3 (4 (5 (1 (6) ( ( (2006 ) א א : : 200) (2 3 )א א : (4 א א א : ) (2003) ( ) / / ( ) (. 6 ( 220

221 : : א מ (1 (7) : א מ : (... : א (1. א א : (2 (3 (4 ( (1 : 06 ( / ( ) ] ( ) /( )

222 . (13) : : % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 50 % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % : ( )/ ( )/ (-)/( ) (+) ( ) 222

223 ) ( ) (13) ( (%50 ) % ] : [50 8. א א א א : א א :. :. ( 8 223

224 (14) א א.421**.531** **.571** **.259**.354** **.256**.583**.504**.411**.297**.652**.296** : א א א א ( 08).300**.426**.260**.310**.460**.579**.445**.527**.428**.552**.606**.607** : א א א א ( 08).423**.438** **.528** **.368**.625** **.337**.505**.348**.310**.489**.507**.211**.531**.619**.384**.579** : א א א א ( 08).593**.495**.358**.381**.513**.528**.584**.506**.614**.590**.420**.573**.669**.586**.577**.562** : א א א א ( 08).523**.564** **.695** 08 :.505**.636** 13 א.290**.388** 18 א מ.422**.493** **.608** 28 ( 08).592**.667** **.503** 38 (14) ):. ( 40. ( : א א א א : 224

225 (Spilt Half) (,70) (,54) ) (Alpha cronbakh).(,75) (Spearman Brown 2006 ( ( ) 235 : (SPSS) (,77) (Alpha ) (1. (2 (,81) (,81). ( ) : (15) 1,59**,63**,59**,51**,48**,50**,35**,56**,60**,40** 1,73**,72**,85**,85**,77** ** correlation is significant at the 0,01 Level (2 tailed) (15). 225

226 : (16) א א א א מ א ( ) ) 40 (

227 . :. :. :. :

228 : :... : א מ א :.(t-test ) 2 (χ 2 / ) Crosstabs א מ א : : Analysis of variance ANOVA One Way א מ א :. 228

229 » : : א א א :.«(Pearson Correlation): : (17) 0,74** ن( = 763 ( (2-tailed). ** Correlation is significant at the 0.01 level (17) (0,01) 0.74 ( ) ( ).» : : א א א :.«( ) ( ) : (18) Independent-samples t-test Sig t - test, ,048,448,445 3,427 3,612 (562 = ) (201 = ) 763 = (18).. (0,01) 229

230 (3.427 < 3.612) (,445) (,448).! א א א (19) 562 = = 201 أبعاد مقياس الوعي Sig T بالعمليات المعرفية Std Dev Means,000-4,579,490 3,707,000-4,397,681 3,297,036-2,098,546 3,648,001-3,419,547 3,502,000-5,623,618 3,893 Std Dev Means,512 3,520 (1,701 3,049 (2,562 3,553 (3,517 3,351 (4,636 3,604 (5 (19) (0,01) ( ) ( ).(t-test )» : א א א :.«( ) ( ) : (20) Independent-samples t-test Sig t - test, ,80,439 3,495,418 3,698 (562 = ) (201 = ) 763 = (20) 230

231 (0,01) (3,495 < 3,698) (,418) (,439)!. א א א א א (21) 562 = 201 = أبعاد مقياس Sig T دافع الا نجاز الدراسي Std Dev Means Std Dev Means,000-5,435,553 3,624,568 3,375. (1,000-4,048,564 3,918,639 3,723. (2,000-4,896,588 3,621,597 3,383. ( ,883,531 3,909,576 3,781. (4,000-4,488,445 3,740,439 3,576. (5,000-3,921,710 3,406,695 3,178. (6 (21) (0,01) ) : ( ) ( ) (».(t-test ) : א א א א : א.«: ( ) : (22) Independent-samples t-test ( ) 231

232 Sig t - test, ,591,469 3,511,425 3,628 (343 ) (420 ) (22) 763 = (0,01) < 3.628) (,425) (,469) (3.511.! א א א (23) 343 = = 420 أبعاد مقياس الوعي Sig T بالعمليات المعرفية Std Dev Means Std Dev,000-4,008,477 3,738,514,000-3,783,669 3,336,704,063-1,864,542 3,664,557,213-1,248,523 3,489,558,001-3,495,613 3,905,645 (23) Means 3,593 (1 3,147 (2 3,589 (3 3,440 (4 3,744 (5 ( ) ( ).(t-test )» : א א א : «: 232

233 ( ) : (24) Independent-samples t-test ( ) Sig t - test, ,67,438 3,593,419 3,708 (343 ) (420 ) 763 = (24) (0,01) (3,495 < 3,698) (,419) (,438) א א א א א ( 25) 343 = 420 = أبعاد مقياس Sig T دافع الا نجاز الدراسي Std Dev Means Std Dev Means,001-3,234,541 3,631,582 3,499. (1,000-5,925,552 4,004,598 3,755. (2,005-2,798,581 3,625,609 3,504. (3,113-1,587,550 3,910,541 3,847. (4,351 -,933,469 3,713,432 3,683. (5,053-1, ,401,707 3,300. (6 (25) ( ) ( ) ) (0,01) (.. 233

234 ..(t-test )» : א א א : ( ) «( ) : (26) Independent-samples t-test ( ) Sig t - test, ,38,476 3,607,431 3,528 (421 ) (342 ) (26) 763 =.. ( ) (0.01) (3.528 < 3.607) (,431) (,476) (1 )! 234

235 א א א (27) Sig T 421 = = 342 أبعاد مقياس الوعي بالعمليات المعرفية Std Dev Means,214 1,243,493 3,638,016 2,406,682 3,178,360 -,915,530 3,639,002 3,043,500 3,409,000 3,843,619 3,738 Std Dev Means,5144 3,683 (1,704 3,299 (2,577 3,603 (3,585 3,528 (4,643 3,914 (5 (27) ( ) ( ) ( ) : (t ) ( ) ( ) : ( ) ( ).( ).(t-test )» : א א א :.«( ) ( ) : (28) Independent-samples t-test ( ) Sig t - test, ,424 3,56,433 (421= ) (28) 3,706 3,594 (342= ) 763 = 235

236 ( ) (0,01) < 3.706) (,433) (,424) ( א א א א א ( 29) Sig T 421 = 342 = أبعاد مقياس دافع الا نجاز الدراسي Std Dev Means Std Dev,011 2,563,569 3,511,561,309 1,017,603 3,847,574,000 5,330,590 3,456,587,027 2,219,527 3,836,565,307 1,023,449 3,682,449 \,005 2,802,711 3,281,708 (29) Means 3,617. (1 3,891. (2 3,684. (3 3,924. (4 3,715. (5 3,425. (6 ( ) ) (0,01) ( ) (.(t-test ) 236

237 : א א : 09) ( 37) 46 : Likert ( = 5 46 : : = 1 46 :..( 73) ( 209) : ( / / ) :. % 20. % 20. % 60 : (30) % % 19,7 % 19,7 150 ( ) 146 % 80,6 % 60,9 465 ( ) % 100 % 19,4 148 ( ) 183 % (30) 237

238 ( 763). : א א א א : 15) ( 25) 40 ( Likert ) ( : 40=1 40 : 200= ( / / ) : (31) % % 18,9 % 18,9 144 ( ) 130 % 80,7 % 61,9 472 ( ) % 100 % 19,3 147 ( ) 161 % (31). ( 763) 238

239 : א א א א א א : ( ) : (32) % % % % % % 0,00 00 % 11,00 51 % 62,00 93 % 61,9 472 % 39,20 58 % % 36,7 55 % 19, % 60,8 90 % 11,8 55 % 1,30 02 % % % % : (32). % 62,00. % 77,20. % 60,

240 (09) (09). 240

241 ( א א א) א א א א : (33) sig. df 2 χ 2,000, , , %10,9 4,147, %11,9 4,187, %22,4 4,173, %21,9 4,235, %59,2 3,562, %58,7 3,624, %61,6 3,595, %63 3,675, %29,2 2,896, %29,4 2,957, %16,9 2,896, %15,1 3,017,256 N % N % N % N % (148 = ) (465 = ) (150 = ) (150 = ) (472 = ) (144 = ) (763) (33) 2 ( ) (0,01) : 241

242 (34) sig. df 2 χ 2,000, N %16,9 %59,3 %23,8 % 4,181 3,573 2, ,682,154,209, N %17,1 %59,8 %23,1 % 4,223 3,642 2,998,151,197, N %24,4 %63 %14,6 % 4,158 3,602 2, ,822,156,205, N %21,9 %64,4 %13,7 % 4,232 3,685 2,980,152,204,281 (148 = ) (465 = ) (150 = ) (763) (147 = ) (472 = ) (144 = ) (34) (0,01) 2 ( ). ( ) 242

243 (35) sig. df 2 χ 2 80 %23,4 4, %58,2 3, %18,4 2,880 N %, ,674, %23,1 4,231,167, %61,1 3,689,195, %15,8 3,005,237 N % 68 %16,2 4, %63,2 3, %20,2 2,907 N %, ,681, %16,2 4,223,128, %62,5 3,641,204, %21,4 2,985,263 N % (148 = ) (465 = ) (150 = ) (763) (147 = ) (472 = ) (144 = ) (35) (0,01) 2 ( ) 243

244 . sig,000,000,000 ( א א א) א א א א (36). df χ 2 24,603 24,662 24,254 % N % N,353 2,841 %60,0 51,272 2,847 %71,2 42,235 2,964 %10,5 37,140 3,014 %15,3 18,138 3,010 %1, ,176 3,431 %40,0 34,128 3,390 %21,8 17,191 3,593 %76,0 269,210 3,570 %76,3 90,176 3,736 %35,0 43,144 3,748 %50, ,136 4,145 %13,6 48,057 4,067 %8,5 10,157 4,190 %63,4 78,218 4,217 %50,0,260 2,907 %20,7 87,323 2,880 %18,4 63,201 3,573 %63,2 266,199 3,607 %58,2 199,139,445 4,149 3,612 %16,2 % ,167,448 4,187 3,427 Crosstabs %23,4 % (562 = ) (201 = ) (763) (36) 2 ( ) (3.427 < (0.01) 3.612) 244

245 ).. ) (...( (37) sig,003,003,001. df χ 2 11,599 11,793 10,542 % N % N,345 2,853 %68,1 32,305 2,837 %62,9 61,153 3,052 %07,7 17,223 2,949 %15, ,108 %01, ,913 %01,4 01,183 3,423 %31,9 15,155 3,415 %37,1 36,198 3,594 %78,3 173,194 3,580 %74,1 186,161 3,748 %37,3 28,174 3,729 %37, ,115 4,097 %14,0 31,137 4,170 %10,8 27,167 4,199 %61,3 46,165 4,188 %61,1,279 2,881 %14,6 50,279 2,880 %23,8 100,205 3,602 %63,0 216,202 3,573 %59,3 249,156,425 4,158 3,628 %22,4 % ,154,469 4,181 3,511 Crosstabs %16,9 % (343 = ) (420 = ) (763) (37) 245

Chapter 9 - Correlation and Regression

Chapter 9 - Correlation and Regression Chapter 9 - Correlation and Regression 9. Scatter diagram of percentage of LBW infants (Y) and high-risk fertility rate (X ) in Vermont Health Planning Districts. 9.3 Correlation between percentage of

More information

Multiple OLS Regression

Multiple OLS Regression Multiple OLS Regression Ronet Bachman, Ph.D. Presented by Justice Research and Statistics Association 12/8/2016 Justice Research and Statistics Association 720 7 th Street, NW, Third Floor Washington,

More information

ANOVA continued. Chapter 10

ANOVA continued. Chapter 10 ANOVA continued Chapter 10 Zettergren (003) School adjustment in adolescence for previously rejected, average, and popular children. Effect of peer reputation on academic performance and school adjustment

More information

WELCOME! Lecture 13 Thommy Perlinger

WELCOME! Lecture 13 Thommy Perlinger Quantitative Methods II WELCOME! Lecture 13 Thommy Perlinger Parametrical tests (tests for the mean) Nature and number of variables One-way vs. two-way ANOVA One-way ANOVA Y X 1 1 One dependent variable

More information

!" #$% &' # " 78 5%, & 42 5 (#) ^2S _0< HM" 1FX 0 $#, = # $D2 6 6R 6 8 = 8U L! 7 2 $#, H< 7 85 K b a#

! #$% &' #  78 5%, & 42 5 (#) ^2S _0< HM 1FX 0 $#, = # $D2 6 6R 6 8 = 8U L! 7 2 $#, H< 7 85 K b a# 82 74 +,- & saeed1788@gmail.com #$% &' 2 1 # " 78 5%, & 42 5 123! " # : 95/3/18 :*+, 94/5/14 :$# 62 < =>?@ $#, 1, (1992), 8 67 +,5 /0 12 3, 42 :+(, *" L NA #? * 6 65 # KLM, " ( 109 7?@ $#, TUL = 6 D H".L

More information

Multiple Comparisons

Multiple Comparisons Multiple Comparisons Error Rates, A Priori Tests, and Post-Hoc Tests Multiple Comparisons: A Rationale Multiple comparison tests function to tease apart differences between the groups within our IV when

More information

16.400/453J Human Factors Engineering. Design of Experiments II

16.400/453J Human Factors Engineering. Design of Experiments II J Human Factors Engineering Design of Experiments II Review Experiment Design and Descriptive Statistics Research question, independent and dependent variables, histograms, box plots, etc. Inferential

More information

Model Estimation Example

Model Estimation Example Ronald H. Heck 1 EDEP 606: Multivariate Methods (S2013) April 7, 2013 Model Estimation Example As we have moved through the course this semester, we have encountered the concept of model estimation. Discussions

More information

Analysis of Variance Inf. Stats. ANOVA ANalysis Of VAriance. Analysis of Variance Inf. Stats

Analysis of Variance Inf. Stats. ANOVA ANalysis Of VAriance. Analysis of Variance Inf. Stats Analysis of Variance ANOVA ANalysis Of VAriance generalized t-test compares means of more than two groups fairly robust based on F distribution, compares variance two versions single ANOVA compare groups

More information

Chapter 16: Correlation

Chapter 16: Correlation Chapter : Correlation So far We ve focused on hypothesis testing Is the relationship we observe between x and y in our sample true generally (i.e. for the population from which the sample came) Which answers

More information

Inverse-variance Weighted Average

Inverse-variance Weighted Average Fixed Effects Meta-Analysisand Homogeneity Evaluation Jeff Valentine University of Louisville Campbell Collaboration Annual Colloquium Oslo 2009 Inverse-variance Weighted Average All effect sizes are not

More information

The Common Factor Model. Measurement Methods Lecture 15 Chapter 9

The Common Factor Model. Measurement Methods Lecture 15 Chapter 9 The Common Factor Model Measurement Methods Lecture 15 Chapter 9 Today s Class Common Factor Model Multiple factors with a single test ML Estimation Methods New fit indices because of ML Estimation method

More information

EUROPEAN JOURNAL OF PHYSICAL AND REHABILITATION MEDICINE. An abridged version of the Cochrane review of exercise therapy for chronic fatigue syndrome

EUROPEAN JOURNAL OF PHYSICAL AND REHABILITATION MEDICINE. An abridged version of the Cochrane review of exercise therapy for chronic fatigue syndrome EUROPEAN JOURNAL OF PHYSICAL AND REHABILITATION MEDICINE EDIZIONI MINERVA MEDICA T PDF. A. T j. A C L LARUN J ODGAARD-JENSEN J R PRICE Kj G BRURBERG E J P R M S 6 [E ] EUROPEAN JOURNAL OF PHYSICAL AND

More information

The One-Way Independent-Samples ANOVA. (For Between-Subjects Designs)

The One-Way Independent-Samples ANOVA. (For Between-Subjects Designs) The One-Way Independent-Samples ANOVA (For Between-Subjects Designs) Computations for the ANOVA In computing the terms required for the F-statistic, we won t explicitly compute any sample variances or

More information

Prayer. Volume III, Issue 17 January 11, Martin Luther King Jr. Prayer. Assumption Catholic School 1

Prayer. Volume III, Issue 17 January 11, Martin Luther King Jr. Prayer. Assumption Catholic School 1 Vm III, I 17 J 11, 2017 TROJAN NEW W Rpb Cz, E Cmm, L L L, d A Ch wh bd mm d mk p. P M Lh K J. P Gd h h h Am d A h wd, W w h h hh w; w whh M w h bh. A w whh h h wd w B h wd pwh, Ad h p p hk. A w whh m

More information

Basics on t-tests Independent Sample t-tests Single-Sample t-tests Summary of t-tests Multiple Tests, Effect Size Proportions. Statistiek I.

Basics on t-tests Independent Sample t-tests Single-Sample t-tests Summary of t-tests Multiple Tests, Effect Size Proportions. Statistiek I. Statistiek I t-tests John Nerbonne CLCG, Rijksuniversiteit Groningen http://www.let.rug.nl/nerbonne/teach/statistiek-i/ John Nerbonne 1/46 Overview 1 Basics on t-tests 2 Independent Sample t-tests 3 Single-Sample

More information

CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007)

CHAPTER 17 CHI-SQUARE AND OTHER NONPARAMETRIC TESTS FROM: PAGANO, R. R. (2007) FROM: PAGANO, R. R. (007) I. INTRODUCTION: DISTINCTION BETWEEN PARAMETRIC AND NON-PARAMETRIC TESTS Statistical inference tests are often classified as to whether they are parametric or nonparametric Parameter

More information

5:1LEC - BETWEEN-S FACTORIAL ANOVA

5:1LEC - BETWEEN-S FACTORIAL ANOVA 5:1LEC - BETWEEN-S FACTORIAL ANOVA The single-factor Between-S design described in previous classes is only appropriate when there is just one independent variable or factor in the study. Often, however,

More information

Correlation and simple linear regression S5

Correlation and simple linear regression S5 Basic medical statistics for clinical and eperimental research Correlation and simple linear regression S5 Katarzyna Jóźwiak k.jozwiak@nki.nl November 15, 2017 1/41 Introduction Eample: Brain size and

More information

Teaching Linear Algebra, Analytic Geometry and Basic Vector Calculus with Mathematica at Riga Technical University

Teaching Linear Algebra, Analytic Geometry and Basic Vector Calculus with Mathematica at Riga Technical University 5th WSEAS / IASME International Conference on ENGINEERING EDUCATION (EE'8), Heraklion, Greece, July -4, 8 Teaching Linear Algebra, Analytic Geometry and Basic Vector Calculus with Mathematica at Riga Technical

More information

Using SPSS for One Way Analysis of Variance

Using SPSS for One Way Analysis of Variance Using SPSS for One Way Analysis of Variance This tutorial will show you how to use SPSS version 12 to perform a one-way, between- subjects analysis of variance and related post-hoc tests. This tutorial

More information

Chapter 12. ANalysis Of VAriance. Lecture 1 Sections:

Chapter 12. ANalysis Of VAriance. Lecture 1 Sections: Chapter 1 ANalysis Of VAriance Lecture 1 Sections: 1.1 1. ANOVA test is an extension of two sample independent t-test demonstrated how to compare differences of means between two groups. The t-test is

More information

Mean Comparisons PLANNED F TESTS

Mean Comparisons PLANNED F TESTS Mean Comparisons F-tests provide information on significance of treatment effects, but no information on what the treatment effects are. Comparisons of treatment means provide information on what the treatment

More information

MATH ASSIGNMENT 2: SOLUTIONS

MATH ASSIGNMENT 2: SOLUTIONS MATH 204 - ASSIGNMENT 2: SOLUTIONS (a) Fitting the simple linear regression model to each of the variables in turn yields the following results: we look at t-tests for the individual coefficients, and

More information

STAT 3900/4950 MIDTERM TWO Name: Spring, 2015 (print: first last ) Covered topics: Two-way ANOVA, ANCOVA, SLR, MLR and correlation analysis

STAT 3900/4950 MIDTERM TWO Name: Spring, 2015 (print: first last ) Covered topics: Two-way ANOVA, ANCOVA, SLR, MLR and correlation analysis STAT 3900/4950 MIDTERM TWO Name: Spring, 205 (print: first last ) Covered topics: Two-way ANOVA, ANCOVA, SLR, MLR and correlation analysis Instructions: You may use your books, notes, and SPSS/SAS. NO

More information

Department of Economics. Business Statistics. Chapter 12 Chi-square test of independence & Analysis of Variance ECON 509. Dr.

Department of Economics. Business Statistics. Chapter 12 Chi-square test of independence & Analysis of Variance ECON 509. Dr. Department of Economics Business Statistics Chapter 1 Chi-square test of independence & Analysis of Variance ECON 509 Dr. Mohammad Zainal Chapter Goals After completing this chapter, you should be able

More information

Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) Analysis of Variance (ANOVA) Two types of ANOVA tests: Independent measures and Repeated measures Comparing 2 means: X 1 = 20 t - test X 2 = 30 How can we Compare 3 means?: X 1 = 20 X 2 = 30 X 3 = 35 ANOVA

More information

EDF 7405 Advanced Quantitative Methods in Educational Research. Data are available on IQ of the child and seven potential predictors.

EDF 7405 Advanced Quantitative Methods in Educational Research. Data are available on IQ of the child and seven potential predictors. EDF 7405 Advanced Quantitative Methods in Educational Research Data are available on IQ of the child and seven potential predictors. Four are medical variables available at the birth of the child: Birthweight

More information

SPSS LAB FILE 1

SPSS LAB FILE  1 SPSS LAB FILE www.mcdtu.wordpress.com 1 www.mcdtu.wordpress.com 2 www.mcdtu.wordpress.com 3 OBJECTIVE 1: Transporation of Data Set to SPSS Editor INPUTS: Files: group1.xlsx, group1.txt PROCEDURE FOLLOWED:

More information

A. Motivation To motivate the analysis of variance framework, we consider the following example.

A. Motivation To motivate the analysis of variance framework, we consider the following example. 9.07 ntroduction to Statistics for Brain and Cognitive Sciences Emery N. Brown Lecture 14: Analysis of Variance. Objectives Understand analysis of variance as a special case of the linear model. Understand

More information

10/31/2012. One-Way ANOVA F-test

10/31/2012. One-Way ANOVA F-test PSY 511: Advanced Statistics for Psychological and Behavioral Research 1 1. Situation/hypotheses 2. Test statistic 3.Distribution 4. Assumptions One-Way ANOVA F-test One factor J>2 independent samples

More information

Nominal Data. Parametric Statistics. Nonparametric Statistics. Parametric vs Nonparametric Tests. Greg C Elvers

Nominal Data. Parametric Statistics. Nonparametric Statistics. Parametric vs Nonparametric Tests. Greg C Elvers Nominal Data Greg C Elvers 1 Parametric Statistics The inferential statistics that we have discussed, such as t and ANOVA, are parametric statistics A parametric statistic is a statistic that makes certain

More information

DIATHEMATIKON PROGRAMMA CROSS-THEMATIC CURRICULUM FRAMEWORK

DIATHEMATIKON PROGRAMMA CROSS-THEMATIC CURRICULUM FRAMEWORK DIATHEMATIKON PROGRAMMA CROSS-THEMATIC CURRICULUM FRAMEWORK FOR STUDIES OF THE ENVIRONMENT The nature of Studies of the Environment Studies of the Environment is an interdisciplinary subject dealing with

More information

Chapter 7: Correlation

Chapter 7: Correlation Chapter 7: Correlation Oliver Twisted Please, Sir, can I have some more confidence intervals? To use this syntax open the data file CIr.sav. The data editor looks like this: The values in the table are

More information

ESP 178 Applied Research Methods. 2/23: Quantitative Analysis

ESP 178 Applied Research Methods. 2/23: Quantitative Analysis ESP 178 Applied Research Methods 2/23: Quantitative Analysis Data Preparation Data coding create codebook that defines each variable, its response scale, how it was coded Data entry for mail surveys and

More information

The Empirical Rule, z-scores, and the Rare Event Approach

The Empirical Rule, z-scores, and the Rare Event Approach Overview The Empirical Rule, z-scores, and the Rare Event Approach Look at Chebyshev s Rule and the Empirical Rule Explore some applications of the Empirical Rule How to calculate and use z-scores Introducing

More information

Chapter 8 Student Lecture Notes 8-1. Department of Economics. Business Statistics. Chapter 12 Chi-square test of independence & Analysis of Variance

Chapter 8 Student Lecture Notes 8-1. Department of Economics. Business Statistics. Chapter 12 Chi-square test of independence & Analysis of Variance Chapter 8 Student Lecture Notes 8-1 Department of Economics Business Statistics Chapter 1 Chi-square test of independence & Analysis of Variance ECON 509 Dr. Mohammad Zainal Chapter Goals After completing

More information

The independent-means t-test:

The independent-means t-test: The independent-means t-test: Answers the question: is there a "real" difference between the two conditions in my experiment? Or is the difference due to chance? Previous lecture: (a) Dependent-means t-test:

More information

PSYC 331 STATISTICS FOR PSYCHOLOGISTS

PSYC 331 STATISTICS FOR PSYCHOLOGISTS PSYC 331 STATISTICS FOR PSYCHOLOGISTS Session 4 A PARAMETRIC STATISTICAL TEST FOR MORE THAN TWO POPULATIONS Lecturer: Dr. Paul Narh Doku, Dept of Psychology, UG Contact Information: pndoku@ug.edu.gh College

More information

Ron Heck, Fall Week 8: Introducing Generalized Linear Models: Logistic Regression 1 (Replaces prior revision dated October 20, 2011)

Ron Heck, Fall Week 8: Introducing Generalized Linear Models: Logistic Regression 1 (Replaces prior revision dated October 20, 2011) Ron Heck, Fall 2011 1 EDEP 768E: Seminar in Multilevel Modeling rev. January 3, 2012 (see footnote) Week 8: Introducing Generalized Linear Models: Logistic Regression 1 (Replaces prior revision dated October

More information

( ), which of the coefficients would end

( ), which of the coefficients would end Discussion Sheet 29.7.9 Qualitative Variables We have devoted most of our attention in multiple regression to quantitative or numerical variables. MR models can become more useful and complex when we consider

More information

Hypothesis Tests and Estimation for Population Variances. Copyright 2014 Pearson Education, Inc.

Hypothesis Tests and Estimation for Population Variances. Copyright 2014 Pearson Education, Inc. Hypothesis Tests and Estimation for Population Variances 11-1 Learning Outcomes Outcome 1. Formulate and carry out hypothesis tests for a single population variance. Outcome 2. Develop and interpret confidence

More information

Lecture 2. G. Cowan Lectures on Statistical Data Analysis Lecture 2 page 1

Lecture 2. G. Cowan Lectures on Statistical Data Analysis Lecture 2 page 1 Lecture 2 1 Probability (90 min.) Definition, Bayes theorem, probability densities and their properties, catalogue of pdfs, Monte Carlo 2 Statistical tests (90 min.) general concepts, test statistics,

More information

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples

Section 9.4. Notation. Requirements. Definition. Inferences About Two Means (Matched Pairs) Examples Objective Section 9.4 Inferences About Two Means (Matched Pairs) Compare of two matched-paired means using two samples from each population. Hypothesis Tests and Confidence Intervals of two dependent means

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Course Title INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 043 Course Code Regulation MECHANICAL ENGINEERING COURSE DESCRIPTION KINEMATICS OF MACHINERY A40309 R13 Course Structure Lectures

More information

N J SS W /df W N - 1

N J SS W /df W N - 1 One-Way ANOVA Source Table ANOVA MODEL: ij = µ* + α j + ε ij H 0 : µ = µ =... = µ j or H 0 : Σα j = 0 Source Sum of Squares df Mean Squares F J Between Groups nj( j * ) J - SS B /(J ) MS B /MS W = ( N

More information

Lecture (chapter 13): Association between variables measured at the interval-ratio level

Lecture (chapter 13): Association between variables measured at the interval-ratio level Lecture (chapter 13): Association between variables measured at the interval-ratio level Ernesto F. L. Amaral April 9 11, 2018 Advanced Methods of Social Research (SOCI 420) Source: Healey, Joseph F. 2015.

More information

O*NET Analyst Occupational Abilities Ratings: Analysis Cycle 7 Results

O*NET Analyst Occupational Abilities Ratings: Analysis Cycle 7 Results FR 07-02 O*NET Analyst Occupational Abilities Ratings: Analysis Cycle 7 Results Shannon Willison Suzanne Tsacoumis Carrie N. Byrum Prepared for: National Center for O*NET Development 700 Wade Avenue, P.O.

More information

PSTs mental models about role and distribution of ozone layer and ozone layer depletion

PSTs mental models about role and distribution of ozone layer and ozone layer depletion PSTs mental models about role and distribution of ozone layer and ozone layer depletion 1. Subject and Problem In the last two hundred years, human activities have a harmful effect on Earth. Several environmental

More information

CHAPTER 7 - FACTORIAL ANOVA

CHAPTER 7 - FACTORIAL ANOVA Between-S Designs Factorial 7-1 CHAPTER 7 - FACTORIAL ANOVA Introduction to Factorial Designs................................................. 2 A 2 x 2 Factorial Example.......................................................

More information

Using the GLM Procedure in SPSS

Using the GLM Procedure in SPSS Using the GLM Procedure in SPSS Alan Taylor, Department of Psychology Macquarie University 2002-2011 Macquarie University 2002-2011 Contents i Introduction 1 1. General 3 1.1 Factors and Covariates 3

More information

Multiple Linear Regression II. Lecture 8. Overview. Readings

Multiple Linear Regression II. Lecture 8. Overview. Readings Multiple Linear Regression II Lecture 8 Image source:https://commons.wikimedia.org/wiki/file:autobunnskr%c3%a4iz-ro-a201.jpg Survey Research & Design in Psychology James Neill, 2016 Creative Commons Attribution

More information

Syllabus for MATHEMATICS FOR INTERNATIONAL RELATIONS

Syllabus for MATHEMATICS FOR INTERNATIONAL RELATIONS Syllabus for MATHEMATICS FOR INTERNATIONAL RELATIONS Lecturers: Kirill Bukin, Nadezhda Shilova Class teachers: Pavel Zhukov, Nadezhda Shilova Course description Mathematics for international relations

More information

Another Look at the Confidence Intervals for the Noncentral T Distribution

Another Look at the Confidence Intervals for the Noncentral T Distribution Journal of Modern Applied Statistical Methods Volume 6 Issue 1 Article 11 5-1-007 Another Look at the Confidence Intervals for the Noncentral T Distribution Bruno Lecoutre Centre National de la Recherche

More information

Statistics for Managers Using Microsoft Excel

Statistics for Managers Using Microsoft Excel Statistics for Managers Using Microsoft Excel 7 th Edition Chapter 1 Chi-Square Tests and Nonparametric Tests Statistics for Managers Using Microsoft Excel 7e Copyright 014 Pearson Education, Inc. Chap

More information

One-Way Analysis of Variance (ANOVA) Paul K. Strode, Ph.D.

One-Way Analysis of Variance (ANOVA) Paul K. Strode, Ph.D. One-Way Analysis of Variance (ANOVA) Paul K. Strode, Ph.D. Purpose While the T-test is useful to compare the means of two samples, many biology experiments involve the parallel measurement of three or

More information

Calculating Fobt for all possible combinations of variances for each sample Calculating the probability of (F) for each different value of Fobt

Calculating Fobt for all possible combinations of variances for each sample Calculating the probability of (F) for each different value of Fobt PSY 305 Module 5-A AVP Transcript During the past two modules, you have been introduced to inferential statistics. We have spent time on z-tests and the three types of t-tests. We are now ready to move

More information

CAMPBELL COLLABORATION

CAMPBELL COLLABORATION CAMPBELL COLLABORATION Random and Mixed-effects Modeling C Training Materials 1 Overview Effect-size estimates Random-effects model Mixed model C Training Materials Effect sizes Suppose we have computed

More information

ONE FACTOR COMPLETELY RANDOMIZED ANOVA

ONE FACTOR COMPLETELY RANDOMIZED ANOVA MALLOY PSYCH 3000 1-ANOVA PAGE 1 ONE FACTOR COMPLETELY RANDOMIZED ANOVA Sampling Distribution of F F is a test statistic [ ][ ][ ][ ] Test Statistic: F = MALLOY PSYCH 3000 1-ANOVA PAGE 2 ONE WAY ANOVA

More information

(Where does Ch. 7 on comparing 2 means or 2 proportions fit into this?)

(Where does Ch. 7 on comparing 2 means or 2 proportions fit into this?) 12. Comparing Groups: Analysis of Variance (ANOVA) Methods Response y Explanatory x var s Method Categorical Categorical Contingency tables (Ch. 8) (chi-squared, etc.) Quantitative Quantitative Regression

More information

DBAE)! " # % $ ' ( ( /

DBAE)!  # % $ ' ( ( / %$ ' ( ( /.! #$# -.+/,/+%*) / #$% * ' ( ( / :1 '( ) Discipline-Based Art Education & 0*)./( 0),, -+, & *.0, 8 9 ' 7, 12 34 56. 94 1, 8 :, 56 ;4 7 13( 18 8 & < 5' * 0) 56 0) ='(. >! 3! ).8*,*! () 1 E (B)

More information

Ling 289 Contingency Table Statistics

Ling 289 Contingency Table Statistics Ling 289 Contingency Table Statistics Roger Levy and Christopher Manning This is a summary of the material that we ve covered on contingency tables. Contingency tables: introduction Odds ratios Counting,

More information

Introduction to inferential statistics. Alissa Melinger IGK summer school 2006 Edinburgh

Introduction to inferential statistics. Alissa Melinger IGK summer school 2006 Edinburgh Introduction to inferential statistics Alissa Melinger IGK summer school 2006 Edinburgh Short description Prereqs: I assume no prior knowledge of stats This half day tutorial on statistical analysis will

More information

A-LEVEL Statistics. SS05 Mark scheme June Version 1.0: Final Mark Scheme

A-LEVEL Statistics. SS05 Mark scheme June Version 1.0: Final Mark Scheme A-LEVEL Statistics SS05 Mark scheme 6360 June 016 Version 1.0: Final Mark Scheme Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel

More information

13.1 Categorical Data and the Multinomial Experiment

13.1 Categorical Data and the Multinomial Experiment Chapter 13 Categorical Data Analysis 13.1 Categorical Data and the Multinomial Experiment Recall Variable: (numerical) variable (i.e. # of students, temperature, height,). (non-numerical, categorical)

More information

Sampling Distributions: Central Limit Theorem

Sampling Distributions: Central Limit Theorem Review for Exam 2 Sampling Distributions: Central Limit Theorem Conceptually, we can break up the theorem into three parts: 1. The mean (µ M ) of a population of sample means (M) is equal to the mean (µ)

More information

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8

CIVL /8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 CIVL - 7904/8904 T R A F F I C F L O W T H E O R Y L E C T U R E - 8 Chi-square Test How to determine the interval from a continuous distribution I = Range 1 + 3.322(logN) I-> Range of the class interval

More information

9 One-Way Analysis of Variance

9 One-Way Analysis of Variance 9 One-Way Analysis of Variance SW Chapter 11 - all sections except 6. The one-way analysis of variance (ANOVA) is a generalization of the two sample t test to k 2 groups. Assume that the populations of

More information

No Significant Differences Are Found Between Three Groups In. Their Susceptibility To The Barnum Effect. Christina K. Edmondson

No Significant Differences Are Found Between Three Groups In. Their Susceptibility To The Barnum Effect. Christina K. Edmondson Susceptibility to the Barnum Effect 1 Running head: SUSCEPTIBILITY TO THE BARNUM EFFECT No Significant Differences Are Found Between Three Groups In Their Susceptibility To The Barnum Effect Christina

More information

1 Introduction. 2 Example

1 Introduction. 2 Example Statistics: Multilevel modelling Richard Buxton. 2008. Introduction Multilevel modelling is an approach that can be used to handle clustered or grouped data. Suppose we are trying to discover some of the

More information

Hypothesis Testing. Mean (SDM)

Hypothesis Testing. Mean (SDM) Confidence Intervals and Hypothesis Testing Readings: Howell, Ch. 4, 7 The Sampling Distribution of the Mean (SDM) Derivation - See Thorne & Giesen (T&G), pp. 169-171 or online Chapter Overview for Ch.

More information

9 Generalized Linear Models

9 Generalized Linear Models 9 Generalized Linear Models The Generalized Linear Model (GLM) is a model which has been built to include a wide range of different models you already know, e.g. ANOVA and multiple linear regression models

More information

EDF 7405 Advanced Quantitative Methods in Educational Research MULTR.SAS

EDF 7405 Advanced Quantitative Methods in Educational Research MULTR.SAS EDF 7405 Advanced Quantitative Methods in Educational Research MULTR.SAS The data used in this example describe teacher and student behavior in 8 classrooms. The variables are: Y percentage of interventions

More information

Nonparametric Location Tests: k-sample

Nonparametric Location Tests: k-sample Nonparametric Location Tests: k-sample Nathaniel E. Helwig Assistant Professor of Psychology and Statistics University of Minnesota (Twin Cities) Updated 04-Jan-2017 Nathaniel E. Helwig (U of Minnesota)

More information

Benefits of Using a Problem-Solving Scaffold for Teaching and Learning Synthesis in Undergraduate Organic Chemistry I

Benefits of Using a Problem-Solving Scaffold for Teaching and Learning Synthesis in Undergraduate Organic Chemistry I International Journal for the Scholarship of Teaching and Learning Volume 10 Number 1 Article 8 March 2016 Benefits of Using a Problem-Solving Scaffold for Teaching and Learning Synthesis in Undergraduate

More information

Inference About Two Means: Independent Samples

Inference About Two Means: Independent Samples Inference About Two Means: Independent Samples MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Motivation Suppose we wish to study the mean absorption in muscle

More information

Chapter 8: Multiple and logistic regression

Chapter 8: Multiple and logistic regression Chapter 8: Multiple and logistic regression OpenIntro Statistics, 3rd Edition Slides developed by Mine C etinkaya-rundel of OpenIntro. The slides may be copied, edited, and/or shared via the CC BY-SA license.

More information

Regression Analysis. Table Relationship between muscle contractile force (mj) and stimulus intensity (mv).

Regression Analysis. Table Relationship between muscle contractile force (mj) and stimulus intensity (mv). Regression Analysis Two variables may be related in such a way that the magnitude of one, the dependent variable, is assumed to be a function of the magnitude of the second, the independent variable; however,

More information

" M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2

 M A #M B. Standard deviation of the population (Greek lowercase letter sigma) σ 2 Notation and Equations for Final Exam Symbol Definition X The variable we measure in a scientific study n The size of the sample N The size of the population M The mean of the sample µ The mean of the

More information

Statistics 3858 : Contingency Tables

Statistics 3858 : Contingency Tables Statistics 3858 : Contingency Tables 1 Introduction Before proceeding with this topic the student should review generalized likelihood ratios ΛX) for multinomial distributions, its relation to Pearson

More information

Classical Test Theory. Basics of Classical Test Theory. Cal State Northridge Psy 320 Andrew Ainsworth, PhD

Classical Test Theory. Basics of Classical Test Theory. Cal State Northridge Psy 320 Andrew Ainsworth, PhD Cal State Northridge Psy 30 Andrew Ainsworth, PhD Basics of Classical Test Theory Theory and Assumptions Types of Reliability Example Classical Test Theory Classical Test Theory (CTT) often called the

More information

Washington State Test

Washington State Test Technical Report # 1101 easycbm Reading Criterion Related Validity Evidence: Washington State Test 2009-2010 Daniel Anderson Julie Alonzo Gerald Tindal University of Oregon Published by Behavioral Research

More information

International Journal of Scientific and Research Publications, Volume 6, Issue 9, September 2016 ISSN

International Journal of Scientific and Research Publications, Volume 6, Issue 9, September 2016 ISSN 298 The upshot of availability and utilization of Science laboratory inputs on students academic achievement in high school Biology, Chemistry and Physics in Ilu Abba Bora Zone, Southwestern Ethiopia.

More information

Investigating Models with Two or Three Categories

Investigating Models with Two or Three Categories Ronald H. Heck and Lynn N. Tabata 1 Investigating Models with Two or Three Categories For the past few weeks we have been working with discriminant analysis. Let s now see what the same sort of model might

More information

Working memory and intelligence, looking at its relationship through Brunswik s lens. Werner W. Wittmann. University of Mannheim, Germany

Working memory and intelligence, looking at its relationship through Brunswik s lens. Werner W. Wittmann. University of Mannheim, Germany Working memory and intelligence, looking at its relationship through Brunswik s lens Werner W. Wittmann University of Mannheim, Germany Symposium Working memory and intelligence: Controversy or consensus

More information

Chapter 10: Chi-Square and F Distributions

Chapter 10: Chi-Square and F Distributions Chapter 10: Chi-Square and F Distributions Chapter Notes 1 Chi-Square: Tests of Independence 2 4 & of Homogeneity 2 Chi-Square: Goodness of Fit 5 6 3 Testing & Estimating a Single Variance 7 10 or Standard

More information

From Gain Score t to ANCOVA F (and vice versa)

From Gain Score t to ANCOVA F (and vice versa) A peer-reviewed electronic journal. Copyright is retained by the first or sole author, who grants right of first publication to the Practical Assessment, Research & Evaluation. Permission is granted to

More information

TEST POWER IN COMPARISON DIFFERENCE BETWEEN TWO INDEPENDENT PROPORTIONS

TEST POWER IN COMPARISON DIFFERENCE BETWEEN TWO INDEPENDENT PROPORTIONS TEST POWER IN COMPARISON DIFFERENCE BETWEEN TWO INDEPENDENT PROPORTIONS Mehmet MENDES PhD, Associate Professor, Canakkale Onsekiz Mart University, Agriculture Faculty, Animal Science Department, Biometry

More information

LEHMAN COLLEGE OF THE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF CHEMISTRY CURRICULUM CHANGE

LEHMAN COLLEGE OF THE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF CHEMISTRY CURRICULUM CHANGE LEHMAN COLLEGE OF THE CITY UNIVERSITY OF NEW YORK DEPARTMENT OF CHEMISTRY CURRICULUM CHANGE Name of Program and Degree Award: Chemistry BS Hegis Number: 1905 Program Code: 02663 Effective Term: Fall 2015

More information

Poisson Regression. The Training Data

Poisson Regression. The Training Data The Training Data Poisson Regression Office workers at a large insurance company are randomly assigned to one of 3 computer use training programmes, and their number of calls to IT support during the following

More information

1 ONE SAMPLE TEST FOR MEDIAN: THE SIGN TEST

1 ONE SAMPLE TEST FOR MEDIAN: THE SIGN TEST NON-PARAMETRIC STATISTICS ONE AND TWO SAMPLE TESTS Non-parametric tests are normally based on ranks of the data samples, and test hypotheses relating to quantiles of the probability distribution representing

More information

Multivariate Analysis of Variance

Multivariate Analysis of Variance Chapter 15 Multivariate Analysis of Variance Jolicouer and Mosimann studied the relationship between the size and shape of painted turtles. The table below gives the length, width, and height (all in mm)

More information

H0: Tested by k-grp ANOVA

H0: Tested by k-grp ANOVA Pairwise Comparisons ANOVA for multiple condition designs Pairwise comparisons and RH Testing Alpha inflation & Correction LSD & HSD procedures Alpha estimation reconsidered H0: Tested by k-grp ANOVA Regardless

More information

Notes 6: Correlation

Notes 6: Correlation Notes 6: Correlation 1. Correlation correlation: this term usually refers to the degree of relationship or association between two quantitative variables, such as IQ and GPA, or GPA and SAT, or HEIGHT

More information

Empowers Families Unites Communities Builds Capacity. An In. Read and Rise. Cultivates Literacy

Empowers Families Unites Communities Builds Capacity. An In. Read and Rise. Cultivates Literacy 8 Emw Fm U Cmm B Cc g A I Y h P R c L DY : U T S E CAS g L b U N ff H I h H c D Sch R R Cv Lc CASE STUDY A Ig P h Y Lc R Th N Ub Lg H ff wh H I Sch Dc (HISD) c Schc R R, fcg cfc hw gg mw fm f h ch c h

More information

Analysis of Variance (ANOVA)

Analysis of Variance (ANOVA) Analysis of Variance (ANOVA) Used for comparing or more means an extension of the t test Independent Variable (factor) = categorical (qualita5ve) predictor should have at least levels, but can have many

More information

Negative Multinomial Model and Cancer. Incidence

Negative Multinomial Model and Cancer. Incidence Generalized Linear Model under the Extended Negative Multinomial Model and Cancer Incidence S. Lahiri & Sunil K. Dhar Department of Mathematical Sciences, CAMS New Jersey Institute of Technology, Newar,

More information

Frequency Distribution Cross-Tabulation

Frequency Distribution Cross-Tabulation Frequency Distribution Cross-Tabulation 1) Overview 2) Frequency Distribution 3) Statistics Associated with Frequency Distribution i. Measures of Location ii. Measures of Variability iii. Measures of Shape

More information

Concepts & Categorization. Measurement of Similarity

Concepts & Categorization. Measurement of Similarity Concepts & Categorization Measurement of Similarity Geometric approach Featural approach both are vector representations Vector-representation for words Words represented as vectors of feature values Similar

More information

Reminder: Student Instructional Rating Surveys

Reminder: Student Instructional Rating Surveys Reminder: Student Instructional Rating Surveys You have until May 7 th to fill out the student instructional rating surveys at https://sakai.rutgers.edu/portal/site/sirs The survey should be available

More information