KEY KNOWLEDGE BIOMECHANICAL PRINCIPLES FOR ANALYSIS OF MOVEMENT (PART 1)

Size: px
Start display at page:

Download "KEY KNOWLEDGE BIOMECHANICAL PRINCIPLES FOR ANALYSIS OF MOVEMENT (PART 1)"

Transcription

1 VCE PHYSICAL EDUCATION UNIT 3 AOS 1 KEY KNOWLEDGE BIOMECHANICAL PRINCIPLES FOR ANALYSIS OF MOVEMENT (PART 1) Presented by Chris Branigan Study design dot point: Biomechanical principles for analysis of human movement including: angular and linear kinetic concepts of human movement: Newton s three laws of motion, inertia, mass, force, momentum and impulse angular and linear kinematic concepts of human movement: distance, displacement, speed, velocity, acceleration and projectile motion (height, angle and speed of release) equilibrium and human movement: levers (force, axis, resistance and the mechanical advantage of anatomical levers), stability and balance (centre of gravity, base of support and line of gravity) Chris Branigan & Edrolo

2 What s in this lesson? Concept Difficulty Concept reference Questions Measurements tools in biomechanics KK Force KK Inertia KK Momentum (Linear & Angular) KK Impulse KK Chris Branigan & Edrolo

3 What is biomechanics? Biomechanics is the science that studies living things from a mechanical perspective. Using the principles of physics associated with movement and forces, biomechanics can help to develop and refine human movement. Pioneers: The Fosbury Flop Chris Branigan & Edrolo

4 KK Measurement tools in biomechanics Theory summary Technology can be used in biomechanics to measure aspects such as joint angles, velocity and force. Explanation Video analysis can be qualitative and quantitative: If you simply review a video over and over, watch it slow motion, or compare it to future performances, the analysis is qualitative More advanced technology (optoelectronic motion analysis) allows biomechanists to record the performer and transmit the recording to a computer where information such as distances, speeds, forces and momentum can be analysed Types of technology Some types of technology used by biomechanists are: Goniometry: used to measure joint angle Accelerometres: measure the acceleration of the body Light gates: which can measure velocity Force plates: which measure the force imparted by the object above Electromyography: which record the electrical activity within a muscle prior to a contraction Chris Branigan & Edrolo

5 KK Force (n.) A push or a pull. Force Theory summary Force is defined as a push or a pull. Forces can affect objects in two ways: Change the shape of the object Move the object All forces produce or alter movement. Calculating force Force can be calculated the following way: Force (N) = Mass x Acceleration Forces influencing sporting performance Friction Air and Water Resistance Drag Force Gravitational Force Weight (weight = mass x gravity) Source: Source: Chris Branigan & Edrolo

6 KK Inertia (n.) The tendency for a body to resist a change in its state of motion, whether that state is at rest or moving with a constant velocity. Inertia Theory summary The tendency for a body to resist a change in its state of motion, whether that state is at rest or moving with a constant velocity. Source: Chris Branigan & Edrolo

7 KK Inertia (n.) The tendency for a body to resist a change in its state of motion, whether that state is at rest or moving with a constant velocity. Momentum (Linear & Angular) Theory summary Momentum is equal to the mass of the object multiplied by its velocity. The units of momentum are therefore kg m/s/: momentum = mass x velocity Explanation An object that has zero velocity (stationary) will have zero momentum If two objects have the same mass, then the object which has the greater velocity will have the greater momentum, similarly if two objects have the same velocity the object with the greater mass will have the greater momentum. Objects with a greater momentum are more difficult to stop. Consider catching a tossed medicine ball versus catching a tossed volleyball. Source: Chris Branigan & Edrolo

8 KK Speed (n.) How quickly an object covers distance. Velocity (n.) How quickly an object is changing position, relative to its starting position. Momentum (Linear & Angular) Linear Motion Speed Velocity Speed = distance/time Velocity = displacement/time It is important to note that velocity is expressed as both the size and direction. For example the ball moved at 30m/s north. This means that velocity has changed if either the size, direction or both change. Acceleration How quickly an object changes its rate of motion is called acceleration and is measured using the following equation: Acceleration = change in velocity/time. Acceleration can be both positive (getting faster) and negative (getting slower) It is important to note that when acceleration is equal to zero, it doesn t necessarily mean that the object is stationary, it means that the object is not speeding up or slowing down, that its rate of movement is constant. Source: Chris Branigan & Edrolo

9 KK Linear Motion (n.) Movement of the body along a straight or curved path. Momentum (Linear & Angular) Angular Motion Angular distance Angular distance is measured in degrees and measures the amount of degrees an object passes through from start to finish. So an object that rotates twice has travelled 720degrees. Angular displacement Angular displacement is measured in degrees and measures the amount of degrees the object moves from the starting point. So an object that rotates twice has a displacement of 0degrees Angular speed Angular speed is the measure of how quickly angular distance is covered. So, if it took four seconds to complete two rotations then the angular speed is 180degrees per second. Angular velocity Angular velocity is the measure of how quickly the object has moved from its starting point and in what direction it has moved (clockwise or anticlockwise). In the above scenario the displacement would be 0 degrees per second. Angular acceleration Angular acceleration is the measure of the rate of change of angular position. It can be positive (speeding up) and negative (slowing down). Source: Chris Branigan & Edrolo

10 KK Impulse (n.) The change in momentum in an object. Impulse Theory summary To change the momentum of an object, a force must be applied over a period of time. Impulse is equal to the force applied multiplied by the length of time the force was applied: Impulse = Force x Time Explanation In sport, any change in momentum will be due to changes in velocity, as the mass will remain constant. A change in momentum can be caused by a large force being applied over a short period of time, or a smaller force being applied over a longer period of time. Manipulating impulse can reduce the risk of injury, particularly in landing sports, such as gymnastics. Source: Source: Chris Branigan & Edrolo

11 KK Measurement tools in biomechanics Multiple choice activity At the AFL Draft Combine, properly set up light gates are used in preference to a stop watch because: A. They are more accurate. B. They are more valid. C. They are more specific. D. I don t know. Chris Branigan & Edrolo 2017 (Written by the author) 11

12 KK Measurement tools in biomechanics Multiple choice Response At the AFL Draft Combine, properly set up light gates are used in preference to a stop watch because: A. They are more accurate. B. They are more valid. C. They are more specific. D. I don t know. Chris Branigan & Edrolo 2017 (Written by the author) 12

13 KK Force Multiple choice activity Friction, air resistance and gravitational force are all forces that can be beneficial and detrimental to performance. Identify the answer which has an example of how, each force listed earlier, has been limited by the cyclist (the correct answer is in the same order). A. Slim wheels, tight clothing, bike built of light materials. B. Tight clothing, slim wheels, bike built of light materials. C. Bike built of light materials, slim wheels, tight clothing. D. I don t know. Chris Branigan & Edrolo 2017 (Written by the author) 13

14 KK Force Multiple choice Response Friction, air resistance and gravitational force are all forces that can be beneficial and detrimental to performance. Identify the answer which has an example of how, each force listed earlier, has been limited by the cyclist (the correct answer is in the same order). A. Slim wheels, tight clothing, bike built of light materials. B. Tight clothing, slim wheels, bike built of light materials. C. Bike built of light materials, slim wheels, tight clothing. D. I don t know. Chris Branigan & Edrolo 2017 (Written by the author) 14

15 KK Inertia Multiple choice activity Which of the following weights would have the greatest amount of inertia? A. 5 kilos B. 3 kilos C. 2 kilos D. I don t know. Chris Branigan & Edrolo 2017 (Written by the author) 15

16 KK Inertia Multiple choice Response Which of the following weights would have the greatest amount of inertia? A. 5 kilos B. 3 kilos C. 2 kilos D. I don t know. Chris Branigan & Edrolo 2017 (Written by the author) 16

17 KK Momentum (Linear & Angular) Multiple choice activity Summation of momentum harnesses the use of multiple body parts to generate the greatest amount of momentum. Identify the answer which, for a golfer, has the body parts moving in the correct order during the downswing. A. Wrists, shoulders, torso, waist, hips B. Hips, waist, torso, shoulders, wrists C. Torso, shoulders, wrists D. I don t know. Source: Chris Branigan & Edrolo 2017 (Written by the author) 17

18 KK Momentum (Linear & Angular) Multiple choice Response Summation of momentum harnesses the use of multiple body parts to generate the greatest amount of momentum. Identify the answer which, for a golfer, has the body parts moving in the correct order during the downswing. A. Wrists, shoulders, torso, waist, hips B. Hips, waist, torso, shoulders, wrists C. Torso, shoulders, wrists D. I don t know. Source: Chris Branigan & Edrolo 2017 (Written by the author) 18

19 KK Impulse Multiple choice activity Identify the answer which best explains what the athlete does in the video, with their technique, to increase the amount of impulse. A. Throws the lightest kegs over first B. Faces away from the bar, bends their legs, swings the keg between their legs and then up and over their head. C. Stands on a wooden platform, rather than on the sand. D. I don t know Source: Chris Branigan & Edrolo 2017 (Written by the author) 19

20 KK Impulse Multiple choice Response Identify the answer which best explains what the athlete does in the video, with their technique, to increase the amount of impulse. A. Throws the lightest kegs over first B. Faces away from the bar, bends their legs, swings the keg between their legs and then up and over their head. C. Stands on a wooden platform, rather than on the sand. D. I don t know Source: Chris Branigan & Edrolo 2017 (Written by the author) 20

21 What s in this lesson? UNIT 3 The principles covered in this lesson are rarely working in isolation. During many sporting actions, several of the biomechanical principles are involved. Being able to identify which principle, or principles, are being used by an athlete and how applying these principles correctly can improve sporting performance will be the basis of assessment for this topic. Concept Theory summary Measurements tools in Biomechanics Force Inertia Momentum (Linear & Angular) Impulse Technology used in biomechanics to measure aspects such as joint angles, velocity and force. Video analysis can be qualitative and quantitative: Mass x Acceleration For every technique and every athlete there is a sweet spot that allows for the generation of force. An athlete cannot keep increasing acceleration infinitely and doesn t have ever increasing strength to deal with ever increasing mass. The tendency for a body to resist a change in its state of motion, whether that state is at rest or moving with a constant velocity. Mass x Velocity For the majority of sporting performances, as mass increases, velocity decreases. Therefore; like above, there is a sweet spot which once the mass increases beyond that point the reduction in velocity has a detrimental effect on momentum. Force x Time It is important to realise that an athlete does not have an infinite amount of time to apply their force, so often the sport itself, applies constraints which can limit impulse e.g. a shot putter throws out of a limited space, which limits their movements and as a consequence their impulse. Chris Branigan & Edrolo

22 The copyright in substantial portions of this material is owned by the Victorian Curriculum and Assessment Authority. Used with permission. The VCAA does not endorse this product and makes no warranties regarding the correctness or accuracy of its content. To the extent permitted by law, the VCAA excludes all liability for any loss or damage suffered or incurred as a result of accessing, using or relying on the content. Current and past VCAA exams and related content can be accessed directly at We do our best to make these slides comprehensive and up-to-date, however there may be errors. We'd appreciate it if you pointed these out to us! Chris Branigan & Edrolo

Area of Study 1 looks at how movement skills can be improved. The first part of this area of study looked at;

Area of Study 1 looks at how movement skills can be improved. The first part of this area of study looked at; Recap Setting the scene Area of Study 1 looks at how movement skills can be improved. The first part of this area of study looked at; How skill and movement can be classified. Understanding the characteristics

More information

CHAPTER 4: Linear motion and angular motion. Practice questions - text book pages 91 to 95 QUESTIONS AND ANSWERS. Answers

CHAPTER 4: Linear motion and angular motion. Practice questions - text book pages 91 to 95 QUESTIONS AND ANSWERS. Answers CHAPTER 4: Linear motion and angular motion Practice questions - text book pages 91 to 95 1) Which of the following pairs of quantities is not a vector/scalar pair? a. /mass. b. reaction force/centre of

More information

2A/2B BIOMECHANICS 2 nd ed.

2A/2B BIOMECHANICS 2 nd ed. 2A/2B BIOMECHANICS 2 nd ed. www.flickr.com/photos/keithallison/4062960920/ 1 CONTENT Introduction to Biomechanics What is it? Benefits of Biomechanics Types of motion in Physical Activity Linear Angular

More information

Physics Knowledge Organiser P8 - Forces in balance

Physics Knowledge Organiser P8 - Forces in balance Scalar and vector quantities Scalar quantities have only a magnitude. Vector quantities have a magnitude and direction. Scalar Distance Speed mass Temperature Pressure Volume Work Vector Displacement Velocity

More information

Unit 4 Review. inertia interaction pair net force Newton s first law Newton s second law Newton s third law position-time graph

Unit 4 Review. inertia interaction pair net force Newton s first law Newton s second law Newton s third law position-time graph Unit 4 Review Vocabulary Review Each term may be used once. acceleration constant acceleration constant velocity displacement force force of gravity friction force inertia interaction pair net force Newton

More information

Exam 1--PHYS 151--Chapter 1

Exam 1--PHYS 151--Chapter 1 ame: Class: Date: Exam 1--PHYS 151--Chapter 1 True/False Indicate whether the statement is true or false. Select A for True and B for False. 1. The force is a measure of an object s inertia. 2. Newton

More information

Angular Motion Maximum Hand, Foot, or Equipment Linear Speed

Angular Motion Maximum Hand, Foot, or Equipment Linear Speed Motion Maximum Hand, Foot, or Equipment Linear Speed Biomechanical Model: Mo3on Maximum Hand, Foot, or Equipment Linear Speed Hand, Foot, or Equipment Linear Speed Sum of Joint Linear Speeds Principle

More information

Chapter 3, Section 3

Chapter 3, Section 3 Chapter 3, Section 3 3 What is force? Motion and Forces A force is a push or pull. Sometimes it is obvious that a force has been applied. But other forces aren t as noticeable. What Is a Force? A force......

More information

Forces. A force is a push or a pull on an object

Forces. A force is a push or a pull on an object Forces Forces A force is a push or a pull on an object Arrows are used to represent forces. The direction of the arrow represent the direction the force that exist or being applied. Forces A net force

More information

Kinesiology 201 Solutions Fluid and Sports Biomechanics

Kinesiology 201 Solutions Fluid and Sports Biomechanics Kinesiology 201 Solutions Fluid and Sports Biomechanics Tony Leyland School of Kinesiology Simon Fraser University Fluid Biomechanics 1. Lift force is a force due to fluid flow around a body that acts

More information

CHAPTER 11:PART 1 THE DESCRIPTION OF HUMAN MOTION

CHAPTER 11:PART 1 THE DESCRIPTION OF HUMAN MOTION CHAPTER 11:PART 1 THE DESCRIPTION OF HUMAN MOTION KINESIOLOGY Scientific Basis of Human Motion, 12 th edition Hamilton, Weimar & Luttgens Presentation Created by TK Koesterer, Ph.D., ATC Humboldt State

More information

ANGULAR MOTION, PROJECTILE MOTION AND FLUID MECHANICS. Practice questions - text book pages SECTION TOPIC 2 CHAPTER

ANGULAR MOTION, PROJECTILE MOTION AND FLUID MECHANICS. Practice questions - text book pages SECTION TOPIC 2 CHAPTER SECTION TOPIC 2 4 CHAPTER CHAPTER 6 Practice questions - text book pages 96-99 1) Angle in radians is defined as: a. rate of turning. b. arc length subtending the angle divided by radius of the circle.

More information

Classical mechanics: Newton s laws of motion

Classical mechanics: Newton s laws of motion Classical mechanics: Newton s laws of motion Homework next week will be due on Thursday next week You will soon be receiving student evaluations Occam s razor Given two competing and equally successful

More information

Chapter 6 Dynamics I: Motion Along a Line

Chapter 6 Dynamics I: Motion Along a Line Chapter 6 Dynamics I: Motion Along a Line Chapter Goal: To learn how to solve linear force-and-motion problems. Slide 6-2 Chapter 6 Preview Slide 6-3 Chapter 6 Preview Slide 6-4 Chapter 6 Preview Slide

More information

Physics 30 Momentum and Impulse Assignment 1 version:0

Physics 30 Momentum and Impulse Assignment 1 version:0 Clearly communicate your understanding of the physics principles that you are going to solve a question and how those principles apply to the problem at hand. You may communicate this understanding through

More information

CHAPTER 6: Angular motion, projectile motion and fluid mechanics. Angular motion BIOMECHANICAL MOVEMENT. Three imaginary axes of rotation

CHAPTER 6: Angular motion, projectile motion and fluid mechanics. Angular motion BIOMECHANICAL MOVEMENT. Three imaginary axes of rotation BIOMECHANICAL MOVEMENT CHAPTER 6: Angular motion, projectile motion and fluid mechanics Angular motion Axis A figure 6.1 planes and axes Sagittal Frontal Angular motion is defined as the motion of a body

More information

MOTION & FORCES. Observing Motion. Speed and Velocity. Distance vs. Displacement CHAPTERS 11 & 12

MOTION & FORCES. Observing Motion. Speed and Velocity. Distance vs. Displacement CHAPTERS 11 & 12 Observing Motion CHAPTERS 11 & 12 MOTION & FORCES Everything surrounding us is in motion, but it is relative to other object that remain in place. Motion is observed using a frame of reference. Motion

More information

LAB PHYSICS MIDTERM EXAMINATION STUDY GUIDE

LAB PHYSICS MIDTERM EXAMINATION STUDY GUIDE Freehold Regional High School District 2011-12 LAB PHYSICS MIDTERM EXAMINATION STUDY GUIDE About the Exam The Lab Physics Midterm Examination consists of 32 multiple choice questions designed to assess

More information

LINEAR MOTION. CHAPTER 4: Angular motion, projectile motion and fluid mechanics Practice questions - text book pages TOPIC 2 CHAPTER 3

LINEAR MOTION. CHAPTER 4: Angular motion, projectile motion and fluid mechanics Practice questions - text book pages TOPIC 2 CHAPTER 3 TOPIC 2 CHAPTER 3 LINEAR MOTION CHAPTER 4: Angular motion, projectile motion and fluid mechanics Practice questions - text book pages 77-80 1) Define the term angular velocity. 2 marks Angular velocity

More information

Study Guide Solutions

Study Guide Solutions Study Guide Solutions Table of Contents Chapter 1 A Physics Toolkit... 3 Vocabulary Review... 3 Section 1.1: Mathematics and Physics... 3 Section 1.2: Measurement... 3 Section 1.3: Graphing Data... 4 Chapter

More information

The Laws of Motion. Before You Read. Science Journal

The Laws of Motion. Before You Read. Science Journal The Laws of Motion Before You Read Before you read the chapter, use the What I know column to list three things you know about motion. Then list three questions you have about motion in the What I want

More information

Forces & Newton s Laws. Honors Physics

Forces & Newton s Laws. Honors Physics Forces & Newton s Laws Honors Physics Newton s 1 st Law An object in motion stays in motion, and an object at rest stays at rest, unless an unbalanced force acts on it. An object will maintain a constant

More information

Biomechanics Module Notes

Biomechanics Module Notes Biomechanics Module Notes Biomechanics: the study of mechanics as it relates to the functional and anatomical analysis of biological systems o Study of movements in both qualitative and quantitative Qualitative:

More information

MCAT Physics Review. Grant Hart

MCAT Physics Review. Grant Hart MCAT Physics Review Grant Hart grant_hart@byu.edu Historical areas of emphasis -- probably similar in the future Mechanics 25% Fluid Mechanics 20% Waves, Optics, Sound 20% Electricity & Magnetism 10% Nuclear

More information

AQA Physics P2 Topic 1. Motion

AQA Physics P2 Topic 1. Motion AQA Physics P2 Topic 1 Motion Distance / Time graphs Horizontal lines mean the object is stationary. Straight sloping lines mean the object is travelling at a constant speed. The steeper the slope, the

More information

SEMESTER REVIEW FOR FINAL EXAM

SEMESTER REVIEW FOR FINAL EXAM SEMESTER REVIEW FOR FINAL EXAM ACCELERATION When is an object s acceleration not equal to zero? What is the equation for acceleration? ANGULAR SPEED AND MOMENTUM Does an object on the outside of a spinning

More information

What physical quantity is conserved during the above inelastic collision between Katy and Aroha? State any assumptions you have made.

What physical quantity is conserved during the above inelastic collision between Katy and Aroha? State any assumptions you have made. MECHANICS: NEWTONS LAWS, MOMENTUM AND ENERGY QUESTIONS ROLLER SKATING (2017;1) Katy, 65.0 kg, and Aroha, 50.0 kg, are roller skating. Aroha is moving to the right at a constant velocity of 6.0 m s 1 and

More information

PHYSICS I RESOURCE SHEET

PHYSICS I RESOURCE SHEET PHYSICS I RESOURCE SHEET Cautions and Notes Kinematic Equations These are to be used in regions with constant acceleration only You must keep regions with different accelerations separate (for example,

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Common Quiz Mistakes / Practice for Final Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A ball is thrown directly upward and experiences

More information

Objectives: Identify the factors that affect an object s momentum Identify the factors that affect how much an object s momentum changes?

Objectives: Identify the factors that affect an object s momentum Identify the factors that affect how much an object s momentum changes? Momentum is conserved for all collisions as long as external forces don t interfere. Objectives: Identify the factors that affect an object s momentum Identify the factors that affect how much an object

More information

Forces and Movement. Book pg 23 25, /09/2016 Syllabus , 1.24

Forces and Movement. Book pg 23 25, /09/2016 Syllabus , 1.24 Forces and Movement Book pg 23 25, 39-40 Syllabus 1.15-1.18, 1.24 Reflect What is the relationship between mass, force and acceleration? Learning Outcomes 1. Demonstrate an understanding of the effects

More information

Force, Friction & Gravity Notes

Force, Friction & Gravity Notes Force, Friction & Gravity Notes Key Terms to Know Speed: The distance traveled by an object within a certain amount of time. Speed = distance/time Velocity: Speed in a given direction Acceleration: The

More information

CHAPTER 12: THE CONDITIONS OF LINEAR MOTION

CHAPTER 12: THE CONDITIONS OF LINEAR MOTION CHAPTER 12: THE CONDITIONS OF LINEAR MOTION KINESIOLOGY Scientific Basis of Human Motion, 12 th edition Hamilton, Weimar & Luttgens Presentation Created by TK Koesterer, Ph.D., ATC Humboldt State University

More information

FORCE. Definition: Combining Forces (Resultant Force)

FORCE. Definition: Combining Forces (Resultant Force) 1 FORCE Definition: A force is either push or pull. A Force is a vector quantity that means it has magnitude and direction. Force is measured in a unit called Newtons (N). Some examples of forces are:

More information

Ch Forces & Motion. Forces can: 1. Cause a resting object to move 2. Accelerate a moving object (by changing speed or direction)

Ch Forces & Motion. Forces can: 1. Cause a resting object to move 2. Accelerate a moving object (by changing speed or direction) Ch. 12 - Forces & Motion Force --> a push or a pull that acts on an object Forces can: 1. Cause a resting object to move 2. Accelerate a moving object (by changing speed or direction) Force is measured

More information

Chapter 1 about science 1. Differentiate between hypothesis and theory.

Chapter 1 about science 1. Differentiate between hypothesis and theory. Physics A Exam Review Name Hr PHYSICS SCIENTIFIC METHOD FACT HYPOTHESIS LAW THEORY PHYSICAL SCIENCE UNITS VECTOR MAGNITUDE FORCE MECHANICAL EQUILIBRIUM NET FORCE SCALAR RESULTANT TENSION SUPPORT FORCE

More information

HPER K530 Mechanical Analysis of Human Performance Fall, 2003 MID-TERM

HPER K530 Mechanical Analysis of Human Performance Fall, 2003 MID-TERM HPER K530 Mechanical Analysis of Human Performance Fall, 2003 Dapena MID-TERM Equations: S = S 0 + v t S = S 0 + v 0 t + 1/2 a t 2 v = v 0 + a t v 2 = v 2 0 + 2 a (S-S 0 ) e = h b /h d F CP = m v 2 / r

More information

What is force? A force is a push or pull. Sometimes it is obvious that a force has been applied. But other forces aren t as noticeable.

What is force? A force is a push or pull. Sometimes it is obvious that a force has been applied. But other forces aren t as noticeable. Chapter 3, Sec-on 3 3 What is force? Motion and Forces A force is a push or pull. Sometimes it is obvious that a force has been applied. But other forces aren t as noticeable. What Is a Force? A force......

More information

Name Date P Lesson 4 Forces and Simple Machines

Name Date P Lesson 4 Forces and Simple Machines Lesson 4 Forces and Simple Machines OAA Science Lesson 4 40 Lesson 4: Forces and Simple Machines Student s Reference Sheet: 6 Simple Machines: Screw - Swivel Stool - Spiral Stair Case - Inclined Plane

More information

14 Newton s Laws of Motion

14 Newton s Laws of Motion www.ck12.org Chapter 14. Newton s Laws of Motion CHAPTER 14 Newton s Laws of Motion Chapter Outline 14.1 NEWTON S FIRST LAW 14.2 NEWTON S SECOND LAW 14.3 NEWTON S THIRD LAW 14.4 REFERENCES The sprinter

More information

Ch. 2 The Laws of Motion

Ch. 2 The Laws of Motion Ch. 2 The Laws of Motion Lesson 1 Gravity and Friction Force - A push or pull we pull on a locker handle push a soccer ball or on the computer keys Contact force - push or pull on one object by another

More information

Question: Are distance and time important when describing motion? DESCRIBING MOTION. Motion occurs when an object changes position relative to a.

Question: Are distance and time important when describing motion? DESCRIBING MOTION. Motion occurs when an object changes position relative to a. Question: Are distance and time important when describing motion? DESCRIBING MOTION Motion occurs when an object changes position relative to a. DISTANCE VS. DISPLACEMENT Distance Displacement distance

More information

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion.

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion. Forces and Motion Preview Section 1 Gravity and Motion Section 2 Newton s Laws of Motion Section 3 Momentum Concept Mapping Section 1 Gravity and Motion Bellringer Answer the following question in your

More information

l Every object in a state of uniform motion tends to remain in that state of motion unless an

l Every object in a state of uniform motion tends to remain in that state of motion unless an Motion and Machine Unit Notes DO NOT LOSE! Name: Energy Ability to do work To cause something to change move or directions Energy cannot be created or destroyed, but transferred from one form to another.

More information

In the absence of an external force, the momentum of an object remains unchanged conservation of momentum. In this. rotating objects tend to

In the absence of an external force, the momentum of an object remains unchanged conservation of momentum. In this. rotating objects tend to Rotating objects tend to keep rotating while non- rotating objects tend to remain non-rotating. In the absence of an external force, the momentum of an object remains unchanged conservation of momentum.

More information

VCE PHYSICS AOS 1 UNIT 4. Presented by Nick Howes

VCE PHYSICS AOS 1 UNIT 4. Presented by Nick Howes VCE PHYSICS AOS 1 UNIT 4 Presented by Nick Howes Forces on wires and DC Motors Key knowledge calculate magnitudes, including determining the directions of, and magnetic forces on, current carrying wires,

More information

A. true. 6. An object is in motion when

A. true. 6. An object is in motion when 1. The SI unit for speed is A. Miles per hour B. meters per second 5. Frictional forces are greatest when both surfaces are rough. A. true B. false 2. The combination of all of the forces acting on an

More information

This homework is extra credit!

This homework is extra credit! This homework is extra credit! 1 Translate (10 pts) 1. You are told that speed is defined by the relationship s = d /t, where s represents speed, d represents distance, and t represents time. State this

More information

FÉDÉRATION INTERNATIONALE DE GYMNASTIQUE Av. de la Gare Lausanne Suisse Tél. (41-32) Fax (41-32)

FÉDÉRATION INTERNATIONALE DE GYMNASTIQUE Av. de la Gare Lausanne Suisse Tél. (41-32) Fax (41-32) FÉDÉRATION INTERNATIONALE DE GYMNASTIQUE Av. de la Gare 12 1003 Lausanne Suisse Tél. (41-32) 494 64 10 Fax (41-32) 494 64 19 e-mail: info@fig-gymnastics.org www. fig-gymnastics.com FIG ACADEMY BIOMECHANICS

More information

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION.

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. MOTION & FORCES SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. A. CALCULATE VELOCITY AND ACCELERATION. B. APPLY NEWTON S THREE LAWS TO EVERYDAY SITUATIONS BY EXPLAINING THE

More information

Topic 2 Revision questions Paper

Topic 2 Revision questions Paper Topic 2 Revision questions Paper 1 3.1.2018 1. [1 mark] The graph shows the variation of the acceleration a of an object with time t. What is the change in speed of the object shown by the graph? A. 0.5

More information

Chapter 2: FORCE and MOTION

Chapter 2: FORCE and MOTION Chapter 2: FORCE and MOTION Linear Motion Linear motion is the movement of an object along a straight line. Distance The distance traveled by an object is the total length that is traveled by that object.

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 2

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 2 EDEXCEL NATIONAL CERTIFICATE/DIPLOMA MECHANICAL PRINCIPLES AND APPLICATIONS NQF LEVEL 3 OUTCOME 2 WORK, POWER AND ENERGY TRANSFER IN DYNAMIC ENGINEERING SYSTEMS TUTORIAL 1 - LINEAR MOTION Be able to determine

More information

1. What three dimensions are used to derive most measurements in physics?

1. What three dimensions are used to derive most measurements in physics? Physics Semester 1 Exam Review Unit 1: Measurement What is the SI unit for length, mass, and time? When are zeros significant figures? When are zeros not significant figures? When are calculations rounded-off

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

East Penn School District Curriculum and Instruction

East Penn School District Curriculum and Instruction East Penn School District Curriculum and Instruction Curriculum for: Special Topics: Physics of Movement (Biomechanics) Course(s): Special Topics: Physics of Movement (Biomechanics) Grades: 10-12 Department:

More information

Midterm α, Physics 1P21/1P91

Midterm α, Physics 1P21/1P91 Midterm α, Physics 1P21/1P91 Prof. D. Crandles March 1, 2013 Last Name First Name Student ID Circle your course number above No examination aids other than those specified on this examination script are

More information

PART BIOMECHANICS CHAPTER 7 BIOMECHANICAL PRINCIPLES, LEVERS AND THE USE OF TECHNOLOGY. roscoe911part3.indd 1 16/11/ :01:58

PART BIOMECHANICS CHAPTER 7 BIOMECHANICAL PRINCIPLES, LEVERS AND THE USE OF TECHNOLOGY. roscoe911part3.indd 1 16/11/ :01:58 PART 3 BIOMECHANICS 107 roscoe911part3.indd 1 16/11/2016 15:01:58 PART 3 : Biomechanical principles, levers and the use of technology Newton s laws of motion Newton s first law Newton s first law of motion

More information

Newton. Galileo THE LAW OF INERTIA REVIEW

Newton. Galileo THE LAW OF INERTIA REVIEW Galileo Newton THE LAW OF INERTIA REVIEW 1 MOTION IS RELATIVE We are moving 0 m/s and 30km/s Find the resultant velocities MOTION IS RELATIVE Position versus Time Graph. Explain how the car is moving.

More information

STEP Support Programme. Mechanics STEP Questions

STEP Support Programme. Mechanics STEP Questions STEP Support Programme Mechanics STEP Questions This is a selection of mainly STEP I questions with a couple of STEP II questions at the end. STEP I and STEP II papers follow the same specification, the

More information

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work!

Page 1. Name: Section This assignment is due at the first class in 2019 Part I Show all work! Name: Section This assignment is due at the first class in 2019 Part I Show all work! 7164-1 - Page 1 1) A car travels at constant speed around a section of horizontal, circular track. On the diagram provided

More information

Quantitative Skills in AP Physics 1

Quantitative Skills in AP Physics 1 This chapter focuses on some of the quantitative skills that are important in your AP Physics 1 course. These are not all of the skills that you will learn, practice, and apply during the year, but these

More information

Forces. Unit 2. Why are forces important? In this Unit, you will learn: Key words. Previously PHYSICS 219

Forces. Unit 2. Why are forces important? In this Unit, you will learn: Key words. Previously PHYSICS 219 Previously Remember From Page 218 Forces are pushes and pulls that can move or squash objects. An object s speed is the distance it travels every second; if its speed increases, it is accelerating. Unit

More information

Biomechanics+Exam+3+Review+

Biomechanics+Exam+3+Review+ Biomechanics+Exam+3+Review+ Chapter(13(+(Equilibrium(and(Human(Movement( Center(of(Gravity((CG)(or(Center(of(Mass( The point around which the mass and weight of a body are balanced in all direction or

More information

Balanced forces do not cause an object to change its motion Moving objects will keep moving and stationary objects will stay stationary

Balanced forces do not cause an object to change its motion Moving objects will keep moving and stationary objects will stay stationary Newton s Laws Test 8.PS2.3) Create a demonstration of an object in motion and describe the position, force, and direction of the object. 8.PS2.4) Plan and conduct an investigation to provide evidence that

More information

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) 121 Textbook Reference: Knight, Chapter 13.1-3, 6. SYNOPSIS In

More information

Force, Energy & Periodic Motion. Preparation for unit test

Force, Energy & Periodic Motion. Preparation for unit test Force, Energy & Periodic Motion Preparation for unit test Summary of assessment standards (Unit assessment standard only) In the unit test you can expect to be asked at least one question on each sub-skill.

More information

Practice Test for Midterm Exam

Practice Test for Midterm Exam A.P. Physics Practice Test for Midterm Exam Kinematics 1. Which of the following statements are about uniformly accelerated motion? Select two answers. a) If an object s acceleration is constant then it

More information

8 th Science Force, Motion, and Energy

8 th Science Force, Motion, and Energy 8 th Science Force, Motion, and Energy #1 What is speed plus direction? Example: Geese fly about 64 km/hr when they migrate south. A: Force B: Weight C: Acceleration D: Velocity D. Velocity #2 A push or

More information

AP Physics II Summer Packet

AP Physics II Summer Packet Name: AP Physics II Summer Packet Date: Period: Complete this packet over the summer, it is to be turned it within the first week of school. Show all work were needed. Feel free to use additional scratch

More information

Review. First Law Review

Review. First Law Review First Law Review 1. Wile E. Coyote runs off the cliff. He correctly follows Newton s law because he was moving forward, so he continues to move forward. However, he now has an unbalanced force acting down

More information

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time.

Mechanics. Time (s) Distance (m) Velocity (m/s) Acceleration (m/s 2 ) = + displacement/time. Mechanics Symbols: Equations: Kinematics The Study of Motion s = distance or displacement v = final speed or velocity u = initial speed or velocity a = average acceleration s u+ v v v u v= also v= a =

More information

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion

What is a Force? Free-Body diagrams. Contact vs. At-a-Distance 11/28/2016. Forces and Newton s Laws of Motion Forces and Newton s Laws of Motion What is a Force? In generic terms: a force is a push or a pull exerted on an object that could cause one of the following to occur: A linear acceleration of the object

More information

Physics Curriculum Guide for High School SDP Science Teachers

Physics Curriculum Guide for High School SDP Science Teachers Physics Curriculum Guide for High School SDP Science Teachers Please note: Pennsylvania & Next Generation Science Standards as well as Instructional Resources are found on the SDP Curriculum Engine Prepared

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 4: NEWTON S SECOND LAW OF MOTION Force Causes Acceleration Friction Mass Resists Acceleration Newton s Second Law of Motion Free Fall Non-Free Fall Force causes

More information

CHAPTER 6 TEST REVIEW -- MARKSCHEME

CHAPTER 6 TEST REVIEW -- MARKSCHEME Force (N) AP PHYSICS Name: Period: Date: 50 Multiple Choice 45 Single Response 5 Multi-Response Free Response 3 Short Free Response 2 Long Free Response DEVIL PHYSICS BADDEST CLASS ON CAMPUS AP EXAM CHAPTER

More information

MOMENTUM, IMPULSE & MOMENTS

MOMENTUM, IMPULSE & MOMENTS the Further Mathematics network www.fmnetwork.org.uk V 07 1 3 REVISION SHEET MECHANICS 1 MOMENTUM, IMPULSE & MOMENTS The main ideas are AQA Momentum If an object of mass m has velocity v, then the momentum

More information

Motion *All matter in the universe is constantly at motion Motion an object is in motion if its position is changing

Motion *All matter in the universe is constantly at motion Motion an object is in motion if its position is changing Aim: What is motion? Do Now: Have you ever seen a race? Describe what occurred during it. Homework: Vocabulary Define: Motion Point of reference distance displacement speed velocity force Textbook: Read

More information

Rotation. I. Kinematics - Angular analogs

Rotation. I. Kinematics - Angular analogs Rotation I. Kinematics - Angular analogs II. III. IV. Dynamics - Torque and Rotational Inertia Work and Energy Angular Momentum - Bodies and particles V. Elliptical Orbits The student will be able to:

More information

Do Now: Why are we required to obey the Seat- Belt law?

Do Now: Why are we required to obey the Seat- Belt law? Do Now: Why are we required to obey the Seat- Belt law? Newton s Laws of Motion Newton s First Law An object at rest remains at rest and an object in motion remains in motion with the same speed and direction.

More information

τ = F d Angular Kinetics Components of Torque (review from Systems FBD lecture Muscles Create Torques Torque is a Vector Work versus Torque

τ = F d Angular Kinetics Components of Torque (review from Systems FBD lecture Muscles Create Torques Torque is a Vector Work versus Torque Components of Torque (review from Systems FBD lecture Angular Kinetics Hamill & Knutzen (Ch 11) Hay (Ch. 6), Hay & Ried (Ch. 12), Kreighbaum & Barthels (Module I & J) or Hall (Ch. 13 & 14) axis of rotation

More information

Momentum is conserved for all collisions as long as external forces don t interfere.

Momentum is conserved for all collisions as long as external forces don t interfere. Momentum is conserved for all collisions as long as external forces don t interfere. Objectives: Identify the factors that affect an object s momentum Identify the factors that affect how much an object

More information

Name Date Hour Table

Name Date Hour Table Name Date Hour Table Chapter 3 Pre-AP Directions: Use the clues to create your word bank for the word search. Put the answer to each question with its number in the word bank box. Then find each word in

More information

3 Using Newton s Laws

3 Using Newton s Laws 3 Using Newton s Laws What You ll Learn how Newton's first law explains what happens in a car crash how Newton's second law explains the effects of air resistance 4(A), 4(C), 4(D), 4(E) Before You Read

More information

Forces and Newton s Laws

Forces and Newton s Laws chapter 3 Forces and Newton s Laws section 3 Using Newton s Laws Before You Read Imagine riding on a sled, or in a wagon, or perhaps a school bus that stops quickly or suddenly. What happens to your body

More information

Science 10. Unit 4:Physics. Block: Name: Book 1: Kinetic & Potential Energy

Science 10. Unit 4:Physics. Block: Name: Book 1: Kinetic & Potential Energy Science 10 Unit 4:Physics Book 1: Kinetic & Potential Energy Name: Block: 1 Brainstorm: Lesson 4.1 Intro to Energy + Kinetic Energy What is WORK? What is ENERGY? "in physics, we say that if you have done

More information

HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT ENERGY & MOMENTUM MULTIPLE CHOICE / 30 OPEN ENDED / 79 TOTAL / 109 NAME:

HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT ENERGY & MOMENTUM MULTIPLE CHOICE / 30 OPEN ENDED / 79 TOTAL / 109 NAME: HATZIC SECONDARY SCHOOL PROVINCIAL EXAMINATION ASSIGNMENT ENERGY & MOMENTUM MULTIPLE CHOICE / 30 OPEN ENDED / 79 TOTAL / 109 NAME: 1. Which of the following best represents the momentum of a small car

More information

Subject: Triple Physics Unit title: P4.5 Forces (Paper 2) Strand Content Checklist (L) R A G Forces and their interactions

Subject: Triple Physics Unit title: P4.5 Forces (Paper 2) Strand Content Checklist (L) R A G Forces and their interactions 4.5.3 Forces and elasticity 4.5.2 Work done and energy transfer 4.5.1 Forces and their interactions Subject: Triple Physics Unit title: P4.5 Forces (Paper 2) Strand Content Checklist (L) R A G 1. Identify

More information

Pushes and Pulls. Example- an apple falling on a tree exerts a downward force with a magnitude of about 1 newton.

Pushes and Pulls. Example- an apple falling on a tree exerts a downward force with a magnitude of about 1 newton. What are Forces? Pushes and Pulls Force- a push or pull that acts on an object. Forces make a moving object speed up, slow down, or change direction. Forces have both magnitude and direction. Magnitude

More information

Final Exam Review Answers

Final Exam Review Answers Weight (Pounds) Final Exam Review Answers Questions 1-8 are based on the following information: A student sets out to lose some weight. He made a graph of his weight loss over a ten week period. 180 Weight

More information

Motion and Speed Note: You will not be able to view the videos from the internet version of this presentation. Copyright laws prevent that option.

Motion and Speed Note: You will not be able to view the videos from the internet version of this presentation. Copyright laws prevent that option. Physical Science Chapter 2 Motion and Speed Note: You will not be able to view the videos from the internet version of this presentation. Copyright laws prevent that option. 1 Motion occurs when an object

More information

PROJECTILE MOTION: CONSERVATION OF MOMENTUM 19 FEBRUARY 2013

PROJECTILE MOTION: CONSERVATION OF MOMENTUM 19 FEBRUARY 2013 PROJECTILE MOTION: CONSERVATION OF MOMENTUM 19 FEBRUARY 2013 Lesson Description In this lesson we: Learn that an object s momentum is the amount of motion it has due to its mass and velocity. Show that

More information

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book.

Q2. A book whose mass is 2 kg rests on a table. Find the magnitude of the force exerted by the table on the book. AP Physics 1- Dynamics Practice Problems FACT: Inertia is the tendency of an object to resist a change in state of motion. A change in state of motion means a change in an object s velocity, therefore

More information

Version A (01) Question. Points

Version A (01) Question. Points Question Version A (01) Version B (02) 1 a a 3 2 a a 3 3 b a 3 4 a a 3 5 b b 3 6 b b 3 7 b b 3 8 a b 3 9 a a 3 10 b b 3 11 b b 8 12 e e 8 13 a a 4 14 c c 8 15 c c 8 16 a a 4 17 d d 8 18 d d 8 19 a a 4

More information

Unit 4 Forces (Newton s Laws)

Unit 4 Forces (Newton s Laws) Name: Pd: Date: Unit Forces (Newton s Laws) The Nature of Forces force A push or pull exerted on an object. newton A unit of measure that equals the force required to accelerate kilogram of mass at meter

More information

Casting Physics Simplified Part Two. Frames of Reference

Casting Physics Simplified Part Two. Frames of Reference Casting Physics Simplified Part Two Part one of this paper discussed physics that applies to linear motion, i.e., motion in a straight line. This section of the paper will expand these concepts to angular

More information

PS 11 GeneralPhysics I for the Life Sciences

PS 11 GeneralPhysics I for the Life Sciences PS 11 GeneralPhysics I for the Life Sciences ROTATIONAL MOTION D R. B E N J A M I N C H A N A S S O C I A T E P R O F E S S O R P H Y S I C S D E P A R T M E N T F E B R U A R Y 0 1 4 Questions and Problems

More information

Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1

Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1 Big Ideas 3 & 5: Circular Motion and Rotation 1 AP Physics 1 1. A 50-kg boy and a 40-kg girl sit on opposite ends of a 3-meter see-saw. How far from the girl should the fulcrum be placed in order for the

More information

Chapter 9-10 Test Review

Chapter 9-10 Test Review Chapter 9-10 Test Review Chapter Summary 9.2. The Second Condition for Equilibrium Explain torque and the factors on which it depends. Describe the role of torque in rotational mechanics. 10.1. Angular

More information

Lab 8: Ballistic Pendulum

Lab 8: Ballistic Pendulum Lab 8: Ballistic Pendulum Caution In this experiment a steel ball is projected horizontally across the room with sufficient speed to injure a person. Be sure the line of fire is clear before firing the

More information