Prediction of topological materials using firstprinciples band theory computations

Size: px
Start display at page:

Download "Prediction of topological materials using firstprinciples band theory computations"

Transcription

1 Prediction of topological materials using firstprinciples band theory computations Hsin Lin Centre for Advanced 2D Materials and Graphene Research Centre, National University of Singapore Department of Physics, National University of Singapore Sea urchin June 27 at SOCSIS 2016, Spetses, Greece

2 Singapore National Research Foundation Acknowledgement NUS: Shin-Ming Huang, Chi-Cheng Lee, Guoqing Chang, BaoKai Wang, Chuang-Han Hsu, Le Quy Duong, Bahadur Singh, Minggang Zeng, Wei-Feng Tsai NUS ECE: Gengchiau Liang s group M.Z. Hasan s group (Princeton Univ.): Su-Yang Xu, Ilya Belopolski, Nasser Alidoust, Madhab Neupane, Hao Zheng, Guang Bian, Daniel S. Sanchez Arun Bansil (Northeastern Univ.) Liang Fu (MIT) Vidya Madhavan (UIUC): Yoshinori Okada (Tohoku), Ilija Zeljkovic (Boston College) Rajendra Prasad (Indian Institute of Technology Kanpur) Tanmoy Das (Indian Institute of Physics, Bangalore) Han Hsu (National Central Univ., Taiwan) Feng-Chuan Chuang (NSYSU, Taiwan): Cheng-Yi Huang, Chia-Hsiu Hsu, Zhi-Quan Huang, Christian Crisostomo Horng-Tay Jeng (NTHU/IOP, Taiwan): Tay-Rong Chang, Peng-Jen Chen

3 Outline Introduction: band topology Z2 topological phase transition: TlBi(Se,S)2 Topological crystalline insulator: (Pb,Sn)Se Weyl semimetals: TaAs 2D topological materials : Spin filter/separator Conclusions

4 Energy Topological Insulators Fu & Kane, PRL 100, (2008) New possibilities for Fundamental physics Spintronics Quantum computing k x k y

5 Topology Gaussian curvature χ χ=2 χ=0 χ=-2

6 Energy [ev] Adiabatic transformation χ=2 χ=2 + +? + + EF L Γ X W L Γ X W

7 Energy [ev] Topological phase transition χ=2 χ=0 Trivial Critical Non-trivial EF L Γ X W L Γ X W

8 Bulk-boundary Correspondence Theorem Energy Energy Energy Metallic surface/edge states Z 2 :even EF Γ M Z 2 :odd EF Γ M Momentum k x k y time reversal: E(k, )=E(-k, )

9 Weyl semimetal Wan, Turner, Vishwanath, and Savrasov, PRB 2011

10 Bi 2 Se 3, Spin-orbit coupling Y. Xia et al., Nature Physics 5, 398 (2009).

11 Energy (ev) Surface calculation + surface probe First-principles calculations DFT (KKR, LAPW, Plane Wave) + Angle resolved photoemission (ARPES) Single-Dirac-cone surface states in topological insulator Bi 2 Se 3

12 Our Roadmap for 3D New Topological Materials 2 nd Gen, Bi 2 Se 3 /Bi 2 Te 3 : single Dirac cone, large bulk gap, but naturally doped with electrons or holes Nat. Phys. 5, 398 (2009); PRL 103, (2009); Nature 460, 1101 (2009). Half-Heuslers, Li 2 AgSb, quaternary chalcogenides, famatinites, ternary GeBi 2 Te 4, Bi 2 Te 2 Se families: tunability of lattice/dopants Nat. Mat. 9, 546 (2010); PRB 82, (2010); arxiv: ; New J. Phys. 13, (2011); New J. Phys. 13, (2011); PRB 85, (2012); PRB 87, R (2013). TlBiSe 2 family: isolated single Dirac cone, topological phase transition PRL 105, (2010); Science 332, 560 (2011); PRB 86, (2012); Nat. Commun. 6, 6870 (2015); PRB (2016) (Pb/Sn)Te family: first topological crystalline insulator, topological phase transition. Nat. Commun. 3, 982 (2012); Nat. Commun. 3, 1192 (2012); PRB 87, (2013); Science 341, 1496 (2013); Nat. Phys. 10, 572 (2014); PRB 92, (2015); Nat. Commun. 6, 6559 (2015); Nat. Mat. 14, 318 (2015);

13 Our Roadmap for 3D New Topological Materials TaAs family: first Weyl semimetal. Nat. Commun. (2015) ; Science (2015); Nat. Phys. (2015); Science Advances (2015); PRB (2015); ACS nano (2016); Nat. Commun. (2016); PRL (2016); SrSi 2 Weyl semimetal: Double Weyl, no mirrors PNAS (2016) (Mo,W)Te 2 : Type II Weyl semimetal Nat. Commun. (2016) Topological nodal-line semimetals: PbTaSe 2, TlTaSe 2 Nat. Commun. (2016) ; PRB 93, (2016); PRB 93, (2016) ; Ta 3 S 2 Weyl semimetal: largest separation between Weyl nodes. Science Advances (2016) Co 2 TiSi Heuslers: magnetic Weyl/nodal-line semimetal with high Curie temperature. arxiv LaAlGe, CeAlGe: magnetic Type II Weyl semimetal arxiv , arxiv

14 Pseudo PbTe: TlBiTe 2 1Γ 3X 4L PbTe SnTe Both are Z 2 trivial. Te Tl (Pb) k z + [111] Te Bi (Pb) z x y k x + Γ L X k y H. Lin, R. S. Markiewicz, L. A. Wray, L. Fu, M. Z. Hasan, and A. Bansil, PRL (2010).

15 TlBiS 2 TlBiSe 2 H. Lin, R. S. Markiewicz, L. A. Wray, L. Fu, M. Z. Hasan, and A. Bansil, PRL (2010). S. Y. Xu, Y. Xia, L. A. Wray, S. Jia, F. Meier, J. H. Dil, J. Osterwalder, B. Slomski, A. Bansil, H. Lin, R. J. Cava, and M. Z. Hasan, Science (2011).

16 Topological phase transition in TlBi(S 1-δ Se δ ) 2 S. Y. Xu, Y. Xia, L. A. Wray, S. Jia, F. Meier, J. H. Dil, J. Osterwalder, B. Slomski, A. Bansil, H. Lin, R. J. Cava, and M. Z. Hasan, Science (2011).

17 Xu, Neupane, Belopolski, Liu, Alidoust, Bian, Jia, Landolt, Slomski, Dil, Shibayev, Basak, Chang, Jeng, Cava, Lin, Bansil, and Hasan, Nature Communications (2015). Preformed spin-polarized surface states (Theory) trivial critical Non-trivial Momentum k x (1/Å)

18 Preformed spin-polarized surface states (Experiment) Xu, Neupane, Belopolski, Liu, Alidoust, Bian, Jia, Landolt, Slomski, Dil, Shibayev, Basak, Chang, Jeng, Cava, Lin, Bansil, and Hasan, Nature Communications (2015). Trivial insulator TlBi(S 1-δ Se δ ) 2, δ=0.4

19 Summary Topological phase transition has been observed in TlBi(Se,S)2. Preformed spin polarized surface states developed on the trivial side.

20 Energy Crystal symmetry protected Dirac node Metallic surface/edge states Z 2 TI TCI -i +i EF Γ X Γ Momentum X Mirror eigenvalues ±i

21 Topological crystalline insulator (Pb,Sn)Te 1Γ 3X 4L PbTe SnTe T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nature Communications 3, 982 (2012).

22 Intrinsic band inversion in SnTe T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nature Communications 3, 982 (2012).

23 Surface states and four Dirac cones Y. J. Wang, W.-F. Tsai, H. Lin, S.-Y. Xu, M. Neupane, M. Z. Hasan, and A. Bansil, PRB 87, (2013). T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nature Communications 3, 982 (2012).

24 Experimental observation Xu, Liu, Alidoust, Qian, Neupane, Denlinger, Wang, Wray, Cava, Lin, Marcinkova, Morosan, Bansil, Hasan, Nature Communications 3, 1192 (2012).

25 Energy Lifshitz transition and Van Hove singularities Y. Okada, M. Serbyn, H. Lin, D. Walkup, W. Zhou, C. Dhital, M. Neupane, S.Y. Xu, Y.J. Wang, R. Sankar, F.C. Chou, A. Bansil, M. Z. Hasan, S. D. Wilson, L. Fu, V. Madhavan, Science 341, 1496 (2013). Y. J. Wang, W.-F. Tsai, H. Lin, S.-Y. Xu, M. Neupane, M. Z. Hasan, and A. Bansil, PRB 87, (2013). T. H. Hsieh, H. Lin, J. Liu, W. Duan, A. Bansil, and L. Fu, Nature Communications 3, 982 (2012).

26 Two coaxial Dirac-cone model Te Sn Sn Sn Te Te Chen Fang, Matthew J. Gilbert, Su-Yang Xu, B. Andrei Bernevig, M. Z. Hasan, PRB 88, (2013). Junwei Liu, Wenhui Duan, and Liang Fu, Phys. Rev. B 88, (R) (2013). Y. J. Wang, W.-F. Tsai, H. Lin, S.-Y. Xu, M. Neupane, M. Z. Hasan, and A. Bansil, PRB 87, (2013).

27 Observed spin texture Xu, Liu, Alidoust, Qian, Neupane, Denlinger, Wang, Wray, Cava, Lin, Marcinkova, Morosan, Bansil, Hasan, Nature Communications 3, 1192 (2012).

28 Orbital contribution Sn p z Te p x Y. J. Wang, W.-F. Tsai, H. Lin, S.-Y. Xu, M. Neupane, M. Z. Hasan, and A. Bansil, PRB 87, (2013). Xu, Liu, Alidoust, Qian, Neupane, Denlinger, Wang, Wray, Cava, Lin, Marcinkova, Morosan, Bansil, Hasan, Nature Communications 3, 1192 (2012).

29 Interference patterns I. Zeljkovic, Y. Okada, C.-Y. Huang, R. Sankar, D. Walkup, W. Zhou, M. Serbyn, F. C. Chou, W. F. Tsai, H. Lin, A. Bansil, L. Fu, M. Z. Hasan. V. Madhavan, Nat. Phys. (2014).

30 Matrix element effect I. Zeljkovic, Y. Okada, C.-Y. Huang, R. Sankar, D. Walkup, W. Zhou, M. Serbyn, F. C. Chou, W. F. Tsai, H. Lin, A. Bansil, L. Fu, M. Z. Hasan. V. Madhavan, Nat. Phys. (2014).

31 Interference patterns I. Zeljkovic, Y. Okada, C.-Y. Huang, R. Sankar, D. Walkup, W. Zhou, M. Serbyn, F. C. Chou, W. F. Tsai, H. Lin, A. Bansil, L. Fu, M. Z. Hasan. V. Madhavan, Nat. Phys. (2014).

32 Landau Levels Y. Okada, M. Serbyn, H. Lin, D. Walkup, W. Zhou, C. Dhital, M. Neupane, S.Y. Xu, Y.J. Wang, R. Sankar, F.C. Chou, A. Bansil, M. Z. Hasan, S. D. Wilson, L. Fu, V. Madhavan, Science 341, 1496 (2013).

33 Gapped Dirac cones Y. Okada, M. Serbyn, H. Lin, D. Walkup, W. Zhou, C. Dhital, M. Neupane, S.Y. Xu, Y.J. Wang, R. Sankar, F.C. Chou, A. Bansil, M. Z. Hasan, S. D. Wilson, L. Fu, V. Madhavan, Science 341, 1496 (2013).

34 Topological phase transition Pb 1-x Sn x Se I. Zeljkovic, Y. Okada, M. Serbyn, R. Sankar, D. Walkup, W. Zhou, J. Liu, G. Chang, Y. J. Wang, M. Z. Hasan, F. Chou, H. Lin, A. Bansil, L. Fu, and V. Madhavan, Nature Materials 14, 318 (2015).

35 Gap size as a function of doping I. Zeljkovic, Y. Okada, M. Serbyn, R. Sankar, D. Walkup, W. Zhou, J. Liu, G. Chang, Y. J. Wang, M. Z. Hasan, F. Chou, H. Lin, A. Bansil, L. Fu, and V. Madhavan, Nature Materials 14, 318 (2015).

36 Surface state penetration depth I. Zeljkovic, Y. Okada, M. Serbyn, R. Sankar, D. Walkup, W. Zhou, J. Liu, G. Chang, Y. J. Wang, M. Z. Hasan, F. Chou, H. Lin, A. Bansil, L. Fu, and V. Madhavan, Nature Materials 14, 318 (2015).

37 Finite size slab Ab initio calculations for Electronic Band Structures Wannierization Semi-infinite slab Material-specific Tight-binding Hamiltonians Surface state Calculations Angle-resolved photoemission (ARPES) and Scanning tunneling Spectroscopy (STS)

38 Break TRS Reversal Symmetry Magnetic pyrochlore iridates (Y 2 Ir 2 O 7 ) Weyl semimetal without Time- 2-in/2- out Mag. hetero-structure Wan, Turner, Vishwanath, and Savrasov, PRB 2011 Burkov & Balents, PRL (2011)

39 TaAs

40 Weyl semimetal without Breaking Time-reversal TaAs class: (Ta,Nb)(As,P) Stoichiometric compound Symmetry I4 1 md (C 4v ) No inversion symmetry C 4 rotation axis 2 mirror planes, xz & yz Huang et al., Nat. Comm., 6, 7373 (2015)

41 band structure of TaAs (a) body-centerd tetragonal structure of TaAs. (b) Brillouin zone. (c) band structure of TaAs without SO. (d) band with SO.

42 Weyl points and topological chiral charge in TaAs: (a) Position of WPS and nodal ringin TaAs. (e) A schematic for projected WPS on (001) surface. (f) spin texture

43 ARPES Results W2: W1: Xu et al., arxiv: ; Science (2015)

44 Surface States of TaAs

45 Interference patterns (Theory) Chang, Xu, Zheng, Lee, Huang, Belopolski, Sanchez, Bian, Alidoust, Chang, Hsu, Jeng, Bansil, Lin, and Hasan, PRL (2016).

46 Removing Fermi arcs Chang, Xu, Zheng, Lee, Huang, Belopolski, Sanchez, Bian, Alidoust, Chang, Hsu, Jeng, Bansil, Lin, and Hasan, PRL (2016).

47 Fermi arcs interference patterns Chang, Xu, Zheng, Lee, Huang, Belopolski, Sanchez, Bian, Alidoust, Chang, Hsu, Jeng, Bansil, Lin, and Hasan, PRL (2016).

48 Chang, Xu, Zheng, Lee, Huang, Belopolski, Sanchez, Bian, Alidoust, Chang, Hsu, Jeng, Bansil, Lin, and Hasan, PRL (2016).

49 Interference patterns for NbP Zheng, Xu,Bian,Guo,Chang, Sanchez, Belopolski, Lee, Huang, Zhang, Sankar, Alidoust, Chang,Wu,Neupert,Chou,Jeng,Yao,Bansil, Jia, Lin, Hasan, ACS nano (2016).

50 Allowing inter-orbital scattering Chang, Xu, Zheng, Lee, Huang, Belopolski, Sanchez, Bian, Alidoust, Chang, Hsu, Jeng, Bansil, Lin, and Hasan, PRL (2016).

51 LaAlGe Xu, Alidoust, Chang, Lu, Singh, Belopolski, Sanchez, Zhang, Bian, Zheng, Husanu, Bian, Huang, Hsu, Chang, Jeng, Bansil, Strocov, Lin, Jia and Hasan, arxiv:

52 LaAlGe Xu, Alidoust, Chang, Lu, Singh, Belopolski, Sanchez, Zhang, Bian, Zheng, Husanu, Bian, Huang, Hsu, Chang, Jeng, Bansil, Strocov, Lin, Jia and Hasan, arxiv:

53 Summary 3D Topological phase transition is realized in TlBi(S 1-δ Se δ ). Preformed spin polarized surface states developed on the trivial side. Ge(Sb,Bi)2Te4 family is another material candidate for topological phase transition. First material realization of TCI in SnTe family Surface states exhibit gapless Dirac cones with Dirac nodes protected by mirror symmetry. Spin and orbital texture can be understood by a twocoaxial-dirac-cone model, giving matrix-element effect in interference patterns. Stoichiometric Weyl semimetals are found in TaAs and LaAlGe family. Fermi arcs surface states are observed Interference patterns are observed in NbP.

54 2D topological materials Group V: [New Journal of Physics 16, (2014)] ultrathin Bi(110) films [Nano Letters 15, 80 (2015)]; Bi/Sb honeycombs on SiC(0001)[New Journal of Physics 17, (2015)]; Bi films on Ge(111) [Surface Science 626, 68 (2014)]; 2D TCI in Sb/Bi planar honeycombs [Scientific Reports 6, (2016)] Group IV: 100% spin polarization [Nature Communications 4, 1500 (2013)]; silicene on a semiconducting Bi/Si(111)- 3x 3 substrate[physical Review B 90, (2014)], hydrogenated ultra-thin tin films [New Journal of Physics 16, (2014)] III-V: bilayers of Group III Elements with Bi [Nano Letters 14, 2505 (2014)]; III-V on Si(111) [Scientific Reports 5, (2015)]; Hydrogenated III-V [Nano Letters 15, 6568 (2015)] Thin films of 3D TI: TlBiS2 films [Journal of Applied Physics 116, (2014)]; Bi2Se3 films[nature Communications 5, 3841 (2014)], QAH [Journal of Applied Physics 117, 17C741 (2015), Physical Review B 92, (2015)] Au/Si(111) substrate [Physical Review B 93, (2016)]

55 2D material with graphene-like structure Without SO z K x c With SO Compare with graphene: sp 2 sp 3 C.C. Liu et al., PRB 84 (2011) & PRL 107 (2011) K 56

56 Quantum spin Hall (2D Topological insulator) Fu and Kane s parity analysis:prb 76, (2007) Parity of each valence band Sign of parity product Z 2 = 1 Z 2 = 1 Gap (mev) 8 23 M M Γ K M Z 2 = 1 72 Z 2 = The 2D systems of Si, Ge, and Sn are 2D QSH materials, whereas Pb is not C.C. Liu et al., PRB 84 (2011) & PRL 107 (2011)

57 Under E Field: Inversion Symmetry Breaking Gap evolution z A B x Drummond et al., PRB 85, 12 The gap size reduces linearly as we turn on the electric field: At E z = E c, the gap reduces to zero As E z > E c, the system reopens a gap

58 E-field tunable topological phase transition E z = 0 0 < E z < E c E z = E c E z > E c AB AB QSH phase QSH phase Critical phase BB AA Band insulator silicene Bi 2 Se 3

59 A low-energy effective description 1 st term = Hopping term 2 nd term = Intrinsic NNN SOC 3 rd term = Rashba NNN SOC 4 th term = Staggered sublattice potential 5 th term = Zeeman splitting 4 th term turns out driving the transition between QSH and trivial BI C.-C. Liu, H. Jiang and Y. Yao, PRB 84, (2011). W.-F. Tsai, C.-Y. Huang, T.-R. Chang, H. Lin, H.-T. Jeng, and A. Bansil, Nature Communications 4:1500 (2013).

60 Quantum spin Hall: spin separator Spin polarized conducting edge states Silicene Spin Separator

61 Gapless edge states G. Gupta, H. Lin, A. Bansil, M. B. A. Jalil, C.-Y. Huang, W.-F. Tsai, and G.C. Liang, Applied Physics Letters 104, (2014).

62 High efficiency spin separator G. Gupta, H. Lin, A. Bansil, M. B. A. Jalil, C.-Y. Huang, W.-F. Tsai, and G.C. Liang, Applied Physics Letters 104, (2014).

63 Field-tunable spin separator G. Gupta, H. Lin, A. Bansil, M. B. A. Jalil, C.-Y. Huang, W.-F. Tsai, and G.C. Liang, Applied Physics Letters 104, (2014).

64 Field-tunable High Efficiency Spin Filter Basic idea (from bulk property): E z > 0 K K K

65 Field-tunable High Efficiency Spin Filter Basic idea (from bulk property): E z > 0 h K μ 0 K K

66 Quantum Point Contact E F μ 0 K K K K *In Rycerz et al., Nat. Phys. 3 (2007), edge state property is used in graphene!

67 Conductance (e 2 /h) High-efficiency spin filter Iterative Green s function method for two-terminal conductance [T. Ando, PRB 44 (1991)] Spin polarization L s =0 L s =8 μ 0 /t W.-F. Tsai, C.-Y. Huang, T.-R. Chang, H. Lin, H.-T. Jeng, and A. Bansil, Nature Communications 4:1500 (2013).

68 Robustness against weak (nonmagnetic) disorder Disorder-averaged spin polarization as a function of the maximum strength of the random onsite potential V w. Disorder-averaged spin polarization as a function of the perrcentage of edge vacancies r in the constriction. W.-F. Tsai, C.-Y. Huang, T.-R. Chang, H. Lin, H.-T. Jeng, and A. Bansil, Nature Communications 4:1500 (2013).

69 TlBi, InBi, GaBi Chuang, Yao, Huang, Liu, Hsu, Das, Lin, and Bansil, Nano Letters 14, 2505 (2014)

70 At various hydrogen coverages, TlBi remains topologically nontrivial Christian P. Crisostomo, Liang-Zi Yao, Zhi-Quan Huang, Chia-Hsiu Hsu, Feng-Chuan Chuang, Hsin Lin, Marvin A. Albao, and Arun Bansil, Nano Letters 15, 6568 (2015)

71 Robust band inversion at Γ Christian P. Crisostomo, Liang-Zi Yao, Zhi-Quan Huang, Chia-Hsiu Hsu, Feng-Chuan Chuang, Hsin Lin, Marvin A. Albao, and Arun Bansil, Nano Letters 15, 6568 (2015)

72 Summary At low energies, silicene can be described by two nearly fully spin-polarized (massless/massive) Dirac cones in the presence of the perpendicular E field Quantum spin Hall insulators can be used as a spin separator. It is possible to localize conducting channels anywhere in the 2D silicene by applying an inhomogeneous electric field. The proposed spin filter gives rise to nearly 100% spinpolarized currents via gate control More functional electronic devices based on 2D spin-orbit thin films can be anticipated in the future!

73 Thank you for your attention!

Topological Materials

Topological Materials Topological Materials Hsin Lin Institute of Physics, Academia Sinica, Taipei, Taiwan Colloquium : Topological band theory, A. Bansil, H. Lin, T. Das, Reviews of Modern Physics 88, 021004 (2016). May 21,

More information

Supplementary Information: Observation of a topological crystalline insulator phase and topological phase transition in Pb 1 x Sn x Te

Supplementary Information: Observation of a topological crystalline insulator phase and topological phase transition in Pb 1 x Sn x Te Supplementary Information: Observation of a topological crystalline insulator phase and topological phase transition in Pb 1 x Sn x Te Su-Yang Xu, Chang Liu, N. Alidoust, M. Neupane, D. Qian, I. Belopolski,

More information

Influence of tetragonal distortion on the topological electronic structure. of the half-heusler compound LaPtBi from first principles

Influence of tetragonal distortion on the topological electronic structure. of the half-heusler compound LaPtBi from first principles Influence of tetragonal distortion on the topological electronic structure of the half-heusler compound LaPtBi from first principles X. M. Zhang, 1,3 W. H. Wang, 1, a) E. K. Liu, 1 G. D. Liu, 3 Z. Y. Liu,

More information

arxiv: v3 [cond-mat.mes-hall] 18 Feb 2015

arxiv: v3 [cond-mat.mes-hall] 18 Feb 2015 Observation of Fermi Arc Surface States in a Topological Metal: A New Type of 2D Electron Gas Su-Yang Xu, 1 Chang Liu, 1 Satya K. Kushwaha, 2 Raman Sankar, 3 Jason W. Krizan, 2 arxiv:1501.01249v3 [cond-mat.mes-hall]

More information

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016

ARPES experiments on 3D topological insulators. Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 ARPES experiments on 3D topological insulators Inna Vishik Physics 250 (Special topics: spectroscopies of quantum materials) UC Davis, Fall 2016 Outline Using ARPES to demonstrate that certain materials

More information

Observation of Dirac node formation and mass acquisition in a topological crystalline insulator

Observation of Dirac node formation and mass acquisition in a topological crystalline insulator Observation of Dirac node formation and mass acquisition in a topological crystalline insulator Yoshinori Okada 1, 2, Maksym Serbyn* 3, Hsin Lin* 4, Daniel Walkup 1, Wenwen Zhou 1, Chetan Dhital 1, Madhab

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Hydrogenated ultra-thin tin films predicted as twodimensional

Hydrogenated ultra-thin tin films predicted as twodimensional PAPER OPEN ACCESS Hydrogenated ultra-thin tin films predicted as twodimensional topological insulators To cite this article: Bo-Hung Chou et al 2014 New J. Phys. 16 115008 View the article online for updates

More information

arxiv: v1 [cond-mat.mes-hall] 30 Aug 2015

arxiv: v1 [cond-mat.mes-hall] 30 Aug 2015 Drumhead Surface States and Topological Nodal-Line Fermions in TlTaSe 2 arxiv:1508.07521v1 [cond-mat.mes-hall] 30 Aug 2015 Guang Bian, 1 Tay-Rong Chang, 2,1 Hao Zheng, 1 Saavanth Velury, 3 Su-Yang Xu,

More information

Topological Insulators and Ferromagnets: appearance of flat surface bands

Topological Insulators and Ferromagnets: appearance of flat surface bands Topological Insulators and Ferromagnets: appearance of flat surface bands Thomas Dahm University of Bielefeld T. Paananen and T. Dahm, PRB 87, 195447 (2013) T. Paananen et al, New J. Phys. 16, 033019 (2014)

More information

Introductory lecture on topological insulators. Reza Asgari

Introductory lecture on topological insulators. Reza Asgari Introductory lecture on topological insulators Reza Asgari Workshop on graphene and topological insulators, IPM. 19-20 Oct. 2011 Outlines -Introduction New phases of materials, Insulators -Theory quantum

More information

arxiv: v1 [cond-mat.mtrl-sci] 13 Jun 2017

arxiv: v1 [cond-mat.mtrl-sci] 13 Jun 2017 Hybrid Dirac Semimetal in CaAgBi Materials Family Cong Chen, 1, 2 Shan-Shan Wang, 2 Lei Liu, 3 Zhi-Ming Yu, 2, Xian-Lei Sheng, 1, 2, Ziyu Chen, 1 and Shengyuan A. Yang 2 1 Department of Physics, Key Laboratory

More information

GROWTH OF QUANTUM WELL FILMS OF TOPOLOGICAL INSULATOR BI 2 SE 3 ON INSULATING SUBSTRATE

GROWTH OF QUANTUM WELL FILMS OF TOPOLOGICAL INSULATOR BI 2 SE 3 ON INSULATING SUBSTRATE GROWTH OF QUANTUM WELL FILMS OF TOPOLOGICAL INSULATOR BI 2 SE 3 ON INSULATING SUBSTRATE CUI-ZU CHANG, KE HE *, LI-LI WANG AND XU-CUN MA Institute of Physics, Chinese Academy of Sciences, Beijing 100190,

More information

arxiv: v1 [cond-mat.mes-hall] 29 Jul 2010

arxiv: v1 [cond-mat.mes-hall] 29 Jul 2010 Discovery of several large families of Topological Insulator classes with backscattering-suppressed spin-polarized single-dirac-cone on the surface arxiv:1007.5111v1 [cond-mat.mes-hall] 29 Jul 2010 Su-Yang

More information

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties

2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties 2D Materials with Strong Spin-orbit Coupling: Topological and Electronic Transport Properties Artem Pulkin California Institute of Technology (Caltech), Pasadena, CA 91125, US Institute of Physics, Ecole

More information

Topological Defects inside a Topological Band Insulator

Topological Defects inside a Topological Band Insulator Topological Defects inside a Topological Band Insulator Ashvin Vishwanath UC Berkeley Refs: Ran, Zhang A.V., Nature Physics 5, 289 (2009). Hosur, Ryu, AV arxiv: 0908.2691 Part 1: Outline A toy model of

More information

STM studies of impurity and defect states on the surface of the Topological-

STM studies of impurity and defect states on the surface of the Topological- STM studies of impurity and defect states on the surface of the Topological- Insulators Bi 2 Te 3 and Bi 2 Se 3 Aharon Kapitulnik STANFORD UNIVERSITY Zhanybek Alpichshev Yulin Chen Jim Analytis J.-H. Chu

More information

Mapping the unconventional orbital texture in topological crystalline insulators

Mapping the unconventional orbital texture in topological crystalline insulators Mapping the unconventional orbital texture in topological crystalline insulators The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

arxiv: v1 [cond-mat.mtrl-sci] 3 Apr 2017

arxiv: v1 [cond-mat.mtrl-sci] 3 Apr 2017 Half-Heusler alloy LiBaBi: A new topological semimetal with five-fold band degeneracy ighfar Imam and Abhishek K. Singh aterials Research Center, Indian Institute of Science, Bangalore - 560012, India

More information

Symmetry Protected Topological Insulators and Semimetals

Symmetry Protected Topological Insulators and Semimetals Symmetry Protected Topological Insulators and Semimetals I. Introduction : Many examples of topological band phenomena II. Recent developments : - Line node semimetal Kim, Wieder, Kane, Rappe, PRL 115,

More information

Emergent technology based on Fermi-arcs?

Emergent technology based on Fermi-arcs? Emergent technology based on Fermi-arcs? Transport evidence for Fermi-arc-mediated chirality transfer in the Dirac semimetal Cd 3 As 2 P. J. W. Moll, N. L. Nair, T. Helm, A. C. Potter, I. Kimchi, A. Vishwanath,

More information

Quantitative Mappings from Symmetry to Topology

Quantitative Mappings from Symmetry to Topology Z. Song, Z. Fang and CF, PRL 119, 246402 (2017) CF and L. Fu, arxiv:1709.01929 Z. Song, T. Zhang, Z. Fang and CF arxiv:1711.11049 Z. Song, T. Zhang and CF arxiv:1711.11050 Quantitative Mappings from Symmetry

More information

Topological Insulators

Topological Insulators Topological Insulators A new state of matter with three dimensional topological electronic order L. Andrew Wray Lawrence Berkeley National Lab Princeton University Surface States (Topological Order in

More information

Weyl Semimetals, Fermi Arcs and Chiral Anomalies (A Short Review)

Weyl Semimetals, Fermi Arcs and Chiral Anomalies (A Short Review) Weyl Semimetals, Fermi Arcs and Chiral Anomalies (A Short Review) Shuang Jia, 1,2 Su-Yang Xu, 3 and M. Zahid Hasan 3,4 arxiv:1612.00416v2 [cond-mat.mes-hall] 7 Dec 2016 1 International Center for Quantum

More information

Atomic-Scale Visualization of Quasiparticle Interference on a Type-II Weyl Semimetal Surface

Atomic-Scale Visualization of Quasiparticle Interference on a Type-II Weyl Semimetal Surface Atomic-Scale Visualization of Quasiparticle Interference on a Type-II Weyl Semimetal Surface Hao Zheng, 1 Guang Bian, 1 Guoqing Chang, 2,3 Hong Lu, 4 Su-Yang Xu, 1 Guangqiang Wang, 4 Tay-Rong Chang, 5

More information

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea

3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI. Heon-Jung Kim Department of Physics, Daegu University, Korea 3D Weyl metallic states realized in the Bi 1-x Sb x alloy and BiTeI Heon-Jung Kim Department of Physics, Daegu University, Korea Content 3D Dirac metals Search for 3D generalization of graphene Bi 1-x

More information

High-throughput discovery of topological materials using spin-orbit spillage

High-throughput discovery of topological materials using spin-orbit spillage High-throughput discovery of topological materials using spin-orbit spillage Kamal Choudhary, Kevin F. Garrity, Francesca Tavazza 1 Materials Science and Engineering Division, National Institute of Standards

More information

Dirac semimetal in three dimensions

Dirac semimetal in three dimensions Dirac semimetal in three dimensions Steve M. Young, Saad Zaheer, Jeffrey C. Y. Teo, Charles L. Kane, Eugene J. Mele, and Andrew M. Rappe University of Pennsylvania 6/7/12 1 Dirac points in Graphene Without

More information

Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators

Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators Ultrafast study of Dirac fermions in out of equilibrium Topological Insulators Marino Marsi Laboratoire de Physique des Solides CNRS Univ. Paris-Sud - Université Paris-Saclay IMPACT, Cargèse, August 26

More information

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University

Topological insulators and the quantum anomalous Hall state. David Vanderbilt Rutgers University Topological insulators and the quantum anomalous Hall state David Vanderbilt Rutgers University Outline Berry curvature and topology 2D quantum anomalous Hall (QAH) insulator TR-invariant insulators (Z

More information

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST

Spin Hall and quantum spin Hall effects. Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST YKIS2007 (Kyoto) Nov.16, 2007 Spin Hall and quantum spin Hall effects Shuichi Murakami Department of Physics, Tokyo Institute of Technology PRESTO, JST Introduction Spin Hall effect spin Hall effect in

More information

Weyl semimetals from chiral anomaly to fractional chiral metal

Weyl semimetals from chiral anomaly to fractional chiral metal Weyl semimetals from chiral anomaly to fractional chiral metal Jens Hjörleifur Bárðarson Max Planck Institute for the Physics of Complex Systems, Dresden KTH Royal Institute of Technology, Stockholm J.

More information

Experimental Observation of Three-Component New Fermions in Topological Semimetal MoP

Experimental Observation of Three-Component New Fermions in Topological Semimetal MoP Experimental Observation of Three-Component New Fermions in Topological Semimetal MoP B. Q. Lv, 1, Z.-L. Feng, 1, Q.-N. Xu, 1, J.-Z. Ma, 1 L.-Y. Kong, 1 P. Richard, 1,2,3 Y.-B. Huang, 4 V. N. Strocov,

More information

Topological insulator (TI)

Topological insulator (TI) Topological insulator (TI) Haldane model: QHE without Landau level Quantized spin Hall effect: 2D topological insulators: Kane-Mele model for graphene HgTe quantum well InAs/GaSb quantum well 3D topological

More information

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU

What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU What is a topological insulator? Ming-Che Chang Dept of Physics, NTNU A mini course on topology extrinsic curvature K vs intrinsic (Gaussian) curvature G K 0 G 0 G>0 G=0 K 0 G=0 G

More information

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato

Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators. Nagoya University Masatoshi Sato Dirac-Fermion-Induced Parity Mixing in Superconducting Topological Insulators Nagoya University Masatoshi Sato In collaboration with Yukio Tanaka (Nagoya University) Keiji Yada (Nagoya University) Ai Yamakage

More information

Gregory A. Fiete University of Texas at Austin

Gregory A. Fiete University of Texas at Austin Gregory A. Fiete University of Texas at Austin Ruegg, Fiete Phys. Rev B (Rapid) 84, 201103 (2011) Ruegg, Mitra, Demkov, Fiete Phys. Rev. B 85, 245131 (2012) Hu, Ruegg, Fiete Phys. Rev. B 86, 235141 (2012)

More information

Experimental discovery of a topological Weyl semimetal state in TaP

Experimental discovery of a topological Weyl semimetal state in TaP PHYSICS Experimental discovery of a topological Weyl semimetal state in TaP 2015 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. Distributed under

More information

Weyl semi-metal: a New Topological State in Condensed Matter

Weyl semi-metal: a New Topological State in Condensed Matter Weyl semi-metal: a New Topological State in Condensed Matter Sergey Savrasov Department of Physics, University of California, Davis Xiangang Wan Nanjing University Ari Turner and Ashvin Vishwanath UC Berkeley

More information

Effects of biaxial strain on the electronic structures and band. topologies of group-v elemental monolayers

Effects of biaxial strain on the electronic structures and band. topologies of group-v elemental monolayers Effects of biaxial strain on the electronic structures and band topologies of group-v elemental monolayers Jinghua Liang, Long Cheng, Jie Zhang, Huijun Liu * Key Laboratory of Artificial Micro- and Nano-Structures

More information

Dirac fermions in condensed matters

Dirac fermions in condensed matters Dirac fermions in condensed matters Bohm Jung Yang Department of Physics and Astronomy, Seoul National University Outline 1. Dirac fermions in relativistic wave equations 2. How do Dirac fermions appear

More information

arxiv: v1 [cond-mat.str-el] 26 Jul 2013

arxiv: v1 [cond-mat.str-el] 26 Jul 2013 Topological crystalline Kondo insulators and universal topological surface states of SmB 6 Mengxing Ye, J. W. Allen, and Kai Sun Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA

More information

arxiv: v1 [cond-mat.supr-con] 27 Feb 2014

arxiv: v1 [cond-mat.supr-con] 27 Feb 2014 Dirac and Weyl Superconductors in Three Dimensions Shengyuan A. Yang, 1 Hui Pan, 2 3, 4, and Fan Zhang 1 ngineering Product Development, Singapore University of Technology and Design, Singapore 138682,

More information

Spatial-resolved X-ray photoelectron spectroscopy of Weyl semimetal NbAs

Spatial-resolved X-ray photoelectron spectroscopy of Weyl semimetal NbAs Spatial-resolved X-ray photoelectron spectroscopy of Weyl semimetal NbAs H W Liu 1, G H Zhang 2, P Richard 1,3,4, L X Zhao 1, G F Chen 1,3,4 and H Ding 1,3,4 1 Institute of Physics, Chinese Academy of

More information

This article is available at IRis:

This article is available at IRis: Author(s) D. Hsieh, Y. Xia, D. Qian, L. Wray, F. Meier, J. H. Dill, J. Osterwalder, L. Patthey, A. V. Fedorov, H. Lin, A. Bansil, D. Grauer, Y. S. Hor, R. J. Cava, and M. Z. Hasan This article is available

More information

TOPOLOGY IN CONDENSED MATTER SYSTEMS: MAJORANA MODES AND WEYL SEMIMETALS. Jan 23, 2012, University of Illinois, Urbana-Chamapaign

TOPOLOGY IN CONDENSED MATTER SYSTEMS: MAJORANA MODES AND WEYL SEMIMETALS. Jan 23, 2012, University of Illinois, Urbana-Chamapaign TOPOLOGY IN CONDENSED MATTER SYSTEMS: MAJORANA MODES AND WEYL SEMIMETALS Pavan Hosur UC Berkeley Jan 23, 2012, University of Illinois, Urbana-Chamapaign Acknowledgements Advisor: Ashvin Vishwanath UC Berkeley

More information

Nanostructured Carbon Allotropes as Weyl-Like Semimetals

Nanostructured Carbon Allotropes as Weyl-Like Semimetals Nanostructured Carbon Allotropes as Weyl-Like Semimetals Shengbai Zhang Department of Physics, Applied Physics & Astronomy Rensselaer Polytechnic Institute symmetry In quantum mechanics, symmetry can be

More information

Classification of crystalline topological semimetals with an application to Na 3

Classification of crystalline topological semimetals with an application to Na 3 Journal of Physics: Conference Series PAPER OPEN ACCESS Classification of crystalline topological semimetals with an application to Na 3 Bi To cite this article: Ching-Kai Chiu and Andreas P Schnyder 15

More information

Quantum spin Hall effect in IV-VI topological crystalline insulators

Quantum spin Hall effect in IV-VI topological crystalline insulators PAPER OPEN ACCESS Quantum spin Hall effect in IV-VI topological crystalline insulators To cite this article: 2015 New J. Phys. 17 063041 View the article online for updates and enhancements. Related content

More information

Emergent topological phenomena in antiferromagnets with noncoplanar spins

Emergent topological phenomena in antiferromagnets with noncoplanar spins Emergent topological phenomena in antiferromagnets with noncoplanar spins - Surface quantum Hall effect - Dimensional crossover Bohm-Jung Yang (RIKEN, Center for Emergent Matter Science (CEMS), Japan)

More information

Topological Insulators

Topological Insulators Topological Insulators Aira Furusai (Condensed Matter Theory Lab.) = topological insulators (3d and 2d) Outline Introduction: band theory Example of topological insulators: integer quantum Hall effect

More information

arxiv: v1 [cond-mat.mtrl-sci] 20 Jan 2015

arxiv: v1 [cond-mat.mtrl-sci] 20 Jan 2015 Quantum Spin Hall Effect in IV-VI Topological Crystalline Insulators S. Safaei, 1 M. Galicka, 1 P. Kacman, 1,2 and R. Buczko 1, 1 Institute of Physics, Polish Academy of Sciences, Aleja Lotników 32/46,

More information

From graphene to Z2 topological insulator

From graphene to Z2 topological insulator From graphene to Z2 topological insulator single Dirac topological AL mass U U valley WL ordinary mass or ripples WL U WL AL AL U AL WL Rashba Ken-Ichiro Imura Condensed-Matter Theory / Tohoku Univ. Dirac

More information

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato

Surface Majorana Fermions in Topological Superconductors. ISSP, Univ. of Tokyo. Nagoya University Masatoshi Sato Surface Majorana Fermions in Topological Superconductors ISSP, Univ. of Tokyo Nagoya University Masatoshi Sato Kyoto Tokyo Nagoya In collaboration with Satoshi Fujimoto (Kyoto University) Yoshiro Takahashi

More information

Dirac and Weyl semimetals (DSMs and WSMs) are

Dirac and Weyl semimetals (DSMs and WSMs) are pubs.acs.org/nanolett Engineering and Probing Topological Properties of Dirac Semimetal Films by Asymmetric Charge Transfer John W. Villanova, Edwin Barnes, and Kyungwha Park* Department of Physics, Virginia

More information

Visualizing Electronic Structures of Quantum Materials By Angle Resolved Photoemission Spectroscopy (ARPES)

Visualizing Electronic Structures of Quantum Materials By Angle Resolved Photoemission Spectroscopy (ARPES) Visualizing Electronic Structures of Quantum Materials By Angle Resolved Photoemission Spectroscopy (ARPES) PART A: ARPES & Application Yulin Chen Oxford University / Tsinghua University www.arpes.org.uk

More information

The Quantum Spin Hall Effect

The Quantum Spin Hall Effect The Quantum Spin Hall Effect Shou-Cheng Zhang Stanford University with Andrei Bernevig, Taylor Hughes Science, 314,1757 2006 Molenamp et al, Science, 318, 766 2007 XL Qi, T. Hughes, SCZ preprint The quantum

More information

arxiv: v2 [cond-mat.mes-hall] 21 Oct 2011

arxiv: v2 [cond-mat.mes-hall] 21 Oct 2011 Topological Quantum Phase Transition and 3D Texture Inversion in a Tunable Topological Insulator Su-Yang Xu, 1 Y. Xia, 1 L. A. Wray, 1,2 D. Qian, 1 S. Jia, 3 J. H. Dil, 4,5 F. Meier, 4,5 arxiv:1104.4633v2

More information

Band Topology Theory and Topological Materials Prediction

Band Topology Theory and Topological Materials Prediction Band Topology Theory and Topological Materials Prediction Hongming Weng ( 翁红明 ) Institute of Physics,! Chinese Academy of Sciences Dec. 19-23@IOP, CAS, Beijing 2016 Nobel Prize in Physics TKNN number Haldane

More information

Topological nonsymmorphic crystalline superconductors

Topological nonsymmorphic crystalline superconductors UIUC, 10/26/2015 Topological nonsymmorphic crystalline superconductors Chaoxing Liu Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA Chao-Xing Liu, Rui-Xing

More information

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology.

Notes on Topological Insulators and Quantum Spin Hall Effect. Jouko Nieminen Tampere University of Technology. Notes on Topological Insulators and Quantum Spin Hall Effect Jouko Nieminen Tampere University of Technology. Not so much discussed concept in this session: topology. In math, topology discards small details

More information

Basics of topological insulator

Basics of topological insulator 011/11/18 @ NTU Basics of topological insulator Ming-Che Chang Dept of Physics, NTNU A brief history of insulators Band insulator (Wilson, Bloch) Mott insulator Anderson insulator Quantum Hall insulator

More information

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA

LCI -birthplace of liquid crystal display. May, protests. Fashion school is in top-3 in USA. Clinical Psychology program is Top-5 in USA LCI -birthplace of liquid crystal display May, 4 1970 protests Fashion school is in top-3 in USA Clinical Psychology program is Top-5 in USA Topological insulators driven by electron spin Maxim Dzero Kent

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION A Dirac point insulator with topologically non-trivial surface states D. Hsieh, D. Qian, L. Wray, Y. Xia, Y.S. Hor, R.J. Cava, and M.Z. Hasan Topics: 1. Confirming the bulk nature of electronic bands by

More information

Weyl semimetals and topological phase transitions

Weyl semimetals and topological phase transitions Weyl semimetals and topological phase transitions Shuichi Murakami 1 Department of Physics, Tokyo Institute of Technology 2 TIES, Tokyo Institute of Technology 3 CREST, JST Collaborators: R. Okugawa (Tokyo

More information

Topological Insulators and Superconductors. Tokyo 2010 Shoucheng Zhang, Stanford University

Topological Insulators and Superconductors. Tokyo 2010 Shoucheng Zhang, Stanford University Topological Insulators and Superconductors Tokyo 2010 Shoucheng Zhang, Stanford University Colloborators Stanford group: Xiaoliang Qi, Andrei Bernevig, Congjun Wu, Chaoxing Liu, Taylor Hughes, Sri Raghu,

More information

Dirac node lines in a two-dimensional bipartite square lattice

Dirac node lines in a two-dimensional bipartite square lattice Dirac node lines in a two-dimensional bipartite square lattice Bo Yang, Xiaoming Zhang, Mingwen Zhao* School of Physics and State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION Half-Heusler ternary compounds as new multifunctional platforms for topological quantum phenomena H. Lin, L.A. Wray, Y. Xia, S.-Y. Xu, S. Jia, R. J. Cava, A. Bansil, and M. Z.

More information

Topological thermoelectrics

Topological thermoelectrics Topological thermoelectrics JAIRO SINOVA Texas A&M University Institute of Physics ASCR Oleg Tretiakov, Artem Abanov, Suichi Murakami Great job candidate MRS Spring Meeting San Francisco April 28th 2011

More information

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi

Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3. Marino Marsi Ultrafast surface carrier dynamics in topological insulators: Bi 2 Te 3 Marino Marsi Laboratoire de Physique des Solides CNRS UMR 8502 - Université Paris-Sud IMPACT, Orsay, September 2012 Outline Topological

More information

Classification of topological quantum matter with reflection symmetries

Classification of topological quantum matter with reflection symmetries Classification of topological quantum matter with reflection symmetries Andreas P. Schnyder Max Planck Institute for Solid State Research, Stuttgart June 14th, 2016 SPICE Workshop on New Paradigms in Dirac-Weyl

More information

Topological insulator gap in graphene with heavy adatoms

Topological insulator gap in graphene with heavy adatoms Topological insulator gap in graphene with heavy adatoms ES2013, College of William and Mary Ruqian Wu Department of Physics and Astronomy, University of California, Irvine, California 92697 Supported

More information

Collective modes and transport In Weyl semimetals. Dima Pesin, University of Utah, Salt Lake City, UT, USA

Collective modes and transport In Weyl semimetals. Dima Pesin, University of Utah, Salt Lake City, UT, USA Collective modes and transport In Weyl semimetals Dima Pesin, University of Utah, Salt Lake City, UT, USA TAMU, College Station, TX 11/06/2014 Life in the time of Topologitis QHE Strong TI Bulk Insulators

More information

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato

Crystalline Symmetry and Topology. YITP, Kyoto University Masatoshi Sato Crystalline Symmetry and Topology YITP, Kyoto University Masatoshi Sato In collaboration with Ken Shiozaki (YITP) Kiyonori Gomi (Shinshu University) Nobuyuki Okuma (YITP) Ai Yamakage (Nagoya University)

More information

arxiv: v3 [cond-mat.mtrl-sci] 4 Mar 2017

arxiv: v3 [cond-mat.mtrl-sci] 4 Mar 2017 Transition between strong and weak topological insulator in ZrTe 5 and HfTe 5 Zongjian Fan 1, Qi-Feng Liang 2, Y. B. Chen 3, Shu-Hua Yao 1, and Jian Zhou 1,4,* arxiv:1611.04263v3 [cond-mat.mtrl-sci] 4

More information

Spin orbit interaction in graphene monolayers & carbon nanotubes

Spin orbit interaction in graphene monolayers & carbon nanotubes Spin orbit interaction in graphene monolayers & carbon nanotubes Reinhold Egger Institut für Theoretische Physik, Düsseldorf Alessandro De Martino Andreas Schulz, Artur Hütten MPI Dresden, 25.10.2011 Overview

More information

Γ M. Multiple Dirac cones and spontaneous QAH state in transition metal trichalcogenides. Yusuke Sugita

Γ M. Multiple Dirac cones and spontaneous QAH state in transition metal trichalcogenides. Yusuke Sugita Γ M K Multiple Dirac cones and spontaneous QAH state in transition metal trichalcogenides Yusuke Sugita collaborators Takashi Miyake (AIST) Yukitoshi Motome (U.Tokyo) 2017/10/24 @ NQS 2017 1 Outline Introduction

More information

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots

Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots Energy Spectrum and Broken spin-surface locking in Topological Insulator quantum dots A. Kundu 1 1 Heinrich-Heine Universität Düsseldorf, Germany The Capri Spring School on Transport in Nanostructures

More information

Nuclear Magnetic Resonance Study of Three Dimensional Dirac Semimetal Na 3 Bi

Nuclear Magnetic Resonance Study of Three Dimensional Dirac Semimetal Na 3 Bi Nuclear Magnetic Resonance Study of Three Dimensional Dirac Semimetal Na 3 Bi Amelia Estry December 28, 2015 Abstract Dirac semimetals (DS) possess promising electrical characteristics because the shape

More information

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ.

/21. Tsuneya Yoshida. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami 2013/6/07 (EQPCM) 1. Kyoto Univ. 2013/6/07 (EQPCM) 1 /21 Tsuneya Yoshida Kyoto Univ. Collaborators: Robert Peters, Satoshi Fujimoto, and N. Kawakami T.Y., Satoshi Fujimoto, and Norio Kawakami Phys. Rev. B 85, 125113 (2012) Outline 2 /21

More information

Perovskite ThTaN 3 : a Large Thermopower Topological Crystalline Insulator

Perovskite ThTaN 3 : a Large Thermopower Topological Crystalline Insulator Perovskite ThTaN 3 : a Large Thermopower Topological Crystalline Insulator Myung-Chul Jung 1, Kwan-Woo Lee 1,2, and Warren E. Pickett 3 1 Department of Applied Physics, Graduate School, Korea University,

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

arxiv: v1 [cond-mat.mtrl-sci] 4 Feb 2014

arxiv: v1 [cond-mat.mtrl-sci] 4 Feb 2014 Experimental observation of Dirac-like surface states and topological phase transition in Pb 1 x Sn x Te(111) films arxiv:1402.0609v1 [cond-mat.mtrl-sci] 4 Feb 2014 Chenhui Yan, 1,2,3 Junwei Liu, 1,2 Yunyi

More information

Nonlinear electrodynamics in Weyl semimetals: Floquet bands and photocurrent generation

Nonlinear electrodynamics in Weyl semimetals: Floquet bands and photocurrent generation Oct 26, 2017 Nonlinear electrodynamics in Weyl semimetals: Floquet bands and photocurrent generation Theory Patrick Lee (MIT) Experiment Ching-Kit Chan University of California Los Angeles Su-Yang Xu,

More information

arxiv: v1 [cond-mat.str-el] 5 Nov 2016

arxiv: v1 [cond-mat.str-el] 5 Nov 2016 Topological phase in non-centrosymmetric material NaSnBi arxiv:6.6v [cond-mat.str-el] 5 Nov 6 Xia Dai, Congcong Le, Xianxin Wu, Shengshan Qin, hiping Lin, and Jiangping Hu, Institute of Physics, Chinese

More information

Weyl fermions and the Anomalous Hall Effect

Weyl fermions and the Anomalous Hall Effect Weyl fermions and the Anomalous Hall Effect Anton Burkov CAP congress, Montreal, May 29, 2013 Outline Introduction: Weyl fermions in condensed matter, Weyl semimetals. Anomalous Hall Effect in ferromagnets

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Direct observation of the transition from indirect to direct bandgap in atomically thin epitaxial MoSe 2 Yi Zhang, Tay-Rong Chang, Bo Zhou, Yong-Tao Cui, Hao Yan, Zhongkai Liu, Felix Schmitt, James Lee,

More information

arxiv: v1 [cond-mat.mtrl-sci] 30 Jan 2018

arxiv: v1 [cond-mat.mtrl-sci] 30 Jan 2018 Visualization of electronic topology in ZrSiSe by scanning tunneling microscopy Kunliang Bu, 1 Ying Fei, 1 Wenhao Zhang, 1 Yuan Zheng, 1 Jianlan Wu, 1 Fangchu Chen, 2, 3 Xuan Luo, 2 Yuping Sun, 2, 4, 5

More information

Topological insulators

Topological insulators http://www.physik.uni-regensburg.de/forschung/fabian Topological insulators Jaroslav Fabian Institute for Theoretical Physics University of Regensburg Stara Lesna, 21.8.212 DFG SFB 689 what are topological

More information

Tunable Band Gap of Silicene on Monolayer Gallium Phosphide Substrate

Tunable Band Gap of Silicene on Monolayer Gallium Phosphide Substrate 2017 International Conference on Energy Development and Environmental Protection (EDEP 2017) ISBN: 978-1-60595-482-0 Tunable Band Gap of Silicene on Monolayer Gallium Phosphide Substrate Miao-Juan REN

More information

Quantum anomalous Hall states on decorated magnetic surfaces

Quantum anomalous Hall states on decorated magnetic surfaces Quantum anomalous Hall states on decorated magnetic surfaces David Vanderbilt Rutgers University Kevin Garrity & D.V. Phys. Rev. Lett.110, 116802 (2013) Recently: Topological insulators (TR-invariant)

More information

arxiv: v2 [cond-mat.mes-hall] 15 Feb 2015

arxiv: v2 [cond-mat.mes-hall] 15 Feb 2015 Topological Insulators, Topological Crystalline Insulators, and Topological Kondo Insulators (Review Article) M. Zahid Hasan, 1,2 Su-Yang Xu, 1 and Madhab Neupane 1 1 Joseph Henry Laboratories: Department

More information

Topological Physics in Band Insulators II

Topological Physics in Band Insulators II Topological Physics in Band Insulators II Gene Mele University of Pennsylvania Topological Insulators in Two and Three Dimensions The canonical list of electric forms of matter is actually incomplete Conductor

More information

IRG-1 CEM CENTER FOR EMERGENT MATERIALS SPIN-ORBIT COUPLING IN CORRELATED MATERIALS: SEARCH FOR NOVEL PHASES AND PHENOMENA

IRG-1 CEM CENTER FOR EMERGENT MATERIALS SPIN-ORBIT COUPLING IN CORRELATED MATERIALS: SEARCH FOR NOVEL PHASES AND PHENOMENA IRG-1 SPIN-ORBIT COUPLING IN CORRELATED MATERIALS: SEARCH FOR NOVEL PHASES AND PHENOMENA Co-leads: N. Trivedi & P. M. Woodward 3 June 2014 Center for Emergent Materials an NSF MRSEC IRG-1 1 Spin orbit

More information

Room temperature topological insulators

Room temperature topological insulators Room temperature topological insulators Ronny Thomale Julius-Maximilians Universität Würzburg ERC Topolectrics SFB Tocotronics Synquant Workshop, KITP, UC Santa Barbara, Nov. 22 2016 Correlated electron

More information

Observation of Unusual Topological Surface States in Half- Heusler Compounds LnPtBi (Ln=Lu, Y)

Observation of Unusual Topological Surface States in Half- Heusler Compounds LnPtBi (Ln=Lu, Y) Observation of Unusual Topological Surface States in Half- Heusler Compounds LnPtBi (Ln=Lu, Y) Z. K. Liu 1,2, L. X. Yang 3, S. C. Wu 4, C. Shekhar 4, J. Jiang 1,5, H. F. Yang 6, Y. Zhang 5, S. K. Mo 5,

More information

Hoffman Lab Microscopes

Hoffman Lab Microscopes Hoffman Lab Microscopes Scanning Tunneling Microscope Force Microscope Ultra-high vacuum STM SmB 6 Ca-YBCO Sb(111) Pr x Ca 1-x Fe 2 As 2 Bi 2 Se 3 K x Sr 1-x Fe 2 As 2 Bi-2212 Bi-2201 Ba(Fe 1-x Co x )

More information

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov

First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov First-Principles Calculation of Topological Invariants (Wannier Functions Approach) Alexey A. Soluyanov ES'12, WFU, June 8, 212 The present work was done in collaboration with David Vanderbilt Outline:

More information

GUANG BIAN. Department of Physics and Astronomy University of Missouri, Columbia, MO 65201, USA

GUANG BIAN. Department of Physics and Astronomy University of Missouri, Columbia, MO 65201, USA Education GUANG BIAN Department of Physics and Astronomy University of Missouri, Columbia, MO 65201, USA Email: biang@missouri.edu ² University of Illinois at Urbana-Champaign (2007-2012), Ph.D. Physics

More information

Physics in two dimensions in the lab

Physics in two dimensions in the lab Physics in two dimensions in the lab Nanodevice Physics Lab David Cobden PAB 308 Collaborators at UW Oscar Vilches (Low Temperature Lab) Xiaodong Xu (Nanoscale Optoelectronics Lab) Jiun Haw Chu (Quantum

More information