Automatic Control Systems. Lecture Note 15


 Patrick Ryan
 1 years ago
 Views:
Transcription
1 Lecture Note 15 Modeling of Physical Systems 5 1/52
2 AC Motors AC Motors Classification i) Induction Motor (Asynchronous Motor) ii) Synchronous Motor 2/52 Advantages of AC Motors i) Costeffective ii) Convenient power source due to standard AC supply iii) No commutator and brush mechanism needed in some types iv) Lower power dissipation, lower rotor inertia, and light weight in some designs v) Virtually no electric arcing (less hazardous in chemical environments)
3 AC Motors vi) Constantspeed operation without servo control (in some synchronous machines) vii) No drift problems in AC amplifiers in supply circuits (unlike DC amplifiers) viii) High reliability Disadvantages of AC Motors i) Lower starting torque ii) Auxiliary starting device needed for some motors iii) Difficulty in variablespeed control (except when modern thyristorcontrol devices and field feedback compensation techniques are used) 3/52
4 Induction Motor(Asynchronous Motor) Induction Motor Model 1 v t a cos t p 2 v2 t a cos pt 3 4 v3 t a cos pt 3 : angular speed of a rotating field p 4/52
5 Induction Motor(Asynchronous Motor) Rotating field generates the driving torque by interacting with the rotor windings Induction Motor 5/52
6 Induction Motor(Asynchronous Motor) Rotating field speed, p f n p n : frequency of the AC supply : number of threephase winding sets used Slip rate : relative speed f m S f 6/52
7 Synchronous Motor Synchronous Motor 7/52
8 Synchronous Motor The rotor of a synchronous AC motor rotates in synchronism with a rotating field generated by the stator windings This motor has rotor windings that are energized by an external DC source. Suitable for constantspeed applications under variableload conditions Drawback : an auxiliary starter is required using a small DC motor (at steadystate, act as a DC generator) 8/52
9 Step Motor Step Motor Also called as Stepping Motor, Stepper Motor (Example1) Twostack step motor 9/52
10 Step Motor 10/52
11 Step Motor 11/52
12 Step Motor 12/52
13 Step Motor (Example2) Threephase variablereluctance step motor 13/52
14 Step Motor Fullstepping sequence for the threephase VR step motor 14/52
15 Step Motor Halfstepping sequence for the threephase VR step motor 15/52
16 Classification of step motor Step Motor 16/52
17 Step Motor Threephase singlestack VR step motor with twelve stator poles (teeth) and eight rotor teeth 17/52
18 Systems with Transportation Lags (Time Delays) Systems with Transportation Lags (Time Delays) 18/52
19 Systems with Transportation Lags (Time Delays) Time lag is given by T d d v d Ts d Ts d e b t y t T B s e Y s B s Y s time delay : seconds e Ts d 19/52
20 20/52 Systems with Transportation Lags (Time Delays) Approximation of the time delay approximat ion s T s T e e e s T s T e e s T s T e d d s T s T s T d d s T s T d d s T d d d d d d Pade : iii) ii) 2 1 i) 2 / 2 /
21 Modeling : mathematical description of physical system based on corresponding physical laws Model : differential equation, state equation, or transfer function used in simulation, analysis, and control design Real Physical System Modeling Mathematical Model i) LTI system ii) LTV system iii) Nonlinear LTI system iv) Nonlinear LTV system 21/52
22 Two approaches to derive an equation of motion i) Newtonian Mechanics : based on Newton s 2 nd law of motion ii) Lagrangian Mechanics : analytic method based on energy concept 22/52
23 Newtonian Mechanics describes rigid body motion using the balanced force relation Linear motion F ma F m a : vector sum of applied forces on a rigid body : mass of rigid body : vector of acceleration of rigid body 23/52
24 Rotational motion : T J T : sum of applied torques of rigid body J : mass moment of inertia of rigid body : angular acceleration of rigid body Note Free body diagram : net description of forces exerted on a rigid body convenient when deriving Newtonian equation of motion 24/52
25 Largrangian Mechanics derives equation of motion by using all the energy terms in a rigid body such as kinetic, potential, and dissipating energies Lagrange equation d T T V D Q j, j 1,2,, n dt q q j q j j qj q j V Q j : generalized coordinate, T : kinetic energy : potential energy, D : dissipating energy : nonconservative generalized force corresponding to q j 25/52
26 Note i) T, V, D are functions of generalized variable q j ii) Lagrangian : L T V iii) Lagrange equation d L L D Q j, j 1,2,, n dt q q j j qj 26/52
27 Kinetic energy T 1 2 mv J 2 m, J : mass and moment of inertia v, : linear and angular velocity Note vector equation of kinetic energy 1 T 1 T T v mv ω Jω /52
28 Dissipative friction energy b v 1 D bv 2 2 : viscous friction coefficient : velocity Note Generalized force 1. an external force as function of generalized coordinate variables 2. represents force for linear motion and torque for rotational motion, respectively 28/52
29 Example : massspringdamper system m b F : mass, k : spring constant, : damping coefficient : external force, x : displacement k x m F b 29/52 <Fig> massspringdamper system
30 i) Newtonian mechanics F ma : kx b x F m x m x b x kx F (1) <Fig> free body diagram 30/52
31 ii) Largrangian mechanics : 1 dof system( n 1) q 1 x T m x, V kx, D b x d T T V D m x, 0, kx, b x dt x x x x m x b x kx F (1) 31/52
32 Modeling of Electrical Networks Loop Method Network Equation Node Method StateVariable Method (used in modern control design) Example1 32/52
33 33/52 Voltage in L : Current in C : i) Statespace representation State : it, e t, Output : e c t yt, Input : e t dec di dt t dt y c t t di L Ri c dt t de C c dt u t 0 1 L t 1 0 e i t t c t e t et (1) it (2) 1 C e R i L t t c 1 0 u L t
34 StateDiagram optional Another statespace representation State : e t x t, e t x t, Output : t y t, Input : c e t 1 c 2 e c ut 34/52
35 (2) (1) : LC e t RC e t e t et c c c x1 t x1 t 1 R 1 u t x2 t x 2 t LC L LC 1 0 y t x t t 1 x2 35/52
36 ii) Transfer function representation if it E c E I E s 2 1 LC s 2 s R LCs RCs 1 1 is output L 1 s 1 LC s L s Cs 2 s R LCs RCs 1 1 L s 1 1 LC s s /52
37 Sensors and Encoders 37/52
38 38/52 automation sensor general sensor range sensor motor control sensor process control sensor object detection displacement position Speed/acceleration force/torque/elastic force temperature Fluid/fluid speed/fluid pressure density/thickness ph touch proximity
39 motor control sensor analog digital potentiometer linear/rotary variable differential transformer (LVDT/RVDT) resolver synchro inductive optical encoder absolute encoder laser interferometer 39/52
40 Incremental Encoder Position or velocity detecting digital output By counting the pulses or by timing the pulse width Equally spaced and identical slit areas 40/52
41 Incremental encoder (Single channel) Single channel encoder no direction information Dual channel encoder direction information detected 41/52
42 42/52
43 Absolute Encoder Many pulse tracks for position indication The pulse windows on the tracks can be organized into some pattern ( code) i) Binary Code ii) Gray Code : single bit continuous change 43/52
44 Binary Code 44/52
45 Gray Code 45/52
46 DC Motors Servo Motors (accurate motors for control purpose) i) AC Motors : cheap, robust, hard to control (due to nonlinearity) ii) DC Motors : expensive, easy to control 46/52
47 Basic Operation Principle electromagnetic force 47/52
48 f Bil ; principle of motor ( l :length of conductor) If the conductor is free to move, then it generates back electromotive force (back e.m.f.) e b e b B l v will be opposing the magnetic flux (by Lenz's law) 48/52
49 49/52
50 Actual DC Motor Schematic diagram of a DC motor 50/52
51 DC Motor Equations 51/52
52 BlockDiagram 52/52
MECHATRONICS ENGINEERING TECHNOLOGY. Modeling a Servo Motor System
Modeling a Servo Motor System Definitions Motor: A device that receives a continuous (Analog) signal and operates continuously in time. Digital Controller: Discretizes the amplitude of the signal and also
More informationDefinition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic
Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Force Motor action Generator action Types and parts
More informationEqual Pitch and Unequal Pitch:
Equal Pitch and Unequal Pitch: EqualPitch MultipleStack Stepper: For each rotor stack, there is a toothed stator segment around it, whose pitch angle is identical to that of the rotor (θs = θr). A stator
More informationStepping Motors. Chapter 11 L E L F L D
Chapter 11 Stepping Motors In the synchronous motor, the combination of sinusoidally distributed windings and sinusoidally time varying current produces a smoothly rotating magnetic field. We can eliminate
More informationProf. S.K. Saha. Sensors 1. Lecture 5 June 11, Prof. S.K. Saha. Purpose Classification Internal Sensors. External Sensors.
Lecture 5 June 11, 2009 Sensors Prof. S.K. Saha Dept. of Mech. Eng. IIT Delhi Announcement Outlines of slides in Lectures 14 on May 15, 18, 21, June 01, 2009, respectively, are available from: http://web.iitd.ac.in/~saha/
More informationFEEDBACK CONTROL SYSTEMS
FEEDBAC CONTROL SYSTEMS. Control System Design. Open and ClosedLoop Control Systems 3. Why ClosedLoop Control? 4. Case Study  Speed Control of a DC Motor 5. SteadyState Errors in Unity Feedback Control
More informationLesson 17: Synchronous Machines
Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines
More informationECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67
1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure
More informationSpontaneous Speed Reversals in Stepper Motors
Spontaneous Speed Reversals in Stepper Motors Marc Bodson University of Utah Electrical & Computer Engineering 50 S Central Campus Dr Rm 3280 Salt Lake City, UT 84112, U.S.A. Jeffrey S. Sato & Stephen
More information6) Motors and Encoders
6) Motors and Encoders Electric motors are by far the most common component to supply mechanical input to a linear motion system. Stepper motors and servo motors are the popular choices in linear motion
More informationR10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1
Code No: R06 R0 SET  II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry
More informationMotor Info on the WWW Motorola Motors DC motor» /MOTORDCTUT.
Motor Info on the WWW Motorola Motors DC motor» http://www.freescale.com/files/microcontrollers/doc/train_ref_material /MOTORDCTUT.html Brushless DC motor» http://www.freescale.com/files/microcontrollers/doc/train_ref_material
More informationLecture 1: Induction Motor
1 / 22 Lecture 1: Induction Motor ELECE8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Aalto University School of Electrical Engineering Spring 2016 2 / 22 Learning Outcomes
More informationENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM
CHAPTER 1 BY RADU MURESAN Page 1 ENGG4420 LECTURE 7 September 21 10 2:29 PM MODELS OF ELECTRIC CIRCUITS Electric circuits contain sources of electric voltage and current and other electronic elements such
More informationEC T32  ELECTRICAL ENGINEERING
EC T32  ELECTRICAL ENGINEERING UNITI  TRANSFORMER 1. What is a transformer? 2. Briefly explain the principle of operation of transformers. 3. What are the parts of a transformer? 4. What are the types
More informationStep Motor Modeling. Step Motor Modeling K. Craig 1
Step Motor Modeling Step Motor Modeling K. Craig 1 Stepper Motor Models Under steady operation at low speeds, we usually do not need to differentiate between VR motors and PM motors (a hybrid motor is
More informationTexas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos
Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Lecture 6: Modeling of Electromechanical Systems Principles of Motor Operation
More information(a) Torsional springmass system. (b) Spring element.
m v s T s v a (a) T a (b) T a FIGURE 2.1 (a) Torsional springmass system. (b) Spring element. by ky Wall friction, b Mass M k y M y r(t) Force r(t) (a) (b) FIGURE 2.2 (a) Springmassdamper system. (b)
More informationAn Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy
An Introduction to Electrical Machines P. Di Barba, University of Pavia, Italy Academic year 00 Contents Transformer. An overview of the device. Principle of operation of a singlephase transformer 3.
More informationOverview of motors and motion control
Overview of motors and motion control. Elements of a motioncontrol system Power upply Highlevel controller owlevel controller Driver Motor. Types of motors discussed here; Brushed, PM DC Motors Cheap,
More informationMCE380: Measurements and Instrumentation Lab. Chapter 5: Electromechanical Transducers
MCE380: Measurements and Instrumentation Lab Chapter 5: Electromechanical Transducers Part I Topics: Transducers and Impedance Magnetic Electromechanical Coupling Reference: Holman, CH 4. Cleveland State
More informationMechatronics Engineering. Li Wen
Mechatronics Engineering Li Wen Bioinspired robotdc motor drive Unstable system Mirko Kovac,EPFL Modeling and simulation of the control system Problems 1. Why we establish mathematical model of the control
More informationIndex. Index. More information. in this web service Cambridge University Press
Atype elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 Atype variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,
More informationElectric Machines I Three Phase Induction Motor. Dr. Firas Obeidat
Electric Machines I Three Phase Induction Motor Dr. Firas Obeidat 1 Table of contents 1 General Principles 2 Construction 3 Production of Rotating Field 4 Why Does the Rotor Rotate 5 The Slip and Rotor
More informationIntroduction to Control (034040) lecture no. 2
Introduction to Control (034040) lecture no. 2 Leonid Mirkin Faculty of Mechanical Engineering Technion IIT Setup: Abstract control problem to begin with y P(s) u where P is a plant u is a control signal
More informationELG4112. Electromechanical Systems and Mechatronics
ELG4112 Electromechanical Systems and Mechatronics 1 Introduction Based on Electromechanical Systems, Electric Machines, and Applied Mechatronics Electromechanical systems integrate the following: Electromechanical
More informationE11 Lecture 13: Motors. Professor Lape Fall 2010
E11 Lecture 13: Motors Professor Lape Fall 2010 Overview How do electric motors work? Electric motor types and general principles of operation How well does your motor perform? Torque and power output
More informationMODELING AND HIGHPERFORMANCE CONTROL OF ELECTRIC MACHINES
MODELING AND HIGHPERFORMANCE CONTROL OF ELECTRIC MACHINES JOHN CHIASSON IEEE PRESS ü t SERIES ON POWER ENGINEERING IEEE Press Series on Power Engineering Mohamed E. ElHawary, Series Editor The Institute
More informationAP Physics C Mechanics Objectives
AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph
More informationSolved Problems. Electric Circuits & Components. 11 Write the KVL equation for the circuit shown.
Solved Problems Electric Circuits & Components 11 Write the KVL equation for the circuit shown. 12 Write the KCL equation for the principal node shown. 12A In the DC circuit given in Fig. 1, find (i)
More informationMathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors
Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,
More informationAcceleration Feedback
Acceleration Feedback Mechanical Engineer Modeling & Simulation Electro Mechanics Electrical Electronics Engineer Sensors Actuators Computer Systems Engineer Embedded Control Controls Engineer Mechatronic
More informationModeling and Analysis of Dynamic Systems
Modeling and Analysis of Dynamic Systems by Dr. Guillaume Ducard Fall 2016 Institute for Dynamic Systems and Control ETH Zurich, Switzerland 1/22 Outline 1 Lecture 5: Hydraulic Systems Pelton Turbine:
More informationResearch on the winding control system in winding vacuum coater
Acta Technica 61, No. 4A/2016, 257 268 c 2017 Institute of Thermomechanics CAS, v.v.i. Research on the winding control system in winding vacuum coater Wenbing Jin 1, Suo Zhang 1, Yinni Jin 2 Abstract.
More informationTHE REACTION WHEEL PENDULUM
THE REACTION WHEEL PENDULUM By Ana Navarro YuHan Sun Final Report for ECE 486, Control Systems, Fall 2013 TA: Dan Soberal 16 December 2013 Thursday 36pm Contents 1. Introduction... 1 1.1 Sensors (Encoders)...
More informationELECTRICALMACHINESI QUESTUION BANK
ELECTRICALMACHINESI QUESTUION BANK UNITI INTRODUCTION OF MAGNETIC MATERIAL PART A 1. What are the three basic rotating Electric machines? 2. Name the three materials used in machine manufacture. 3. What
More informationThe basic principle to be used in mechanical systems to derive a mathematical model is Newton s law,
Chapter. DYNAMIC MODELING Understanding the nature of the process to be controlled is a central issue for a control engineer. Thus the engineer must construct a model of the process with whatever information
More informationSensorless Control for HighSpeed BLDC Motors With Low Inductance and Nonideal Back EMF
Sensorless Control for HighSpeed BLDC Motors With Low Inductance and Nonideal Back EMF P.Suganya Assistant Professor, Department of EEE, Bharathiyar Institute of Engineering for Women Salem (DT). Abstract
More informationJRE SCHOOL OF Engineering
JRE SCHOOL OF Engineering Class Test1 Examinations September 2014 Subject Name Electromechanical Energy ConversionII Subject Code EEE 501 Roll No. of Student Max Marks 30 Marks Max Duration 1 hour Date
More informationCHAPTER 8 DC MACHINERY FUNDAMENTALS
CHAPTER 8 DC MACHINERY FUNDAMENTALS Summary: 1. A Simple Rotating Loop between Curved Pole Faces  The Voltage Induced in a Rotating Loop  Getting DC voltage out of the Rotating Loop  The Induced Torque
More information(Refer Slide Time: 00:01:30 min)
Control Engineering Prof. M. Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture  3 Introduction to Control Problem (Contd.) Well friends, I have been giving you various
More informationECE 5670/6670 Lab 8. Torque Curves of Induction Motors. Objectives
ECE 5670/6670 Lab 8 Torque Curves of Induction Motors Objectives The objective of the lab is to measure the torque curves of induction motors. Acceleration experiments are used to reconstruct approximately
More informationIn the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as
2 MODELING Once the control target is identified, which includes the state variable to be controlled (ex. speed, position, temperature, flow rate, etc), and once the system drives are identified (ex. force,
More informationRevision Guide for Chapter 15
Revision Guide for Chapter 15 Contents tudent s Checklist Revision otes Transformer... 4 Electromagnetic induction... 4 Generator... 5 Electric motor... 6 Magnetic field... 8 Magnetic flux... 9 Force on
More informationROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I
ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR621220 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I Unit I Introduction 1. What are the three basic types
More informationMeasurements in Mechatronic design. Transducers
Measurements in Mechatronic design Transducers Quantities Current Voltage Torque Force Magnetic flux Distance Temperature Measurement system Physical quanties Transducer Signal conditioning Measurement
More informationContents. Dynamics and control of mechanical systems. Focus on
Dynamics and control of mechanical systems Date Day 1 (01/08) Day 2 (03/08) Day 3 (05/08) Day 4 (07/08) Day 5 (09/08) Day 6 (11/08) Content Review of the basics of mechanics. Kinematics of rigid bodies
More informationControl of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University
Control of Wind Turbine Generators James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Review from Day 1 Review Last time, we started with basic concepts from physics such as
More informationSchool of Mechanical Engineering Purdue University. ME375 ElectroMechanical  1
ElectroMechanical Systems DC Motors Principles of Operation Modeling (Derivation of fg Governing Equations (EOM)) Block Diagram Representations Using Block Diagrams to Represent Equations in s  Domain
More informationElectrical Machine & Automatic Control (EEE409) (MEII Yr) UNIT3 Content: Signals u(t) = 1 when t 0 = 0 when t <0
Electrical Machine & Automatic Control (EEE409) (MEII Yr) UNIT3 Content: Modeling of Mechanical : linear mechanical elements, forcevoltage and force current analogy, and electrical analog of simple
More informationIntroduction to Controls
EE 474 Review Exam 1 Name Answer each of the questions. Show your work. Note were essaytype answers are requested. Answer with complete sentences. Incomplete sentences will count heavily against the grade.
More informationMathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference
Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference Mukesh C Chauhan 1, Hitesh R Khunt 2 1 P.G Student (Electrical),2 Electrical Department, AITS, rajkot 1 mcchauhan1@aits.edu.in
More informationSynchronous Machines
Synchronous Machines Synchronous Machines n 1 Φ f n 1 Φ f I f I f I f damper (runup) winding Stator: similar to induction (asynchronous) machine ( 3 phase windings that forms a rotational circular magnetic
More informationEE 410/510: Electromechanical Systems Chapter 4
EE 410/510: Electromechanical Systems Chapter 4 Chapter 4. Direct Current Electric Machines and Motion Devices Permanent Magnet DC Electric Machines Radial Topology Simulation and Experimental Studies
More informationMechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation
Mechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation Dr. Kevin Craig Greenheck Chair in Engineering Design & Professor of Mechanical Engineering Marquette University K.
More informationMeasurement of Flux Linkage and Inductance Profile of SRM
Measurement of Flux Linkage and Inductance Profile of SRM Rakesh Saxena, Bhim Singh and Yogesh Pahariya Abstract The main goal in modeling of SRM is to provide a good accuracy over the entire speed and
More informationInternational Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR
Scientific Journal of Impact Factor(SJIF): 3.134 eissn(o): 23484470 pissn(p): 23486406 International Journal of Advance Engineering and Research Development Volume 2,Issue 4, April 2015 SIMULATION
More informationModeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N
Modeling and Simulation Revision IV D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N 2 0 1 7 Modeling Modeling is the process of representing the behavior of a real
More informationDynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application
797 Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application Ritu Tak 1, Sudhir Y Kumar 2, B.S.Rajpurohit 3 1,2 Electrical Engineering, Mody University of Science & Technology,
More informationME 515 Mechatronics. Overview of Computer based Control System
ME 515 Mechatronics Introduction to Sensors I Asanga Ratnaweera Department of Faculty of Engineering University of Peradeniya Tel: 081239 (3627) Email: asangar@pdn.ac.lk Overview of Computer based Control
More informationEDEXCEL NATIONALS UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3  ELECTRO MAGNETIC INDUCTION
EDEXCEL NATIONALS UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No. 3  ELECTRO MAGNETIC INDUCTION NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted
More informationMathematical Modeling and Dynamic Simulation of DC Motors using MATLAB/Simulink Environment
Mathematical Modeling and Dynamic Simulation of DC Motors using MATLAB/Simulink Environment K. Kalaiselvi 1, K.Abinaya 2, P. Ramesh Babu 3 1,2 Under Graduate Scholar, Department of EEE, Saranathan College
More informationOpen Access Permanent Magnet Synchronous Motor Vector Control Based on Weighted Integral Gain of Sliding Mode Variable Structure
Send Orders for Reprints to reprints@benthamscienceae The Open Automation and Control Systems Journal, 5, 7, 3333 33 Open Access Permanent Magnet Synchronous Motor Vector Control Based on Weighted Integral
More informationManufacturing Equipment Control
QUESTION 1 An electric drive spindle has the following parameters: J m = 2 1 3 kg m 2, R a = 8 Ω, K t =.5 N m/a, K v =.5 V/(rad/s), K a = 2, J s = 4 1 2 kg m 2, and K s =.3. Ignore electrical dynamics
More informationUNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOPUP SEMESTER 1 EXAMINATION 2017/2018 ADVANCED MECHATRONIC SYSTEMS
ENG08 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOPUP SEMESTER EXAMINATION 07/08 ADVANCED MECHATRONIC SYSTEMS MODULE NO: MEC600 Date: 7 January 08 Time: 0.00.00 INSTRUCTIONS TO
More informationRevision Guide for Chapter 15
Revision Guide for Chapter 15 Contents Revision Checklist Revision otes Transformer...4 Electromagnetic induction...4 Lenz's law...5 Generator...6 Electric motor...7 Magnetic field...9 Magnetic flux...
More informationChapter 23 Magnetic Flux and Faraday s Law of Induction
Chapter 23 Magnetic Flux and Faraday s Law of Induction 1 Overview of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators
More informationA FORCE BALANCE TECHNIQUE FOR MEASUREMENT OF YOUNG'S MODULUS. 1 Introduction
A FORCE BALANCE TECHNIQUE FOR MEASUREMENT OF YOUNG'S MODULUS Abhinav A. Kalamdani Dept. of Instrumentation Engineering, R. V. College of Engineering, Bangalore, India. kalamdani@ieee.org Abstract: A new
More informationSunita.Ch 1, M.V.Srikanth 2 1, 2 Department of Electrical and Electronics, Shri Vishnu engineering college for women, India
MODELING AND ANALYSIS OF 6/4 SWITCHED RELUCTANCE MOTOR WITH TORQUE RIPPLE REDUCTION Sunita.Ch 1, M.V.Srikanth 2 1, 2 Department of Electrical and Electronics, Shri Vishnu engineering college for women,
More informationModule I Module I: traditional test instrumentation and acquisition systems. Prof. Ramat, Stefano
Preparatory Course (task NA 3.6) Basics of experimental testing and theoretical background Module I Module I: traditional test instrumentation and acquisition systems Prof. Ramat, Stefano Transducers A
More informationDcMotor_ Model Help File
Name of Model: DcMotor_021708 Author: Vladimir L. Chervyakov Date: 20021026 Executable file name DcMotor_021708.vtm Version number: 1.0 Description This model represents a Nonlinear model of a permanent
More informationModeling and Simulation Revision III D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N
Modeling and Simulation Revision III D R. T A R E K A. T U T U N J I P H I L A D E L P H I A U N I V E R S I T Y, J O R D A N 0 1 4 Block Diagrams Block diagram models consist of two fundamental objects:
More informationDynamics and control of mechanical systems
Dynamics and control of mechanical systems Date Day 1 (03/05)  05/05 Day 2 (07/05) Day 3 (09/05) Day 4 (11/05) Day 5 (14/05) Day 6 (16/05) Content Review of the basics of mechanics. Kinematics of rigid
More informationDigital Control of Permanent Magnet Synchronous Motors
Digital Control of Permanent Magnet Synchronous Motors Krisztián LAMÁR BUDAPEST TECH Polytechnical Institution, Hungary Kandó Kálmán Faculty of Electrical Engineering, Institute of Automation Lamar.Krisztian@kvk.bmf.hu
More informationPrince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II)
Chapter # 4 ThreePhase Induction Machines 1 Introduction (General Principles) Generally, conversion of electrical power into mechanical power takes place in the rotating part of an electric motor. In
More informationLecture 8: Sensorless Synchronous Motor Drives
1 / 22 Lecture 8: Sensorless Synchronous Motor Drives ELECE8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Spring 2017 2 / 22 Learning Outcomes After this lecture and exercises
More informationLezione 9 30 March. Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota
Control Laboratory: a.a. 2015/2016 Lezione 9 30 March Instructor: Luca Schenato Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota What is left to do is how to design the low pass pole τ L for the
More informationIntroduction. Energy is needed in different forms: Light bulbs and heaters need electrical energy Fans and rolling miles need mechanical energy
Introduction Energy is needed in different forms: Light bulbs and heaters need electrical energy Fans and rolling miles need mechanical energy What does AC and DC stand for? Electrical machines Motors
More informationEE155/255 Green Electronics
EE155/255 Green Electronics Electric Motors 10/19/16 Prof. William Dally Computer Systems Laboratory Stanford University This week is flipped Course Logistics Discussion on 10/17, Motors on 10/19, Isolated
More informationElectromagnetic Induction
lectromagnetic Induction Induced MF We already know that moving charge (=current) causes magnetic field It also works the other way around: changing magnetic field (e.g. moving permanent magnet) causes
More informationSchool of Engineering Faculty of Built Environment, Engineering, Technology & Design
Module Name and Code : ENG60803 Real Time Instrumentation Semester and Year : Semester 5/6, Year 3 Lecture Number/ Week : Lecture 3, Week 3 Learning Outcome (s) : LO5 Module Coordinator/Tutor : Dr. Phang
More informationEE155/255 Green Electronics
EE155/255 Green Electronics Electric Motors 10/16/17 Prof. William Dally Computer Systems Laboratory Stanford University Course Logistics Solar day is Monday 10/23 HW 3 is due today HW 4 out, due next
More informationInduction and Inductance
Welcome Back to Physics 1308 Induction and Inductance Michael Faraday 22 September 1791 25 August 1867 Announcements Assignments for Tuesday, November 6th:  Reading: Chapter 30.630.8  Watch Videos:
More informationELECTRICAL ENGINEERING
ELECTRICAL ENGINEERING Subject Code: EE Course Structure Sections/Units Section A Unit 1 Unit 2 Unit 3 Unit 4 Unit 5 Unit 6 Unit 7 Section B Section C Section D Section E Section F Section G Section H
More informationTrajectory Planning, Setpoint Generation and Feedforward for Motion Systems
2 Trajectory Planning, Setpoint Generation and Feedforward for Motion Systems Paul Lambrechts Digital Motion Control (4K4), 23 Faculty of Mechanical Engineering, Control Systems Technology Group /42 2
More informationLecture 6: Control Problems and Solutions. CS 344R: Robotics Benjamin Kuipers
Lecture 6: Control Problems and Solutions CS 344R: Robotics Benjamin Kuipers But First, Assignment 1: Followers A follower is a control law where the robot moves forward while keeping some error term small.
More informationReview of Basic Electrical and Magnetic Circuit Concepts EE
Review of Basic Electrical and Magnetic Circuit Concepts EE 442642 Sinusoidal Linear Circuits: Instantaneous voltage, current and power, rms values Average (real) power, reactive power, apparent power,
More informationEQUIVALENT SINGLEDEGREEOFFREEDOM SYSTEM AND FREE VIBRATION
1 EQUIVALENT SINGLEDEGREEOFFREEDOM SYSTEM AND FREE VIBRATION The course on Mechanical Vibration is an important part of the Mechanical Engineering undergraduate curriculum. It is necessary for the development
More informationControl Theory. Noel Welsh. 26 October Noel Welsh () Control Theory 26 October / 17
Control Theory Noel Welsh 26 October 2010 Noel Welsh () Control Theory 26 October 2010 1 / 17 Announcements Assignments were due on Monday, except for one team that has an extension. Marking will be delayed
More informationModel of a DC Generator Driving a DC Motor (which propels a car)
Model of a DC Generator Driving a DC Motor (which propels a car) John Hung 5 July 2011 The dc is connected to the dc as illustrated in Fig. 1. Both machines are of permanent magnet type, so their respective
More informationCHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS
47 CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 5.1 INTRODUCTION This chapter describes the simulation model and experimental set up used for the fault analysis. For the simulation set up, the
More informationChapter 3 AUTOMATIC VOLTAGE CONTROL
Chapter 3 AUTOMATIC VOLTAGE CONTROL . INTRODUCTION TO EXCITATION SYSTEM The basic function of an excitation system is to provide direct current to the field winding of the synchronous generator. The excitation
More informationSwinging Tension sensor and Control Structure for Gyroscope Fiber Winding Process
Proceedings of the 10 th ICEENG Conference, 1921 April, 2016 EE0001 Military Technical College Kobry ElKobbah, Cairo, Egypt 10 th International Conference on Electrical Engineering ICEENG 2016 Swinging
More informationPrediction of Electromagnetic Forces and Vibrations in SRMs Operating at Steady State and Transient Speeds
Prediction of Electromagnetic Forces and Vibrations in SRMs Operating at Steady State and Transient Speeds Zhangjun Tang Stryker Instruments Kalamazoo, MI 491 Phone: 26932377 Ext.363 Fax: 269323394
More informationNonlinear dynamic simulation model of switched reluctance linear machine
Procedia Earth and Planetary Science 1 (2009) 1320 1324 Procedia Earth and Planetary Science www.elsevier.com/locate/procedia The 6 th International Conference on Mining Science & Technology Nonlinear
More informationApplied Electronics and Electrical Machines
School of Electrical and Computer Engineering Applied Electronics and Electrical Machines (ELEC 365) Fall 2015 DC Machines 1 DC Machines Key educational goals: Develop the basic principle of operation
More informationSynchronous Machines
Synchronous Machines Synchronous generators or alternators are used to convert mechanical power derived from steam, gas, or hydraulicturbine to ac electric power Synchronous generators are the primary
More informationGentle synchronization of twospeed synchronous motor with asynchronous starting
Electr Eng (2012) 94:155 163 DOI 10.1007/s0020201102271 ORIGINAL PAPER Gentle synchronization of twospeed synchronous motor with asynchronous starting Paweł Zalas Jan Zawilak Received: 5 November 2009
More informationAnakapalli Andhra Pradesh, India I. INTRODUCTION
Robust MRAS Based Sensorless Rotor Speed Measurement of Induction Motor against Variations in Stator Resistance Using Combination of Back Emf and Reactive Power Methods Srikanth Mandarapu Pydah College
More informationMotion Control. Laboratory assignment. Case study. Lectures. compliance, backlash and nonlinear friction. control strategies to improve performance
436459 Advanced Control and Automation Motion Control Lectures traditional CNC control architecture modelling of components dynamic response of axes effects on contouring performance control strategies
More information