27. Impact Mechanics of Manipulation

Size: px
Start display at page:

Download "27. Impact Mechanics of Manipulation"

Transcription

1 27. Impact Mechanics of Manipulation Matt Mason Carnegie Mellon Lecture 27. Mechanics of Manipulation p.1

2 Lecture 27. Impact Chapter 1 Manipulation Case 1: Manipulation by a human Case 2: An automated assembly system Issues in manipulation A taxonomy of manipulation techniques Bibliographic notes 8 Exercises 8 Chapter 2 Kinematics Preliminaries Planar kinematics Spherical kinematics Spatial kinematics Kinematic constraint Kinematic mechanisms Bibliographic notes 36 Exercises 37 Chapter 3 Kinematic Representation Representation of spatial rotations Representation of spatial displacements Kinematic constraints Bibliographic notes 72 Exercises 72 Chapter 4 Kinematic Manipulation Path planning Path planning for nonholonomic systems Kinematic models of contact Bibliographic notes 88 Exercises 88 Chapter 5 Rigid Body Statics Forces acting on rigid bodies Polyhedral convex cones Contact wrenches and wrench cones Cones in velocity twist space The oriented plane Instantaneous centers and Reuleaux's method Line of force; moment labeling Force dual Summary Bibliographic notes 117 Exercises 118 Chapter 6 Friction Coulomb's Law Single degree-of-freedom problems Planar single contact problems Graphical representation of friction cones Static equilibrium problems Planar sliding Bibliographic notes 139 Exercises 139 Chapter 7 Quasistatic Manipulation Grasping and fixturing Pushing Stable pushing Parts orienting Assembly Bibliographic notes 173 Exercises 175 Chapter 8 Dynamics Newton's laws A particle in three dimensions Moment of force; moment of momentum Dynamics of a system of particles Rigid body dynamics The angular inertia matrix Motion of a freely rotating body Planar single contact problems Graphical methods for the plane Planar multiple-contact problems Bibliographic notes 207 Exercises 208 Chapter 9 Impact A particle Rigid body impact Bibliographic notes 223 Exercises 223 Chapter 10 Dynamic Manipulation Quasidynamic manipulation Briefly dynamic manipulation Continuously dynamic manipulation Bibliographic notes 232 Exercises 235 Appendix A Infinity 237 Lecture 27. Mechanics of Manipulation p.2

3 Outline. Impulse-momentum equations Impact of a particle Plastic and elastic impact Newtonian and Poisson restitution Impulse space Impact of a planar rigid body Solution of the sliding rod problem Lecture 27. Mechanics of Manipulation p.3

4 Frictional impact When rigid bodies collide: Discontinuity in velocity, Infinite forces, Zero time, Even for simple cases there is no agreement on laws, For multiple contact indeterminacies abound. We will adopt Routh s analysis of planar impact, which uses Poisson restitution. Lecture 27. Mechanics of Manipulation p.4

5 Impulse momentum equations Recall: Integrating: F = dp dt N = dl dt P = L = t1 t 0 t1 t 0 F dt N dt where P = P 1 P 0, L = L 1 L 0, F dt is the impulse, and N dt is the impulsive moment. Lecture 27. Mechanics of Manipulation p.5

6 Determining impulse. Particle in plane. We need impulse and impulsive moment as a function of state and physical parameters. Start with a frictionless particle on plane. Velocity changes discontinuously from v 0 to v 1 : v = 1 m P = 1 m I where v = v 1 v 0 The tangential impulse I t is zero, so v 1t = v 0t v 1n = v 0n + 1 m I n Lecture 27. Mechanics of Manipulation p.6

7 Plastic and elastic How to get the normal impulse I n? Two special cases: plastic impact and elastic impact I n = mv 0n v 1n = 0 I n = 2mv 0n v 1n = v 0n Lecture 27. Mechanics of Manipulation p.7

8 Newtonian restitution Newton hypothesized a continuum from plastic to elastic, defined by a coefficient of restitution e = v 1n v 0n (1) so that plastic impact corresponds to e = 0, and elastic impact corresponds to e = 1. Lecture 27. Mechanics of Manipulation p.8

9 Poisson restitution A competing definition of the coefficient of restitution was given by Poisson. Divide the collision into two stages. v n < 0 v n = 0 v n > 0 compression restitution Let I c be impulse accumulated during compression, and let I r be impulse accumulated during restitution. Poisson s hypothesis is that the ratio of these two parts is governed by material properties: e = I r I c (2) For simple cases no advantage over Newton, but for frictional rigid bodies Poisson restitution is superior. Lecture 27. Mechanics of Manipulation p.9

10 Applying Poisson restitution for frictionless parti Given m, v 0, and e, first find I c : I c = mv 0n then restitution impulse I r then total impulse I I r = emv 0n and resulting normal velocity: I = I c + I r = (1 + e)mv 0n v 1n = ev 0n The tangential velocity is unchanged. Lecture 27. Mechanics of Manipulation p.10

11 Frictional particle Consider frictional particle with initial leftward velocity. There should be some frictional impulse acting toward the right. Suppose we apply Coulomb s law, by looking at initial contact mode, and multiplying I n by µ. The result is absurd, and violates conservation of energy! Lecture 27. Mechanics of Manipulation p.11

12 A better model I fixed Lecture 27. Mechanics of Manipulation p.12

13 The left-drifting particle I n s-line 1 I c-line c-line: s-line: 0 Solution: Lecture 27. Mechanics of Manipulation p.13

14 Rigid body. Kinematics. First, we observe some kinematic relations c = x + r ċ = ẋ + ṙ = ẋ + ω r ċ = ẋ + ω r r c x Lecture 27. Mechanics of Manipulation p.14

15 Impulse momentum laws Now we can write the impulse-momentum laws: Substituting into the expression for ċ yields: m ẋ = I (3) ρ 2 m ω = r I (4) ċ = 1 m I + 1 (r ρ 2 I) r m (5) = 1 m I 1 r ρ 2 (r I) m (6) = 1 ( ρ 2 ρ 2 I 3 R 2) I m (7) where I 3 is the three by three identity matrix, and R is the cross-product matrix. Lecture 27. Mechanics of Manipulation p.15

16 Compression line and restitution line Substituting above and expanding, we obtain ( ċ t ċ n ) = 1 ρ 2 m ( (ρ 2 + rn) 2 r t r n r t r n (ρ 2 + rt 2 ) ) ( I t I n ) (8) The sticking line is defined by the equation ċ t = 0, ċ 0t + ρ2 + r 2 n ρ 2 m I t r tr n ρ 2 m I n = 0 (9) and the compression line is defined the equation ċ n = 0, ċ 0n r tr n ρ 2 m I t + ρ2 + r 2 t ρ 2 m I n = 0 (10) Lecture 27. Mechanics of Manipulation p.16

17 Rigid body example Lecture 27. Mechanics of Manipulation p.17

18 Analysis of rigid body example I 0 restitution compression left-sliding right-sliding Lecture 27. Mechanics of Manipulation p.18

19 Sliding rod problem Lecture 27. Mechanics of Manipulation p.19

20 Sliding rod solution 2 s-line I n c-line (1 + e)i nc I nc I t Lecture 27. Mechanics of Manipulation p.20

21 Next: Impact. Chapter 1 Manipulation Case 1: Manipulation by a human Case 2: An automated assembly system Issues in manipulation A taxonomy of manipulation techniques Bibliographic notes 8 Exercises 8 Chapter 2 Kinematics Preliminaries Planar kinematics Spherical kinematics Spatial kinematics Kinematic constraint Kinematic mechanisms Bibliographic notes 36 Exercises 37 Chapter 3 Kinematic Representation Representation of spatial rotations Representation of spatial displacements Kinematic constraints Bibliographic notes 72 Exercises 72 Chapter 4 Kinematic Manipulation Path planning Path planning for nonholonomic systems Kinematic models of contact Bibliographic notes 88 Exercises 88 Chapter 5 Rigid Body Statics Forces acting on rigid bodies Polyhedral convex cones Contact wrenches and wrench cones Cones in velocity twist space The oriented plane Instantaneous centers and Reuleaux's method Line of force; moment labeling Force dual Summary Bibliographic notes 117 Exercises 118 Chapter 6 Friction Coulomb's Law Single degree-of-freedom problems Planar single contact problems Graphical representation of friction cones Static equilibrium problems Planar sliding Bibliographic notes 139 Exercises 139 Chapter 7 Quasistatic Manipulation Grasping and fixturing Pushing Stable pushing Parts orienting Assembly Bibliographic notes 173 Exercises 175 Chapter 8 Dynamics Newton's laws A particle in three dimensions Moment of force; moment of momentum Dynamics of a system of particles Rigid body dynamics The angular inertia matrix Motion of a freely rotating body Planar single contact problems Graphical methods for the plane Planar multiple-contact problems Bibliographic notes 207 Exercises 208 Chapter 9 Impact A particle Rigid body impact Bibliographic notes 223 Exercises 223 Chapter 10 Dynamic Manipulation Quasidynamic manipulation Briefly dynamic manipulation Continuously dynamic manipulation Bibliographic notes 232 Exercises 235 Appendix A Infinity 237 Lecture 27. Mechanics of Manipulation p.21

12. Foundations of Statics Mechanics of Manipulation

12. Foundations of Statics Mechanics of Manipulation 12. Foundations of Statics Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 12. Mechanics of Manipulation p.1 Lecture 12. Foundations of statics.

More information

16. Friction Mechanics of Manipulation

16. Friction Mechanics of Manipulation 16. Friction Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 16. Mechanics of Manipulation p.1 Lecture 16. Friction. Chapter 1 Manipulation

More information

5. Nonholonomic constraint Mechanics of Manipulation

5. Nonholonomic constraint Mechanics of Manipulation 5. Nonholonomic constraint Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 5. Mechanics of Manipulation p.1 Lecture 5. Nonholonomic constraint.

More information

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1

Physics Fall Mechanics, Thermodynamics, Waves, Fluids. Lecture 20: Rotational Motion. Slide 20-1 Physics 1501 Fall 2008 Mechanics, Thermodynamics, Waves, Fluids Lecture 20: Rotational Motion Slide 20-1 Recap: center of mass, linear momentum A composite system behaves as though its mass is concentrated

More information

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity

2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity 2007 Problem Topic Comment 1 Kinematics Position-time equation Kinematics 7 2 Kinematics Velocity-time graph Dynamics 6 3 Kinematics Average velocity Energy 7 4 Kinematics Free fall Collisions 3 5 Dynamics

More information

Assignment 4: Rigid Body Dynamics

Assignment 4: Rigid Body Dynamics Assignment 4: Rigid Body Dynamics Due April 4 at :59pm Introduction Rigid bodies are a fundamental element of many physical simulations, and the physics underlying their motions are well-understood. In

More information

Lecture 19. Friction

Lecture 19. Friction Matthew T. Mason angle, Mechanics of Manipulation Today s outline angle, angle, How do you move things around? angle, Kinematics, kinematic constraint. Force. Force of constraint; Gravity; ; Momentum.

More information

Kinetics of Particles: Work and Energy

Kinetics of Particles: Work and Energy Kinetics of Particles: Work and Energy Total work done is given by: Modifying this eqn to account for the potential energy terms: U 1-2 + (-ΔV g ) + (-ΔV e ) = ΔT T U 1-2 is work of all external forces

More information

Physics 2514 Lecture 26

Physics 2514 Lecture 26 Physics 2514 Lecture 26 P. Gutierrez Department of Physics & Astronomy University of Oklahoma Physics 2514 p. 1/12 Review We have defined the following using Newton s second law of motion ( F net = d p

More information

STATICS & DYNAMICS. Engineering Mechanics. Gary L. Gray. Francesco Costanzo. Michael E. Plesha. University of Wisconsin-Madison

STATICS & DYNAMICS. Engineering Mechanics. Gary L. Gray. Francesco Costanzo. Michael E. Plesha. University of Wisconsin-Madison Engineering Mechanics STATICS & DYNAMICS SECOND EDITION Francesco Costanzo Department of Engineering Science and Mechanics Penn State University Michael E. Plesha Department of Engineering Physics University

More information

COMPLETE ALL ROUGH WORKINGS IN THE ANSWER BOOK AND CROSS THROUGH ANY WORK WHICH IS NOT TO BE ASSESSED.

COMPLETE ALL ROUGH WORKINGS IN THE ANSWER BOOK AND CROSS THROUGH ANY WORK WHICH IS NOT TO BE ASSESSED. BSc/MSci EXAMINATION PHY-304 Time Allowed: Physical Dynamics 2 hours 30 minutes Date: 28 th May 2009 Time: 10:00 Instructions: Answer ALL questions in section A. Answer ONLY TWO questions from section

More information

General Physics I. Lecture 10: Rolling Motion and Angular Momentum.

General Physics I. Lecture 10: Rolling Motion and Angular Momentum. General Physics I Lecture 10: Rolling Motion and Angular Momentum Prof. WAN, Xin (万歆) 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Outline Rolling motion of a rigid object: center-of-mass motion

More information

Lecture Outline Chapter 11. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 11. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 11 Physics, 4 th Edition James S. Walker Chapter 11 Rotational Dynamics and Static Equilibrium Units of Chapter 11 Torque Torque and Angular Acceleration Zero Torque and Static

More information

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) We will limit our study of planar kinetics to rigid bodies that are symmetric with respect to a fixed reference plane. As discussed in Chapter 16, when

More information

z F 3 = = = m 1 F 1 m 2 F 2 m 3 - Linear Momentum dp dt F net = d P net = d p 1 dt d p n dt - Conservation of Linear Momentum Δ P = 0

z F 3 = = = m 1 F 1 m 2 F 2 m 3 - Linear Momentum dp dt F net = d P net = d p 1 dt d p n dt - Conservation of Linear Momentum Δ P = 0 F 1 m 2 F 2 x m 1 O z F 3 m 3 y Ma com = F net F F F net, x net, y net, z = = = Ma Ma Ma com, x com, y com, z p = mv - Linear Momentum F net = dp dt F net = d P dt = d p 1 dt +...+ d p n dt Δ P = 0 - Conservation

More information

Northwestern CT Community College Course Syllabus. Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221

Northwestern CT Community College Course Syllabus. Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221 Northwestern CT Community College Course Syllabus Course Title: CALCULUS-BASED PHYSICS I with Lab Course #: PHY 221 Course Description: 4 credits (3 class hours and 3 laboratory hours per week) Physics

More information

= o + t = ot + ½ t 2 = o + 2

= o + t = ot + ½ t 2 = o + 2 Chapters 8-9 Rotational Kinematics and Dynamics Rotational motion Rotational motion refers to the motion of an object or system that spins about an axis. The axis of rotation is the line about which the

More information

Physics for Scientists and Engineers 4th Edition, 2017

Physics for Scientists and Engineers 4th Edition, 2017 A Correlation of Physics for Scientists and Engineers 4th Edition, 2017 To the AP Physics C: Mechanics Course Descriptions AP is a trademark registered and/or owned by the College Board, which was not

More information

Physics UCSB TR 2:00-3:15 lecture Final Exam Wednesday 3/17/2010

Physics UCSB TR 2:00-3:15 lecture Final Exam Wednesday 3/17/2010 Physics @ UCSB TR :00-3:5 lecture Final Eam Wednesday 3/7/00 Print your last name: Print your first name: Print your perm no.: INSTRUCTIONS: DO NOT START THE EXAM until you are given instructions to do

More information

3. Kinetics of Particles

3. Kinetics of Particles 3. Kinetics of Particles 3.1 Force, Mass and Acceleration 3.3 Impulse and Momentum 3.4 Impact 1 3.1 Force, Mass and Acceleration We draw two important conclusions from the results of the experiments. First,

More information

Chapter 4 Statics and dynamics of rigid bodies

Chapter 4 Statics and dynamics of rigid bodies Chapter 4 Statics and dynamics of rigid bodies Bachelor Program in AUTOMATION ENGINEERING Prof. Rong-yong Zhao (zhaorongyong@tongji.edu.cn) First Semester,2014-2015 Content of chapter 4 4.1 Static equilibrium

More information

Get Discount Coupons for your Coaching institute and FREE Study Material at Force System

Get Discount Coupons for your Coaching institute and FREE Study Material at   Force System Get Discount Coupons for your Coaching institute and FEE Study Material at www.pickmycoaching.com Mechanics Force System When a member of forces simultaneously acting on the body, it is known as force

More information

Final Exam. June 10, 2008, 1:00pm

Final Exam. June 10, 2008, 1:00pm PHYSICS 101: Fundamentals of Physics Final Exam Final Exam Name TA/ Section # June 10, 2008, 1:00pm Recitation Time You have 2 hour to complete the exam. Please answer all questions clearly and completely,

More information

A State Transition Diagram for Simultaneous Collisions with Application in Billiard Shooting

A State Transition Diagram for Simultaneous Collisions with Application in Billiard Shooting A State Transition Diagram for Simultaneous Collisions with Application in Billiard Shooting Yan-Bin Jia 1, Matthew T. Mason, and Michael A. Erdmann 1 Department of Computer Science, Iowa State University,

More information

Physics 2210 Fall smartphysics Conservation of Angular Momentum 11/20/2015

Physics 2210 Fall smartphysics Conservation of Angular Momentum 11/20/2015 Physics 2210 Fall 2015 smartphysics 19-20 Conservation of Angular Momentum 11/20/2015 Poll 11-18-03 In the two cases shown above identical ladders are leaning against frictionless walls and are not sliding.

More information

The... of a particle is defined as its change in position in some time interval.

The... of a particle is defined as its change in position in some time interval. Distance is the. of a path followed by a particle. Distance is a quantity. The... of a particle is defined as its change in position in some time interval. Displacement is a.. quantity. The... of a particle

More information

A Geometric Interpretation of Newtonian Impacts with Global Dissipation Index

A Geometric Interpretation of Newtonian Impacts with Global Dissipation Index A Geometric Interpretation of Newtonian Impacts with Global Dissipation Index Christoph Glocker Institute B of Mechanics, Technical University of Munich, D-85747 Garching, Germany (glocker@lbm.mw.tu-muenchen.de)

More information

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR

SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595. l. Course #: PHYSC NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR SYLLABUS FORM WESTCHESTER COMMUNITY COLLEGE Valhalla, NY lo595 l. Course #: PHYSC 121 2. NAME OF ORIGINATOR /REVISOR: ALENA O CONNOR NAME OF COURSE ENGINEERING PHYSICS 1 WITH LAB 3. CURRENT DATE: SUMMER

More information

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is:

Distance travelled time taken and if the particle is a distance s(t) along the x-axis, then its instantaneous speed is: Chapter 1 Kinematics 1.1 Basic ideas r(t) is the position of a particle; r = r is the distance to the origin. If r = x i + y j + z k = (x, y, z), then r = r = x 2 + y 2 + z 2. v(t) is the velocity; v =

More information

11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0.

11. (7 points: Choose up to 3 answers) What is the tension,!, in the string? a.! = 0.10 N b.! = 0.21 N c.! = 0.29 N d.! = N e.! = 0. A harmonic wave propagates horizontally along a taut string of length! = 8.0 m and mass! = 0.23 kg. The vertical displacement of the string along its length is given by!!,! = 0.1!m cos 1.5!!! +!0.8!!,

More information

Northwestern Connecticut Community College Course Syllabus

Northwestern Connecticut Community College Course Syllabus Northwestern Connecticut Community College Course Syllabus Course Title: Introductory Physics Course #: PHY 110 Course Description: 4 credits (3 class hours and 3 laboratory hours per week) Physics 110

More information

AP Physics C Mechanics Objectives

AP Physics C Mechanics Objectives AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph

More information

AP PHYSICS 1 Learning Objectives Arranged Topically

AP PHYSICS 1 Learning Objectives Arranged Topically AP PHYSICS 1 Learning Objectives Arranged Topically with o Big Ideas o Enduring Understandings o Essential Knowledges o Learning Objectives o Science Practices o Correlation to Knight Textbook Chapters

More information

Lecture 20. Planar Sliding

Lecture 20. Planar Sliding Matthew T. Mason Mechanics of Manipulation Today s outline Planar sliding: s Planar sliding is surprisingly common in manipulation. Shakey used planar sliding to move things around. To locate and orient

More information

The Equipartition Theorem

The Equipartition Theorem Chapter 8 The Equipartition Theorem Topics Equipartition and kinetic energy. The one-dimensional harmonic oscillator. Degrees of freedom and the equipartition theorem. Rotating particles in thermal equilibrium.

More information

APPLIED MATHEMATICS AM 02

APPLIED MATHEMATICS AM 02 AM SYLLABUS (2013) APPLIED MATHEMATICS AM 02 SYLLABUS Applied Mathematics AM 02 Syllabus (Available in September) Paper I (3 hrs)+paper II (3 hrs) Applied Mathematics (Mechanics) Aims A course based on

More information

Mechanics Topic B (Momentum) - 1 David Apsley

Mechanics Topic B (Momentum) - 1 David Apsley TOPIC B: MOMENTUM SPRING 2019 1. Newton s laws of motion 2. Equivalent forms of the equation of motion 2.1 orce, impulse and energy 2.2 Derivation of the equations of motion for particles 2.3 Examples

More information

7 Kinematics and kinetics of planar rigid bodies II

7 Kinematics and kinetics of planar rigid bodies II 7 Kinematics and kinetics of planar rigid bodies II 7.1 In-class A rigid circular cylinder of radius a and length h has a hole of radius 0.5a cut out. The density of the cylinder is ρ. Assume that the

More information

Collision Resolution

Collision Resolution Collision Resolution Our Problem Collision detection (supposedly) reported a collision. We want to solve it, i.e. move back the colliding objects apart from each other. In which direction and with what

More information

APPLIED MATHEMATICS IM 02

APPLIED MATHEMATICS IM 02 IM SYLLABUS (2013) APPLIED MATHEMATICS IM 02 SYLLABUS Applied Mathematics IM 02 Syllabus (Available in September) 1 Paper (3 hours) Applied Mathematics (Mechanics) Aims A course based on this syllabus

More information

Lecture 9 Kinetics of rigid bodies: Impulse and Momentum

Lecture 9 Kinetics of rigid bodies: Impulse and Momentum Lecture 9 Kinetics of rigid bodies: Impulse and Momentum Momentum of 2-D Rigid Bodies Recall that in lecture 5, we discussed the use of momentum of particles. Given that a particle has a, and is travelling

More information

Afternoon Section. Physics 1210 Exam 2 November 8, ! v = d! r dt. a avg. = v2. ) T 2! w = m g! f s. = v at v 2 1.

Afternoon Section. Physics 1210 Exam 2 November 8, ! v = d! r dt. a avg. = v2. ) T 2! w = m g! f s. = v at v 2 1. Name Physics 1210 Exam 2 November 8, 2012 Afternoon Section Please write directly on the exam and attach other sheets of work if necessary. Calculators are allowed. No notes or books may be used. Multiple-choice

More information

= y(x, t) =A cos (!t + kx)

= y(x, t) =A cos (!t + kx) A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8

More information

Simple and Physical Pendulums Challenge Problem Solutions

Simple and Physical Pendulums Challenge Problem Solutions Simple and Physical Pendulums Challenge Problem Solutions Problem 1 Solutions: For this problem, the answers to parts a) through d) will rely on an analysis of the pendulum motion. There are two conventional

More information

Part Two: Earlier Material

Part Two: Earlier Material Part Two: Earlier Material Problem 1: (Momentum and Impulse) A superball of m 1 = 0.08kg, starting at rest, is dropped from a height falls h 0 = 3.0m above the ground and bounces back up to a height of

More information

AP Mechanics Summer Assignment

AP Mechanics Summer Assignment 2012-2013 AP Mechanics Summer Assignment To be completed in summer Submit for grade in September Name: Date: Equations: Kinematics (For #1 and #2 questions: use following equations only. Need to show derivation

More information

A Sensorless Insertion Strategy for Rigid Planar Parts

A Sensorless Insertion Strategy for Rigid Planar Parts A Sensorless Insertion Strategy for Rigid Planar Parts D. J. Balkcom Carnegie Mellon Robotics Institute Pittsburgh, PA 15213 devin@ri.cmu.edu E.J. Gottlieb and J.C. Trinkle Sandia National Laboratories

More information

CHAPTER 1: PHYSICAL QUANTITIES AMD MEASUREMENT

CHAPTER 1: PHYSICAL QUANTITIES AMD MEASUREMENT CHAPTER 1: PHYSICAL UANTITIES AMD MEASUREMENT 11 Physical uantities and Units a) State basic quantities and their respective SI units: length (m), time (s), mass (kg), electrical current (A), temperature

More information

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx When the mass is released, the spring will pull

More information

Chapter 10: Dynamics of Rotational Motion

Chapter 10: Dynamics of Rotational Motion Chapter 10: Dynamics of Rotational Motion What causes an angular acceleration? The effectiveness of a force at causing a rotation is called torque. QuickCheck 12.5 The four forces shown have the same strength.

More information

Rotation and Translation Challenge Problems Problem 1:

Rotation and Translation Challenge Problems Problem 1: Rotation and Translation Challenge Problems Problem 1: A drum A of mass m and radius R is suspended from a drum B also of mass m and radius R, which is free to rotate about its axis. The suspension is

More information

SIMULATION OF INDETERMINATE MULTI-POINT IMPACT AND CONTACT WITH FRICTION

SIMULATION OF INDETERMINATE MULTI-POINT IMPACT AND CONTACT WITH FRICTION MULTIBODY DYNAMICS 011, ECCOMAS Thematic Conference J.C. Samin, P. Fisette (eds.) Brussels, Belgium, 4-7 July 011 SIMULATION OF INDETERMINATE MULTI-POINT IMPACT AND CONTACT WITH FRICTION Adrian Rodriguez

More information

Year 13 Further Maths (FP2,M2, M3) 2017/2018

Year 13 Further Maths (FP2,M2, M3) 2017/2018 Half Term 1 5 th September 12 th September 19 th September 26 th September 3 rd October 10 th October 17 th October FP2-Inequalities The manipulation and solution of algebraic inequalities and inequations,

More information

Physical Dynamics (SPA5304) Lecture Plan 2018

Physical Dynamics (SPA5304) Lecture Plan 2018 Physical Dynamics (SPA5304) Lecture Plan 2018 The numbers on the left margin are approximate lecture numbers. Items in gray are not covered this year 1 Advanced Review of Newtonian Mechanics 1.1 One Particle

More information

Review of Forces and Conservation of Momentum

Review of Forces and Conservation of Momentum Physics 7B-1 (A/B) Professor Cebra Winter 2010 Lecture 6 Review of Forces and Conservation of Momentum Slide 1 of 22 Vector Addition and Subtraction Vectors are added head to tail Note: a+b = b+a Vectors

More information

Physics C: Mechanics

Physics C: Mechanics Physics C: Mechanics 2013 2014 PISCATAWAY TOWNSHIP SCHOOLS COURSE SYLLABUS Mr. Rohan Gokhale rgokhale@pway.org www.piscatawayschools.org/phs Brief Description of Course The AP Physics course is a full

More information

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics

UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics UNIVERSITY OF SASKATCHEWAN Department of Physics and Engineering Physics Physics 111.6 MIDTERM TEST #2 November 15, 2001 Time: 90 minutes NAME: STUDENT NO.: (Last) Please Print (Given) LECTURE SECTION

More information

DYNAMICS OF SERIAL ROBOTIC MANIPULATORS

DYNAMICS OF SERIAL ROBOTIC MANIPULATORS DYNAMICS OF SERIAL ROBOTIC MANIPULATORS NOMENCLATURE AND BASIC DEFINITION We consider here a mechanical system composed of r rigid bodies and denote: M i 6x6 inertia dyads of the ith body. Wi 6 x 6 angular-velocity

More information

STATICS Chapter 1 Introductory Concepts

STATICS Chapter 1 Introductory Concepts Contents Preface to Adapted Edition... (v) Preface to Third Edition... (vii) List of Symbols and Abbreviations... (xi) PART - I STATICS Chapter 1 Introductory Concepts 1-1 Scope of Mechanics... 1 1-2 Preview

More information

Exam 3 Practice Solutions

Exam 3 Practice Solutions Exam 3 Practice Solutions Multiple Choice 1. A thin hoop, a solid disk, and a solid sphere, each with the same mass and radius, are at rest at the top of an inclined plane. If all three are released at

More information

Physics 8, Fall 2011, equation sheet work in progress

Physics 8, Fall 2011, equation sheet work in progress 1 year 3.16 10 7 s Physics 8, Fall 2011, equation sheet work in progress circumference of earth 40 10 6 m speed of light c = 2.9979 10 8 m/s mass of proton or neutron 1 amu ( atomic mass unit ) = 1 1.66

More information

ENGINEERING MECHANICS

ENGINEERING MECHANICS ENGINEERING MECHANICS BASUDEB BHATTACHARYYA Assistant Professor Department of Applied Mechanics Bengal Engineering and Science University Shibpur, Howrah OXJFORD UNIVERSITY PRESS Contents Foreword Preface

More information

AP Physics C Syllabus

AP Physics C Syllabus Course Overview AP Physics C Syllabus AP Physics C will meet for 90 minutes on block scheduling and for 45 minutes on regular scheduling. Class activities will include lecture, demonstration, problem solving

More information

Upon successful completion of this course, students should be competent to perform the following tasks:

Upon successful completion of this course, students should be competent to perform the following tasks: Course Information Course Prefix/Number: PHY 221 Course Title: University Physics Lecture Hours/Week: 3.0 Lab Hours/Week: 3.0 Credit Hours/Semester: 4.0 VA Statement/Distance Learning Attendance Textbook

More information

Periodic Motion. Periodic motion is motion of an object that. regularly repeats

Periodic Motion. Periodic motion is motion of an object that. regularly repeats Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A special kind of periodic motion occurs in mechanical systems

More information

41514 Dynamics of Machinery

41514 Dynamics of Machinery 41514 Dynamics of Machinery Theory, Experiment, Phenomenology and Industrial Applications Ilmar Ferreira Santos 1. Recapitulation Mathematical Modeling & Steps 2. Example System of Particle 3. Example

More information

The Principle of Virtual Power Slide companion notes

The Principle of Virtual Power Slide companion notes The Principle of Virtual Power Slide companion notes Slide 2 In Modules 2 and 3 we have seen concepts of Statics and Kinematics in a separate way. In this module we shall see how the static and the kinematic

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

Modesto Junior College Course Outline of Record PHYS 101

Modesto Junior College Course Outline of Record PHYS 101 Modesto Junior College Course Outline of Record PHYS 101 I. OVERVIEW The following information will appear in the 2011-2012 catalog PHYS 101 General Physics: Mechanics 5 Units Prerequisite: Satisfactory

More information

particle p = m v F ext = d P = M d v cm dt

particle p = m v F ext = d P = M d v cm dt Lecture 11: Momentum and Collisions; Introduction to Rotation 1 REVIEW: (Chapter 8) LINEAR MOMENTUM and COLLISIONS The first new physical quantity introduced in Chapter 8 is Linear Momentum Linear Momentum

More information

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003

FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 FALL TERM EXAM, PHYS 1211, INTRODUCTORY PHYSICS I Saturday, 14 December 2013, 1PM to 4 PM, AT 1003 NAME: STUDENT ID: INSTRUCTION 1. This exam booklet has 14 pages. Make sure none are missing 2. There is

More information

Write your name legibly on the top right hand corner of this paper

Write your name legibly on the top right hand corner of this paper NAME Phys 631 Summer 2007 Quiz 2 Tuesday July 24, 2007 Instructor R. A. Lindgren 9:00 am 12:00 am Write your name legibly on the top right hand corner of this paper No Books or Notes allowed Calculator

More information

Physics 8, Fall 2013, equation sheet work in progress

Physics 8, Fall 2013, equation sheet work in progress (Chapter 1: foundations) 1 year 3.16 10 7 s Physics 8, Fall 2013, equation sheet work in progress circumference of earth 40 10 6 m speed of light c = 2.9979 10 8 m/s mass of proton or neutron 1 amu ( atomic

More information

PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements.

PHYSICS. Course Structure. Unit Topics Marks. Physical World and Measurement. 1 Physical World. 2 Units and Measurements. PHYSICS Course Structure Unit Topics Marks I Physical World and Measurement 1 Physical World 2 Units and Measurements II Kinematics 3 Motion in a Straight Line 23 4 Motion in a Plane III Laws of Motion

More information

Visual Interactive Simulation, TDBD24, Spring 2006

Visual Interactive Simulation, TDBD24, Spring 2006 Visual Interactive Simulation, TDBD24, Spring 2006 Lecture 6 Outline Cross product as matrix multiplication The collision matrix The Newton Coulomb impulse for rigid bodies N C updates of translational

More information

Physics A - PHY 2048C

Physics A - PHY 2048C Physics A - PHY 2048C and 11/15/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions 1 Did you read Chapter 12 in the textbook on? 2 Must an object be rotating to have a moment

More information

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum: linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)

More information

N mg N Mg N Figure : Forces acting on particle m and inclined plane M. (b) The equations of motion are obtained by applying the momentum principles to

N mg N Mg N Figure : Forces acting on particle m and inclined plane M. (b) The equations of motion are obtained by applying the momentum principles to .004 MDEING DNMIS ND NTR I I Spring 00 Solutions for Problem Set 5 Problem. Particle slides down movable inclined plane. The inclined plane of mass M is constrained to move parallel to the -axis, and the

More information

First Year Physics: Prelims CP1 Classical Mechanics: DR. Ghassan Yassin

First Year Physics: Prelims CP1 Classical Mechanics: DR. Ghassan Yassin First Year Physics: Prelims CP1 Classical Mechanics: DR. Ghassan Yassin MT 2007 Problems I The problems are divided into two sections: (A) Standard and (B) Harder. The topics are covered in lectures 1

More information

East Penn School District Curriculum and Instruction

East Penn School District Curriculum and Instruction East Penn School District Curriculum and Instruction Curriculum for: Special Topics: Physics of Movement (Biomechanics) Course(s): Special Topics: Physics of Movement (Biomechanics) Grades: 10-12 Department:

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES

FLEXIBILITY METHOD FOR INDETERMINATE FRAMES UNIT - I FLEXIBILITY METHOD FOR INDETERMINATE FRAMES 1. What is meant by indeterminate structures? Structures that do not satisfy the conditions of equilibrium are called indeterminate structure. These

More information

PROBLEM 2 10 points. [ ] increases [ ] decreases [ ] stays the same. Briefly justify your answer:

PROBLEM 2 10 points. [ ] increases [ ] decreases [ ] stays the same. Briefly justify your answer: PROBLEM 2 10 points A disk of mass m is tied to a block of mass 2m via a string that passes through a hole at the center of a rotating turntable. The disk rotates with the turntable at a distance R from

More information

PH1104/PH114S MECHANICS

PH1104/PH114S MECHANICS PH04/PH4S MECHANICS SEMESTER I EXAMINATION 06-07 SOLUTION MULTIPLE-CHOICE QUESTIONS. (B) For freely falling bodies, the equation v = gh holds. v is proportional to h, therefore v v = h h = h h =.. (B).5i

More information

5/2/2015 7:42 AM. Chapter 17. Plane Motion of Rigid Bodies: Energy and Momentum Methods. Mohammad Suliman Abuhaiba, Ph.D., PE

5/2/2015 7:42 AM. Chapter 17. Plane Motion of Rigid Bodies: Energy and Momentum Methods. Mohammad Suliman Abuhaiba, Ph.D., PE 5//05 7:4 AM Chapter 7 Plane Motion of Rigid Bodies: Energy and Momentum Methods 5//05 7:4 AM Chapter Outline Principle of Work and Energy for a Rigid Body Work of Forces Acting on a Rigid Body Kinetic

More information

Rotational & Rigid-Body Mechanics. Lectures 3+4

Rotational & Rigid-Body Mechanics. Lectures 3+4 Rotational & Rigid-Body Mechanics Lectures 3+4 Rotational Motion So far: point objects moving through a trajectory. Next: moving actual dimensional objects and rotating them. 2 Circular Motion - Definitions

More information

Lecture 20 Chapter 12 Angular Momentum Course website:

Lecture 20 Chapter 12 Angular Momentum Course website: Lecture 20 Chapter 12 Angular Momentum Another Law? Am I in a Law school? Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi IN THIS CHAPTER, you will continue discussing rotational

More information

the EL equation for the x coordinate is easily seen to be (exercise)

the EL equation for the x coordinate is easily seen to be (exercise) Physics 6010, Fall 2016 Relevant Sections in Text: 1.3 1.6 Examples After all this formalism it is a good idea to spend some time developing a number of illustrative examples. These examples represent

More information

TOPIC E: OSCILLATIONS EXAMPLES SPRING Q1. Find general solutions for the following differential equations:

TOPIC E: OSCILLATIONS EXAMPLES SPRING Q1. Find general solutions for the following differential equations: TOPIC E: OSCILLATIONS EXAMPLES SPRING 2019 Mathematics of Oscillating Systems Q1. Find general solutions for the following differential equations: Undamped Free Vibration Q2. A 4 g mass is suspended by

More information

Concept Question: Normal Force

Concept Question: Normal Force Concept Question: Normal Force Consider a person standing in an elevator that is accelerating upward. The upward normal force N exerted by the elevator floor on the person is 1. larger than 2. identical

More information

Thomas Whitham Sixth Form Mechanics in Mathematics

Thomas Whitham Sixth Form Mechanics in Mathematics Thomas Whitham Sixth Form Mechanics in Mathematics 6/0/00 Unit M Rectilinear motion with constant acceleration Vertical motion under gravity Particle Dynamics Statics . Rectilinear motion with constant

More information

Measurement p. 1 What Is Physics? p. 2 Measuring Things p. 2 The International System of Units p. 2 Changing Units p. 3 Length p. 4 Time p. 5 Mass p.

Measurement p. 1 What Is Physics? p. 2 Measuring Things p. 2 The International System of Units p. 2 Changing Units p. 3 Length p. 4 Time p. 5 Mass p. Measurement p. 1 What Is Physics? p. 2 Measuring Things p. 2 The International System of Units p. 2 Changing Units p. 3 Length p. 4 Time p. 5 Mass p. 7 Review & Summary p. 8 Problems p. 8 Motion Along

More information

Rotational Kinematics and Dynamics. UCVTS AIT Physics

Rotational Kinematics and Dynamics. UCVTS AIT Physics Rotational Kinematics and Dynamics UCVTS AIT Physics Angular Position Axis of rotation is the center of the disc Choose a fixed reference line Point P is at a fixed distance r from the origin Angular Position,

More information

System of Particles and of Conservation of Momentum Challenge Problems Solutions

System of Particles and of Conservation of Momentum Challenge Problems Solutions System of Particles and of Conservation of Momentum Challenge Problems Solutions Problem 1 Center of Mass of the Earth-Sun System The mean distance from the earth to the sun is r 11 = 1.49 10 m. The mass

More information

Physics 131: Lecture 15. Today s Agenda

Physics 131: Lecture 15. Today s Agenda Physics 131: Lecture 15 Today s Agenda Impulse and Momentum (or the chapter where physicists run out of letters) Non-constant t forces Impulse-momentum thm Conservation of Linear momentum External/Internal

More information

HADDONFIELD PUBLIC SCHOOLS Curriculum Map for AP Physics, Mechanics C

HADDONFIELD PUBLIC SCHOOLS Curriculum Map for AP Physics, Mechanics C Curriculum Map for AP Physics, Mechanics C September Enduring Understandings (The big ideas): Chapter 2 -- Motion Along a Straight Line Essential Questions: How do objects move? 1. Displacement, time,

More information

Thursday Simulation & Unity

Thursday Simulation & Unity Rigid Bodies Simulation Homework Build a particle system based either on F=ma or procedural simulation Examples: Smoke, Fire, Water, Wind, Leaves, Cloth, Magnets, Flocks, Fish, Insects, Crowds, etc. Simulate

More information

Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium

Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium Physics 101: Lecture 15 Torque, F=ma for rotation, and Equilibrium Strike (Day 10) Prelectures, checkpoints, lectures continue with no change. Take-home quizzes this week. See Elaine Schulte s email. HW

More information

PHYSICS. Chapter 12 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 12 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 12 Lecture RANDALL D. KNIGHT Chapter 12 Rotation of a Rigid Body IN THIS CHAPTER, you will learn to understand and apply the physics

More information

Chapter 9. Rotational Dynamics

Chapter 9. Rotational Dynamics Chapter 9 Rotational Dynamics In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of translation and rotation. 1) Torque Produces angular

More information