ICF ignition and the Lawson criterion

Size: px
Start display at page:

Download "ICF ignition and the Lawson criterion"

Transcription

1 ICF ignition and the Lawson criterion Riccardo Betti Fusion Science Center Laboratory for Laser Energetics, University of Rochester Seminar Massachusetts Institute of Technology, January 0, 010, Cambridge MA

2 Collaborators University of Rochester Laboratory for Laser Energetics K. Anderson P. Chang R. Nora C. Zhou

3 Lasers can compress solid hydrogen through laser-driven ablation Rocket engine effect

4 laser Solid DT laser ICF capsules are mm-size shells with hundreds μm-thick layers of cryogenic solid DT driven to an implosion velocity of hundreds km/s laser laser R inner DT gas laser CH or Be ablator may or may not be present. laser Δ(0) laser Δ ( 0) mm ice laser Target size and initial density solid ρ DT (18 K)=0.5g/cc Rinner( 0) mm The target is driven to an implosion velocity V i of km/s by a laser or other driver 300 Vi 400 km/s

5 After the capsule reaches the maximum implosion velocity, is slowed down by the pressure building up in the center until it stagnates and ignites Laser power Max. power We are interested in the deceleration and stagnation Laser is off Neutron rate Imploding shell acceleration Deceleration time Peak implosion velocity V=V i stagnation

6 The final assembly consists of a hot spot at several kev s surrounded by a cold dense shell 7 Stagnation density and temperature Stagnation density and pressure 1400 T i (kev) T i HOT SPOT DENSE SHELL ρ Density (g/cc) P (Gbar) P HOT SPOT DENSE SHELL ρ Density (g/cc) R (μm) R (μm) Imploding shell Dense shell Stagnating core Hot spot Ignition starts in the hot spot

7 The 3.5 MeV alpha particles ( 4 He) slow down within the hot spot causing further heating and more fusion Reactions triggering the thermonuclear instability. This is hot spot ignition. Dense DT shell D + T α(3.5mev)+n(17.1mev) Δ R HOT SPOT If the hot spot is dense and large enough, the alpha particles deposit their energy in the hot spot. The condition for alpha energy deposition in the hot spot is (ρr) hot-spot >0.g cm -

8 The Lawson criterion for thermonuclear ignition requires that the alpha-particle heating of the hot spot exceeds all the energy losses 3.5MeV α-particle heating rate > energy loss rate ε α 4 n σv V > 3 P τ V Plasma pressure ion particle density Fusion reactivity Energy confinement time P = ( n T + nt ) nt e e i i

9 Fusion reactivity is highest for DT Fusion reaction rate (m 3 /s) 00,000,000 o F Temperature in millions of o F

10 Performance parameters for fusion devices based on thermonuclear ignition The product Pτ: Pτ > 4 T ε σv α The ignition parameter: χ ε σv α Pτ > 4 T 1

11 n The Lawson criterion and the ignition parameter for Magnetic Confinement Fusion (MCF). MCF requires <P>τ > 7 atm-s uniform and T T / V 0 ε σv α χ P τ > 4 T v 1 V P 15 τ >7 atm-s at 9 kev Ignition parameter = Lawson criterion σv T V V m s kev T ( kev )

12 JET (MCF) has achieved <P>τ ~ 1 atm-s and an ignition parameter χ 0.14 in DT discharges with <T> ~ 10 kev JET has achieved <T i > 14 kev, <T e > 7 kev n T i (0)τ m -3 kev s [Keilhacker Nuc. Fus (1999)] <p>τ = <p i +p e > τ 1 atm-s χ ε α 4 P τ V σv V 014. T ~10 kev Not clear how to use this criterion for T e <T i. This value (0.14) is probably an upper bound

13 The Lawson criterion and the ignition parameter for ICF hot-spot ignition P uniform in hot spot ε α σv χ Pτ > 4 T Ignition parameter = Lawson criterion 1 V σv T 10 V 3 1 m s kev 5 P τ >10 atm-s at 14keV T ( kev )

14 ICF implosions cannot achieve ~14keV temperatures through compression alone Imploding shell T ~ V i High T requires high implosion velocity V i High V i requires thin shells Thin shells break up in flight due to hydrodynamic instabilities

15 Stable ICF implosions can achieve average temperatures of ~ 4-5keV through compression. ICF requires Pτ above 0 atm-s ε α σv χ Pτ > 4 T 1 V 4 Pτ > σv εα T T = 5keV 0 atm-s

16 How do we assess the performance of ICF implosions if we can t measure P, τ and χ?

17 Ion temperatures, areal densities and neutron yields are the only parameters of the fuel assembly that can be measured with existing (nuclear) diagnostics Neutron yields and neutron rates Ion Temperature (neutron averaged) Nneutron T i neutron dnneutron dt Total areal density (neutron averaged) ρr neutron 0 ρdr neutron 0 ( ) ρr ρdr ρδ Total ρr Shell ρδ shell stagnation Hot spot shell Δ

18 Areal densities are measured with nuclear diagnostics: secondary proton spectra, downscattered neutrons and others

19 Neutron-time-of-flight detectors are used to measure neutron yields, neutron rates and ion temperatures

20 The energy confinement in ICF

21

22 The heat lost by the hot spot is deposited on the shell inner surface driving an ablative mass flow into the hot spot. The pressure is unchanged. enthalpy flux T mass ablation ρ 5 Pv a = κ(t) T heat flux hot spot shell The heat lost by the hot spot is recycled into the hot spot by mass ablation R r Heat losses lower T but raise n keeping P~nT constant

23 The hot-spot pressure confinement time is determined by the shell inertia Thin shell: Δ<<R R Hot spot P shell M s Δ MR=4πPR s R τ ~ ~ R M s 4πPR

24 The hot spot energy (pressure) comes from the shell kinetic energy. The confinement time is inversely proportional to the implosion velocity V i V i Imploding shell Dense shell Stagnating core Hot spot 4π 3 1 R P M V 3 3 s i MV s PR~ 4 i πr τ R R M s ~ ~ ~ 4πPR R V i

25 The product Pτ can be rewritten in terms of areal density and implosion velocity PR MV Pτ ~ V 4 πr i s i ~ use MV s PR~ 4 i πr Ms 4 πr ( ρδ) Thin shell mass Pτ ~( ρδ) V ~ ( ρr) V i i Implosion velocity cannot be measured Areal density can be measured ( ρr) ρdr 0

26 Temperature and implosion velocity are related Pτ can be measured T kev i ρr 0. gcm V (km/s) - Measurable Pτ for uniform (spherically symmetric 1D) implosions 0.8 P τ (1D)~8 (ρr) -T gcm kev atm-s

27 The ignition parameter ( Lawson criterion) can be measured (in 1D implosions) ε α σv χ Pτ > 1 - gcm 4 T S(T) V S(T) S(4.5) 0.8 P τ (1D)~8 (ρr) T kev atm-s ( ) 08. T kev 1D R > 1 gcm χ ρ T (kev)/4.5

28

29 The performance parameters for ICF can be extended to three-dimensions P τ (3D)~8 (ρr) -T gcm kev YOC atm-s χ 3D T kev ( ρr) - gcm YOC>1 Easy fix: replace <σv> with <σv>yoc P τ (3D)~8 (ρr) -T gcm kev YOC atm-s χ 1.6 T ρr YOC >1 4.7 ( ) 0.8 kev 0.5 3D - gcm Better theory + simulations

30 The performance parameter χ predicts ignition with a ± 10% error simulation database χ 3D T χ3d ( ρr) kev 05. YOC gcm

31 Cryogenic implosions on OMEGA have achieved Pτ 1. atm-s and χ 0.0 OMEGA implosions: ρr 0. g/cm, T kev, YOC P τ (3D) 8 (ρr) -T gcm kev YOC 1. atm-s 0.8 T kev 0.5 χ( 3D) ( ρr) - YOC 0. 0 gcm JET DT discharges: Pτ 1 atm-s, χ 0.14

32 The Pτ - T plot shows progress in fusion research OMEGA implosions ρr 0. g cm - Yield neutrons YOC 0.1 <T> kev Pτ 1 atm-s χ 0.0 Gain ~ 10-3 NIF ignition targets ρr 1.8 g cm - YOC 0.4 <T> 4.7 kev Pτ 5 atm-s χ 1 Gain ~ 0

33

34 Hydro-equivalent curves show how current OMEGA implosions would perform when scaled up to the NIF

35 Hydro-equivalent ignition in the Pτ -T plane Hydro-equivalent ignition on OMEGA: ρr 0.3 g cm - Yield neutrons YOC 0.15 <T> 3.4 kev Pτ 3 atm-s χ 0.08

36

37

Where are we with laser fusion?

Where are we with laser fusion? Where are we with laser fusion? R. Betti Laboratory for Laser Energetics Fusion Science Center Dept. Mechanical Engineering and Physics & Astronomy University of Rochester HEDSA HEDP Summer School August

More information

Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE

Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE Inertial Confinement Fusion DR KATE LANCASTER YORK PLASMA INSTITUTE In the beginning In the late fifties, alternative applications of nuclear explosions were being considered the number one suggestion

More information

Two-Dimensional Simulations of Electron Shock Ignition at the Megajoule Scale

Two-Dimensional Simulations of Electron Shock Ignition at the Megajoule Scale Two-Dimensional Simulations of Electron Shock Ignition at the Megajoule Scale Laser intensity ( 1 15 W/cm 2 ) 5 4 3 2 1 Laser spike is replaced with hot-electron spike 2 4 6 8 1 Gain 2 15 1 5 1. 1.2 1.4

More information

High-Performance Inertial Confinement Fusion Target Implosions on OMEGA

High-Performance Inertial Confinement Fusion Target Implosions on OMEGA High-Performance Inertial Confinement Fusion Target Implosions on OMEGA D.D. Meyerhofer 1), R.L. McCrory 1), R. Betti 1), T.R. Boehly 1), D.T. Casey, 2), T.J.B. Collins 1), R.S. Craxton 1), J.A. Delettrez

More information

Charged-Particle Spectra Using Particle Tracking on a Two-Dimensional Grid. P. B. Radha, J. A. Delettrez, R. Epstein, S. Skupsky, and J. M.

Charged-Particle Spectra Using Particle Tracking on a Two-Dimensional Grid. P. B. Radha, J. A. Delettrez, R. Epstein, S. Skupsky, and J. M. Charged-Particle Spectra Using Particle Tracking on a Two-Dimensional Grid P. B. Radha, J. A. Delettrez, R. Epstein, S. Skupsky, and J. M. Soures Laboratory for Laser Energetics, U. of Rochester S. Cremer

More information

Direct-Drive, High-Convergence-Ratio Implosion Studies on the OMEGA Laser System

Direct-Drive, High-Convergence-Ratio Implosion Studies on the OMEGA Laser System Direct-Drive, High-Convergence-Ratio Implosion Studies on the OMEGA Laser System F. J. Marshall, J. A. Delettrez, R. Epstein, V. Yu. Glebov, D. D. Meyerhofer, R. D. Petrasso,P.B.Radha,V.A.Smalyuk,J.M.Soures,C.Stoekl,R.P.J.Town,

More information

Notes on fusion reactions and power balance of a thermonuclear plasma!

Notes on fusion reactions and power balance of a thermonuclear plasma! SA, 3/2017 Chapter 5 Notes on fusion reactions and power balance of a thermonuclear plasma! Stefano Atzeni See S. Atzeni and J. Meyer-ter-Vehn, The Physics of Inertial Fusion, Oxford University Press (2004,

More information

What is. Inertial Confinement Fusion?

What is. Inertial Confinement Fusion? What is Inertial Confinement Fusion? Inertial Confinement Fusion: dense & short-lived plasma Fusing D and T requires temperature to overcome Coulomb repulsion density & confinement time to maximize number

More information

Three-Dimensional Studies of the Effect of Residual Kinetic Energy on Yield Degradation

Three-Dimensional Studies of the Effect of Residual Kinetic Energy on Yield Degradation Threeimensional Studies of the Effect of Residual Kinetic Energy on Yield Degradation Kinetic energy density for single-mode, = 1, m = 6 1. YOC model = (1 RKE) 4.4 1 3 to ( Jm / ) 5.797 1 15 1.44 1 1 z

More information

First Results from Cryogenic-Target Implosions on OMEGA

First Results from Cryogenic-Target Implosions on OMEGA First Results from Cryogenic-Target Implosions on OMEGA MIT 1 mm 1 mm 100 µm C. Stoeckl University of Rochester Laboratory for Laser Energetics 43rd Annual Meeting of the American Physical Society Division

More information

Exploration of the Feasibility of Polar Drive on the LMJ. Lindsay M. Mitchel. Spencerport High School. Spencerport, New York

Exploration of the Feasibility of Polar Drive on the LMJ. Lindsay M. Mitchel. Spencerport High School. Spencerport, New York Exploration of the Feasibility of Polar Drive on the LMJ Lindsay M. Mitchel Spencerport High School Spencerport, New York Advisor: Dr. R. S. Craxton Laboratory for Laser Energetics University of Rochester

More information

Progress in Direct-Drive Inertial Confinement Fusion Research

Progress in Direct-Drive Inertial Confinement Fusion Research Progress in Direct-Drive Inertial Confinement Fusion Research Ignition and Gain Total GtRH n (g/cm 2 ) 2 1.5.2.1 IAEA 21 DT, 22 kj IAEA 28 DT, 16 kj NIF.5 MJ NIF point design 1.5 MJ 1-D marginal ignition

More information

Progress in Direct-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics

Progress in Direct-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics 1 Progress in Direct-Drive Inertial Confinement Fusion Research at the Laboratory for Laser Energetics R.L. McCrory 1), D.D. Meyerhofer 1), S.J. Loucks 1), S. Skupsky 1) R.E. Bahr 1), R. Betti 1), T.R.

More information

D- 3 He Protons as a Diagnostic for Target ρr

D- 3 He Protons as a Diagnostic for Target ρr D- 3 He Protons as a Diagnostic for Target ρr Areal density (ρr) is an important parameter for measuring compression in ICF experiments. Several diagnostics employing nuclear particles have been considered

More information

Non-cryogenic ICF-target

Non-cryogenic ICF-target Non-cryogenic ICF-target 1, V.E. Sherman, 3 N.V. Zmitrenko 1 P.N.Lebedev Physical Institute of Russian Academy of Sciences, Moscow, RF St.-Petersburg Polytechnic State Iniversity, RF M.V. Keldish Instititute

More information

Analysis of a Direct-Drive Ignition Capsule Design for the National Ignition Facility

Analysis of a Direct-Drive Ignition Capsule Design for the National Ignition Facility Analysis of a Direct-Drive Ignition Capsule Design for the National Ignition Facility R (mm) 1 8 6 4 End of acceleration phase r(g/cc) 7.5 3.5.5 Gain 4 3 2 1 1 2 2 s (mm) 5 25 25 5 Z (mm) P. W. McKenty

More information

Advanced Ignition Experiments on OMEGA

Advanced Ignition Experiments on OMEGA Advanced Ignition Experiments on OMEGA C. Stoeckl University of Rochester Laboratory for Laser Energetics 5th Annual Meeting of the American Physical Society Division of Plasma Physics Dallas, TX 17 21

More information

Fukuoka, Japan. 23 August National Ignition Facility (NIF) Laboratory for Laser Energetics (OPERA)

Fukuoka, Japan. 23 August National Ignition Facility (NIF) Laboratory for Laser Energetics (OPERA) Fukuoka, Japan 23 August 2012 National Ignition Facility (NIF) LLNL-PRES-562760 This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under

More information

The Ignition Physics Campaign on NIF: Status and Progress

The Ignition Physics Campaign on NIF: Status and Progress Journal of Physics: Conference Series PAPER OPEN ACCESS The Ignition Physics Campaign on NIF: Status and Progress To cite this article: M. J. Edwards and Ignition Team 216 J. Phys.: Conf. Ser. 688 1217

More information

High Gain Direct Drive Target Designs and Supporting Experiments with KrF )

High Gain Direct Drive Target Designs and Supporting Experiments with KrF ) High Gain Direct Drive Target Designs and Supporting Experiments with KrF ) Max KARASIK, Yefim AGLITSKIY 1), Jason W. BATES, Denis G. COLOMBANT 4), David M. KEHNE, Wallace M. MANHEIMER 2), Nathan METZLER

More information

The Pursuit of Indirect Drive Ignition at the National Ignition Facility

The Pursuit of Indirect Drive Ignition at the National Ignition Facility The Pursuit of Indirect Drive Ignition at the National Ignition Facility Workshop on Plasma Astrophysics: From the Laboratory to the Non-Thermal Universe Oxford, England July 3-5, 2017 Richard Town Deputy

More information

Physics of Laser-Plasma Interaction and Shock Ignition of Fusion Reactions

Physics of Laser-Plasma Interaction and Shock Ignition of Fusion Reactions Modelisation and Numerical Methods for Hot Plasmas Talence, October 14, 2015 Physics of Laser-Plasma Interaction and Shock Ignition of Fusion Reactions V. T. Tikhonchuk, A. Colaïtis, A. Vallet, E. Llor

More information

The 1-D Cryogenic Implosion Campaign on OMEGA

The 1-D Cryogenic Implosion Campaign on OMEGA The 1-D Cryogenic Implosion Campaign on OMEGA Yield Exp (#1 14 ) 1.4 1.2 1..8.6.4 1-D campaign neutron yields.2 R. Betti University of Rochester Laboratory for Laser Energetics.2.4.6.8 1. 1.2 LILAC 4 8.

More information

An Overview of Laser-Driven Magnetized Liner Inertial Fusion on OMEGA

An Overview of Laser-Driven Magnetized Liner Inertial Fusion on OMEGA An Overview of Laser-Driven Magnetized Liner Inertial Fusion on OMEGA 4 compression beams MIFEDS coils B z ~ 1 T Preheat beam from P9 1 mm Ring 3 Rings 4 Ring 3 Target support Fill-tube pressure transducer

More information

Diagnosing OMEGA and NIF Implosions Using the D 3 He Spectrum Line Width

Diagnosing OMEGA and NIF Implosions Using the D 3 He Spectrum Line Width Introduction Diagnosing OMEGA and NIF Implosions Using the D 3 He Spectrum Line Width A. B. Zylstra, M. Rosenberg, N. Sinenian, C. Li, F. Seguin, J. Frenje, R. Petrasso (MIT) R. Rygg, D. Hicks, S. Friedrich,

More information

The MIT Accelerator for development of ICF diagnostics at OMEGA / OMEGA-EP and the NIF

The MIT Accelerator for development of ICF diagnostics at OMEGA / OMEGA-EP and the NIF Introduction The MIT Accelerator for development of ICF diagnostics at OMEGA / OMEGA-EP and the NIF SBDs d + or 3 He +(2+) D or 3 He target Present MIT Graduate Students and the MIT Accelerator OLUG 21

More information

Dual Nuclear Shock Burn:

Dual Nuclear Shock Burn: Dual Nuclear Shock Burn: Experiment, Simulation, and the Guderley Model J.R. Rygg, J.A. Frenje, C.K. Li, F.H. Séguin, and R.D. Petrasso MIT PSFC J.A. Delettrez, V.Yu Glebov, D.D. Meyerhofer, and T.C. Sangster

More information

The Magnetic Recoil Spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF)

The Magnetic Recoil Spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF) PSFC/JA-16-32 The Magnetic Recoil Spectrometer (MRSt) for time-resolved measurements of the neutron spectrum at the National Ignition Facility (NIF) J.A. Frenje 1 T.J. Hilsabeck 2, C. Wink1, P. Bell 3,

More information

The National Ignition Campaign: Status and Progress

The National Ignition Campaign: Status and Progress 1 The National Ignition Campaign: Status and Progress E. I. Moses Lawrence Livermore National Laboratory, Livermore, CA 94450 Abstract. The National Ignition Facility (NIF) at Lawrence Livermore National

More information

Polar Drive on OMEGA and the NIF

Polar Drive on OMEGA and the NIF Polar Drive on OMEGA and the NIF OMEGA polar-drive geometry 21.4 Backlit x-ray image OMEGA polar-drive implosion 21.4 58.2 77.8 42. 58.8 CR ~ 5 R = 77 nm 4 nm 4 nm P. B. Radha University of Rochester Laboratory

More information

MIT Research using High-Energy Density Plasmas at OMEGA and the NIF

MIT Research using High-Energy Density Plasmas at OMEGA and the NIF MIT Research using High-Energy Density Plasmas at OMEGA and the NIF 860 μm 2.3 μm SiO 2 D 3 He gas 1 10 11 D-D 3 He D-D T Yield D-D p D- 3 He 0 0 5 10 15 Energy (MeV) D- 3 He p Hans Rinderknecht Wednesday,

More information

Integrated Modeling of Fast Ignition Experiments

Integrated Modeling of Fast Ignition Experiments Integrated Modeling of Fast Ignition Experiments Presented to: 9th International Fast Ignition Workshop Cambridge, MA November 3-5, 2006 R. P. J. Town AX-Division Lawrence Livermore National Laboratory

More information

FPEOS: A First-Principles Equation of State Table of Deuterium for Inertial Confinement Fusion Applications

FPEOS: A First-Principles Equation of State Table of Deuterium for Inertial Confinement Fusion Applications FPEOS: A First-Principles Equation of State Table of Deuterium for Inertial Confinement Fusion Applications S. X. Hu 1,, B. Militzer 2, V. N. Goncharov 1, S. Skupsky 1 1. Laboratory for Laser Energetics,

More information

Improving hot-spot pressure for ignition in high-adiabat inertial confinement fusion implosion

Improving hot-spot pressure for ignition in high-adiabat inertial confinement fusion implosion Improving hot-spot preure for ignition in high-adiabat inertial confinement fusion implosion Dongguo Kang( 康洞国 ),* Shaoping Zhu( 朱少平 ), Wenbing Pei( 裴文兵 ), Shiyang Zou( 邹士阳 ), Wudi Zheng( 郑无敌 ), Jianfa

More information

Mitigation of Cross-Beam Energy Transfer in Direct-Drive Implosions on OMEGA

Mitigation of Cross-Beam Energy Transfer in Direct-Drive Implosions on OMEGA Mitigation of Cross-Beam Energy Transfer in Direct-Drive Implosions on OMEGA In-flight aspect ratio OMEGA cryogenic ignition hydro-equivalent design tr = 3 mg/cm 2, V imp = 3.7 7 cm/s 3 3 2 14 m = 48 ng

More information

Inertial Confinement Fusion

Inertial Confinement Fusion Inertial Confinement Fusion Prof. Dr. Mathias Groth Aalto University School of Science, Department of Applied Physics Outline Principles of inertial confinement fusion Implosion/compression physics Direct

More information

Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor. Katherine Manfred

Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor. Katherine Manfred Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor Katherine Manfred Polar Direct-Drive Simulations for a Laser-Driven HYLIFE-II Fusion Reactor Katherine M. Manfred Fairport High

More information

Laser in Fusion. Department of Electronics of TEI of Crete. Dr Petridis Kostantinos Lecturer Optoelectronics, Laser and Plasma Technologies Group

Laser in Fusion. Department of Electronics of TEI of Crete. Dr Petridis Kostantinos Lecturer Optoelectronics, Laser and Plasma Technologies Group Laser in Fusion Department of Electronics of TEI of Crete Dr Petridis Kostantinos Lecturer Optoelectronics, Laser and Plasma Technologies Group Nuclear Fusion Since we have tried any energy source in our

More information

Experimental Demonstration of X-Ray Drive Enhancement with Rugby-Shaped Hohlraums

Experimental Demonstration of X-Ray Drive Enhancement with Rugby-Shaped Hohlraums Experimental Demonstration of X-Ray Drive Enhancement with Rugby-Shaped Hohlraums The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

More information

Ignition Regime and Burn Dynamics of D T-Seeded D 3 He Fuel for Fast Ignition Inertial Confinement Fusion

Ignition Regime and Burn Dynamics of D T-Seeded D 3 He Fuel for Fast Ignition Inertial Confinement Fusion Ignition Regime and Burn Dynamics of D T-Seeded D 3 He Fuel for Fast Ignition Inertial Confinement Fusion Y. Nakao, K. Tsukida, K. Shinkoda, Y. Saito Department of Applied Quantum Physics and Nuclear Engineering,

More information

An Overview of Laser-Driven Magnetized Liner Inertial Fusion on OMEGA

An Overview of Laser-Driven Magnetized Liner Inertial Fusion on OMEGA An Overview of Laser-Driven Magnetized Liner Inertial Fusion on OMEGA 4 compression beams MIFEDS coils B z ~ 1 T Preheat beam from P9 1 mm Ring 3 Rings 4 Ring 3 Target support Fill-tube pressure transducer

More information

D 3 He proton spectra for diagnosing shell R and fuel T i of imploded capsules at OMEGA

D 3 He proton spectra for diagnosing shell R and fuel T i of imploded capsules at OMEGA PHYSICS OF PLASMAS VOLUME 7, NUMBER 6 JUNE 2000 D 3 He proton spectra for diagnosing shell R and fuel T i of imploded capsules at OMEGA C. K. Li, D. G. Hicks, F. H. Séguin, J. A. Frenje, and R. D. Petrasso

More information

Shock ignition. John Pasley. University of York / CLF

Shock ignition. John Pasley. University of York / CLF Shock ignition John Pasley University of York / CLF Lecture structure Reading list Primer on shock waves Shock waves in conventional ICF Why shock ignition? Methodology Advantages of shock ignition Outlook

More information

Hydrodynamic instability measurements in DTlayered ICF capsules using the layered-hgr platform

Hydrodynamic instability measurements in DTlayered ICF capsules using the layered-hgr platform Journal of Physics: Conference Series PAPER OPEN ACCESS Hydrodynamic instability measurements in DTlayered ICF capsules using the layered-hgr platform Related content - Mix and hydrodynamic instabilities

More information

A Multi-Dimensional View of the US Inertial Confinement Fusion Program

A Multi-Dimensional View of the US Inertial Confinement Fusion Program Photos placed in horizontal position with even amount of white space between photos and header To replace these boxes with images open the slide master A Multi-Dimensional View of the US Inertial Confinement

More information

Modeling the Effects Mix at the Hot Spot Surface in 1-D Simulations of Cryogenic All-DT Ignition Capsule Implosions

Modeling the Effects Mix at the Hot Spot Surface in 1-D Simulations of Cryogenic All-DT Ignition Capsule Implosions Modeling the Effects Mix at the Hot Spot Surface in 1-D Simulations of Cryogenic All-DT Ignition Capsule Implosions 14 Time = 1.4 ns 25 Ion temperature (kev) 12 1 8 6 4 2 22.2 8.7 1.5 Gain =.45 2 15 1

More information

The MIT Nuclear Products Generator for development of ICF diagnostics at Omega / Omega EP and the NIF

The MIT Nuclear Products Generator for development of ICF diagnostics at Omega / Omega EP and the NIF Introduction The MIT Nuclear Products Generator for development of ICF diagnostics at Omega / Omega EP and the NIF SBDs d + or 3 He +(2+) D or 3 He target Present MIT Graduate Students and the MIT Nuclear

More information

GA A22407 THRESHOLD BUBBLE CHAMBER FOR MEASUREMENT OF KNOCK-ON DT NEUTRON TAILS FROM MAGNETIC AND INERTIAL CONFINEMENT EXPERIMENTS

GA A22407 THRESHOLD BUBBLE CHAMBER FOR MEASUREMENT OF KNOCK-ON DT NEUTRON TAILS FROM MAGNETIC AND INERTIAL CONFINEMENT EXPERIMENTS GA A22407 THRESHOLD BUBBLE CHAMBER FOR MEASUREMENT OF KNOCK-ON DT NEUTRON TAILS FROM MAGNETIC AND INERTIAL CONFINEMENT EXPERIMENTS by R.K. FISHER, V.S. ZAVERYAEV, AND S.V. TRUSILLO JULY 1996 GA A22407

More information

Areal-Density-Growth Measurements with Proton Spectroscopy on OMEGA

Areal-Density-Growth Measurements with Proton Spectroscopy on OMEGA Areal-Density-Growth Measurements with Proton Spectroscopy on OMEGA Areal density (mg/cm ) 5 15 1 5 4 atm D 3 He 1.6 1... 1 1 1 1 19 1 1 Neutron rate (s 1 ) V. A. Smalyuk Laboratory for Laser Energetics

More information

The 1-D Campaign on OMEGA: A Systematic Approach to Find the Path to Ignition

The 1-D Campaign on OMEGA: A Systematic Approach to Find the Path to Ignition The 1-D Campaign on OMEGA: A Systematic Approach to Find the Path to Ignition Normalized intensity 1..8.6.4.2 R. Betti University of Rochester Laboratory for Laser Energetics Core self-emission. 3 2 1

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

INVESTIGATION OF THE DEGENERACY EFFECT IN FAST IGNITION FOR HETEROGENEOUS FUEL

INVESTIGATION OF THE DEGENERACY EFFECT IN FAST IGNITION FOR HETEROGENEOUS FUEL INVESTIGATION OF THE DEGENERACY EFFECT IN FAST IGNITION FOR HETEROGENEOUS FUEL M. MAHDAVI 1, B. KALEJI 1 Sciences Faculty, Department of Physics, University of Mazandaran P. O. Box 47415-416, Babolsar,

More information

Inertial confinement fusion (ICF) with high magnetic fields

Inertial confinement fusion (ICF) with high magnetic fields Inertial confinement fusion (ICF) with high magnetic fields B. Grant Logan BGLogan Scientific, Inc., Danville, CA, USA Visiting scientist at U.Orsay-Paris-Sud, CEA-DIF, Ecole Polytechnique Consultant for

More information

Challenges for Achieving the Low-Cost Optimum for Fusion Power

Challenges for Achieving the Low-Cost Optimum for Fusion Power Challenges for Achieving the Low-Cost Optimum for Power Peter J. Turchi, Inc. Santa Fe, NM USA First IAEA Workshop on Enterprises 13 15 June 2018 Santa Fe, NM USA To confront challenges of new technology,

More information

Effects of alpha stopping power modelling on the ignition threshold in a directly-driven Inertial Confinement Fusion capsule

Effects of alpha stopping power modelling on the ignition threshold in a directly-driven Inertial Confinement Fusion capsule Effects of alpha stopping power modelling on the ignition threshold in a directly-driven Inertial Confinement Fusion capsule M. Temporal 1, a, B. Canaud 2, W. Cayzac 2, R. Ramis 3, and R.L. Singleton Jr

More information

Laser Inertial Confinement Fusion Advanced Ignition Techniques

Laser Inertial Confinement Fusion Advanced Ignition Techniques Laser Inertial Confinement Fusion Advanced Ignition Techniques R. Fedosejevs Department of Electrical and Computer Engineering University of Alberta Presented at the Canadian Workshop on Fusion Energy

More information

A Virtual Reactor Model for Inertial Fusion Energy. Michel Decroisette Noël Fleurot Marc Novaro Guy Schurtz Jacques Duysens

A Virtual Reactor Model for Inertial Fusion Energy. Michel Decroisette Noël Fleurot Marc Novaro Guy Schurtz Jacques Duysens A Virtual Reactor Model for Inertial Fusion Energy Michel Decroisette Noël Fleurot Marc Novaro Guy Schurtz Jacques Duysens 1 OUTLINE Introduction Fusion vs Fission Inertial Confinement Fusion Principle

More information

Theory and simulations of hydrodynamic instabilities in inertial fusion

Theory and simulations of hydrodynamic instabilities in inertial fusion Theory and simulations of hydrodynamic instabilities in inertial fusion R. Betti Fusion Science Center, Laboratory for Laser Energetics, University of Rochester IPAM/UCLA Long Program PL2012 - March 12

More information

HiPER target studies on shock ignition: design principles, modelling, scaling, risk reduction options

HiPER target studies on shock ignition: design principles, modelling, scaling, risk reduction options HiPER target studies on shock ignition: design principles, modelling, scaling, risk reduction options S. Atzeni, A. Marocchino, A. Schiavi, Dip. SBAI, Università di Roma La Sapienza and CNISM, Italy X.

More information

X-Ray Spectral Measurements of Cryogenic Capsules Imploded by OMEGA

X-Ray Spectral Measurements of Cryogenic Capsules Imploded by OMEGA X-Ray Spectral Measurements of Cryogenic Capsules Imploded by OMEGA 1 15 1 14 F. J. Marshall University of Rochester Laboratory for Laser Energetics kt =.65 kev 48386 (v ice = 1.5 nm) 2 48385 (v ice =

More information

Charles Cerjan. Nuclear Data Needs and Capabilities for Applications. Lawrence Berkeley National Laboratory. May 28, 2015

Charles Cerjan. Nuclear Data Needs and Capabilities for Applications. Lawrence Berkeley National Laboratory. May 28, 2015 Charles Cerjan Nuclear Data Needs and Capabilities for Applications Lawrence Berkeley National Laboratory May 28, 2015 LLNL-PRES-670924 This work was performed under the auspices of the U.S. Department

More information

Status and Prospect of Laser Fusion Research at ILE Osaka University

Status and Prospect of Laser Fusion Research at ILE Osaka University Fusion Power Associates 39th Annual Meeting and Symposium Fusion Energy: Strategies and Expectations through the 2020s Status and Prospect of Laser Fusion Research at ILE Osaka University Introduction

More information

Analysis of Laser-Imprinting Reduction in Spherical-RT Experiments with Si-/Ge-Doped Plastic Targets

Analysis of Laser-Imprinting Reduction in Spherical-RT Experiments with Si-/Ge-Doped Plastic Targets Analysis of Laser-Imprinting Reduction in Spherical-RT Experiments with Si-/Ge-Doped Plastic Targets v rms of tr (mg/cm )..6 Si [4.%] Si [7.4%] Ge [.9%] DRACO simulations..4 Time (ns) S. X. Hu University

More information

Magnetized Target Fusion: Prospects for low-cost fusion energy

Magnetized Target Fusion: Prospects for low-cost fusion energy Magnetized Target Fusion: Prospects for low-cost fusion energy Richard E. Siemon a, Peter J. Turchi a, Daniel C. Barnes a, James H. Degnan b, Paul Parks c, Dmitri D. Ryutov d, Francis Y. Thio e a) Los

More information

Fast Ignition Experimental and Theoretical Researches toward Fast Ignition Realization Experiment (FIREX)

Fast Ignition Experimental and Theoretical Researches toward Fast Ignition Realization Experiment (FIREX) 1 Fast Ignition Experimental and Theoretical Researches toward Fast Ignition Realization Experiment (FIREX) K. Mima 1), H. Azechi 1), H. Fujita 1), Y. Izawa 1), T. Jitsuno 1), T. Johzaki 1), Y. Kitagawa

More information

Polar-Drive Hot-Spot Ignition Design for the National Ignition Facility

Polar-Drive Hot-Spot Ignition Design for the National Ignition Facility Polar-Drive Hot-Spot Ignition Design for the National Ignition Facility At ignition, Gain=40 T. J. B. Collins University of Rochester Laboratory for Laser Energetics International Shock-Ignition Workshop

More information

Integrated simulations of fast ignition of inertial fusion targets

Integrated simulations of fast ignition of inertial fusion targets Integrated simulations of fast ignition of inertial fusion targets Javier Honrubia School of Aerospace Engineering Technical University of Madrid, Spain 11 th RES Users Meeting, Santiago de Compostela,

More information

Observations of the collapse of asymmetrically driven convergent shocks. 26 June 2009

Observations of the collapse of asymmetrically driven convergent shocks. 26 June 2009 PSFC/JA-8-8 Observations of the collapse of asymmetrically driven convergent shocks J. R. Rygg, J. A. Frenje, C. K. Li, F. H. Seguin, R. D. Petrasso, F.J. Marshalli, J. A. Delettrez, J.P. Knauer, D.D.

More information

Determination of the Flux Limiter in CH Targets from Experiments on the OMEGA Laser

Determination of the Flux Limiter in CH Targets from Experiments on the OMEGA Laser Determination of the Flux Limiter in CH Targets from Experiments on the OMEGA Laser f = 0.070 Neutron rate (1/s) Exp. f = 0.065 f = 0.060 J. A. Delettrez et al. University of Rochester Laboratory for Laser

More information

Direct-drive fuel-assembly experiments with gas-filled, cone-in-shell, fast-ignitor targets on the OMEGA Laser

Direct-drive fuel-assembly experiments with gas-filled, cone-in-shell, fast-ignitor targets on the OMEGA Laser INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 47 (25) B859 B867 PLASMA PHYSICS AND CONTROLLED FUSION doi:1.188/741-3335/47/12b/s68 Direct-drive fuel-assembly experiments with gas-filled,

More information

Supporting Online Material for

Supporting Online Material for www.sciencemag.org/cgi/content/full/319/5867/1223/dc1 Supporting Online Material for Proton Radiography of Inertial Fusion Implosions J. R. Rygg, F. H. Séguin, C. K. Li, J. A. Frenje, M. J.-E. Manuel,

More information

Adiabat Shaping of Direct-Drive OMEGA Capsules Using Ramped Pressure Profiles

Adiabat Shaping of Direct-Drive OMEGA Capsules Using Ramped Pressure Profiles Adiabat Shaping of Direct-Drive OMEGA Capsules Using Ramped Pressure Profiles a r Lagrangian coordinate K. Anderson University of Rochester Laboratory for Laser Energetics 44th Annual Meeting of the American

More information

New developments in the theory of ICF targets, and fast ignition with heavy ions

New developments in the theory of ICF targets, and fast ignition with heavy ions INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 45 (2003) A125 A132 PLASMA PHYSICS AND CONTROLLED FUSION PII: S0741-3335(03)68658-6 New developments in the theory of ICF targets, and fast

More information

A new era in HED plasma physics, in directed energy and in the broader field of high energy density physics is beckoning

A new era in HED plasma physics, in directed energy and in the broader field of high energy density physics is beckoning An Overview of DOE Research in the Science of Non-Defense High Energy Density Plasmas Y. C. Francis Thio, Program Manager, HEDP Office of Fusion Energy Sciences (OFES), DOE francis.thio@science.doe.gov

More information

Improved target stability using picket pulses to increase and shape the ablator adiabat a

Improved target stability using picket pulses to increase and shape the ablator adiabat a PHYSICS OF PLASMAS 12, 056306 2005 Improved target stability using picket pulses to increase and shape the ablator adiabat a J. P. Knauer, b K. Anderson, R. Betti, T. J. B. Collins, V. N. Goncharov, P.

More information

A Model of Laser Imprinting. V. N. Goncharov, S. Skupsky, R. P. J. Town, J. A. Delettrez, D. D. Meyerhofer, T. R. Boehly, and O.V.

A Model of Laser Imprinting. V. N. Goncharov, S. Skupsky, R. P. J. Town, J. A. Delettrez, D. D. Meyerhofer, T. R. Boehly, and O.V. A Model of Laser Imprinting V. N. Goncharov, S. Skupsky, R. P. J. Town, J. A. Delettrez, D. D. Meyerhofer, T. R. Boehly, and O.V. Gotchev Laboratory for Laser Energetics, U. of Rochester The control of

More information

Using multiple secondary fusion products to evaluate fuel ρr, electron temperature, and mix in deuterium-filled implosions at the NIF

Using multiple secondary fusion products to evaluate fuel ρr, electron temperature, and mix in deuterium-filled implosions at the NIF Using multiple secondary fusion products to evaluate fuel ρr, electron temperature, and mix in deuterium-filled implosions at the NIF H. G. Rinderknecht, M. J. Rosenberg, A. B. Zylstra, B. Lahmann, F.

More information

Capsule-areal-density asymmetries inferred from 14.7-MeV deuterium helium protons in direct-drive OMEGA implosions a

Capsule-areal-density asymmetries inferred from 14.7-MeV deuterium helium protons in direct-drive OMEGA implosions a PHYSICS OF PLASMAS VOLUME 10, NUMBER 5 MAY 2003 Capsule-areal-density asymmetries inferred from 14.7-MeV deuterium helium protons in direct-drive OMEGA implosions a C. K. Li, b) F. H. Séguin, J. A. Frenje,

More information

Framed X-Ray Imaging of Cryogenic Target Implosion Cores on OMEGA

Framed X-Ray Imaging of Cryogenic Target Implosion Cores on OMEGA Framed X-Ray Imaging of Cryogenic Target Implosion Cores on OMEGA KBFRAMED optic assembly KBFRAMED core image OMEGA cryogenic DT target implosion shot 77064 F. J. Marshall University of Rochester Laboratory

More information

Journal of Physics: Conference Series PAPER OPEN ACCESS. To cite this article: T J Murphy et al 2016 J. Phys.: Conf. Ser.

Journal of Physics: Conference Series PAPER OPEN ACCESS. To cite this article: T J Murphy et al 2016 J. Phys.: Conf. Ser. Journal of Physics: Conference Series PAPER OPEN ACCESS Progress in the development of the MARBLE platform for studying thermonuclear burn in the presence of heterogeneous mix on OMEGA and the National

More information

The effect of residual kinetic energy on apparent ion temperature in ICF implosions. T. J. Murphy

The effect of residual kinetic energy on apparent ion temperature in ICF implosions. T. J. Murphy LA-UR-15-27714 The effect of residual kinetic energy on apparent ion temperature in ICF implosions T. J. Murphy National ICF Diagnostics Working Group Meeting October 6-8, 2015 Outline Basic kinetics of

More information

X-ray driven implosions at ignition relevant velocities on the National Ignition Facilitya) Phys. Plasmas 20, (2013); /1.

X-ray driven implosions at ignition relevant velocities on the National Ignition Facilitya) Phys. Plasmas 20, (2013); /1. A Particle X-ray Temporal Diagnostic (PXTD) for studies of kinetic, multi-ion effects, and ion-electron equilibration rates in Inertial Confinement Fusion plasmas at OMEGA (invited) H. Sio, J. A. Frenje,

More information

High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil

High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil PSFC/JA-16-15 High-resolution measurements of the DT neutron spectrum using new CD foils in the Magnetic Recoil neutron Spectrometer (MRS) on the National Ignition Facility M. Gatu Johnson, J.A. Frenje,

More information

Shock Convergence and Mix Dynamics in Inertial Confinement Fusion

Shock Convergence and Mix Dynamics in Inertial Confinement Fusion Shock Convergence and Mix Dynamics in Inertial Confinement Fusion by James Ryan Rygg M.S., Electrical Engineering, Stanford University (1) B.S., Physics, Stanford University () Submitted to the Department

More information

First measurements of the absolute neutron spectrum using the Magnetic Recoil Spectrometer (MRS) at OMEGA (Invited) a)

First measurements of the absolute neutron spectrum using the Magnetic Recoil Spectrometer (MRS) at OMEGA (Invited) a) PSFC/JA-08-21 First measurements of the absolute neutron spectrum using the Magnetic Recoil Spectrometer (MRS) at OMEGA (Invited) a) J.A. Frenje, D.T. Casey, C.K. Li, J.R. Rygg b), F.H. Seguin, R.D. Petrasso

More information

Chapter IX: Nuclear fusion

Chapter IX: Nuclear fusion Chapter IX: Nuclear fusion 1 Summary 1. General remarks 2. Basic processes 3. Characteristics of fusion 4. Solar fusion 5. Controlled fusion 2 General remarks (1) Maximum of binding energy per nucleon

More information

Progress in detailed modelling of low foot and high foot implosion experiments on the National Ignition Facility

Progress in detailed modelling of low foot and high foot implosion experiments on the National Ignition Facility Journal of Physics: Conference Series PAPER OPEN ACCESS Progress in detailed modelling of low foot and high foot implosion experiments on the National Ignition Facility Related content - Capsule modeling

More information

Inertial fusion advance toward ignition and gain (Summary talk)

Inertial fusion advance toward ignition and gain (Summary talk) Inertial fusion advance toward ignition and gain (Summary talk) X. T. He Institute of Applied Physics and Computational Mathematics, P. O. Box 8009, Beijing 100088, P. R. China Email: xthe@iapcm.ac.cn

More information

Monochromatic 8.05-keV Flash Radiography of Imploded Cone-in-Shell Targets

Monochromatic 8.05-keV Flash Radiography of Imploded Cone-in-Shell Targets Monochromatic 8.5-keV Flash Radiography of Imploded Cone-in-Shell Targets y position (nm) y position (nm) 2 3 4 5 2 3 4 66381 undriven 66393, 3.75 ns 66383, 3.82 ns Au Al 66391, 3.93 ns 66386, 4.5 ns 66389,

More information

High Convergence, Indirect Drive Inertial Confinement Fusion Experiments at Nova

High Convergence, Indirect Drive Inertial Confinement Fusion Experiments at Nova UCRL-JC-119536 PREPRNT High Convergence, ndirect Drive nertial Confinement Fusion Experiments at Nova R. A. Lerche, M. D. Cable, S. P. Hatchett, J. A. Carid, J. D. Kilkenny, H. N. Kornblum, S. M. Lane,

More information

D-D FUSION NEUTRONS FROM A STRONG SPHERICAL SHOCK WAVE FOCUSED ON A DEUTERIUM BUBBLE IN WATER. Dr. Michel Laberge General Fusion Inc.

D-D FUSION NEUTRONS FROM A STRONG SPHERICAL SHOCK WAVE FOCUSED ON A DEUTERIUM BUBBLE IN WATER. Dr. Michel Laberge General Fusion Inc. D-D FUSION NEUTRONS FROM A STRONG SPHERICAL SHOCK WAVE FOCUSED ON A DEUTERIUM BUBBLE IN WATER Dr. Michel Laberge General Fusion Inc. SONOFUSION Sonofusion is making some noise A bit short in energy, ~mj

More information

A Fusion Propulsion System for Interstellar Missions

A Fusion Propulsion System for Interstellar Missions ICF: A Fusion Propulsion System for Interstellar issions Terry Kammash and Brice N. Cassenti Nuclear Engineering and Radiological Sciences Dept., University of ichigan, Ann Arbor, I 48109 United Technologies

More information

T T Fusion Neutron Spectrum Measured in Inertial Confinement Fusion Experiment

T T Fusion Neutron Spectrum Measured in Inertial Confinement Fusion Experiment T T Fusion Neutron Spectrum Measured in Inertial Confinement Fusion Experiment V. Yu. Glebov University of Rochester Laboratory for Laser Energetics 48th Annual Meeting of the American Physical Society

More information

Analysis of Experimental Asymmetries using Uncertainty Quantification: Inertial Confinement Fusion (ICF) & its Applications

Analysis of Experimental Asymmetries using Uncertainty Quantification: Inertial Confinement Fusion (ICF) & its Applications Analysis of Experimental Asymmetries using Uncertainty Quantification: Inertial Confinement Fusion (ICF) & its Applications Joshua Levin January 9, 2009 (Edited: June 15, 2009) 1 Contents 1. Uncertainty

More information

Imploded Shell Parameter Estimation Based on Radiograph Analysis. George Liu. Pittsford Sutherland High School. LLE Advisor: Reuben Epstein

Imploded Shell Parameter Estimation Based on Radiograph Analysis. George Liu. Pittsford Sutherland High School. LLE Advisor: Reuben Epstein Imploded Shell Parameter Estimation Based on Radiograph Analysis George Liu Pittsford Sutherland High School LLE Advisor: Reuben Epstein Laboratory for Laser Energetics University of Rochester Summer High

More information

Hydrodynamic growth experiments with the 3-D, native-roughness modulations on NIF

Hydrodynamic growth experiments with the 3-D, native-roughness modulations on NIF Journal of Physics: Conference Series PAPER OPEN ACCESS Hydrodynamic growth experiments with the 3-D, native-roughness modulations on NIF To cite this article: V A Smalyuk et al 2016 J. Phys.: Conf. Ser.

More information

ULTRA-INTENSE LASER PLASMA INTERACTIONS RELATED TO FAST IGNITOR IN INERTIAL CONFINEMENT FUSION

ULTRA-INTENSE LASER PLASMA INTERACTIONS RELATED TO FAST IGNITOR IN INERTIAL CONFINEMENT FUSION ULTRA-INTENSE LASER PLASMA INTERACTIONS RELATED TO FAST IGNITOR IN INERTIAL CONFINEMENT FUSION R. KODAMA, H. FUJITA, N. IZUMI, T. KANABE, Y. KATO*, Y. KITAGAWA, Y. SENTOKU, S. NAKAI, M. NAKATSUKA, T. NORIMATSU,

More information

Measurements of fuel and shell areal densities of OMEGA capsule implosions using elastically scattered protons

Measurements of fuel and shell areal densities of OMEGA capsule implosions using elastically scattered protons PHYSICS OF PLASMAS VOLUME 9, NUMBER 11 NOVEMBER 2002 Measurements of fuel and shell areal densities of OMEGA capsule implosions using elastically scattered protons J. A. Frenje, C. K. Li, F. H. Séguin,

More information

Measurements of Stellar and Big-Bang Nucleosynthesis Reactions Using Inertially-Confined Plasmas

Measurements of Stellar and Big-Bang Nucleosynthesis Reactions Using Inertially-Confined Plasmas Measurements of Stellar and Big-Bang Nucleosynthesis Reactions Using Inertially-Confined Plasmas Alex Zylstra INPC 2016 Adelaide, Australia Sep. 12-16, 2016 LA-UR-16-26746 Operated by Los Alamos National

More information

Magnetic Field Penetration Into a Conducting Hohlraum

Magnetic Field Penetration Into a Conducting Hohlraum Kirkley, Alec 1 Magnetic Field Penetration Into a Conducting Hohlraum Alec Kirkley Pittsford Sutherland High School Pittsford, NY Advisor: Dr. Gennady Fiksel Laboratory for Laser Energetics University

More information