Applications of Mathematics

Size: px
Start display at page:

Download "Applications of Mathematics"

Transcription

1 Applications of Mathematics Zdzisław Jackiewicz; Rossana Vermiglio Order conditions for partitioned Runge-Kutta methods Applications of Mathematics Vol ) No Persistent URL: Terms of use: Institute of Mathematics AS CR 2000 Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use Each copy of any part of this document must contain these Terms of use This paper has been digitized optimized for electronic delivery and stamped with digital signature within the project DML-CZ: The Czech Digital Mathematics Library

2 ) APPLICATIONS OF MATHEMATICS No ORDER CONDITIONS FOR PARTITIONED RUNGE-KUTTA METHODS Zdzis law Jackiewicz TempeRossana Vermiglio Udine Received October 2 998) Abstract We illustrate the use of the recent approach by P Albrecht to the derivation of order conditions for partitioned Runge-Kutta methods for ordinary differential equations Keywords: Partitioned Runge-Kutta method ordinary differential equation order conditions MSC 2000 : 65L05 65L06 Introduction Consider a partitioned system of ordinary differential equations ODEs) ) { p = f p t p q) q = f q t p q) t [t 0 T] p R d q R d2 where the functions f p and f q are sufficiently smooth Such systems are encountered in many practical applications Typical examples are second order differential equations y = ft y y ) which by putting p = y and q = y canbewrittenintheform { p = q q = ft p q); Hamiltonian systems p = H q q =+ H p 30

3 where d = d 2 = d is the number of the degrees of freedom p are generalized coordinates q are generalized momenta and H is the Hamiltonian total energy of the system); and singular perturbation problems { y = fy z) εz = gy z) where ε is a small parameter The Volterra integral equation of the second kind t yt) =gt)+ k t s ys) ) ds t 0 t [t 0 T] can also be written as an infinite system of partitioned ODEs as demonstrated by Brunner Hairer and Nørsett [4] The system ) will be solved by the partitioned Runge-Kutta PRK) method 2) P i = p n + h Q i = q n + h q n+ = q n + h s a ij f p t n+cj P j Q j ) s ã ij f q t n+ cj P j Q j ) p n+ = p n + h s b i f p t n+ci P i Q i ) i= s bi f q t n+ ci P i Q i ) i= i = 2s n =0 N Nh = T t 0 wherethecoefficientsc i a ij b i and c i ã ij b i c i = s a ij c i = s ã ij represent two different RK schemes They will be represented by two tables c A b T = c c s a a s a s a ss c à bt c = c s ã ã s ã s ã ss b b s b b s Hairer [6] see also [7]) developed a theory of P -series to study order conditions for 2) As observed in [7] the derivation of order conditions simplifies considerably if we assume that c = c The resulting order conditions in this case up to the order r = 4 have been listed in Griepentrog [5] However in many practical applications 302

4 it is important to consider methods with c c This is the case for example when integrating separable Hamiltonian systems ie systems for which the Hamiltonian H has the special structure Ht p q) =T p)+v t q) In applications to mechanics T and V would represent the kinetic and the potential energy of the system respectively It is known see for example []) that such systems can be efficiently integrated by symplectic PRK methods which are also effectively explicit These methods have the form c 2 b c 3 b b c s b b 2 b 3 0 b b 2 b 3 b s c b c 2 b b2 0 0 c 3 b b2 b3 0 c s b b2 b3 b s b b2 b3 b s c i = i b j c i = i b j i = 2s hence in general c c It is the purpose of this paper to derive order conditions for PRK methods with c c using the alternative approach to the order theory developed by Albrecht [2] [3] This approach was also used to derive order conditions for Rosenbrock methods by Albrecht [2] for constant and variable two-step RK methods by Jackiewicz and Tracogna [9] [0] and for a certain class of general linear methods by Jackiewicz and Vermiglio [8] As in the case of the approach based on the P -series [6] [7] Albrecht s approach also simplifies considerably for PRK methods with c = c Introducing the notation 2 General order condition P =[P P s ] T t n+c =[t n+c t n+cs ] T t n+ c =[t n+ c t n+ cs ] T Q =[Q Q s ] T t n+ci = t n + c i h t n+ ci = t n + c i h f p t n+c PQ)=[f p t n+c P Q )f p t n+cs P s Q s )] T f q t n+ c PQ)=[f q t n+ c P Q )f q t n+ cs P s Q s )] T e =[] T R s 303

5 the method 2) can be written in the matrix form P = p n e + haf p t n+c PQ) Q = q n e + hãf q t n+ c PQ) p n+ = p n + hb T f p t n+c PQ) q n+ = q n + h b T f q t n+ c PQ) n =0 N We define the local discretization errors hd p n+c hd q n+ c h ˆd p n+ h ˆd q n+ of stage values P Q and the last stages p n+ q n+ as residua obtained by replacing in 2) the values P Q by pt n+c ) qt n+ c )andp n+ q n+ by pt n+ ) qt n+ ) where { ptn+c )=[pt n+c)pt n+cs)] T qt n+ c )=[qt n+ c )qt n+ cs )] T This leads to pt n+c )=pt n )e + haf p t n+c pt n+c )qt n+ c ) ) + hd p n+c qt n+ c )=qt n )e + 22) hãf q t n+ c pt n+c )qt n+ c ) ) + hd q n+ c pt n+ )=pt n )+hb T f p t n+c pt n+c )qt n+ c ) ) + h ˆd p n+ qt n+ )=qt n )+h b T f q t n+ c p t n+c )qt n+ c ) ) + h ˆd q n+ n =0 N Putting ξ p n+c = pt n+c ) P ˆξ p n+ = pt n+) p n+ ξ q n+ c = qt n+ c) Q ˆξ q n+ = qt n+) q n+ η p n+c = f p t n+c pt n+c )qt n+ c ) ) f p t n+c PQ) η q n+ c = f q t n+ c pt n+c )qt n+ c ) ) f q t n+ c PQ) and subtracting 2) from 22) we obtain 304 ξ p n+c = ˆξ n p e + haηp n+c + hdp n+c ξ q n+ c = ˆξ ne q + hãηq n+ c + hdq n+ c ˆξ p n+ = ˆξ n p + hb T η p n+c + h ˆd p n+ = ˆξ p n + hbt η p n +c + h ˆd p n + hbt η p n+c + h ˆd p n+ n = = h ˆd p l+ + n hbt η p l+c l=0 ˆξ q n+ = ˆξ q n + h b T η q n+ c + h ˆd q n+ l=0 = ˆξ q n + h b T η q n + c + h ˆd q n + h b T η q n+ c + h ˆd q n+ n = = h ˆd q l+ + h b n T l=0 l=0 η q l+ c

6 since ˆξ p 0 = pt 0) p 0 =0andˆξ q 0 = qt 0) q 0 = 0 The above relations lead to the following general order condition for PRK method 2) Theorem 2 Assume that the external stages p n+ and q n+ of the PRK method 2) have order of consistency r 3 ie ˆdp n = Oh r ) and ˆd q n = Ohr ) n =0 N Then the PRK method 2) converges with order r ie ˆξ p n = Oh r ) and ˆξ q n = Ohr ) n =0 N if and only if 23) { b T η p n+c = Oh r ) bt η q n+ c = Oh r ) n =0 N Moreover the global errors ξ p n+c and ξ q n+ c of the internal stages P and Q are given by 24) { ξ p n+c = hdp n+c + haηp n+c + Ohr ) ξ q n+ c = hdq n+ c + hãηq n+ c + Ohr ) n =0 N wherehd p n+c and hd q n+ c are defined in 22) Proof It follows from the assumptions of the theorem and from 23) that ˆξ p n+ = Ohr )andˆξ q n+ = Ohr ) which means convergence of order r Substituting the above relations into the formulas for ξ p n+c and ξ q n+ c we obtain 24) The order conditions 23) are not convenient to use since they depend on the functions f p and f q appearing in ) through η p n+c and η q n+ c ) In the rest of the paper we will reformulate 23) in terms of the coefficients c A b and c à b of PRK method 2) 3 Reformulation of order conditions for PRK methods The following technical lemma expresses η p n+c and ηq n+ c in terms of ξp n+c and ξ q n+ c This lemma will be instrumental in expressing order conditions 23) in a more convenient form 305

7 Lemma 3 Assume that the functions p and q are sufficiently smooth Then 3) η p n+c = η q n+ c = l= ν= l ) l+ l= ν= l! ) l l ν µ= j! qj) t n ) D D) j h j l ) l+ l! ) l l ν µ= j! pj) t n )D D) j h j µ! Gp lνµ t n) ) µ ξn+c) p l ν ξ q n+ c )ν µ! Gq lνµ t n) ) µ ξn+c) p l ν ξ q n+ c )ν with 32) where 33) and G p lνµ t) :=diag g p lνµ t + c h)g p lνµ t + c sh) ) =g p lνµ t)i + hdgp lνµ ) t)+ 2 h2 D 2 g p lνµ ) t)+ G q lνµ t) :=diag g q lνµ t + c h)g q lνµ t + c sh) ) =g q lνµ t)i + h Dg q lνµ ) t)+ 2 h2 D2 g q lνµ ) t)+ g p lνµ t) := l+µ f p p l ν q ν+µ t pt)qt) ) g q lνµ t) := l+µ f q ) t pt)qt) p l ν+µ q ν D = diagc c s ) D = diag c c s ) Proof Expanding f p t n+ci P i Q i )andf q t n+ ci P i Q i ) into Taylor series around t n+ci pt n+ci )qt n+ ci ) ) and t n+ ci pt n+ci )qt n+ ci ) ) respectively we obtain η p n+c i = η q n+ c i = l ) l+ ) l l! l ν µ! gp lνµ t n+c i ) l= ν=0 µ=0 qt n+ ci ) qt n+ci ) ) µ ξ p n+c i ) l ν ξ q n+ c i ) ν l ) l+ ) l l! l ν µ! gq lνµ t n+ c i ) l= ν=0 µ=0 pt n+ci ) pt n+ ci ) ) µ ξ p n+c i ) l ν ξ q n+ c i ) ν 306

8 where g p lνµ and gq lνµ are defined by 33) Substituting and qt n+ ci ) qt n+ci )= pt n+ci ) pt n+ ci )= j! qj) t n ) c i c i ) j h j j! pj) t n )c i c i ) j h j into η p n+c i and η q n+ c i we obtain formulas which are equivalent to 3) with G p lνµ and defined by 32) G q lνµ Using the notation employed in the above lemma the local discretization errors hd p n+c hd q n+ c h ˆd p n+ and h ˆd q n+ appearing in 22) of the PRK method 2) can be writtenintheform r+ hd p n+c = γ p l hl p l) t n ) 34) l= ha µ! Gp 00µ t ) µ n) j! qj) t n ) c c) j h j µ= +Oh r+2 ) r+ hd q n+ c = γ q l hl q l) t n ) l= hã µ= +Oh r+2 ) µ! Gq 00µ t ) µ n) j! pj) t n )c c) j h j 35) h ˆd r+ p n+ = ˆγ p l hl p l) t n ) l= hb T µ! Gp 00µ t ) µ n) j! qj) t n ) c c) j h j µ= +Oh r+2 ) h ˆd r+ q n+ = ˆγ q l hl q l) t n ) l= h b T µ= +Oh r+2 ) µ! Gq 00µ t ) µ n) j! pj) t n )c c) j h j 307

9 where γ p l := cl l! A cl l )! ˆγ p l := l! c l bt l )! l = 2 Define functions u p u q v p and v q by γ q l := cl l! Ã cl l )! ˆγ q l := l! b T c l l )! u p := ξ p n+c hd p n+c haη p n+c + Oh r ) u q := ξ q n+ c hdq n+ c hãηq n+ c + Ohr ) l v p := η p ) l+ ) l n+c l! l ν l= ν= µ= j! qj) t n ) D D) j h j v q := η q n+ c l= ν= l ) l+ ) l l! l ν j! pj) t n )D D) j h j µ! Gp lνµ t n) ) µ ξ p n+c) l ν ξ q n+ c )ν µ= µ! Gq lνµ t n) ) µ ξ p n+c) l ν ξ q n+ c )ν These functions are analytical at ξ p n+c =0ξ q n+ c =0ηp n+c =0η q n+ c =0andh =0 moreover det u p ξ p n+c u q ξ p n+c v p ξ p n+c v q ξ p n+c u p ξ q n+ c u q ξ q n+ c v p ξ q n+ c v q ξ q n+ c u p η p n+c u q η p n+c v p η p n+c v q η p n+c u p η q n+ c u q η q n+ c v p η q n+ c v q η q n+ c I =det 0 I 0 0 G p 00 G q 0 I 0 = G q 00 G q 0 0 I ξ p n+c ξq n+ c ηp n+c ηq n+ c h)=00000) Therefore it follows from the implicit function theorem that the system of equations 308 u p =0 u q =0 v p =0 v q =0

10 has a unique solution ξn+cξ p q n+ c ηp n+cη q n+ c ) around h = 0 This solution can be expanded into the Taylor series of the form 36) { ξ p n+c = sp 2 t n)h 2 + s p 3 t n)h s p r t n)h r + Oh r ) ξ q n+ c = sq 2 t n)h 2 + s q 3 t n)h s q r t n)h r + Oh r ) and 37) { η p n+c = w p 2 t n)h 2 + w p 3 t n)h w p r t n)h r + Oh r ) η q n+ c = wq 2 t n)h 2 + w q 3 t n)h w q r t n)h r + Oh r ) The fact that the above expressions start with terms of order Oh 2 ) follows from the definitions of ξ p n+c ξq n+ c ηp n+c and ηq n+ c Using the formulas for h ˆd p n+ h ˆd q n+ compare 35)) and the expressions 37) we can reformulate Theorem 2 in a more convenient form as follows Theorem 32 The PRK method 2) has order r if and only if ˆd p n = Oh r ) ˆd q n = Ohr ) n =0 Nand 38) { b T w p i = Ohr ) bt w q i = Ohr ) i =2 3r 4 Recursive generation of order conditions We will need the multinomial formula 4) where k= ) m x k k! tk = m! n=m t n n! n; a a 2 a n ) := a +2a 2++na n=n a +a 2++a n=m n; a a 2 a n ) x a n!!) a a!2!) a2 a 2! n!) an a n! xa2 n 2 xan compare [] page 823 We have the following theorem 309

11 Theorem 4 The vectors r p i rq i wp i andwq i appearing in 36) and 37) satisfy the recursions 42) 43) 44) r p i = γp i pi) + Aw p i a +2a 2++γa γ=γ a +a 2++a γ=µ r q i = γq i qi) + Aw q i w p i = a +2a 2++γa γ=γ a +a 2++a γ=µ l= ν= l ) l+ l! a +2a 2++γa γ=γ a +a 2++a γ=µ µ= δ+γ+=i δ 0 γ µ δ! Dδ c c) γ g p 00µ )δ) q ) a q ) a2 q γ) ) aγ!) a a!2!) a2 a 2! γ!) aγ a γ! µ= δ+γ+=i δ 0 γ µ δ! D δ c c) γ g q 00µ )δ) p ) a p ) a2 p γ) ) aγ!) a a!2!) a2 a 2! γ!) aγ a γ! l l ν ) µ=0 α ++α l ν +β ++β ν+δ+γ=i α α l ν β β ν 2 0 δ+γ i 2l δ 0 γ µ!) a a!2!) a2 a 2! γ!) aγ a γ! δ! Dδ D D) γ g p lνµ )δ) q ) a q γ) ) aγ r p α r p α l ν r q β r q β ν and 45) w q i = l= ν= l ) l+ l! a +2a 2++γa γ=γ a +a 2++a γ=µ ) l l ν µ=0 α ++α l ν +β ++β ν+δ+γ=i α α l ν β β ν 2 0 δ+γ i 2l δ 0 γ µ!) a a!2!) a2 a 2! γ!) aγ a γ! δ! D δ D D) γ g q lνµ )δ) p ) a p γ) ) aγ r p α r p α l ν r q β r q β ν w p := 0 wq := 0 i =2 3r 30

12 Proof Substituting 34) 36) and 37) into 24) and using 4) we obtain and s p 2 h2 + s p 3 h3 + + s p i hi + = γ p 2 h2 + γ p 3 h3 + + γ p i hi + + haw p 2 h2 + w p 3 h3 + + w p i hi + ) D δ c c) γ ha δ!γ! µ= i=µ+ δ+γ+=i δ 0 γ µ a +2a 2++γa γ=γ a +a 2++a γ=µ γ; a a 2 a γ ) g p 00µ )δ) q ) a q ) a2 q γ) ) aγ h i s q 2 h2 + s q 3 h3 + + s q i hi + = γ q 2 h2 + γ q 3 h3 + + γ q i hi + + hãwq 2 h2 + w q 3 h3 + + w q i hi + ) D δ c c) γ hã δ!γ! µ= i=µ+ δ+γ+=i δ 0 γ µ a +2a 2++γa γ=γ a +a 2++a γ=µ γ; a a 2 a γ ) g q 00µ )δ) p ) a p ) a2 p γ) ) aγ h i Comparing the terms corresponding to h i we obtain 42) and 43) Substituting 36) and 37) into 3) we have also w p 2 h2 + w p 3 h3 + + w p i hi + l ) l+ ) l = g p lνµ l! l ν µ! I + hdgp lνµ ) + 2 h2 D 2 g p lνµ ) + ) l= ν=0 µ! D D) γ h γ γ=µ γ! µ=0 a +2a 2++γa γ=γ a +a 2++a γ=µ γ; a a 2 a γ ) q ) a q γ) ) aγ r p 2 h2 + r p 3 h3 + ) l ν r q 2 h2 + r q 3 h3 + ) ν l ) l+ ) l = g p lνµ l! l ν I + hdgp lνµ ) + 2 h2 D 2 g p lνµ ) + ) l= ν=0 D D) γ h γ γ=µ γ! α α l ν 2 µ=0 a +2a 2++γa γ=γ a +a 2++a γ=µ r p α r p α l ν h α++α l ν γ; a a 2 a γ ) q ) a q γ) ) aγ β β ν 2 r p β r p β ν h β++βν 3

13 and w q 2 h2 + w q 3 h3 + + w q i hi + l ) l+ ) l = g q lνµ l! l ν µ! I + h Dg q lνµ ) + 2 h2 D2 g q lνµ ) + ) l= ν=0 µ! D D) γ h γ γ=µ γ! µ=0 a +2a 2++γa γ=γ a +a 2++a γ=µ γ; a a 2 a γ ) p ) a p γ) ) aγ r p 2 h2 + r p 3 h3 + ) l ν r q 2 h2 + r q 3 h3 + ) ν l ) l+ ) l = g q lνµ l! l ν I + h Dg q lνµ ) + 2 h2 D2 g q lνµ ) + ) l= ν=0 D D) γ h γ γ=µ γ! α α l ν 2 µ=0 a +2a 2++γa γ=γ a +a 2++a γ=µ r p α r p α l ν h α++α l ν γ; a a 2 a γ ) p ) a p γ) ) aγ β β ν 2 r p β r p β ν h β++βν Comparing the terms corresponding to h i we obtain formulas 44) and 45) The relations 42) 43) 44) and 45) simplify considerably if c = c compare also the comment in [7] about the approach based on P -series) In this case these relations assume the form r p i = γp i pi) + Aw p i r q i = γq i qi) + Aw q i w p i = i 2l 32 w q i = l= ν=0 δ=0 α ++α l ν +β ++β ν+δ=i α α l ν β β ν 2 i 2l l= ν=0 δ=0 α ++α l ν +β ++β ν+δ=i α α l ν β β ν 2 ) l+ l! ) l+ l! ) l D δ l ν δ! gp lν )δ) rα p rα p l ν r q β r q β ν ) l D δ l ν δ! gq lν )δ) rα p rα p l ν r q β r q β ν

14 w p := 0 wq := 0 i =2 3r where g p lν t) := g q lν t) := l f p p l ν q ν t pt)qt) ) l f q p l ν q ν t pt)qt) ) 5 Computation of order conditions for PRK method of order four In this section we will illustrate the use of Theorem 4 to generate the conditions up to the order four for PRK method 2) Routine calculations lead to r p 2 = γp 2 p A c c)g p 00 q r q 2 = γq 2 q Ãc c)gq 00 p w p 2 = γp 2 gp 00 p A c c)g p 00 gp 00 q + γ q 2 gp 0 q Ãc c)gp 0 gq 00 p w q 2 = γp 2 gq 00 p A c c)g q 00 gp 00 q + γ q 2 gq 0 q Ãc c)gq 0 gq 00 p r p 3 = γp 3 p3) 2 A c c)2 g p 00 q AD c c)g p 00 ) q 2 A c c)2 g p 002 q ) 2 + Aγ p 2 gp 00 p A 2 c c)g p 00 gp 00 q + Aγ q 2 gp 0 q AÃc c)gp 0 gq 00 p r q 3 = γq 3 q3) 2Ãc c)2 g q 00 p à Dc c)g q 00 ) p 2 Ãc c)2 g q 002 p ) 2 + Ãγp 2 gq 00 p ÃA c c)gq 00 gp 00 q + Ãγq 2 gq 0 q Ã2 c c)g q 0 gq 00 p w p 3 = γp 3 gp 00 p3) 2 A c c)2 g p 00 gp 00 q AD c c)g p 00 gp 00 ) q 2 A c c)2 g p 00 gp 002 q ) 2 + Aγ p 2 gp 00 )2 p A 2 c c)g p 00 )2 g p 00 q + Aγ q 2 gp 00 gp 0 q AÃc c)gp 00 gp 0 gq 00 p + Dγ p 2 gp 00 ) p DA c c)g p 00 ) g p 00 q + D D)γ p 2 gp 0 q p D D)A c c)g p 0 q g p 00 q + γ q 3 gp 0 q3) 2 Ãc c)2 g p 0 gq 00 p à Dc c)g p 0 gq 00 ) p 2Ãc c)2 g p 0 gq 002 p ) 2 + Ãγp 2 gp 0 gq 00 p ÃA c c)gp 0 gq 00 gp 00 q + Ãγq 2 gp 0 gq 0 q Ã2 c c)g p 0 gq 0 gq 00 p + Dγ q 2 gp 0 ) q DÃc c)gp 0 ) g q 00 p + D D)γ q 2 gp q q D D)Ãc c)gp q g q 00 p 33

15 w q 3 = γp 3 gq 00 p3) 2 A c c)2 g q 00 gp 00 q AD c c)g q 00 gp 00 ) q 2 A c c)2 g q 00 gp 002 q ) 2 + Aγ p 2 gq 00 gp 00 p A 2 c c)g q 00 gp 00 gp 00 q + Aγ q 2 gq 00 gp 0 q AÃc c)gq 00 gp 0 gq 00 p + Dγ p 2 gq 00 ) p DA c c)g q 00 ) g p 00 q +D D)γ p 2 gq 0 p p D D)A c c)g q 0 p g p 00 q + γ q 3 gq 0 q3) 2Ãc c)2 g q 0 gq 00 p à Dc c)g q 0 gq 00 ) p 2 Ãc c)2 g q 0 gq 002 p ) 2 + Ãγp 2 gq 0 gq 00 p ÃA c c)gq 0 gq 00 gp 00 q + Ãγq 2 gq 0 )2 q Ã2 c c)g q 0 )2 g q 00 p + Dγ q 2 gq 0 ) q DÃc c)gq 0 ) g q 00 p +D D)γ q 2 gq p q D D)Ãc c)gq p g q 00 p It follows from Theorem 32 that PRK method 2) has order four if and only if ˆd p n = Oh r ) ˆd q n = Oh r ) n =0 N b T w p i = Oh4 )and b T w q i = Oh4 ) i =2 3 This leads to the following equations expressed only in terms of the coefficients c A b and c à b of PRK method 2) Order : b T e = bt e =; Order 2: b T c = 2 bt c = 2 b T c c) =0 bt c c) =0; Order 3: b T c 2 = 3 bt c = 3 b T c c) 2 =0 b T D c c) =0 bt c c) 2 =0 bt Dc c) =0 b T γ p 2 =0 b T A c c) =0 bt γ p 2 =0 A c c) =0 b T γ q 2 =0 b T Ãc c) =0 bt γ q 2 =0 Ãc c) =0; Order 4: b T c 3 = 4 bt c 3 = 4 b T c c) 3 =0 bt c c) 3 =0 b T D c c) 2 =0 bt Dc c) 2 =0 b T D 2 c c) =0 bt D2 c c) =0 b T γ p 3 =0 bt γ p 3 =0 b T A c c) 2 =0 bt A c c) 2 =0 b T AD c c) =0 bt AD c c) =0 b T Aγ p 2 =0 bt Aγ p 2 =0 b T A 2 c c) =0 bt A 2 c c) =0 b T Aγ q 2 =0 bt Aγ q 2 =0 34

16 T b AÃc c) =0 bt AÃc c) =0 b T Dγ p 2 =0 p bt Dγ 2 =0 b T DA c c) =0 bt DA c c) =0 b T D D)γ p 2 =0 bt D D)γ p 2 =0 b T D D)A c c) =0 bt D D)A c c) =0 b T γ q 3 =0 bt γ q 3 =0 b T Ãc c) 2 =0 bt Ãc c) 2 =0 b T à Dc c) =0 bt à Dc c) =0 b T Ãγ p 2 =0 bt Ãγ p 2 =0 b T ÃA c c) =0 bt ÃA c c) =0 b T Ãγ q 2 =0 bt Ãγ q 2 =0 b T à 2 c c) =0 bt à 2 c c) =0 b T Dγ q 2 =0 q bt Dγ 2 =0 b T DÃc c) =0 bt DÃc c) =0 b T D D)γ q 2 =0 bt D D)γ q 2 =0 b T D D)Ãc c) =0 bt D D)Ãc c) =0 In the case c = c these conditions reduce to the following much smaller set of equations listed below Order : b T e = bt e =; Order 2: b T c = 2 bt c = 2 ; Order 3: b T c 2 = 3 bt c = 3 b T γ p 2 =0 bt γ p 2 =0 b T γ q 2 =0 bt γ q 2 =0; Order 4: b T c 3 = 4 bt c 3 = 4 b T γ p 3 =0 bt γ p 3 =0 b T Aγ p 2 =0 bt Aγ p 2 =0 b T Aγ q 2 =0 bt Aγ q 2 =0 b T Dγ p 2 =0 bt Dγ p 2 =0 b T γ q 3 =0 bt γ q 3 =0 b T Ãγ p 2 =0 bt Ãγ p 2 =0 b T Ãγ q 2 =0 bt Ãγ q 2 =0 b T Dγ q 2 =0 bt Dγ q 2 =0 These relations are equivalent to the order conditions listed in [5] Acknowledegement This work was initiated during the visit of the first author to the University of Udine in May 997 This author wishes to express his gratitude to Professor R Vermiglio for making this visit possible 35

17 References [] M Abramowitz I S Stegun eds): Handbook of Mathematical Functions with Formulas Graphs and Mathematical Tables National Bureau of Standards Applied Mathematics Series 55 Washington DC 972 [2] P Albrecht: A new theoretical approach to Runge-Kutta methods SIAM J Numer Anal ) [3] P Albrecht: The Runge-Kutta theory in a nutshell SIAM J Numer Anal ) [4] H Brunner E Hairer and S P Nørsett: Runge-Kutta theory for Volterra integral equations of the second kind Math Comp ) [5] E Griepentrog: Gemischte Runge-Kutta-Verfahren für steife Systeme In: Seminarbericht Nr Sekt Math Humboldt Univ Berlin 978 pp 9 29 [6] E Hairer: Order conditions for numerical methods for partitioned ordinary differential equations Numer Math 36 98) [7] E Hairer S P Nørsett and G Wanner: Solving Ordinary Differential Equations I Nonstiff Problems Springer-Verlag Berlin-Heidelberg-New York 99 [8] Z Jackiewicz R Vermiglio: General linear methods with external stages of different orders BIT ) [9] Z Jackiewicz S Tracogna: A general class of two-step Runge-Kutta methods for ordinary differential equations SIAM J Numer Anal ) [0] Z Jackiewicz S Tracogna: Variable stepsize continuous two-step Runge-Kutta methods for ordinary differential equations Numer Algorithms 2 996) [] J M Sanz-Serna M P Calvo: Numerical Hamiltonian Problems Chapman & Hall London-Glasgow-New York 994 Authors addresses: Zdzis law Jackiewicz Department of Mathematics Arizona State University Tempe Arizona USA jackiewi@mathlaasuedu; Rossana Vermiglio Department of Mathematics and Computer Science University of Udine I-3300 Udine Italy rossana@dimiuniudit 36

Geometric Numerical Integration

Geometric Numerical Integration Geometric Numerical Integration (Ernst Hairer, TU München, winter 2009/10) Development of numerical ordinary differential equations Nonstiff differential equations (since about 1850), see [4, 2, 1] Adams

More information

Efficiency of Runge-Kutta Methods in Solving Simple Harmonic Oscillators

Efficiency of Runge-Kutta Methods in Solving Simple Harmonic Oscillators MATEMATIKA, 8, Volume 3, Number, c Penerbit UTM Press. All rights reserved Efficiency of Runge-Kutta Methods in Solving Simple Harmonic Oscillators Annie Gorgey and Nor Azian Aini Mat Department of Mathematics,

More information

Starting Methods for Two-Step Runge Kutta Methods of Stage-Order 3 and Order 6

Starting Methods for Two-Step Runge Kutta Methods of Stage-Order 3 and Order 6 Cambridge International Science Publishing Cambridge CB1 6AZ Great Britain Journal of Computational Methods in Sciences and Engineering vol. 2, no. 3, 2, pp. 1 3 ISSN 1472 7978 Starting Methods for Two-Step

More information

Applications of Mathematics

Applications of Mathematics Applications of Mathematics Emil Vitásek Approximate solution of an inhomogeneous abstract differential equation Applications of Mathematics, Vol 57 (2012), No 1, 31--41 Persistent URL: http://dmlcz/dmlcz/141817

More information

Improved Starting Methods for Two-Step Runge Kutta Methods of Stage-Order p 3

Improved Starting Methods for Two-Step Runge Kutta Methods of Stage-Order p 3 Improved Starting Methods for Two-Step Runge Kutta Methods of Stage-Order p 3 J.H. Verner August 3, 2004 Abstract. In [5], Jackiewicz and Verner derived formulas for, and tested the implementation of two-step

More information

SOME PROPERTIES OF SYMPLECTIC RUNGE-KUTTA METHODS

SOME PROPERTIES OF SYMPLECTIC RUNGE-KUTTA METHODS SOME PROPERTIES OF SYMPLECTIC RUNGE-KUTTA METHODS ERNST HAIRER AND PIERRE LEONE Abstract. We prove that to every rational function R(z) satisfying R( z)r(z) = 1, there exists a symplectic Runge-Kutta method

More information

Backward error analysis

Backward error analysis Backward error analysis Brynjulf Owren July 28, 2015 Introduction. The main source for these notes is the monograph by Hairer, Lubich and Wanner [2]. Consider ODEs in R d of the form ẏ = f(y), y(0) = y

More information

THE θ-methods IN THE NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS. Karel J. in t Hout, Marc N. Spijker Leiden, The Netherlands

THE θ-methods IN THE NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS. Karel J. in t Hout, Marc N. Spijker Leiden, The Netherlands THE θ-methods IN THE NUMERICAL SOLUTION OF DELAY DIFFERENTIAL EQUATIONS Karel J. in t Hout, Marc N. Spijker Leiden, The Netherlands 1. Introduction This paper deals with initial value problems for delay

More information

THE METHOD OF LINES FOR PARABOLIC PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS

THE METHOD OF LINES FOR PARABOLIC PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS JOURNAL OF INTEGRAL EQUATIONS AND APPLICATIONS Volume 4, Number 1, Winter 1992 THE METHOD OF LINES FOR PARABOLIC PARTIAL INTEGRO-DIFFERENTIAL EQUATIONS J.-P. KAUTHEN ABSTRACT. We present a method of lines

More information

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky Časopis pro pěstování matematiky Jan Ligȩza On distributional solutions of some systems of linear differential equations Časopis pro pěstování matematiky, Vol. 102 (1977), No. 1, 37--41 Persistent URL:

More information

IMPLICIT INTERVAL MULTISTEP METHODS FOR SOLVING THE INITIAL VALUE PROBLEM

IMPLICIT INTERVAL MULTISTEP METHODS FOR SOLVING THE INITIAL VALUE PROBLEM COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 8 (1), 17-30 (2002) IMPLICIT INTERVAL MULTISTEP METHODS FOR SOLVING THE INITIAL VALUE PROBLEM MAŁGORZATA JANKOWSKA 1, ANDRZEJ MARCINIAK 1,2 1 Poznań University

More information

A NOTE ON EXPLICIT THREE-DERIVATIVE RUNGE-KUTTA METHODS (ThDRK)

A NOTE ON EXPLICIT THREE-DERIVATIVE RUNGE-KUTTA METHODS (ThDRK) BULLETIN OF THE INTERNATIONAL MATHEMATICAL VIRTUAL INSTITUTE ISSN 303-4874 (p), ISSN (o) 303-4955 www.imvibl.org / JOURNALS / BULLETIN Vol. 5(015), 65-7 Former BULLETIN OF THE SOCIETY OF MATHEMATICIANS

More information

SYMMETRIC PROJECTION METHODS FOR DIFFERENTIAL EQUATIONS ON MANIFOLDS

SYMMETRIC PROJECTION METHODS FOR DIFFERENTIAL EQUATIONS ON MANIFOLDS BIT 0006-3835/00/4004-0726 $15.00 2000, Vol. 40, No. 4, pp. 726 734 c Swets & Zeitlinger SYMMETRIC PROJECTION METHODS FOR DIFFERENTIAL EQUATIONS ON MANIFOLDS E. HAIRER Section de mathématiques, Université

More information

type of high order Z. Jackiewicz, A. Marthinsen and B. Owren PREPRINT NUMERICS NO. 4/1999

type of high order Z. Jackiewicz, A. Marthinsen and B. Owren PREPRINT NUMERICS NO. 4/1999 NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Construction of Runge-Kutta methods of Crouch-Grossman type of high order by Z. Jackiewicz, A. Marthinsen and B. Owren PREPRINT NUMERICS NO. 4/1999 NORWEGIAN

More information

Commentationes Mathematicae Universitatis Carolinae

Commentationes Mathematicae Universitatis Carolinae Commentationes Mathematicae Universitatis Carolinae Bogdan Szal Trigonometric approximation by Nörlund type means in L p -norm Commentationes Mathematicae Universitatis Carolinae, Vol. 5 (29), No. 4, 575--589

More information

The collocation method for ODEs: an introduction

The collocation method for ODEs: an introduction 058065 - Collocation Methods for Volterra Integral Related Functional Differential The collocation method for ODEs: an introduction A collocation solution u h to a functional equation for example an ordinary

More information

Czechoslovak Mathematical Journal

Czechoslovak Mathematical Journal Czechoslovak Mathematical Journal Ignacio Villanueva Integral multilinear forms on C(K, X) spaces Czechoslovak Mathematical Journal, Vol. 54 (2004), No. 2, 373--378 Persistent URL: http://dml.cz/dmlcz/127894

More information

SPECIALIZED RUNGE-KUTTA METHODS FOR INDEX 2 DIFFERENTIAL-ALGEBRAIC EQUATIONS

SPECIALIZED RUNGE-KUTTA METHODS FOR INDEX 2 DIFFERENTIAL-ALGEBRAIC EQUATIONS MATHEMATICS OF COMPUTATION Volume 75, Number 254, Pages 641 654 S 0025-5718(05)01809-0 Article electronically published on December 19, 2005 SPECIALIZED RUNGE-KUTTA METHODS FOR INDEX 2 DIFFERENTIAL-ALGEBRAIC

More information

Reducing round-off errors in symmetric multistep methods

Reducing round-off errors in symmetric multistep methods Reducing round-off errors in symmetric multistep methods Paola Console a, Ernst Hairer a a Section de Mathématiques, Université de Genève, 2-4 rue du Lièvre, CH-1211 Genève 4, Switzerland. (Paola.Console@unige.ch,

More information

Mathematica Slovaca. Antonín Dvořák; David Jedelský; Juraj Kostra The fields of degree seven over rationals with a normal basis generated by a unit

Mathematica Slovaca. Antonín Dvořák; David Jedelský; Juraj Kostra The fields of degree seven over rationals with a normal basis generated by a unit Mathematica Slovaca Antonín Dvořák; David Jedelský; Juraj Kostra The fields of degree seven over rationals with a normal basis generated by a unit Mathematica Slovaca, Vol. 49 (1999), No. 2, 143--153 Persistent

More information

ONE- AND TWO-STAGE IMPLICIT INTERVAL METHODS OF RUNGE-KUTTA TYPE

ONE- AND TWO-STAGE IMPLICIT INTERVAL METHODS OF RUNGE-KUTTA TYPE COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 5,53-65 (1999) ONE- AND TWO-STAGE IMPLICIT INTERVAL METHODS OF RUNGE-KUTTA TYPE ANDRZEJ MARCINIAK 1, BARBARA SZYSZKA 2 1 Institute of Computing Science,

More information

The Definition and Numerical Method of Final Value Problem and Arbitrary Value Problem Shixiong Wang 1*, Jianhua He 1, Chen Wang 2, Xitong Li 1

The Definition and Numerical Method of Final Value Problem and Arbitrary Value Problem Shixiong Wang 1*, Jianhua He 1, Chen Wang 2, Xitong Li 1 The Definition and Numerical Method of Final Value Problem and Arbitrary Value Problem Shixiong Wang 1*, Jianhua He 1, Chen Wang 2, Xitong Li 1 1 School of Electronics and Information, Northwestern Polytechnical

More information

Archivum Mathematicum

Archivum Mathematicum Archivum Mathematicum Deepak B. Pachpatte Some dynamic inequalities applicable to partial integrodifferential equations on time scales Archivum Mathematicum, Vol. 51 2015, No. 3, 143 152 Persistent URL:

More information

Reducing round-off errors in rigid body dynamics

Reducing round-off errors in rigid body dynamics Reducing round-off errors in rigid body dynamics Gilles Vilmart INRIA Rennes, ENS Cachan Bretagne, avenue Robert Schuman, 357 Bruz, France Université de Genève, Section de mathématiques, -4 rue du Lièvre,

More information

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky Časopis pro pěstování matematiky Mieczysław Borowiecki Partition numbers, connectivity and Hamiltonicity Časopis pro pěstování matematiky, Vol. 112 (1987), No. 2, 173--176 Persistent URL: http://dml.cz/dmlcz/118305

More information

Fourth-order symplectic exponentially-fitted modified Runge-Kutta methods of the Gauss type: a review

Fourth-order symplectic exponentially-fitted modified Runge-Kutta methods of the Gauss type: a review Fourth-order symplectic exponentially-fitted modified Runge-Kutta methods of the Gauss type: a review G. Vanden Berghe and M. Van Daele Vakgroep Toegepaste Wiskunde en Informatica, Universiteit Gent, Krijgslaan

More information

Acta Universitatis Carolinae. Mathematica et Physica

Acta Universitatis Carolinae. Mathematica et Physica Acta Universitatis Carolinae. Mathematica et Physica František Žák Representation form of de Finetti theorem and application to convexity Acta Universitatis Carolinae. Mathematica et Physica, Vol. 52 (2011),

More information

SOLVING ODE s NUMERICALLY WHILE PRESERVING ALL FIRST INTEGRALS

SOLVING ODE s NUMERICALLY WHILE PRESERVING ALL FIRST INTEGRALS SOLVING ODE s NUMERICALLY WHILE PRESERVING ALL FIRST INTEGRALS G.R.W. QUISPEL 1,2 and H.W. CAPEL 3 Abstract. Using Discrete Gradient Methods (Quispel & Turner, J. Phys. A29 (1996) L341-L349) we construct

More information

REVERSIBLE LONG-TERM INTEGRATION WITH VARIABLE STEPSIZES. 1. Introduction. We consider the numerical treatment of systems

REVERSIBLE LONG-TERM INTEGRATION WITH VARIABLE STEPSIZES. 1. Introduction. We consider the numerical treatment of systems SIAM J. SCI. COMPUT. c 1997 Society for Industrial and Applied Mathematics Vol. 18, No. 1, pp. 257 269, January 1997 014 REVERSIBLE LONG-TERM INTEGRATION WITH VARIABLE STEPSIZES ERNST HAIRER AND DANIEL

More information

Mathematica Bohemica

Mathematica Bohemica Mathematica Bohemica Cristian Bereanu; Jean Mawhin Existence and multiplicity results for nonlinear second order difference equations with Dirichlet boundary conditions Mathematica Bohemica, Vol. 131 (2006),

More information

RUNGE-KUTTA SCHEMES FOR HAMILTONIAN SYSTEMS

RUNGE-KUTTA SCHEMES FOR HAMILTONIAN SYSTEMS BIT28 (1988),877-8.83 RUNGE-KUTTA SCHEMES FOR HAMILTONIAN SYSTEMS J. M. SANZ-SERNA Departamento de Materndtica Apiicada y Computaci6n, Facuttad de Ciencias, Universidad de Valladolid, Valladolid, Spain

More information

A SYMBOLIC-NUMERIC APPROACH TO THE SOLUTION OF THE BUTCHER EQUATIONS

A SYMBOLIC-NUMERIC APPROACH TO THE SOLUTION OF THE BUTCHER EQUATIONS CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 17, Number 3, Fall 2009 A SYMBOLIC-NUMERIC APPROACH TO THE SOLUTION OF THE BUTCHER EQUATIONS SERGEY KHASHIN ABSTRACT. A new approach based on the use of new

More information

Numerical Methods for the Optimal Control of Scalar Conservation Laws

Numerical Methods for the Optimal Control of Scalar Conservation Laws Numerical Methods for the Optimal Control of Scalar Conservation Laws Sonja Steffensen, Michael Herty, and Lorenzo Pareschi RWTH Aachen University, Templergraben 55, D-52065 Aachen, GERMANY {herty,steffensen}@mathc.rwth-aachen.de

More information

Accuracy Enhancement Using Spectral Postprocessing for Differential Equations and Integral Equations

Accuracy Enhancement Using Spectral Postprocessing for Differential Equations and Integral Equations COMMUICATIOS I COMPUTATIOAL PHYSICS Vol. 5, o. -4, pp. 779-79 Commun. Comput. Phys. February 009 Accuracy Enhancement Using Spectral Postprocessing for Differential Equations and Integral Equations Tao

More information

Archivum Mathematicum

Archivum Mathematicum Archivum Mathematicum Miloš Háčik Contribution to the monotonicity of the sequence of zero points of integrals of the differential equation y + g(t)y = 0 with regard to the basis [α, β] Archivum Mathematicum,

More information

Commentationes Mathematicae Universitatis Carolinae

Commentationes Mathematicae Universitatis Carolinae Commentationes Mathematicae Universitatis Carolinae Pavel Drábek Remarks on multiple periodic solutions of nonlinear ordinary differential equations Commentationes Mathematicae Universitatis Carolinae,

More information

Blended implementation of block implicit methods for ODEs

Blended implementation of block implicit methods for ODEs Applied Numerical Mathematics 42 (2002) 29 45 www.elsevier.com/locate/apnum Blended implementation of block implicit methods for ODEs Luigi Brugnano, Cecilia Magherini Dipartimento di Matematica U. Dini,

More information

Czechoslovak Mathematical Journal

Czechoslovak Mathematical Journal Czechoslovak Mathematical Journal Varaporn Saenpholphat; Ping Zhang Connected resolvability of graphs Czechoslovak Mathematical Journal, Vol. 53 (2003), No. 4, 827 840 Persistent URL: http://dml.cz/dmlcz/127843

More information

EQUADIFF 1. Milan Práger; Emil Vitásek Stability of numerical processes. Terms of use:

EQUADIFF 1. Milan Práger; Emil Vitásek Stability of numerical processes. Terms of use: EQUADIFF 1 Milan Práger; Emil Vitásek Stability of numerical processes In: (ed.): Differential Equations and Their Applications, Proceedings of the Conference held in Prague in September 1962. Publishing

More information

Downloaded 12/15/15 to Redistribution subject to SIAM license or copyright; see

Downloaded 12/15/15 to Redistribution subject to SIAM license or copyright; see SIAM J. NUMER. ANAL. Vol. 40, No. 4, pp. 56 537 c 2002 Society for Industrial and Applied Mathematics PREDICTOR-CORRECTOR METHODS OF RUNGE KUTTA TYPE FOR STOCHASTIC DIFFERENTIAL EQUATIONS KEVIN BURRAGE

More information

Chapter 1 Symplectic Integrator and Beam Dynamics Simulations

Chapter 1 Symplectic Integrator and Beam Dynamics Simulations Chapter 1 and Beam Accelerator Physics Group, Journal Club November 9, 2010 and Beam NSLS-II Brookhaven National Laboratory 1.1 (70) Big Picture for Numerical Accelerator Physics and Beam For single particle

More information

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET. Singly diagonally implicit Runge-Kutta methods with an explicit first stage

NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET. Singly diagonally implicit Runge-Kutta methods with an explicit first stage NORGES TEKNISK-NATURVITENSKAPELIGE UNIVERSITET Singly diagonally implicit Runge-Kutta methods with an explicit first stage by Anne Kværnø PREPRINT NUMERICS NO. 1/2004 NORWEGIAN UNIVERSITY OF SCIENCE AND

More information

Strong Stability of Singly-Diagonally-Implicit Runge-Kutta Methods

Strong Stability of Singly-Diagonally-Implicit Runge-Kutta Methods Strong Stability of Singly-Diagonally-Implicit Runge-Kutta Methods L. Ferracina and M. N. Spijker 2007, June 4 Abstract. This paper deals with the numerical solution of initial value problems, for systems

More information

THREE- AND FOUR-STAGE IMPLICIT INTERVAL METHODS OF RUNGE-KUTTA TYPE

THREE- AND FOUR-STAGE IMPLICIT INTERVAL METHODS OF RUNGE-KUTTA TYPE COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 6, 41-59 (2000) THREE- AND FOUR-STAGE IMPLICIT INTERVAL METHODS OF RUNGE-KUTTA TYPE KAROL GAJDA 1, ANDRZEJ MARCINIAK 2, BARBARA SZYSZKA 1 1 Institute of

More information

Czechoslovak Mathematical Journal

Czechoslovak Mathematical Journal Czechoslovak Mathematical Journal Józef Burzyk An example of a group convergence with unique sequential limits which cannot be associated with a Hausdorff topology Czechoslovak Mathematical Journal, Vol.

More information

Linear Differential Transformations of the Second Order

Linear Differential Transformations of the Second Order Linear Differential Transformations of the Second Order In: Otakar Borůvka (author); Felix M. Arscott (translator): Linear Differential Transformations of the Second Order. (English). London: The English

More information

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky Časopis pro pěstování matematiky Vlastimil Pták A modification of Newton's method Časopis pro pěstování matematiky, Vol. 101 (1976), No. 2, 188--194 Persistent URL: http://dml.cz/dmlcz/117905 Terms of

More information

Partitioned Runge-Kutta Methods for Semi-explicit Differential-Algebraic Systems of Index 2

Partitioned Runge-Kutta Methods for Semi-explicit Differential-Algebraic Systems of Index 2 Partitioned Runge-Kutta Methods for Semi-explicit Differential-Algebraic Systems of Index 2 A. Murua Konputazio Zientziak eta A. A. Saila, EHU/UPV, Donostia-San Sebastián email ander@si.ehu.es December

More information

Adaptive nested implicit Runge Kutta formulas of Gauss type

Adaptive nested implicit Runge Kutta formulas of Gauss type Applied Numerical Mathematics 59 (9) 77 7 www.elsevier.com/locate/apnum Adaptive nested implicit Runge Kutta formulas of Gauss type G.Yu. Kulikov, S.K. Shindin School of Computational and Applied Mathematics,

More information

Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model

Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model Nested Uncertain Differential Equations and Its Application to Multi-factor Term Structure Model Xiaowei Chen International Business School, Nankai University, Tianjin 371, China School of Finance, Nankai

More information

Mathematica Bohemica

Mathematica Bohemica Mathematica Bohemica Radomír Halaš Remarks on commutative Hilbert algebras Mathematica Bohemica, Vol. 127 (2002), No. 4, 525--529 Persistent URL: http://dml.cz/dmlcz/133956 Terms of use: Institute of Mathematics

More information

High-order Symmetric Schemes for the Energy Conservation of Polynomial Hamiltonian Problems 1 2

High-order Symmetric Schemes for the Energy Conservation of Polynomial Hamiltonian Problems 1 2 European Society of Computational Methods in Sciences and Engineering (ESCMSE) Journal of Numerical Analysis, Industrial and Applied Mathematics (JNAIAM) vol 4, no -2, 29, pp 87- ISSN 79 84 High-order

More information

A New Block Method and Their Application to Numerical Solution of Ordinary Differential Equations

A New Block Method and Their Application to Numerical Solution of Ordinary Differential Equations A New Block Method and Their Application to Numerical Solution of Ordinary Differential Equations Rei-Wei Song and Ming-Gong Lee* d09440@chu.edu.tw, mglee@chu.edu.tw * Department of Applied Mathematics/

More information

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky Časopis pro pěstování matematiky Kristína Smítalová Existence of solutions of functional-differential equations Časopis pro pěstování matematiky, Vol. 100 (1975), No. 3, 261--264 Persistent URL: http://dml.cz/dmlcz/117875

More information

April 13, 1993 POSITIVE DEFINITENESS IN THE NUMERICAL SOLUTION OF RICCATI DIFFERENTIAL EQUATIONS

April 13, 1993 POSITIVE DEFINITENESS IN THE NUMERICAL SOLUTION OF RICCATI DIFFERENTIAL EQUATIONS April 13, 1993 POSITIVE DEFINITENESS IN THE NUMERICAL SOLUTION OF RICCATI DIFFERENTIAL EQUATIONS LUCA DIECI AND TIMO EIROLA Abstract In this work we address the issue of integrating symmetric Riccati and

More information

Explicit Runge Kutta Pairs with Lower Stage-Order *

Explicit Runge Kutta Pairs with Lower Stage-Order * myjournal manuscript No. (will be inserted by the editor) Explicit Runge Kutta Pairs with Lower Stage-Order * J.H. Verner Dedicated to John C. Butcher in celebration of his eightieth birthday October,

More information

Numerical Treatment of Unstructured. Differential-Algebraic Equations. with Arbitrary Index

Numerical Treatment of Unstructured. Differential-Algebraic Equations. with Arbitrary Index Numerical Treatment of Unstructured Differential-Algebraic Equations with Arbitrary Index Peter Kunkel (Leipzig) SDS2003, Bari-Monopoli, 22. 25.06.2003 Outline Numerical Treatment of Unstructured Differential-Algebraic

More information

Application of Geometric Integration to some Mechanical Problems

Application of Geometric Integration to some Mechanical Problems Application of Geometric Integration to some Mechanical Problems Kenth Engø y and Arne Marthinsen z Department of Informatics, University of Bergen, N-5 Bergen, Norway Department of Mathematical Sciences,

More information

Mathematica Slovaca. Jaroslav Hančl; Péter Kiss On reciprocal sums of terms of linear recurrences. Terms of use:

Mathematica Slovaca. Jaroslav Hančl; Péter Kiss On reciprocal sums of terms of linear recurrences. Terms of use: Mathematica Slovaca Jaroslav Hančl; Péter Kiss On reciprocal sums of terms of linear recurrences Mathematica Slovaca, Vol. 43 (1993), No. 1, 31--37 Persistent URL: http://dml.cz/dmlcz/136572 Terms of use:

More information

High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems.

High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. High-order symmetric schemes for the energy conservation of polynomial Hamiltonian problems. Felice Iavernaro and Donato Trigiante Abstract We define a class of arbitrary high order symmetric one-step

More information

Numerical solution of stiff systems of differential equations arising from chemical reactions

Numerical solution of stiff systems of differential equations arising from chemical reactions Iranian Journal of Numerical Analysis and Optimization Vol 4, No. 1, (214), pp 25-39 Numerical solution of stiff systems of differential equations arising from chemical reactions G. Hojjati, A. Abdi, F.

More information

the solution of ()-(), an ecient numerical treatment requires variable steps. An alternative approach is to apply a time transformation of the form t

the solution of ()-(), an ecient numerical treatment requires variable steps. An alternative approach is to apply a time transformation of the form t Asymptotic Error Analysis of the Aaptive Verlet Metho Stephane Cirilli, Ernst Hairer Beneict Leimkuhler y May 3, 999 Abstract The Aaptive Verlet metho [7] an variants [6] are time-reversible schemes for

More information

ON EXPLICIT INTERVAL METHODS OF ADAMS-BASHFORTH TYPE

ON EXPLICIT INTERVAL METHODS OF ADAMS-BASHFORTH TYPE COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 8 (2), 46-57 (2002) ON EXPLICIT INTERVAL METHODS OF ADAMS-BASHFORTH TYPE MAŁGORZATA JANKOWSKA 1, ANDRZEJ MARCINIAK 1, 2 1 Poznań University of Technology,

More information

Aplikace matematiky. Gene Howard Golub Numerical methods for solving linear least squares problems

Aplikace matematiky. Gene Howard Golub Numerical methods for solving linear least squares problems Aplikace matematiky Gene Howard Golub Numerical methods for solving linear least squares problems Aplikace matematiky, Vol. 10 (1965), No. 3, 213--216 Persistent URL: http://dml.cz/dmlcz/102951 Terms of

More information

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations

Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations Logistic Map, Euler & Runge-Kutta Method and Lotka-Volterra Equations S. Y. Ha and J. Park Department of Mathematical Sciences Seoul National University Sep 23, 2013 Contents 1 Logistic Map 2 Euler and

More information

1 Ordinary differential equations

1 Ordinary differential equations Numerical Analysis Seminar Frühjahrssemester 08 Lecturers: Prof. M. Torrilhon, Prof. D. Kressner The Störmer-Verlet method F. Crivelli (flcrivel@student.ethz.ch May 8, 2008 Introduction During this talk

More information

Symplectic integration with Runge-Kutta methods, AARMS summer school 2015

Symplectic integration with Runge-Kutta methods, AARMS summer school 2015 Symplectic integration with Runge-Kutta methods, AARMS summer school 2015 Elena Celledoni July 13, 2015 1 Hamiltonian systems and their properties We consider a Hamiltonian system in the form ẏ = J H(y)

More information

Variable Step Runge-Kutta-Nyström Methods for the Numerical Solution of Reversible Systems

Variable Step Runge-Kutta-Nyström Methods for the Numerical Solution of Reversible Systems Variable Step Runge-Kutta-Nyström Methods for the Numerical Solution of Reversible Systems J. R. Cash and S. Girdlestone Department of Mathematics, Imperial College London South Kensington London SW7 2AZ,

More information

Applications of Mathematics

Applications of Mathematics Applications of Mathematics Tomáš Cipra Exponential smoothing for irregular data Applications of Mathematics Vol. 5 2006) No. 6 597--604 Persistent URL: http://dml.cz/dmlcz/34655 Terms of use: Institute

More information

Solving Orthogonal Matrix Differential Systems in Mathematica

Solving Orthogonal Matrix Differential Systems in Mathematica Solving Orthogonal Matrix Differential Systems in Mathematica Mark Sofroniou 1 and Giulia Spaletta 2 1 Wolfram Research, Champaign, Illinois, USA. marks@wolfram.com 2 Mathematics Department, Bologna University,

More information

EXTENSIONS OF THE HHT-α METHOD TO DIFFERENTIAL-ALGEBRAIC EQUATIONS IN MECHANICS

EXTENSIONS OF THE HHT-α METHOD TO DIFFERENTIAL-ALGEBRAIC EQUATIONS IN MECHANICS EXTENSIONS OF THE HHT-α METHOD TO DIFFERENTIAL-ALGEBRAIC EQUATIONS IN MECHANICS LAURENT O. JAY AND DAN NEGRUT Abstract. We present second-order extensions of the Hilber-Hughes-Taylor-α HHT-α) method for

More information

Czechoslovak Mathematical Journal

Czechoslovak Mathematical Journal Czechoslovak Mathematical Journal Garyfalos Papaschinopoulos; John Schinas Criteria for an exponential dichotomy of difference equations Czechoslovak Mathematical Journal, Vol. 35 (1985), No. 2, 295 299

More information

A convolution test equation for double delay integral equations

A convolution test equation for double delay integral equations Journal of Computational and Applied Mathematics 228 (2009) 589 599 Contents lists available at ScienceDirect Journal of Computational and Applied Mathematics journal homepage: www.elsevier.com/locate/cam

More information

On the stability regions of implicit linear multistep methods

On the stability regions of implicit linear multistep methods On the stability regions of implicit linear multistep methods arxiv:1404.6934v1 [math.na] 8 Apr 014 Lajos Lóczi April 9, 014 Abstract If we apply the accepted definition to determine the stability region

More information

c 2002 Society for Industrial and Applied Mathematics

c 2002 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 4 No. pp. 507 5 c 00 Society for Industrial and Applied Mathematics WEAK SECOND ORDER CONDITIONS FOR STOCHASTIC RUNGE KUTTA METHODS A. TOCINO AND J. VIGO-AGUIAR Abstract. A general

More information

Časopis pro pěstování matematiky

Časopis pro pěstování matematiky Časopis pro pěstování matematiky án Andres On stability and instability of the roots of the oscillatory function in a certain nonlinear differential equation of the third order Časopis pro pěstování matematiky,

More information

Numerical solution of stiff ODEs using second derivative general linear methods

Numerical solution of stiff ODEs using second derivative general linear methods Numerical solution of stiff ODEs using second derivative general linear methods A. Abdi and G. Hojjati University of Tabriz, Tabriz, Iran SciCADE 2011, Toronto 0 5 10 15 20 25 30 35 40 1 Contents 1 Introduction

More information

Archivum Mathematicum

Archivum Mathematicum Archivum Mathematicum Zdeněk Dušek; Oldřich Kowalski How many are affine connections with torsion Archivum Mathematicum, Vol. 50 (2014), No. 5, 257 264 Persistent URL: http://dml.cz/dmlcz/144068 Terms

More information

Subquadrature Expansions for TSRK methods

Subquadrature Expansions for TSRK methods Subquadrature Expansions for TSRK methods Abstract. Anne Kværnø and Jim Verner January 3, 2 The representation of order conditions for general linear methods formulated using an algebraic theory by Butcher,

More information

Explicit General Linear Methods with quadratic stability

Explicit General Linear Methods with quadratic stability Explicit with quadratic stability Angelamaria Cardone a, Zdzislaw Jackiewicz b ancardone@unisa.it, jackiewi@math.la.asu.edu a Dipartimento di Matematica e Informatica, Università degli Studi di Salerno,

More information

A NOTE ON BLASIUS TYPE BOUNDARY VALUE PROBLEMS. Grzegorz Andrzejczak, Magdalena Nockowska-Rosiak, and Bogdan Przeradzki

A NOTE ON BLASIUS TYPE BOUNDARY VALUE PROBLEMS. Grzegorz Andrzejczak, Magdalena Nockowska-Rosiak, and Bogdan Przeradzki Opuscula Math. 33, no. 1 213, 5 17 http://dx.doi.org/1.7494/opmath.213.33.1.5 Opuscula Mathematica A NOTE ON BLASIUS TYPE BOUNDARY VALUE PROBLEMS Grzegorz Andrzejczak, Magdalena Nockowska-Rosiak, and Bogdan

More information

Kybernetika. Sebastian Fuchs Multivariate copulas: Transformations, symmetry, order and measures of concordance

Kybernetika. Sebastian Fuchs Multivariate copulas: Transformations, symmetry, order and measures of concordance Kybernetika Sebastian Fuchs Multivariate copulas: Transformations, symmetry, order and measures of concordance Kybernetika, Vol. 50 2014, No. 5, 725 743 Persistent URL: http://dml.cz/dmlcz/144103 Terms

More information

Regularity for the optimal transportation problem with Euclidean distance squared cost on the embedded sphere

Regularity for the optimal transportation problem with Euclidean distance squared cost on the embedded sphere Regularity for the optimal transportation problem with Euclidean distance squared cost on the embedded sphere Jun Kitagawa and Micah Warren January 6, 011 Abstract We give a sufficient condition on initial

More information

Czechoslovak Mathematical Journal

Czechoslovak Mathematical Journal Czechoslovak Mathematical Journal Oktay Duman; Cihan Orhan µ-statistically convergent function sequences Czechoslovak Mathematical Journal, Vol. 54 (2004), No. 2, 413 422 Persistent URL: http://dml.cz/dmlcz/127899

More information

COMMENTS ON HIGH ORDER INTEGRATORS EMBEDDED WITHIN INTEGRAL DEFERRED CORRECTION METHODS

COMMENTS ON HIGH ORDER INTEGRATORS EMBEDDED WITHIN INTEGRAL DEFERRED CORRECTION METHODS COMMENTS ON HIGH ORDER INTEGRATORS EMBEDDED WITHIN INTEGRAL DEFERRED CORRECTION METHODS ANDREW CHRISTLIEB, BENJAMIN ONG, AND JING-MEI QIU Abstract. Spectral deferred correction (SDC) methods for solving

More information

Extended Runge Kutta-like formulae

Extended Runge Kutta-like formulae Applied Numerical Mathematics 56 006 584 605 www.elsevier.com/locate/apnum Extended Runge Kutta-like formulae Xinyuan Wu a Jianlin Xia b a State Key Laboratory for Novel Software Technology Department

More information

ONE-STEP 4-STAGE HERMITE-BIRKHOFF-TAYLOR DAE SOLVER OF ORDER 12

ONE-STEP 4-STAGE HERMITE-BIRKHOFF-TAYLOR DAE SOLVER OF ORDER 12 CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 16, Number 4, Winter 2008 ONE-STEP 4-STAGE HERMITE-BIRKHOFF-TAYLOR DAE SOLVER OF ORDER 12 TRUONG NGUYEN-BA, HAN HAO, HEMZA YAGOUB AND RÉMI VAILLANCOURT ABSTRACT.

More information

arxiv: v1 [math.na] 31 Oct 2016

arxiv: v1 [math.na] 31 Oct 2016 RKFD Methods - a short review Maciej Jaromin November, 206 arxiv:60.09739v [math.na] 3 Oct 206 Abstract In this paper, a recently published method [Hussain, Ismail, Senua, Solving directly special fourthorder

More information

Exponential integrators for oscillatory second-order differential equations

Exponential integrators for oscillatory second-order differential equations Exponential integrators for oscillatory second-order differential equations Marlis Hochbruck and Volker Grimm Mathematisches Institut Heinrich Heine Universität Düsseldorf Cambridge, March 2007 Outline

More information

Exponential Runge-Kutta methods for parabolic problems

Exponential Runge-Kutta methods for parabolic problems Exponential Runge-Kutta methods for parabolic problems Marlis Hochbruck a,, Alexander Ostermann b a Mathematisches Institut, Heinrich-Heine Universität Düsseldorf, Universitätsstraße 1, D-4225 Düsseldorf,

More information

ORBIT 14 The propagator. A. Milani et al. Dipmat, Pisa, Italy

ORBIT 14 The propagator. A. Milani et al. Dipmat, Pisa, Italy ORBIT 14 The propagator A. Milani et al. Dipmat, Pisa, Italy Orbit 14 Propagator manual 1 Contents 1 Propagator - Interpolator 2 1.1 Propagation and interpolation............................ 2 1.1.1 Introduction..................................

More information

An Embedded Fourth Order Method for Solving Structurally Partitioned Systems of Ordinary Differential Equations

An Embedded Fourth Order Method for Solving Structurally Partitioned Systems of Ordinary Differential Equations Applied Mathematical Sciences, Vol. 9, 0, no. 97, 484-48 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/0.988/ams.0.98 An Embedded Fourth Order Method for Solving Structurally Partitioned Systems of Ordinary

More information

Discontinuous Collocation Methods for DAEs in Mechanics

Discontinuous Collocation Methods for DAEs in Mechanics Discontinuous Collocation Methods for DAEs in Mechanics Scott Small Laurent O. Jay The University of Iowa Iowa City, Iowa, USA July 11, 2011 Outline 1 Introduction of the DAEs 2 SPARK and EMPRK Methods

More information

Symplectic exponentially-fitted modified Runge-Kutta methods of the Gauss type: revisited

Symplectic exponentially-fitted modified Runge-Kutta methods of the Gauss type: revisited Symplectic exponentially-fitted modified Runge-Kutta methods of the Gauss type: revisited G. Vanden Berghe and M. Van Daele Vakgroep Toegepaste Wiskunde en Informatica, Universiteit Gent, Krijgslaan 8

More information

c 2012 Society for Industrial and Applied Mathematics

c 2012 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 50, No. 4, pp. 849 860 c 0 Society for Industrial and Applied Mathematics TWO RESULTS CONCERNING THE STABILITY OF STAGGERED MULTISTEP METHODS MICHELLE GHRIST AND BENGT FORNBERG

More information

Homogeneous Equations with Constant Coefficients

Homogeneous Equations with Constant Coefficients Homogeneous Equations with Constant Coefficients MATH 365 Ordinary Differential Equations J. Robert Buchanan Department of Mathematics Spring 2018 General Second Order ODE Second order ODEs have the form

More information

Error formulas for divided difference expansions and numerical differentiation

Error formulas for divided difference expansions and numerical differentiation Error formulas for divided difference expansions and numerical differentiation Michael S. Floater Abstract: We derive an expression for the remainder in divided difference expansions and use it to give

More information

c 2013 Society for Industrial and Applied Mathematics

c 2013 Society for Industrial and Applied Mathematics SIAM J. NUMER. ANAL. Vol. 5, No. 4, pp. 249 265 c 203 Society for Industrial and Applied Mathematics STRONG STABILITY PRESERVING EXPLICIT RUNGE KUTTA METHODS OF MAXIMAL EFFECTIVE ORDER YIANNIS HADJIMICHAEL,

More information

Symmetric multistep methods for charged-particle dynamics

Symmetric multistep methods for charged-particle dynamics Version of 12 September 2017 Symmetric multistep methods for charged-particle dynamics Ernst Hairer 1, Christian Lubich 2 Abstract A class of explicit symmetric multistep methods is proposed for integrating

More information

Lecture 4: Numerical solution of ordinary differential equations

Lecture 4: Numerical solution of ordinary differential equations Lecture 4: Numerical solution of ordinary differential equations Department of Mathematics, ETH Zürich General explicit one-step method: Consistency; Stability; Convergence. High-order methods: Taylor

More information