Nonlinear Preconditioning in PETSc

Size: px
Start display at page:

Download "Nonlinear Preconditioning in PETSc"

Transcription

1 Nonlinear Preconditioning in PETSc Matthew Knepley PETSc Team Computation Institute University of Chicago Challenges in 21st Century Experimental Mathematical Computation ICERM, Providence, RI July 22, 2014 M. Knepley (UC) NPC ICERM 14 1 / 1

2 The PETSc Team Bill Gropp Barry Smith Satish Balay Jed Brown Matt Knepley Lisandro Dalcin Hong Zhang Mark Adams Peter Brune M. Knepley (UC) NPC ICERM 14 3 / 1

3 Why Experiment with Solvers? Asymptotic convergence rate Rarely get asymptotics in practice Really want the constant Manner of convergence Stationary iterative methods decrease high frequency error quickly Tuminaro, Walker, Shadid, JCP, 180, pp (2002). Robustness Line search Solver composition M. Knepley (UC) NPC ICERM 14 4 / 1

4 Why Experiment with Solvers? Asymptotic convergence rate Rarely get asymptotics in practice Really want the constant Manner of convergence Stationary iterative methods decrease high frequency error quickly Tuminaro, Walker, Shadid, JCP, 180, pp (2002). Robustness Line search Solver composition M. Knepley (UC) NPC ICERM 14 4 / 1

5 Why Experiment with Solvers? Asymptotic convergence rate Rarely get asymptotics in practice Really want the constant Manner of convergence Stationary iterative methods decrease high frequency error quickly Tuminaro, Walker, Shadid, JCP, 180, pp (2002). Robustness Line search Solver composition M. Knepley (UC) NPC ICERM 14 4 / 1

6 Outline Algorithmics M. Knepley (UC) NPC ICERM 14 5 / 1

7 Abstract System Algorithmics Out prototypical nonlinear equation is: F( x) = b (1) and we define the residual as r( x) = F( x) b (2) M. Knepley (UC) NPC ICERM 14 6 / 1

8 Abstract System Algorithmics Out prototypical nonlinear equation is: F( x) = b (1) and we define the (linear) residual as r( x) = A x b (3) M. Knepley (UC) NPC ICERM 14 6 / 1

9 Algorithmics Linear Left Preconditioning The modified equation becomes P (A x 1 ) b = 0 (4) M. Knepley (UC) NPC ICERM 14 7 / 1

10 Algorithmics Linear Left Preconditioning The modified defect correction equation becomes P (A x 1 i ) b = x i+1 x i (5) M. Knepley (UC) NPC ICERM 14 7 / 1

11 Algorithmics Additive Combination The linear iteration x i+1 = x i (αp 1 + βq 1 )(A x i b) (6) becomes the nonlinear iteration M. Knepley (UC) NPC ICERM 14 8 / 1

12 Algorithmics Additive Combination The linear iteration x i+1 = x i (αp 1 + βq 1 ) r i (7) becomes the nonlinear iteration M. Knepley (UC) NPC ICERM 14 8 / 1

13 Algorithmics Additive Combination The linear iteration x i+1 = x i (αp 1 + βq 1 ) r i (7) becomes the nonlinear iteration x i+1 = x i +α(n (F, x i, b) x i )+β(m(f, x i, b) x i ) (8) M. Knepley (UC) NPC ICERM 14 8 / 1

14 Algorithmics Nonlinear Left Preconditioning From the additive combination, we have P 1 r = x i N (F, x i, b) (9) so we define the preconditioning operation as r L x N (F, x, b) (10) M. Knepley (UC) NPC ICERM 14 9 / 1

15 Algorithmics Multiplicative Combination The linear iteration x i+1 = x i (P 1 + Q 1 Q 1 AP 1 ) r i (11) becomes the nonlinear iteration M. Knepley (UC) NPC ICERM / 1

16 Algorithmics Multiplicative Combination The linear iteration x i+1/2 = x i P 1 r i (12) becomes the nonlinear iteration x i = x i+1/2 Q 1 r i+1/2 (13) M. Knepley (UC) NPC ICERM / 1

17 Algorithmics Multiplicative Combination The linear iteration x i+1/2 = x i P 1 r i (12) x i = x i+1/2 Q 1 r i+1/2 (13) becomes the nonlinear iteration x i+1 = M(F, N (F, x i, b), b) (14) M. Knepley (UC) NPC ICERM / 1

18 Algorithmics Nonlinear Right Preconditioning For the linear case, we have AP 1 y = b (15) x = P 1 y (16) so we define the preconditioning operation as y = M(F(N (F,, b)), x i, b) (17) x = N (F, y, b) (18) M. Knepley (UC) NPC ICERM / 1

19 Algorithmics Nonlinear Preconditioning Type Sym Statement Abbreviation Additive + x + α(m(f, x, b) x) M + N + β(n (F, x, b) x) Multiplicative M(F, N (F, x, b), b) M N Left Prec. L M( x N (F, x, b), x, b) M L N Right Prec. R M(F(N (F, x, b)), x, b) M R N Inner Lin. Inv. \ y = J( x) 1 r( x) = K( J( x), y 0, b) NEWT\K M. Knepley (UC) NPC ICERM / 1

20 Algorithmics Nonlinear Richardson 1: procedure NRICH( F, x i, b) 2: d = r( x i ) 3: x i+1 = x i + λ d λ determined by line search 4: end procedure 5: return x i+1 M. Knepley (UC) NPC ICERM / 1

21 Line Search Algorithmics Equivalent to NRICH L N : NRICH L N M. Knepley (UC) NPC ICERM / 1

22 Line Search Algorithmics Equivalent to NRICH L N : NRICH L N NRICH( x N (F, x, b), x, b) M. Knepley (UC) NPC ICERM / 1

23 Line Search Algorithmics Equivalent to NRICH L N : NRICH L N NRICH( x N (F, x, b), x, b) x i+1 = x i λ r L M. Knepley (UC) NPC ICERM / 1

24 Line Search Algorithmics Equivalent to NRICH L N : NRICH L N NRICH( x N (F, x, b), x, b) x i+1 = x i λ r L x i+1 = x i + λ(n (F, x i, b) x i ) M. Knepley (UC) NPC ICERM / 1

25 Newton-Krylov Algorithmics 1: procedure NEWT\K( F, x i, b) 2: d = J( x i ) 1 r( x i, b) solve by Krylov method 3: x i+1 = x i + λ d λ determined by line search 4: end procedure 5: return x i+1 M. Knepley (UC) NPC ICERM / 1

26 Algorithmics Left Preconditioned Newton-Krylov 1: procedure NEWT\K( x M(F, x, b), x i, 0) 2: d = ( x i M(F, x i, 1 b)) x ( x i M(F, x i, b)) i 3: x i+1 = x i + λ d 4: end procedure 5: return x i+1 M. Knepley (UC) NPC ICERM / 1

27 Algorithmics Jacobian Computation ( x M(F, x i, b)) x i = I M(F, x i, b) x i, Direct differencing would require one inner nonlinear iteration per Krylov iteration. M. Knepley (UC) NPC ICERM / 1

28 Algorithmics Jacobian Computation ( x M(F, x i, b)) x i = I M(F, x i, b) x i, Direct differencing would require one inner nonlinear iteration per Krylov iteration. M. Knepley (UC) NPC ICERM / 1

29 Algorithmics Jacobian Computation Impractical! ( x M(F, x i, b)) x i = I M(F, x i, b) x i, Direct differencing would require one inner nonlinear iteration per Krylov iteration. M. Knepley (UC) NPC ICERM / 1

30 Algorithmics Jacobian Computation Approximation for NASM ( x M(F, x, b)) x = ( x ( x b J b( x b ) 1 F b ( x b ))) x J b ( x b ) 1 J( x) b This would require one inner nonlinear iteration small number of block solves per outer nonlinear iteration. X.-C. Cai and D. E. Keyes, SIAM J. Sci. Comput., 24 (2002), pp M. Knepley (UC) NPC ICERM / 1

31 Algorithmics Right Preconditioned Newton-Krylov 1: procedure NK( F( M( F,, b)), y i, b) 2: x i = M( F, y i, b) 3: d = J( x) 1 r( x i ) 4: x i+1 = x i + λ d λ determined by line search 5: end procedure 6: return x i+1 M. Knepley (UC) NPC ICERM / 1

32 Algorithmics Jacobian Computation First-Order Approximation Only the action of the original Jacobian is needed at first order: y i+1 = y i λ M(F, 1 y i ) J(M(F, y i )) 1 F(M(F, y i )) y i M(F, y i+1 ) = M(F, y i λ M(F, 1 y i ) J(M(F, y i )) 1 F(M(F, y i ))) y i M(F, y i ) λ M(F, 1 y i ) M(F, y i ) J(M(F, y i )) 1 F(M(F, y i ))) y i y i = M(F, y i ) λj(m(f, y i )) 1 F(M(F, y i )) x i+1 = x i λj( x i ) 1 F( x i ) NEWT\K R M is equivalent to NEWT\K M at first order M. Knepley (UC) NPC ICERM / 1

33 Algorithmics Jacobian Computation First-Order Approximation Only the action of the original Jacobian is needed at first order: y i+1 = y i λ M(F, 1 y i ) J(M(F, y i )) 1 F(M(F, y i )) y i M(F, y i+1 ) = M(F, y i λ M(F, 1 y i ) J(M(F, y i )) 1 F(M(F, y i ))) y i M(F, y i ) λ M(F, 1 y i ) M(F, y i ) J(M(F, y i )) 1 F(M(F, y i ))) y i y i = M(F, y i ) λj(m(f, y i )) 1 F(M(F, y i )) x i+1 = x i λj( x i ) 1 F( x i ) NEWT\K R M is equivalent to NEWT\K M at first order M. Knepley (UC) NPC ICERM / 1

34 Algorithmics Jacobian Computation Direct Approximation F(M(F, y i, b)) = J(M(F, y i, b)) M(F, y i, b) y i ( y i+1 y i ) J(M(F, y i, b))(m(f, y i + d, b) x i ) Solve for d Requires inner nonlinear solve for each Krylov iterate Needs FGMRES P. Birken and A. Jameson, J. Num. Meth. in Fluids, 62 (2010), pp M. Knepley (UC) NPC ICERM / 1

35 Outline M. Knepley (UC) NPC ICERM / 1

36 Outline Composition M. Knepley (UC) NPC ICERM / 1

37 SNES ex16 3D Large Deformation Elasticity Composition Ω F S : v dω + loading e y v dω = 0 (19) Ω F Deformation gradient S Second Piola-Kirchhoff tensor Saint Venant-Kirchhoff model of hyperelasticity Ω -arc angle subsection of a cylindrical shell -height thickness -rad inner radius -width width M. Knepley (UC) NPC ICERM / 1

38 Large Deformation Elasticity Composition Unstressed and stressed configurations for the elasticity test problem. M. Knepley (UC) NPC ICERM / 1

39 Large Deformation Elasticity Composition Coloration indicates vertical displacement in meters. M. Knepley (UC) NPC ICERM / 1

40 Large Deformation Elasticity Composition P. Wriggers, Nonlinear Finite Element Methods, Springer, M. Knepley (UC) NPC ICERM / 1

41 Large Deformation Elasticity Running Composition SNES example 16: cd src/snes/examples/tutorials make ex16./ex16 -da_grid_x 401 -da_grid_y 9 -da_grid_z 9 -height 3 -width 3 -rad 100 -young 100 -poisson 0.2 -loading -1 -ploading 0 M. Knepley (UC) NPC ICERM / 1

42 Plain SNES Convergence Composition (NEWT\K MG) and NCG (NEWT\K MG) NCG r(x) Time (sec) M. Knepley (UC) NPC ICERM / 1

43 Plain SNES Convergence Composition Solver T N. It L. It Func Jac PC NPC NCG (NEWT\K MG) M. Knepley (UC) NPC ICERM / 1

44 Composition Composed SNES Convergence NCG(10) + (NEWT\K MG) and NCG(10) (NEWT\K MG) NCG(10)+(NEWT\K MG) NCG(10)*(NEWT\K MG) r(x) Time (sec) M. Knepley (UC) NPC ICERM / 1

45 Composition Composed SNES Convergence Solver T N. It L. It Func Jac PC NPC NCG (NEWT\K MG) NCG(10) (NEWT\K MG) NCG(10) (NEWT\K MG) M. Knepley (UC) NPC ICERM / 1

46 Composition Peconditioned SNES Convergence NGMRES R (NEWT\K MG) and NCG L (NEWT\K MG) NGMRES R(NEWT\K MG) NCG L(NEWT\K MG) r(x) Time (sec) M. Knepley (UC) NPC ICERM / 1

47 Composition Peconditioned SNES Convergence Solver T N. It L. It Func Jac PC NPC NCG (NEWT\K MG) NCG(10) (NEWT\K MG) NCG(10) (NEWT\K MG) NGMRES R (NEWT\K MG) NCG L (NEWT\K MG) M. Knepley (UC) NPC ICERM / 1

48 Outline Multilevel M. Knepley (UC) NPC ICERM / 1

49 SNES ex19 Driven Cavity Flow Multilevel u + Ω = 0 Ω + ( uω) GR x T = 0 T + PR ( ut ) = 0 M. Knepley (UC) NPC ICERM / 1

50 SNES ex19 Driven Cavity Flow Multilevel u + Ω = 0 Ω + ( uω) GR x T = 0 T + PR ( ut ) = 0 M. Knepley (UC) NPC ICERM / 1

51 Driven Cavity Problem Multilevel SNES ex19.c./ex19 -lidvelocity 100 -grashof 1e2 -da_grid_x 16 -da_grid_y 16 -da_refine 2 -snes_monitor_short -snes_converged_reason -snes_view M. Knepley (UC) NPC ICERM / 1

52 Driven Cavity Problem Multilevel SNES ex19.c./ex19 -lidvelocity 100 -grashof 1e2 -da_grid_x 16 -da_grid_y 16 -da_refine 2 -snes_monitor_short -snes_converged_reason -snes_view lid velocity = 100, prandtl # = 1, grashof # = SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm e-08 Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 7 M. Knepley (UC) NPC ICERM / 1

53 Driven Cavity Problem Multilevel SNES ex19.c./ex19 -lidvelocity 100 -grashof 1e4 -da_grid_x 16 -da_grid_y 16 -da_refine 2 -snes_monitor_short -snes_converged_reason -snes_view M. Knepley (UC) NPC ICERM / 1

54 Driven Cavity Problem Multilevel SNES ex19.c./ex19 -lidvelocity 100 -grashof 1e4 -da_grid_x 16 -da_grid_y 16 -da_refine 2 -snes_monitor_short -snes_converged_reason -snes_view lid velocity = 100, prandtl # = 1, grashof # = SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm 4.417e-08 Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 7 M. Knepley (UC) NPC ICERM / 1

55 Driven Cavity Problem Multilevel SNES ex19.c./ex19 -lidvelocity 100 -grashof 1e5 -da_grid_x 16 -da_grid_y 16 -da_refine 2 -snes_monitor_short -snes_converged_reason -snes_view M. Knepley (UC) NPC ICERM / 1

56 Driven Cavity Problem Multilevel SNES ex19.c./ex19 -lidvelocity 100 -grashof 1e5 -da_grid_x 16 -da_grid_y 16 -da_refine 2 -snes_monitor_short -snes_converged_reason -snes_view lid velocity = 100, prandtl # = 1, grashof # = SNES Function norm Nonlinear solve did not converge due to DIVERGED_LINEAR_SOLVE iterations 0 M. Knepley (UC) NPC ICERM / 1

57 Driven Cavity Problem Multilevel SNES ex19.c./ex19 -lidvelocity 100 -grashof 1e5 -da_grid_x 16 -da_grid_y 16 -da_refine 2 -pc_type lu -snes_monitor_short -snes_converged_reason -snes_view lid velocity = 100, prandtl # = 1, grashof # = SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm M. Knepley (UC) NPC ICERM / 1

58 Nonlinear Preconditioning Multilevel./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short -snes_type newtonls -snes_converged_reason -pc_type lu lid velocity = 100, prandtl # = 1, grashof # = SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm M. Knepley (UC) NPC ICERM / 1

59 Nonlinear Preconditioning Multilevel./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short -snes_type fas -snes_converged_reason -fas_levels_snes_type gs -fas_levels_snes_max_it 6 lid velocity = 100, prandtl # = 1, grashof # = SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm Nonlinear solve did not converge due to DIVERGED_INNER iterations 4 M. Knepley (UC) NPC ICERM / 1

60 Nonlinear Preconditioning Multilevel./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short -snes_type fas -snes_converged_reason -fas_levels_snes_type gs -fas_levels_snes_max_it 6 -fas_coarse_snes_converged_reason lid velocity = 100, prandtl # = 1, grashof # = SNES Function norm Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 12 1 SNES Function norm Nonlinear solve did not converge due to DIVERGED_MAX_IT its 50 2 SNES Function norm Nonlinear solve did not converge due to DIVERGED_MAX_IT its 50 3 SNES Function norm Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 22 4 SNES Function norm Nonlinear solve did not converge due to DIVERGED_LINE_SEARCH its 42 Nonlinear solve did not converge due to DIVERGED_INNER iterations 4 M. Knepley (UC) NPC ICERM / 1

61 Nonlinear Preconditioning Multilevel./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short -snes_type fas -snes_converged_reason -fas_levels_snes_type gs -fas_levels_snes_max_it 6 -fas_coarse_snes_linesearch_type basic -fas_coarse_snes_converged_reason lid velocity = 100, prandtl # = 1, grashof # = SNES Function norm Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its SNES Function norm Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 5 48 SNES Function norm Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 6 49 SNES Function norm Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 5 50 SNES Function norm Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 6. M. Knepley (UC) NPC ICERM / 1

62 Nonlinear Preconditioning Multilevel./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short -snes_type nrichardson -npc_snes_max_it 1 -snes_converged_reason -npc_snes_type fas -npc_fas_coarse_snes_converged_reason -npc_fas_levels_snes_type gs -npc_fas_levels_snes_max_it 6 -npc_fas_coarse_snes_linesearch_type basic lid velocity = 100, prandtl # = 1, grashof # = SNES Function norm Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 6 1 SNES Function norm Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 27 2 SNES Function norm Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its SNES Function norm e-05 Nonlinear solve converged due to CONVERGED_SNORM_RELATIVE its 2 44 SNES Function norm e-05 Nonlinear solve converged due to CONVERGED_SNORM_RELATIVE its 2 45 SNES Function norm e-06 Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 45 M. Knepley (UC) NPC ICERM / 1

63 Nonlinear Preconditioning Multilevel./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short -snes_type ngmres -npc_snes_max_it 1 -snes_converged_reason -npc_snes_type fas -npc_fas_coarse_snes_converged_reason -npc_fas_levels_snes_type gs -npc_fas_levels_snes_max_it 6 -npc_fas_coarse_snes_linesearch_type basic lid velocity = 100, prandtl # = 1, grashof # = SNES Function norm Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 6 1 SNES Function norm Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 13 2 SNES Function norm Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its SNES Function norm Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 2 28 SNES Function norm e-05 Nonlinear solve converged due to CONVERGED_SNORM_RELATIVE its 2 29 SNES Function norm e-05 Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 29 M. Knepley (UC) NPC ICERM / 1

64 Nonlinear Preconditioning Multilevel./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short -snes_type ngmres -npc_snes_max_it 1 -snes_converged_reason -npc_snes_type fas -npc_fas_coarse_snes_converged_reason -npc_fas_levels_snes_type newtonls -npc_fas_levels_snes_max_it 6 -npc_fas_levels_snes_linesearch_type basic -npc_fas_levels_snes_max_linear_solve_fail 30 -npc_fas_levels_ksp_max_it 20 -npc_fas_levels_snes_converged_reason -npc_fas_coarse_snes_linesearch_type basic lid velocity = 100, prandtl # = 1, grashof # = SNES Function norm Nonlinear solve did not converge due to DIVERGED_MAX_IT its 6. Nonlinear solve converged due to CONVERGED_SNORM_RELATIVE its 1. 1 SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm e-06 Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 5 M. Knepley (UC) NPC ICERM / 1

65 Nonlinear Preconditioning Multilevel./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short -snes_type composite -snes_composite_type additiveoptimal -snes_composite_sneses fas,newtonls -snes_converged_reason -sub_0_fas_levels_snes_type gs -sub_0_fas_levels_snes_max_it 6 -sub_0_fas_coarse_snes_linesearch_type basic -sub_1_snes_linesearch_type basic -sub_1_pc_type mg lid velocity = 100, prandtl # = 1, grashof # = SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm e-08 Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 7 M. Knepley (UC) NPC ICERM / 1

66 Nonlinear Preconditioning Multilevel./ex19 -lidvelocity 100 -grashof 5e4 -da_refine 4 -snes_monitor_short -snes_type composite -snes_composite_type multiplicative -snes_composite_sneses fas,newtonls -snes_converged_reason -sub_0_fas_levels_snes_type gs -sub_0_fas_levels_snes_max_it 6 -sub_0_fas_coarse_snes_linesearch_type basic -sub_1_snes_linesearch_type basic -sub_1_pc_type mg lid velocity = 100, prandtl # = 1, grashof # = SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm SNES Function norm e-08 Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE iterations 5 M. Knepley (UC) NPC ICERM / 1

67 Nonlinear Preconditioning Multilevel Solver T N. It L. It Func Jac PC NPC (NEWT\K MG) NGMRES R (NEWT\K MG) FAS FAS + (NEWT\K MG) FAS (NEWT\K MG) NRICH L FAS NGMRES R FAS M. Knepley (UC) NPC ICERM / 1

68 Nonlinear Preconditioning Multilevel See discussion in: Composing scalable nonlinear solvers, Peter Brune, Matthew Knepley, Barry Smith, and Xuemin Tu, ANL/MCS-P , Argonne National Laboratory, M. Knepley (UC) NPC ICERM / 1

69 Outline Magma Dynamics M. Knepley (UC) NPC ICERM / 1

70 Magma Dynamics Magma Dynamics Couples scales Subduction Magma Migration Physics Incompressible fluid Porous solid Variable porosity Deforming matrix Compaction pressure Code generation FEniCS Multiphysics Preconditioning PETSc FieldSplit a Katz, Speigelman M. Knepley (UC) NPC ICERM / 1

71 Magma Dynamics Magma Dynamics Couples scales Subduction Magma Migration Physics Incompressible fluid Porous solid Variable porosity Deforming matrix Compaction pressure Code generation FEniCS Multiphysics Preconditioning PETSc FieldSplit a Katz, Speigelman M. Knepley (UC) NPC ICERM / 1

72 Dimensional Formulation Magma Dynamics φ t (1 φ) v S = 0 ( K ) φ µ p + v S = 0 ) p ζ φ ( v S ) (2η φ ɛ S = 0 M. Knepley (UC) NPC ICERM / 1

73 Closure Conditions Magma Dynamics K φ = K 0 ( φ φ 0 ) n η φ = η 0 exp ( λ(φ φ 0 )) ζ φ = ζ 0 ( φ φ 0 ) m M. Knepley (UC) NPC ICERM / 1

74 Nondimensional Formulation Magma Dynamics φ t (1 φ) v S = 0 ( ) n ) ( R2 φ p + v S = 0 r ζ + 4/3 φ 0 ( ( ) ) m φ ) p v S (2e λ(φ φ 0) ɛ S = 0 φ 0 M. Knepley (UC) NPC ICERM / 1

75 Initial and Boundary conditions Magma Dynamics Initially φ = φ 0 + A cos( k x) where A φ 0 and on the top and bottom boundary K φ p ˆn = 0 v S = ± γ 2 ˆx M. Knepley (UC) NPC ICERM / 1

76 Newton options Magma Dynamics -snes_monitor -snes_converged_reason -snes_type newtonls -snes_linesearch_type bt -snes_fd_color -snes_fd_color_use_mat -mat_coloring_type greedy -ksp_rtol 1.0e-10 -ksp_monitor -ksp_gmres_restart 200 -pc_type fieldsplit -pc_fieldsplit_0_fields 0,2 -pc_fieldsplit_1_fields 1 -pc_fieldsplit_type schur -pc_fieldsplit_schur_precondition selfp -pc_fieldsplit_schur_factorization_type full -fieldsplit_0_pc_type lu -fieldsplit_pressure_ksp_rtol 1.0e-9 -fieldsplit_pressure_pc_type gamg -fieldsplit_pressure_ksp_monitor -fieldsplit_pressure_ksp_gmres_restart 100 -fieldsplit_pressure_ksp_max_it 200 M. Knepley (UC) NPC ICERM / 1

77 Newton options Separate porosity Magma Dynamics -pc_type fieldsplit -pc_fieldsplit_0_fields 0,1 -pc_fieldsplit_1_fields 2 -pc_fieldsplit_type multiplicative -fieldsplit_0_pc_type fieldsplit -fieldsplit_0_pc_fieldsplit_type schur -fieldsplit_0_pc_fieldsplit_schur_precondition selfp -fieldsplit_0_pc_fieldsplit_schur_factorization_type full -fieldsplit_0_fieldsplit_velocity_pc_type lu -fieldsplit_0_fieldsplit_pressure_ksp_rtol 1.0e-9 -fieldsplit_0_fieldsplit_pressure_pc_type gamg -fieldsplit_0_fieldsplit_pressure_ksp_monitor -fieldsplit_0_fieldsplit_pressure_ksp_gmres_restart 100 -fieldsplit_fieldsplit_0_pressure_ksp_max_it 200 M. Knepley (UC) NPC ICERM / 1

78 Early Newton convergence Magma Dynamics 0 TS dt 0.01 time 0 0 SNES Function norm e-03 Linear pressure_ solve converged due to CONVERGED_RTOL its 10 0 KSP Residual norm e+00 Linear pressure_ solve converged due to CONVERGED_RTOL its 10 1 KSP Residual norm e-03 Linear pressure_ solve converged due to CONVERGED_RTOL its 11 2 KSP Residual norm e-13 Linear solve converged due to CONVERGED_RTOL its 2 1 SNES Function norm e-06 Linear pressure_ solve converged due to CONVERGED_RTOL its 8 0 KSP Residual norm e-02 Linear pressure_ solve converged due to CONVERGED_RTOL its 8 1 KSP Residual norm e-07 Linear pressure_ solve converged due to CONVERGED_RTOL its 8 2 KSP Residual norm e-14 Linear solve converged due to CONVERGED_RTOL its 2 2 SNES Function norm e-11 Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 2 1 TS dt 0.01 time 0.01 M. Knepley (UC) NPC ICERM / 1

79 Later Newton convergence Magma Dynamics 0 TS dt 0.01 time SNES Function norm e-03 Linear pressure_ solve converged due to CONVERGED_RTOL its 16 Linear pressure_ solve converged due to CONVERGED_RTOL its 16 Linear pressure_ solve converged due to CONVERGED_RTOL its 16 Linear solve converged due to CONVERGED_RTOL its 2 1 SNES Function norm e-03 Linear solve converged due to CONVERGED_RTOL its 2 2 SNES Function norm e-03 Linear solve converged due to CONVERGED_RTOL its 2 3 SNES Function norm e-03 Linear solve converged due to CONVERGED_RTOL its 2 4 SNES Function norm e-04 Linear solve converged due to CONVERGED_RTOL its 2 5 SNES Function norm e-06 Linear solve converged due to CONVERGED_RTOL its 2 6 SNES Function norm e-08 Linear solve converged due to CONVERGED_RTOL its 2 7 SNES Function norm e-14 Nonlinear solve converged due to CONVERGED_FNORM_RELATIVE its 7 1 TS dt 0.01 time 0.64 M. Knepley (UC) NPC ICERM / 1

80 Newton failure Magma Dynamics 0 TS dt 0.01 time 0.64 Time 0.64 L_2 Error: [ , , ] 0 SNES Function norm e-03 Linear solve converged due to CONVERGED_RTOL iterations 2 1 SNES Function norm e-03 Linear solve converged due to CONVERGED_RTOL iterations 3 2 SNES Function norm e-03 Linear solve converged due to CONVERGED_RTOL iterations 5 3 SNES Function norm e-03 Linear solve converged due to CONVERGED_RTOL iterations 6 4 SNES Function norm e-03 Linear solve converged due to CONVERGED_RTOL iterations 7 5 SNES Function norm e-03 Linear solve converged due to CONVERGED_RTOL iterations 7. 9 SNES Function norm e-03 Linear solve converged due to CONVERGED_RTOL iterations 7 10 SNES Function norm e-03 Linear solve converged due to CONVERGED_RTOL iterations SNES Function norm e-03 Linear solve converged due to CONVERGED_RTOL iterations 15. M. Knepley (UC) NPC ICERM / 1

81 NCG+Newton options Magma Dynamics -snes_monitor -snes_converged_reason -snes_type composite -snes_composite_type multiplicative -snes_composite_sneses ncg,newtonls -sub_0_snes_monitor -sub_1_snes_monitor -sub_0_snes_type ncg -sub_0_snes_linesearch_type cp -sub_0_snes_max_it 5 -sub_1_snes_linesearch_type bt -sub_1_snes_fd_color -sub_1_snes_fd_color_use_mat -mat_coloring_type greedy -sub_1_ksp_rtol 1.0e-10 -sub_1_ksp_monitor -sub_1_ksp_gmres_restart 200 -sub_1_pc_type fieldsplit -sub_1_pc_fieldsplit_0_fields 0,2 -sub_1_pc_fieldsplit_1_fields 1 -sub_1_pc_fieldsplit_type schur -sub_1_pc_fieldsplit_schur_precondition selfp -sub_1_pc_fieldsplit_schur_factorization_type full -sub_1_fieldsplit_0_pc_type lu -sub_1_fieldsplit_pressure_ksp_rtol 1.0e-9 -sub_1_fieldsplit_pressure_pc_type gamg -sub_1_fieldsplit_pressure_ksp_gmres_restart 100 -sub_1_fieldsplit_pressure_ksp_max_it 200 M. Knepley (UC) NPC ICERM / 1

82 NCG+Newton convergence Magma Dynamics 0 TS dt 0.01 time SNES Function norm e-03 0 SNES Function norm e-03 1 SNES Function norm e-02 2 SNES Function norm e-02 3 SNES Function norm e-02 4 SNES Function norm e-02 5 SNES Function norm e-02 0 SNES Function norm e-02 0 KSP Residual norm e+00 1 KSP Residual norm e-05 2 KSP Residual norm e-09 3 KSP Residual norm e-12 1 SNES Function norm e-03 1 SNES Function norm e-03 2 SNES Function norm e-02 3 SNES Function norm e-02 4 SNES Function norm e-03 5 SNES Function norm e-04 6 SNES Function norm e-05 7 SNES Function norm e-08 8 SNES Function norm e-13 1 TS dt 0.01 time 0.65 M. Knepley (UC) NPC ICERM / 1

83 FAS options Magma Dynamics Top level -snes_monitor -snes_converged_reason -snes_type fas -snes_fas_type full -snes_fas_levels 4 -fas_levels_3_snes_monitor -fas_levels_3_snes_converged_reason -fas_levels_3_snes_atol 1.0e-9 -fas_levels_3_snes_max_it 2 -fas_levels_3_snes_type newtonls -fas_levels_3_snes_linesearch_type bt -fas_levels_3_snes_fd_color -fas_levels_3_snes_fd_color_use_mat -fas_levels_3_ksp_rtol 1.0e-10 -mat_coloring_type greedy -fas_levels_3_ksp_gmres_restart 50 -fas_levels_3_ksp_max_it 200 -fas_levels_3_pc_type fieldsplit -fas_levels_3_pc_fieldsplit_0_fields 0,2 -fas_levels_3_pc_fieldsplit_1_fields 1 -fas_levels_3_pc_fieldsplit_type schur -fas_levels_3_pc_fieldsplit_schur_precondition selfp -fas_levels_3_pc_fieldsplit_schur_factorization_type full -fas_levels_3_fieldsplit_0_pc_type lu -fas_levels_3_fieldsplit_pressure_ksp_rtol 1.0e-9 -fas_levels_3_fieldsplit_pressure_pc_type gamg -fas_levels_3_fieldsplit_pressure_ksp_gmres_restart 100 -fas_levels_3_fieldsplit_pressure_ksp_max_it 200 M. Knepley (UC) NPC ICERM / 1

84 FAS options Magma Dynamics 2nd level -fas_levels_2_snes_monitor -fas_levels_2_snes_converged_reason -fas_levels_2_snes_atol 1.0e-9 -fas_levels_2_snes_max_it 2 -fas_levels_2_snes_type newtonls -fas_levels_2_snes_linesearch_type bt -fas_levels_2_snes_fd_color -fas_levels_2_snes_fd_color_use_mat -fas_levels_2_ksp_rtol 1.0e-10 -fas_levels_2_ksp_gmres_restart 50 -fas_levels_2_pc_type fieldsplit -fas_levels_2_pc_fieldsplit_0_fields 0,2 -fas_levels_2_pc_fieldsplit_1_fields 1 -fas_levels_2_pc_fieldsplit_type schur -fas_levels_2_pc_fieldsplit_schur_precondition selfp -fas_levels_2_pc_fieldsplit_schur_factorization_type full -fas_levels_2_fieldsplit_0_pc_type lu -fas_levels_2_fieldsplit_pressure_ksp_rtol 1.0e-9 -fas_levels_2_fieldsplit_pressure_pc_type gamg -fas_levels_2_fieldsplit_pressure_ksp_gmres_restart 100 -fas_levels_2_fieldsplit_pressure_ksp_max_it 200 M. Knepley (UC) NPC ICERM / 1

85 FAS options Magma Dynamics 1st level -fas_levels_1_snes_monitor -fas_levels_1_snes_converged_reason -fas_levels_1_snes_atol 1.0e-9 -fas_levels_1_snes_type newtonls -fas_levels_1_snes_linesearch_type bt -fas_levels_1_snes_fd_color -fas_levels_1_snes_fd_color_use_mat -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_ksp_gmres_restart 50 -fas_levels_1_pc_type fieldsplit -fas_levels_1_pc_fieldsplit_0_fields 0,2 -fas_levels_1_pc_fieldsplit_1_fields 1 -fas_levels_1_pc_fieldsplit_type schur -fas_levels_1_pc_fieldsplit_schur_precondition selfp -fas_levels_1_pc_fieldsplit_schur_factorization_type full -fas_levels_1_fieldsplit_0_pc_type lu -fas_levels_1_fieldsplit_pressure_ksp_rtol 1.0e-9 -fas_levels_1_fieldsplit_pressure_pc_type gamg M. Knepley (UC) NPC ICERM / 1

86 FAS options Magma Dynamics Coarse level -fas_coarse_snes_monitor -fas_coarse_snes_converged_reason -fas_coarse_snes_atol 1.0e-9 -fas_coarse_snes_type newtonls -fas_coarse_snes_linesearch_type bt -fas_coarse_snes_fd_color -fas_coarse_snes_fd_color_use_mat -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_ksp_gmres_restart 50 -fas_coarse_pc_type fieldsplit -fas_coarse_pc_fieldsplit_0_fields 0,2 -fas_coarse_pc_fieldsplit_1_fields 1 -fas_coarse_pc_fieldsplit_type schur -fas_coarse_pc_fieldsplit_schur_precondition selfp -fas_coarse_pc_fieldsplit_schur_factorization_type full -fas_coarse_fieldsplit_0_pc_type lu -fas_coarse_fieldsplit_pressure_ksp_rtol 1.0e-9 -fas_coarse_fieldsplit_pressure_pc_type gamg M. Knepley (UC) NPC ICERM / 1

87 FAS convergence Magma Dynamics 0 TS dt 0.01 time SNES Function norm e-03 2 SNES Function norm e-03 2 SNES Function norm e-15 1 SNES Function norm e-04 1 SNES Function norm e-11 1 SNES Function norm e-10 2 SNES Function norm e-08 1 SNES Function norm e-15 0 SNES Function norm e-15 0 SNES Function norm e-15 1 SNES Function norm e-14 2 SNES Function norm e-02 2 SNES Function norm e-12 0 SNES Function norm e-12 0 SNES Function norm e-13 0 SNES Function norm e-12 0 SNES Function norm e-12 2 SNES Function norm e-05 1 SNES Function norm e-05 2 SNES Function norm e-08 3 SNES Function norm e-11 1 TS dt 0.01 time 0.65 M. Knepley (UC) NPC ICERM / 1

88 Magma Dynamics See discussion in: Composing scalable nonlinear solvers, Peter Brune, Matthew Knepley, Barry Smith, and Xuemin Tu, ANL/MCS-P , Argonne National Laboratory, M. Knepley (UC) NPC ICERM / 1

89 What Are We Missing? Magma Dynamics We need a short time convergence theory: Most iterations never enter the asymptotic regime Most complex solvers are composed We need a viable nonlinear smoother: GS is too expensive for FEM NASM is a possibility, M. Knepley (UC) NPC ICERM / 1

90 Nonlinear GMRES Extra 1: procedure NGMRES(F, x i x i m+1, b ) 2: di = r( x i ) 3: x i M = x i + λ d i 4: Fi M = r( x i M ) 5: minimize r((1 i 1 k=i m α i) x M i + {α i m α i 1 } 6: x A i = (1 i 1 k=i m α i) x M + 7: x i+1 = x A or x M 8: end procedure 9: return x i+1 i i if x A i i 1 k=i m is insufficient. i 1 k=i m α k x k α k x k ) 2 over Can emulate Anderson mixing and DIIS M. Knepley (UC) NPC ICERM / 1

91 Nonlinear GMRES Extra 1: procedure NGMRES(F, x i x i m+1, b ) 2: di = r( x i ) 3: x i M = x i + λ d i 4: Fi M = r( x i M ) 5: minimize r((1 i 1 k=i m α i) x M i + {α i m α i 1 } 6: x A i = (1 i 1 k=i m α i) x M + 7: x i+1 = x A or x M 8: end procedure 9: return x i+1 i i if x A i i 1 k=i m is insufficient. i 1 k=i m α k x k α k x k ) 2 over Can emulate Anderson mixing and DIIS M. Knepley (UC) NPC ICERM / 1

92 Extra Full Approximation Scheme (FAS) Nonlinear Multigrid 1: procedure FAS( F, x i, b) 2: x s = M s (F, x i, b) 3: x c = R x s 4: bc = F c ( x c ) R[F( x s ) b] 5: x s = x s + P[FAS( F c, x c, b c ) x c ] 6: x i+1 = M s (F, x s, b) 7: end procedure 8: return x i+1 M. Knepley (UC) NPC ICERM / 1

93 Other Nonlinear Solvers Extra NASM Nonlinear Additive Schwarz NGS Nonlinear Gauss-Siedel NCG Nonlinear Conjugate Gradients QN Quasi-Newton methods M. Knepley (UC) NPC ICERM / 1

Nonlinear Preconditioning in PETSc

Nonlinear Preconditioning in PETSc Nonlinear Preconditioning in PETSc Matthew Knepley PETSc Team Computation Institute University of Chicago Department of Molecular Biology and Physiology Rush University Medical Center Algorithmic Adaptivity

More information

Composing Nonlinear Solvers

Composing Nonlinear Solvers Composing Nonlinear Solvers Matthew Knepley Computational and Applied Mathematics Rice University MIT Aeronautics and Astronautics Boston, MA May 10, 2016 Matt (Rice) PETSc MIT 1 / 69 What is PETSc? PETSc

More information

Runtime Configurability in PETSc

Runtime Configurability in PETSc Runtime Configurability in PETSc Matthew Knepley PETSc Team Computation Institute University of Chicago Department of Molecular Biology and Physiology Rush University Medical Center SIAM Conference on

More information

Using PETSc Solvers in PyLith

Using PETSc Solvers in PyLith Using PETSc Solvers in PyLith Matthew Knepley, Brad Aagaard, and Charles Williams Computational and Applied Mathematics Rice University PyLith Virtual 2015 Cyberspace August 24 25, 2015 M. Knepley (Rice)

More information

Thoughts on Composing Nonlinear Solvers

Thoughts on Composing Nonlinear Solvers Thoughts on Composing Nonlinear Solvers Matthew Knepley Computer Science and Engineering University at Buffalo Domain Decomposition XXV St. John s, Newfoundland, CA July 27, 2018 Matt (Buff) PETSc DD25

More information

Using PETSc Solvers in PyLith

Using PETSc Solvers in PyLith Using PETSc Solvers in PyLith Matthew Knepley, Brad Aagaard, and Charles Williams Computational and Applied Mathematics Rice University CIG All-Hands PyLith Tutorial 2016 UC Davis June 19, 2016 M. Knepley

More information

The Portable Extensible Toolkit for Scientific Computing

The Portable Extensible Toolkit for Scientific Computing The Portable Extensible Toolkit for Scientific Computing Matthew Knepley Mathematics and Computer Science Division Argonne National Laboratory Computation Institute University of Chicago Advanced PETSc

More information

Composing Scalable Nonlinear Algebraic Solvers

Composing Scalable Nonlinear Algebraic Solvers SIAM REVIEW Vol. 57, No. 4, pp. 535 565 c 2015 Society for Industrial and Applied Mathematics Composing Scalable Nonlinear Algebraic Solvers Peter R. Brune Matthew G. Knepley Barry F. Smith Xuemin Tu Abstract.

More information

Nonlinear solver techniques in reservoir simulation

Nonlinear solver techniques in reservoir simulation Nonlinear solver techniques in reservoir simulation Asbjørn Nilsen Riseth University of Oxford Supervisors: Patrick Farrell, Tom Jönsthövel A technical report for InFoMM CDT Mini-Project 1 in partnership

More information

Computational Bioelectrostatics

Computational Bioelectrostatics Computational Bioelectrostatics Matthew Knepley Computational and Applied Mathematics Rice University Scientific Computing Seminar University of Houston Houston, TX April 20, 2017 M. Knepley (CAAM) MGK

More information

Bridging the Gap: Harnessing advanced Computational Libraries for coupled multi-physics problems

Bridging the Gap: Harnessing advanced Computational Libraries for coupled multi-physics problems Bridging the Gap: Harnessing advanced Computational Libraries for coupled multi-physics problems Marc Spiegelman 1,2 and Cian R Wilson 1 Plus enormous contributions from PETSc, FEniCS and AMCG groups 1

More information

FAS and Solver Performance

FAS and Solver Performance FAS and Solver Performance Matthew Knepley Mathematics and Computer Science Division Argonne National Laboratory Fall AMS Central Section Meeting Chicago, IL Oct 05 06, 2007 M. Knepley (ANL) FAS AMS 07

More information

High Performance Nonlinear Solvers

High Performance Nonlinear Solvers What is a nonlinear system? High Performance Nonlinear Solvers Michael McCourt Division Argonne National Laboratory IIT Meshfree Seminar September 19, 2011 Every nonlinear system of equations can be described

More information

AMG for a Peta-scale Navier Stokes Code

AMG for a Peta-scale Navier Stokes Code AMG for a Peta-scale Navier Stokes Code James Lottes Argonne National Laboratory October 18, 2007 The Challenge Develop an AMG iterative method to solve Poisson 2 u = f discretized on highly irregular

More information

2 CAI, KEYES AND MARCINKOWSKI proportional to the relative nonlinearity of the function; i.e., as the relative nonlinearity increases the domain of co

2 CAI, KEYES AND MARCINKOWSKI proportional to the relative nonlinearity of the function; i.e., as the relative nonlinearity increases the domain of co INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS Int. J. Numer. Meth. Fluids 2002; 00:1 6 [Version: 2000/07/27 v1.0] Nonlinear Additive Schwarz Preconditioners and Application in Computational Fluid

More information

Numerical Methods for Large-Scale Nonlinear Equations

Numerical Methods for Large-Scale Nonlinear Equations Slide 1 Numerical Methods for Large-Scale Nonlinear Equations Homer Walker MA 512 April 28, 2005 Inexact Newton and Newton Krylov Methods a. Newton-iterative and inexact Newton methods. Slide 2 i. Formulation

More information

Toward less synchronous composable multilevel methods for implicit multiphysics simulation

Toward less synchronous composable multilevel methods for implicit multiphysics simulation Toward less synchronous composable multilevel methods for implicit multiphysics simulation Jed Brown 1, Mark Adams 2, Peter Brune 1, Matt Knepley 3, Barry Smith 1 1 Mathematics and Computer Science Division,

More information

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation

A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation A Domain Decomposition Based Jacobi-Davidson Algorithm for Quantum Dot Simulation Tao Zhao 1, Feng-Nan Hwang 2 and Xiao-Chuan Cai 3 Abstract In this paper, we develop an overlapping domain decomposition

More information

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization

Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Efficient Augmented Lagrangian-type Preconditioning for the Oseen Problem using Grad-Div Stabilization Timo Heister, Texas A&M University 2013-02-28 SIAM CSE 2 Setting Stationary, incompressible flow problems

More information

Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner

Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner Convergence Behavior of a Two-Level Optimized Schwarz Preconditioner Olivier Dubois 1 and Martin J. Gander 2 1 IMA, University of Minnesota, 207 Church St. SE, Minneapolis, MN 55455 dubois@ima.umn.edu

More information

1. Introduction. Let the nonlinear set of equations arising in nonlinear transient elasticity be given by. r(u) = 0, (1.1)

1. Introduction. Let the nonlinear set of equations arising in nonlinear transient elasticity be given by. r(u) = 0, (1.1) PSEUDO-TRANSIENT CONTINUATION FOR NONLINEAR TRANSIENT ELASTICITY MICHAEL W. GEE, C. T. KELLEY, AND R. B. LEHOUCQ Abstract. We show how the method of pseudo-transient continuation can be applied to improve

More information

Newton s Method and Efficient, Robust Variants

Newton s Method and Efficient, Robust Variants Newton s Method and Efficient, Robust Variants Philipp Birken University of Kassel (SFB/TRR 30) Soon: University of Lund October 7th 2013 Efficient solution of large systems of non-linear PDEs in science

More information

A NONLINEAR ELIMINATION PRECONDITIONED INEXACT NEWTON METHOD FOR HETEROGENEOUS HYPERELASTICITY

A NONLINEAR ELIMINATION PRECONDITIONED INEXACT NEWTON METHOD FOR HETEROGENEOUS HYPERELASTICITY A NONLINEAR ELIMINATION PRECONDITIONED INEXACT NEWTON METHOD FOR HETEROGENEOUS HYPERELASTICITY SHIHUA GONG AND XIAO-CHUAN CAI Abstract. We propose and study a nonlinear elimination preconditioned inexact

More information

Efficient FEM-multigrid solver for granular material

Efficient FEM-multigrid solver for granular material Efficient FEM-multigrid solver for granular material S. Mandal, A. Ouazzi, S. Turek Chair for Applied Mathematics and Numerics (LSIII), TU Dortmund STW user committee meeting Enschede, 25th September,

More information

Topology optimisation of passive coolers for light-emitting diode lamps

Topology optimisation of passive coolers for light-emitting diode lamps Downloaded from orbit.dtu.dk on: Aug 15, 2018 Topology optimisation of passive coolers for light-emitting diode lamps Alexandersen, Joe Published in: Proceedings of WCSMO-11 Publication date: 2015 Document

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

TAU Solver Improvement [Implicit methods]

TAU Solver Improvement [Implicit methods] TAU Solver Improvement [Implicit methods] Richard Dwight Megadesign 23-24 May 2007 Folie 1 > Vortrag > Autor Outline Motivation (convergence acceleration to steady state, fast unsteady) Implicit methods

More information

Linear and Non-Linear Preconditioning

Linear and Non-Linear Preconditioning and Non- martin.gander@unige.ch University of Geneva July 2015 Joint work with Victorita Dolean, Walid Kheriji, Felix Kwok and Roland Masson (1845): First Idea of After preconditioning, it takes only three

More information

Preliminary Results of GRAPES Helmholtz solver using GCR and PETSc tools

Preliminary Results of GRAPES Helmholtz solver using GCR and PETSc tools Preliminary Results of GRAPES Helmholtz solver using GCR and PETSc tools Xiangjun Wu (1),Lilun Zhang (2),Junqiang Song (2) and Dehui Chen (1) (1) Center for Numerical Weather Prediction, CMA (2) School

More information

Discontinuous Galerkin methods for nonlinear elasticity

Discontinuous Galerkin methods for nonlinear elasticity Discontinuous Galerkin methods for nonlinear elasticity Preprint submitted to lsevier Science 8 January 2008 The goal of this paper is to introduce Discontinuous Galerkin (DG) methods for nonlinear elasticity

More information

Linear Solvers. Andrew Hazel

Linear Solvers. Andrew Hazel Linear Solvers Andrew Hazel Introduction Thus far we have talked about the formulation and discretisation of physical problems...... and stopped when we got to a discrete linear system of equations. Introduction

More information

Algorithms for Nonlinear and Transient Problems

Algorithms for Nonlinear and Transient Problems Algorithms for Nonlinear and Transient Problems David E. Keyes Department of Applied Physics & Applied Mathematics Columbia University Institute for Scientific Computing Research Lawrence Livermore National

More information

A Parallel Scalable PETSc-Based Jacobi-Davidson Polynomial Eigensolver with Application in Quantum Dot Simulation

A Parallel Scalable PETSc-Based Jacobi-Davidson Polynomial Eigensolver with Application in Quantum Dot Simulation A Parallel Scalable PETSc-Based Jacobi-Davidson Polynomial Eigensolver with Application in Quantum Dot Simulation Zih-Hao Wei 1, Feng-Nan Hwang 1, Tsung-Ming Huang 2, and Weichung Wang 3 1 Department of

More information

Preconditioning the Newton-Krylov method for reactive transport

Preconditioning the Newton-Krylov method for reactive transport Preconditioning the Newton-Krylov method for reactive transport Michel Kern, L. Amir, A. Taakili INRIA Paris-Rocquencourt Maison de la Simulation MoMaS workshop Reactive Transport Modeling in the Geological

More information

Multigrid solvers for equations arising in implicit MHD simulations

Multigrid solvers for equations arising in implicit MHD simulations Multigrid solvers for equations arising in implicit MHD simulations smoothing Finest Grid Mark F. Adams Department of Applied Physics & Applied Mathematics Columbia University Ravi Samtaney PPPL Achi Brandt

More information

Integration of PETSc for Nonlinear Solves

Integration of PETSc for Nonlinear Solves Integration of PETSc for Nonlinear Solves Ben Jamroz, Travis Austin, Srinath Vadlamani, Scott Kruger Tech-X Corporation jamroz@txcorp.com http://www.txcorp.com NIMROD Meeting: Aug 10, 2010 Boulder, CO

More information

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations

Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations Newton-Multigrid Least-Squares FEM for S-V-P Formulation of the Navier-Stokes Equations A. Ouazzi, M. Nickaeen, S. Turek, and M. Waseem Institut für Angewandte Mathematik, LSIII, TU Dortmund, Vogelpothsweg

More information

The Deflation Accelerated Schwarz Method for CFD

The Deflation Accelerated Schwarz Method for CFD The Deflation Accelerated Schwarz Method for CFD J. Verkaik 1, C. Vuik 2,, B.D. Paarhuis 1, and A. Twerda 1 1 TNO Science and Industry, Stieltjesweg 1, P.O. Box 155, 2600 AD Delft, The Netherlands 2 Delft

More information

One-Shot Domain Decomposition Methods for Shape Optimization Problems 1 Introduction Page 565

One-Shot Domain Decomposition Methods for Shape Optimization Problems 1 Introduction Page 565 1 One-Shot Domain Decomposition Methods for Shape 2 Optimization Problems 3 Rongliang Chen 1 and Xiao-Chuan Cai 2 4 1 College of Mathematics and Econometrics, Hunan University, Changsha, Hunan 410082,

More information

Indefinite and physics-based preconditioning

Indefinite and physics-based preconditioning Indefinite and physics-based preconditioning Jed Brown VAW, ETH Zürich 2009-01-29 Newton iteration Standard form of a nonlinear system F (u) 0 Iteration Solve: Update: J(ũ)u F (ũ) ũ + ũ + u Example (p-bratu)

More information

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers

A Robust Preconditioned Iterative Method for the Navier-Stokes Equations with High Reynolds Numbers Applied and Computational Mathematics 2017; 6(4): 202-207 http://www.sciencepublishinggroup.com/j/acm doi: 10.11648/j.acm.20170604.18 ISSN: 2328-5605 (Print); ISSN: 2328-5613 (Online) A Robust Preconditioned

More information

Preconditioners for the incompressible Navier Stokes equations

Preconditioners for the incompressible Navier Stokes equations Preconditioners for the incompressible Navier Stokes equations C. Vuik M. ur Rehman A. Segal Delft Institute of Applied Mathematics, TU Delft, The Netherlands SIAM Conference on Computational Science and

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Iteration basics Notes for 2016-11-07 An iterative solver for Ax = b is produces a sequence of approximations x (k) x. We always stop after finitely many steps, based on some convergence criterion, e.g.

More information

A monolithic FEM solver for fluid structure

A monolithic FEM solver for fluid structure A monolithic FEM solver for fluid structure interaction p. 1/1 A monolithic FEM solver for fluid structure interaction Stefan Turek, Jaroslav Hron jaroslav.hron@mathematik.uni-dortmund.de Department of

More information

NKS Method for the Implicit Solution of a Coupled Allen-Cahn/Cahn-Hilliard System

NKS Method for the Implicit Solution of a Coupled Allen-Cahn/Cahn-Hilliard System NKS Method for the Implicit Solution of a Coupled Allen-Cahn/Cahn-Hilliard System Chao Yang 1, Xiao-Chuan Cai 2, David E. Keyes 3, and Michael Pernice 4 1 Coupled Allen-Cahn/Cahn-Hilliard system Coupled

More information

Lecture 17: Iterative Methods and Sparse Linear Algebra

Lecture 17: Iterative Methods and Sparse Linear Algebra Lecture 17: Iterative Methods and Sparse Linear Algebra David Bindel 25 Mar 2014 Logistics HW 3 extended to Wednesday after break HW 4 should come out Monday after break Still need project description

More information

Numerical behavior of inexact linear solvers

Numerical behavior of inexact linear solvers Numerical behavior of inexact linear solvers Miro Rozložník joint results with Zhong-zhi Bai and Pavel Jiránek Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic The fourth

More information

Maria Cameron. f(x) = 1 n

Maria Cameron. f(x) = 1 n Maria Cameron 1. Local algorithms for solving nonlinear equations Here we discuss local methods for nonlinear equations r(x) =. These methods are Newton, inexact Newton and quasi-newton. We will show that

More information

Altered Jacobian Newton Iterative Method for Nonlinear Elliptic Problems

Altered Jacobian Newton Iterative Method for Nonlinear Elliptic Problems Altered Jacobian Newton Iterative Method for Nonlinear Elliptic Problems Sanjay K Khattri Abstract We present an Altered Jacobian Newton Iterative Method for solving nonlinear elliptic problems Effectiveness

More information

Newton additive and multiplicative Schwarz iterative methods

Newton additive and multiplicative Schwarz iterative methods IMA Journal of Numerical Analysis (2008) 28, 143 161 doi:10.1093/imanum/drm015 Advance Access publication on July 16, 2007 Newton additive and multiplicative Schwarz iterative methods JOSEP ARNAL, VIOLETA

More information

New Streamfunction Approach for Magnetohydrodynamics

New Streamfunction Approach for Magnetohydrodynamics New Streamfunction Approac for Magnetoydrodynamics Kab Seo Kang Brooaven National Laboratory, Computational Science Center, Building 63, Room, Upton NY 973, USA. sang@bnl.gov Summary. We apply te finite

More information

The solution of the discretized incompressible Navier-Stokes equations with iterative methods

The solution of the discretized incompressible Navier-Stokes equations with iterative methods The solution of the discretized incompressible Navier-Stokes equations with iterative methods Report 93-54 C. Vuik Technische Universiteit Delft Delft University of Technology Faculteit der Technische

More information

Stabilization and Acceleration of Algebraic Multigrid Method

Stabilization and Acceleration of Algebraic Multigrid Method Stabilization and Acceleration of Algebraic Multigrid Method Recursive Projection Algorithm A. Jemcov J.P. Maruszewski Fluent Inc. October 24, 2006 Outline 1 Need for Algorithm Stabilization and Acceleration

More information

Radial Growth of a Micro-Void in a Class of. Compressible Hyperelastic Cylinder. Under an Axial Pre-Strain *

Radial Growth of a Micro-Void in a Class of. Compressible Hyperelastic Cylinder. Under an Axial Pre-Strain * dv. Theor. ppl. Mech., Vol. 5, 2012, no. 6, 257-262 Radial Growth of a Micro-Void in a Class of Compressible Hyperelastic Cylinder Under an xial Pre-Strain * Yuxia Song, Datian Niu and Xuegang Yuan College

More information

Contents. Preface... xi. Introduction...

Contents. Preface... xi. Introduction... Contents Preface... xi Introduction... xv Chapter 1. Computer Architectures... 1 1.1. Different types of parallelism... 1 1.1.1. Overlap, concurrency and parallelism... 1 1.1.2. Temporal and spatial parallelism

More information

Preface to the Second Edition. Preface to the First Edition

Preface to the Second Edition. Preface to the First Edition n page v Preface to the Second Edition Preface to the First Edition xiii xvii 1 Background in Linear Algebra 1 1.1 Matrices................................. 1 1.2 Square Matrices and Eigenvalues....................

More information

Solving Large Nonlinear Sparse Systems

Solving Large Nonlinear Sparse Systems Solving Large Nonlinear Sparse Systems Fred W. Wubs and Jonas Thies Computational Mechanics & Numerical Mathematics University of Groningen, the Netherlands f.w.wubs@rug.nl Centre for Interdisciplinary

More information

Study of Forced and Free convection in Lid driven cavity problem

Study of Forced and Free convection in Lid driven cavity problem MIT Study of Forced and Free convection in Lid driven cavity problem 18.086 Project report Divya Panchanathan 5-11-2014 Aim To solve the Navier-stokes momentum equations for a lid driven cavity problem

More information

Two-level multiplicative domain decomposition algorithm for recovering the Lamé coefficient in biological tissues

Two-level multiplicative domain decomposition algorithm for recovering the Lamé coefficient in biological tissues Two-level multiplicative domain decomposition algorithm for recovering the Lamé coefficient in biological tissues Si Liu and Xiao-Chuan Cai Department of Applied Mathematics, University of Colorado at

More information

Domain-decomposed Fully Coupled Implicit Methods for a Magnetohydrodynamics Problem

Domain-decomposed Fully Coupled Implicit Methods for a Magnetohydrodynamics Problem Domain-decomposed Fully Coupled Implicit Methods for a Magnetohydrodynamics Problem Serguei Ovtchinniov 1, Florin Dobrian 2, Xiao-Chuan Cai 3, David Keyes 4 1 University of Colorado at Boulder, Department

More information

A MULTIGRID ALGORITHM FOR. Richard E. Ewing and Jian Shen. Institute for Scientic Computation. Texas A&M University. College Station, Texas SUMMARY

A MULTIGRID ALGORITHM FOR. Richard E. Ewing and Jian Shen. Institute for Scientic Computation. Texas A&M University. College Station, Texas SUMMARY A MULTIGRID ALGORITHM FOR THE CELL-CENTERED FINITE DIFFERENCE SCHEME Richard E. Ewing and Jian Shen Institute for Scientic Computation Texas A&M University College Station, Texas SUMMARY In this article,

More information

Coupling SUNDIALS with OpenFOAM 6 th OpenFOAM Workshop. E. David Huckaby June 14, 2011

Coupling SUNDIALS with OpenFOAM 6 th OpenFOAM Workshop. E. David Huckaby June 14, 2011 Coupling SUNDIALS with OpenFOAM 6 th OpenFOAM Worshop E. David Hucaby June 14, 2011 EDH-OFW2011 Outline Motivation Mathematics Basic Design Eamples Food Web Steady & Unsteady Pitz-Daily 2 Motivation Why

More information

Convergence and accuracy of sea ice dynamics solvers. Martin Losch (AWI) Annika Fuchs (AWI), Jean-François Lemieux (EC)

Convergence and accuracy of sea ice dynamics solvers. Martin Losch (AWI) Annika Fuchs (AWI), Jean-François Lemieux (EC) Convergence and accuracy of sea ice dynamics solvers Martin Losch (AWI) Annika Fuchs (AWI), Jean-François Lemieux (EC) Sea ice thickness with MITgcm (JPL) Review of 2D momentum equations m Du Dt = mf k

More information

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU

OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative methods ffl Krylov subspace methods ffl Preconditioning techniques: Iterative methods ILU Preconditioning Techniques for Solving Large Sparse Linear Systems Arnold Reusken Institut für Geometrie und Praktische Mathematik RWTH-Aachen OUTLINE ffl CFD: elliptic pde's! Ax = b ffl Basic iterative

More information

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A.

The amount of work to construct each new guess from the previous one should be a small multiple of the number of nonzeros in A. AMSC/CMSC 661 Scientific Computing II Spring 2005 Solution of Sparse Linear Systems Part 2: Iterative methods Dianne P. O Leary c 2005 Solving Sparse Linear Systems: Iterative methods The plan: Iterative

More information

Incomplete LU Preconditioning and Error Compensation Strategies for Sparse Matrices

Incomplete LU Preconditioning and Error Compensation Strategies for Sparse Matrices Incomplete LU Preconditioning and Error Compensation Strategies for Sparse Matrices Eun-Joo Lee Department of Computer Science, East Stroudsburg University of Pennsylvania, 327 Science and Technology Center,

More information

ITERATIVE METHODS FOR NONLINEAR ELLIPTIC EQUATIONS

ITERATIVE METHODS FOR NONLINEAR ELLIPTIC EQUATIONS ITERATIVE METHODS FOR NONLINEAR ELLIPTIC EQUATIONS LONG CHEN In this chapter we discuss iterative methods for solving the finite element discretization of semi-linear elliptic equations of the form: find

More information

A Recursive Trust-Region Method for Non-Convex Constrained Minimization

A Recursive Trust-Region Method for Non-Convex Constrained Minimization A Recursive Trust-Region Method for Non-Convex Constrained Minimization Christian Groß 1 and Rolf Krause 1 Institute for Numerical Simulation, University of Bonn. {gross,krause}@ins.uni-bonn.de 1 Introduction

More information

XIAO-CHUAN CAI AND MAKSYMILIAN DRYJA. strongly elliptic equations discretized by the nite element methods.

XIAO-CHUAN CAI AND MAKSYMILIAN DRYJA. strongly elliptic equations discretized by the nite element methods. Contemporary Mathematics Volume 00, 0000 Domain Decomposition Methods for Monotone Nonlinear Elliptic Problems XIAO-CHUAN CAI AND MAKSYMILIAN DRYJA Abstract. In this paper, we study several overlapping

More information

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners

Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Solving Symmetric Indefinite Systems with Symmetric Positive Definite Preconditioners Eugene Vecharynski 1 Andrew Knyazev 2 1 Department of Computer Science and Engineering University of Minnesota 2 Department

More information

Lehrstuhl für Informatik 10 (Systemsimulation)

Lehrstuhl für Informatik 10 (Systemsimulation) FRIEDRICH-ALEXANDER-UNIVERSITÄT ERLANGEN-NÜRNBERG INSTITUT FÜR INFORMATIK (MATHEMATISCHE MASCHINEN UND DATENVERARBEITUNG) Lehrstuhl für Informatik 10 (Systemsimulation) Comparison of two implementations

More information

Linear and Non-Linear Preconditioning

Linear and Non-Linear Preconditioning and Non- martin.gander@unige.ch University of Geneva June 2015 Invents an Iterative Method in a Letter (1823), in a letter to Gerling: in order to compute a least squares solution based on angle measurements

More information

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems

Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Adaptive C1 Macroelements for Fourth Order and Divergence-Free Problems Roy Stogner Computational Fluid Dynamics Lab Institute for Computational Engineering and Sciences University of Texas at Austin March

More information

Iterative Methods for Incompressible Flow

Iterative Methods for Incompressible Flow Iterative Methods for Incompressible Flow Melanie McKay Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the degree of Master s of Science

More information

Progress in Parallel Implicit Methods For Tokamak Edge Plasma Modeling

Progress in Parallel Implicit Methods For Tokamak Edge Plasma Modeling Progress in Parallel Implicit Methods For Tokamak Edge Plasma Modeling Michael McCourt 1,2,Lois Curfman McInnes 1 Hong Zhang 1,Ben Dudson 3,Sean Farley 1,4 Tom Rognlien 5, Maxim Umansky 5 Argonne National

More information

Coupling transport with geochemistry Applications to CO2 sequestration

Coupling transport with geochemistry Applications to CO2 sequestration Coupling transport with geochemistry Applications to CO2 sequestration Michel Kern with L. Amir, B. Gueslin, A. Taakili INRIA Paris Rocquencourt 3ème Conférence Internationale de la Société Marocaine de

More information

arxiv: v1 [math.na] 14 May 2016

arxiv: v1 [math.na] 14 May 2016 NONLINEAR PRECONDITIONING: HOW TO USE A NONLINEAR SCHWARZ METHOD TO PRECONDITION NEWTON S METHOD V. DOLEAN, M.J. GANDER, W. KHERIJI, F. KWOK, AND R. MASSON arxiv:65.449v [math.na] 4 May 6 Abstract. For

More information

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE

FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT OF A HEATED SQUARE HOLLOW CYLINDER IN A LID-DRIVEN RECTANGULAR ENCLOSURE Proceedings of the International Conference on Mechanical Engineering 2011 (ICME2011) 18-20 December 2011, Dhaka, Bangladesh ICME11-TH-014 FINITE ELEMENT ANALYSIS OF MIXED CONVECTION HEAT TRANSFER ENHANCEMENT

More information

A Fully Implicit Domain Decomposition Based ALE Framework for Three-dimensional Fluid-structure Interaction with Application in Blood Flow Computation

A Fully Implicit Domain Decomposition Based ALE Framework for Three-dimensional Fluid-structure Interaction with Application in Blood Flow Computation A Fully Implicit Domain Decomposition Based ALE Framework for Three-dimensional Fluid-structure Interaction with Application in Blood Flow Computation Yuqi Wu a, Xiao-Chuan Cai b a Department of Applied

More information

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid

Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Solving the Stochastic Steady-State Diffusion Problem Using Multigrid Tengfei Su Applied Mathematics and Scientific Computing Advisor: Howard Elman Department of Computer Science Sept. 29, 2015 Tengfei

More information

An Efficient Two-Level Preconditioner for Multi-Frequency Wave Propagation Problems

An Efficient Two-Level Preconditioner for Multi-Frequency Wave Propagation Problems An Efficient Two-Level Preconditioner for Multi-Frequency Wave Propagation Problems M. Baumann, and M.B. van Gijzen Email: M.M.Baumann@tudelft.nl Delft Institute of Applied Mathematics Delft University

More information

An Accelerated Block-Parallel Newton Method via Overlapped Partitioning

An Accelerated Block-Parallel Newton Method via Overlapped Partitioning An Accelerated Block-Parallel Newton Method via Overlapped Partitioning Yurong Chen Lab. of Parallel Computing, Institute of Software, CAS (http://www.rdcps.ac.cn/~ychen/english.htm) Summary. This paper

More information

Parallel sparse linear solvers and applications in CFD

Parallel sparse linear solvers and applications in CFD Parallel sparse linear solvers and applications in CFD Jocelyne Erhel Joint work with Désiré Nuentsa Wakam () and Baptiste Poirriez () SAGE team, Inria Rennes, France journée Calcul Intensif Distribué

More information

Solving PDEs with Multigrid Methods p.1

Solving PDEs with Multigrid Methods p.1 Solving PDEs with Multigrid Methods Scott MacLachlan maclachl@colorado.edu Department of Applied Mathematics, University of Colorado at Boulder Solving PDEs with Multigrid Methods p.1 Support and Collaboration

More information

On complex shifted Laplace preconditioners for the vector Helmholtz equation

On complex shifted Laplace preconditioners for the vector Helmholtz equation On complex shifted Laplace preconditioners for the vector Helmholtz equation C. Vuik, Y.A. Erlangga, M.B. van Gijzen, C.W. Oosterlee, D. van der Heul Delft Institute of Applied Mathematics c.vuik@tudelft.nl

More information

A Differential Variational Inequality Approach for the Simulation of Heterogeneous Materials

A Differential Variational Inequality Approach for the Simulation of Heterogeneous Materials A Differential Variational Inequality Approach for the Simulation of Heterogeneous Materials Lei Wang 1, Jungho Lee 1, Mihai Anitescu 1, Anter El Azab 2, Lois Curfman McInnes 1, Todd Munson 1, Barry Smith

More information

Edwin van der Weide and Magnus Svärd. I. Background information for the SBP-SAT scheme

Edwin van der Weide and Magnus Svärd. I. Background information for the SBP-SAT scheme Edwin van der Weide and Magnus Svärd I. Background information for the SBP-SAT scheme As is well-known, stability of a numerical scheme is a key property for a robust and accurate numerical solution. Proving

More information

Iterative methods for positive definite linear systems with a complex shift

Iterative methods for positive definite linear systems with a complex shift Iterative methods for positive definite linear systems with a complex shift William McLean, University of New South Wales Vidar Thomée, Chalmers University November 4, 2011 Outline 1. Numerical solution

More information

Iterative methods for Linear System

Iterative methods for Linear System Iterative methods for Linear System JASS 2009 Student: Rishi Patil Advisor: Prof. Thomas Huckle Outline Basics: Matrices and their properties Eigenvalues, Condition Number Iterative Methods Direct and

More information

A New time Integration Scheme for Cahn-hilliard Equations

A New time Integration Scheme for Cahn-hilliard Equations A New time Integration Scheme for Cahn-hilliard Equations Item Type Conference Paper Authors Schaefer, R.; Smol-ka, M.; Dalcin, L; Paszyn'ski, M. Citation A New time Integration Scheme for Cahn-hilliard

More information

Multigrid absolute value preconditioning

Multigrid absolute value preconditioning Multigrid absolute value preconditioning Eugene Vecharynski 1 Andrew Knyazev 2 (speaker) 1 Department of Computer Science and Engineering University of Minnesota 2 Department of Mathematical and Statistical

More information

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems

Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Acceleration of a Domain Decomposition Method for Advection-Diffusion Problems Gert Lube 1, Tobias Knopp 2, and Gerd Rapin 2 1 University of Göttingen, Institute of Numerical and Applied Mathematics (http://www.num.math.uni-goettingen.de/lube/)

More information

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction

Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Discrete Projection Methods for Incompressible Fluid Flow Problems and Application to a Fluid-Structure Interaction Problem Jörg-M. Sautter Mathematisches Institut, Universität Düsseldorf, Germany, sautter@am.uni-duesseldorf.de

More information

Algebraic Multigrid as Solvers and as Preconditioner

Algebraic Multigrid as Solvers and as Preconditioner Ò Algebraic Multigrid as Solvers and as Preconditioner Domenico Lahaye domenico.lahaye@cs.kuleuven.ac.be http://www.cs.kuleuven.ac.be/ domenico/ Department of Computer Science Katholieke Universiteit Leuven

More information

SIMULTANEOUS DETERMINATION OF STEADY TEMPERATURES AND HEAT FLUXES ON SURFACES OF THREE DIMENSIONAL OBJECTS USING FEM

SIMULTANEOUS DETERMINATION OF STEADY TEMPERATURES AND HEAT FLUXES ON SURFACES OF THREE DIMENSIONAL OBJECTS USING FEM Proceedings of ASME IMECE New ork, N, November -6, IMECE/HTD-43 SIMULTANEOUS DETERMINATION OF STEAD TEMPERATURES AND HEAT FLUES ON SURFACES OF THREE DIMENSIONAL OBJECTS USING FEM Brian H. Dennis and George

More information

The TAO Linearly-Constrained Augmented Lagrangian Method for PDE-Constrained Optimization 1

The TAO Linearly-Constrained Augmented Lagrangian Method for PDE-Constrained Optimization 1 ARGONNE NATIONAL LABORATORY 9700 South Cass Avenue Argonne, Illinois 60439 The TAO Linearly-Constrained Augmented Lagrangian Method for PDE-Constrained Optimization 1 Evan Gawlik, Todd Munson, Jason Sarich,

More information

Lab 1: Iterative Methods for Solving Linear Systems

Lab 1: Iterative Methods for Solving Linear Systems Lab 1: Iterative Methods for Solving Linear Systems January 22, 2017 Introduction Many real world applications require the solution to very large and sparse linear systems where direct methods such as

More information

Parallel Algorithms for Solution of Large Sparse Linear Systems with Applications

Parallel Algorithms for Solution of Large Sparse Linear Systems with Applications Parallel Algorithms for Solution of Large Sparse Linear Systems with Applications Murat Manguoğlu Department of Computer Engineering Middle East Technical University, Ankara, Turkey Prace workshop: HPC

More information

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems

An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems An Efficient Low Memory Implicit DG Algorithm for Time Dependent Problems P.-O. Persson and J. Peraire Massachusetts Institute of Technology 2006 AIAA Aerospace Sciences Meeting, Reno, Nevada January 9,

More information

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation S. Bordère a and J.-P. Caltagirone b a. CNRS, Univ. Bordeaux, ICMCB,

More information