Appendix D: Basics of convolutional codes

Size: px
Start display at page:

Download "Appendix D: Basics of convolutional codes"

Transcription

1 Appendix D: Basics of convolutional codes Convolutional encoder: In convolutional code (B. P. Lathi, 2009; S. G. Wilson, 1996; E. Biglieri, 2005; T. Oberg, 2001), the block of n code bits generated by the encoder in a particular time instant depends not only on the block of k message bits within that time instant but also on the block of data bits within a previous span of N-1 time instants (N>1). A convolutional code with constraint length N consists of an N-stage shift register (SR) and ν modulo-2 adders. ν1 ν 2 ν = s s s ; ν = s s Fig. D.1 Convolutional coder Fig. D.1 shows such a coder for the case N=3 and ν=2. The message bits are applied at the input of the SR. The coded digit stream is obtained at the commutator output. The commutator samples the ν modulo-2 adders in a sequence, once during each input-bit interval. Example: Assume that the input digits are Find the coded sequence output. Solution: Initially, the SRs s1=s2=s3=0. Note that SR just shifts the input data to the next SR in the next time instant. 1

2 When the first message bit 1 enters the SR, s1= 1, s2 = s3=0. Then ν1=1, ν2=1. The coder output is 11. When the second message bit 0 enters the SR, s1=0, s2=1, s3=0. Then ν1=1 and ν2=0. The coder output is 10. When the third message bit 1 enters the SR, s1=1, s2=0 and s3=1 Then ν1=0 and ν2=0. The coder output is 00. When the fourth message bit 0 enters the SR, s1=0, s2=1 and s3=0 Then ν1=1 and ν2=0. The coder output is 10. In order to stop, we add N-1 number of 0 s to the input stream and make sure that the last data digit (0 in this case) proceeds all the way through the SR in order to influence the N groups of ν digits. Hence when the input digits are 0101, we actually apply (L R) to the SR. The coder output is (L R) There are in all n=(n+k-1) ν digits in the coded output for every k input bits. 2

3 output = ν ν 1 2 ν = s s s ν = s s Fig. D.2 (a) 3-shift registers showing states a, b, c and d (b) State diagram for the coder State diagram: When a message bit enters the SR (s1) the coder outputs are determined not only by the message bit in s1 but also by the two previous bits already in s3 and s2. There are four possible combinations of the two previous bits in s3 and s2: 00, 01,10,11. We will name these four states as a, b, c, d respectively as shown in Fig. D.2 (a). The number of states is equal to 2 (N-1). A message bit 0 or 1 generates four different outputs depending on the encoder state. This entire behavior can be concisely expressed by the state diagram of Fig. D.2 (b). This is a four-state directed graph 3

4 used to represent the input-output relation of encoder. Convention: we will use solid lines when the input bit is 0, and dashed lines when the input bit is 1. Interpretations from State diagram D.2 (b): (1) State a goes to State a when the input is 0 and the output is 00 (2) State a goes to State b when the input is 1 and the output is 11 (3) State b goes to State c when the input is 0 and the output is 10 (4) State b goes to State d when the input is 1 and the output is 01 (5) State c goes to State a when the input is 0 and the output is 11 (6) State c goes to State b when the input is 1 and the output is 00 (7) State d goes to State c when the input is 0 and the output is 01 (8) State d goes to State d when the input is 1 and the output is 10 Note that the encoder cannot go directly from state a to states c or d. From any given state, the encoder can go to only two states directly by inputting a single message bit. Trellis diagram: Trellis diagram can be readily drawn using the above state diagram. It starts from scratch (all 0 s in the SR, i.e., state a) and makes transitions corresponding to each input data digit. These transitions are denoted by a solid line for the next data digit 0 and by a dashed line for the next data digit 1. Thus when the first input digit is 0, the encoder output is 00 (solid line) and when the input digit is 1, the encoder output is 11 (dashed line). We continue this way for the second input digit and so on as depicted in Fig. D.3. 4

5 Fig. D.3 Trellis diagram for the convolution coder Fig. D.4 Survivor paths after the 3 rd branch of the Trellis diagram for received sequence Decoding: We shall consider maximum-likelihood (ML) decoding (Viterbi s algorithm). Among various decoding methods for convolutional codes, Viterbi s ML algorithm is one of the best techniques in digital communications. As usual, ML receiver implies selecting a code word closest to the received code word. Because there are 2 k code words (k input data digits), the ML decision involves storage of 2 k code words and their comparison with the received word. The calculation 5

6 is extremely difficult for large k and result in exponential increase in complexity of the decoder. A major simplification was made by Viterbi in the ML calculation by noting that each of the four nodes (a, b, c and d) has only two predecessors. Each node can be reached through two nodes only and only the path agrees most with the received sequence (the minimum distance path) need to be retained for each node. Given a received sequence of bits, we need to find a path in the trellis diagram with the output digit sequence agrees most with the received sequence. Example: Suppose that the first six received digits are Find the survivor paths (minimum-distance path with the received sequence). Solution: Table D.1 Survivor paths after the 3 rd branch of the Trellis diagram for received sequence After 3 rd branches Paths Distance with received sequence Survivor? Node a Yes Node b Yes Node c Yes Node d Yes With four paths eliminated as illustrated in Table D.1, the four survivor paths are the only contenders. What we need to remember is the four survivor paths and their distances from the 6

7 received sequences. In general, the number of survivor paths is equal to the number of states, that is, 2 N-1. Once we have survivors at all the third-level nodes, we look at the next two received digits. To truncate the Viterbi algorithm and ultimately we need to decide on one path rather than four. This is done by forcing the last two data digits to be 00. Hence the received sequence is (L R) When the first dummy 0 enters the register, we consider the survivors only at nodes a and c. The survivors at nodes b and d are discarded because these nodes can be reached only when input bit is 1, as seen from the trellis diagram. When the second dummy 0 enters the register, we consider survivor at node a. We discard the survivor at node c because the last two dummy data 00 leads to the encoder state a. In terms of trellis diagram, this means that the number of states is reduced from four to two (a and c) by insertion of the first zero and to a single state (a) by insertion of the second zero. With the Viterbi algorithm, storage and computational complexity reduces considerably (proportional to 2N) and are very attractive for constraint length N<10. References: 1) B. P. Lathi, Modern digital and analog communication systems, Oxford University Press, ) E. Biglieri, Coding for wireless channels, Springer, ) S. G. Wilson, Digital Modulation and Coding, Pearson, ) T. Oberg, Modulation, Detection and Coding, John Wiley and Sons,

Chapter 7: Channel coding:convolutional codes

Chapter 7: Channel coding:convolutional codes Chapter 7: : Convolutional codes University of Limoges meghdadi@ensil.unilim.fr Reference : Digital communications by John Proakis; Wireless communication by Andreas Goldsmith Encoder representation Communication

More information

1 1 0, g Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g

1 1 0, g Exercise 1. Generator polynomials of a convolutional code, given in binary form, are g Exercise Generator polynomials of a convolutional code, given in binary form, are g 0, g 2 0 ja g 3. a) Sketch the encoding circuit. b) Sketch the state diagram. c) Find the transfer function TD. d) What

More information

Introduction to Convolutional Codes, Part 1

Introduction to Convolutional Codes, Part 1 Introduction to Convolutional Codes, Part 1 Frans M.J. Willems, Eindhoven University of Technology September 29, 2009 Elias, Father of Coding Theory Textbook Encoder Encoder Properties Systematic Codes

More information

Communication Theory II

Communication Theory II Communication Theory II Lecture 24: Error Correction Techniques Ahmed Elnakib, PhD Assistant Professor, Mansoura University, Egypt May 14 th, 2015 1 Error Correction Techniques olinear Block Code Cyclic

More information

Binary Convolutional Codes

Binary Convolutional Codes Binary Convolutional Codes A convolutional code has memory over a short block length. This memory results in encoded output symbols that depend not only on the present input, but also on past inputs. An

More information

Code design: Computer search

Code design: Computer search Code design: Computer search Low rate codes Represent the code by its generator matrix Find one representative for each equivalence class of codes Permutation equivalences? Do NOT try several generator

More information

Convolutional Codes ddd, Houshou Chen. May 28, 2012

Convolutional Codes ddd, Houshou Chen. May 28, 2012 Representation I, II Representation III, IV trellis of Viterbi decoding Turbo codes Convolutional Codes ddd, Houshou Chen Department of Electrical Engineering National Chung Hsing University Taichung,

More information

NAME... Soc. Sec. #... Remote Location... (if on campus write campus) FINAL EXAM EE568 KUMAR. Sp ' 00

NAME... Soc. Sec. #... Remote Location... (if on campus write campus) FINAL EXAM EE568 KUMAR. Sp ' 00 NAME... Soc. Sec. #... Remote Location... (if on campus write campus) FINAL EXAM EE568 KUMAR Sp ' 00 May 3 OPEN BOOK exam (students are permitted to bring in textbooks, handwritten notes, lecture notes

More information

CHAPTER 8 Viterbi Decoding of Convolutional Codes

CHAPTER 8 Viterbi Decoding of Convolutional Codes MIT 6.02 DRAFT Lecture Notes Fall 2011 (Last update: October 9, 2011) Comments, questions or bug reports? Please contact hari at mit.edu CHAPTER 8 Viterbi Decoding of Convolutional Codes This chapter describes

More information

Convolutional Coding LECTURE Overview

Convolutional Coding LECTURE Overview MIT 6.02 DRAFT Lecture Notes Spring 2010 (Last update: March 6, 2010) Comments, questions or bug reports? Please contact 6.02-staff@mit.edu LECTURE 8 Convolutional Coding This lecture introduces a powerful

More information

Introduction to Binary Convolutional Codes [1]

Introduction to Binary Convolutional Codes [1] Introduction to Binary Convolutional Codes [1] Yunghsiang S. Han Graduate Institute of Communication Engineering, National Taipei University Taiwan E-mail: yshan@mail.ntpu.edu.tw Y. S. Han Introduction

More information

SIPCom8-1: Information Theory and Coding Linear Binary Codes Ingmar Land

SIPCom8-1: Information Theory and Coding Linear Binary Codes Ingmar Land SIPCom8-1: Information Theory and Coding Linear Binary Codes Ingmar Land Ingmar Land, SIPCom8-1: Information Theory and Coding (2005 Spring) p.1 Overview Basic Concepts of Channel Coding Block Codes I:

More information

ELEC 405/511 Error Control Coding. Binary Convolutional Codes

ELEC 405/511 Error Control Coding. Binary Convolutional Codes ELEC 405/511 Error Control Coding Binary Convolutional Codes Peter Elias (1923-2001) Coding for Noisy Channels, 1955 2 With block codes, the input data is divided into blocks of length k and the codewords

More information

Channel Coding and Interleaving

Channel Coding and Interleaving Lecture 6 Channel Coding and Interleaving 1 LORA: Future by Lund www.futurebylund.se The network will be free for those who want to try their products, services and solutions in a precommercial stage.

More information

Example of Convolutional Codec

Example of Convolutional Codec Example of Convolutional Codec Convolutional Code tructure K k bits k k k n- n Output Convolutional codes Convoltuional Code k = number of bits shifted into the encoder at one time k= is usually used!!

More information

Introduction to Wireless & Mobile Systems. Chapter 4. Channel Coding and Error Control Cengage Learning Engineering. All Rights Reserved.

Introduction to Wireless & Mobile Systems. Chapter 4. Channel Coding and Error Control Cengage Learning Engineering. All Rights Reserved. Introduction to Wireless & Mobile Systems Chapter 4 Channel Coding and Error Control 1 Outline Introduction Block Codes Cyclic Codes CRC (Cyclic Redundancy Check) Convolutional Codes Interleaving Information

More information

Digital Communication Systems ECS 452. Asst. Prof. Dr. Prapun Suksompong 5.2 Binary Convolutional Codes

Digital Communication Systems ECS 452. Asst. Prof. Dr. Prapun Suksompong 5.2 Binary Convolutional Codes Digital Communication Systems ECS 452 Asst. Prof. Dr. Prapun Suksompong prapun@siit.tu.ac.th 5.2 Binary Convolutional Codes 35 Binary Convolutional Codes Introduced by Elias in 1955 There, it is referred

More information

High rate soft output Viterbi decoder

High rate soft output Viterbi decoder High rate soft output Viterbi decoder Eric Lüthi, Emmanuel Casseau Integrated Circuits for Telecommunications Laboratory Ecole Nationale Supérieure des Télécomunications de Bretagne BP 83-985 Brest Cedex

More information

Convolutional Codes. Telecommunications Laboratory. Alex Balatsoukas-Stimming. Technical University of Crete. November 6th, 2008

Convolutional Codes. Telecommunications Laboratory. Alex Balatsoukas-Stimming. Technical University of Crete. November 6th, 2008 Convolutional Codes Telecommunications Laboratory Alex Balatsoukas-Stimming Technical University of Crete November 6th, 2008 Telecommunications Laboratory (TUC) Convolutional Codes November 6th, 2008 1

More information

An Introduction to Low Density Parity Check (LDPC) Codes

An Introduction to Low Density Parity Check (LDPC) Codes An Introduction to Low Density Parity Check (LDPC) Codes Jian Sun jian@csee.wvu.edu Wireless Communication Research Laboratory Lane Dept. of Comp. Sci. and Elec. Engr. West Virginia University June 3,

More information

SENS'2006 Second Scientific Conference with International Participation SPACE, ECOLOGY, NANOTECHNOLOGY, SAFETY June 2006, Varna, Bulgaria

SENS'2006 Second Scientific Conference with International Participation SPACE, ECOLOGY, NANOTECHNOLOGY, SAFETY June 2006, Varna, Bulgaria SENS'6 Second Scientific Conference with International Participation SPACE, ECOLOGY, NANOTECHNOLOGY, SAFETY 4 6 June 6, Varna, Bulgaria SIMULATION ANALYSIS OF THE VITERBI CONVOLUTIONAL DECODING ALGORITHM

More information

Coding on a Trellis: Convolutional Codes

Coding on a Trellis: Convolutional Codes .... Coding on a Trellis: Convolutional Codes Telecommunications Laboratory Alex Balatsoukas-Stimming Technical University of Crete November 6th, 2008 Telecommunications Laboratory (TUC) Coding on a Trellis:

More information

Lecture 3 : Introduction to Binary Convolutional Codes

Lecture 3 : Introduction to Binary Convolutional Codes Lecture 3 : Introduction to Binary Convolutional Codes Binary Convolutional Codes 1. Convolutional codes were first introduced by Elias in 1955 as an alternative to block codes. In contrast with a block

More information

The Viterbi Algorithm EECS 869: Error Control Coding Fall 2009

The Viterbi Algorithm EECS 869: Error Control Coding Fall 2009 1 Bacground Material 1.1 Organization of the Trellis The Viterbi Algorithm EECS 869: Error Control Coding Fall 2009 The Viterbi algorithm (VA) processes the (noisy) output sequence from a state machine

More information

Module 5 EMBEDDED WAVELET CODING. Version 2 ECE IIT, Kharagpur

Module 5 EMBEDDED WAVELET CODING. Version 2 ECE IIT, Kharagpur Module 5 EMBEDDED WAVELET CODING Lesson 13 Zerotree Approach. Instructional Objectives At the end of this lesson, the students should be able to: 1. Explain the principle of embedded coding. 2. Show the

More information

THE EFFECT OF PUNCTURING ON THE CONVOLUTIONAL TURBO-CODES PERFORMANCES

THE EFFECT OF PUNCTURING ON THE CONVOLUTIONAL TURBO-CODES PERFORMANCES THE EFFECT OF PUNCTURING ON THE CONVOLUTIONAL TURBO-COES PERFORMANCES Horia BALTA 1, Lucian TRIFINA, Anca RUSINARU 1 Electronics and Telecommunications Faculty, Bd. V. Parvan, 1900 Timisoara, ROMANIA,

More information

Physical Layer and Coding

Physical Layer and Coding Physical Layer and Coding Muriel Médard Professor EECS Overview A variety of physical media: copper, free space, optical fiber Unified way of addressing signals at the input and the output of these media:

More information

The Concept of Soft Channel Encoding and its Applications in Wireless Relay Networks

The Concept of Soft Channel Encoding and its Applications in Wireless Relay Networks The Concept of Soft Channel Encoding and its Applications in Wireless Relay Networks Gerald Matz Institute of Telecommunications Vienna University of Technology institute of telecommunications Acknowledgements

More information

BASICS OF DETECTION AND ESTIMATION THEORY

BASICS OF DETECTION AND ESTIMATION THEORY BASICS OF DETECTION AND ESTIMATION THEORY 83050E/158 In this chapter we discuss how the transmitted symbols are detected optimally from a noisy received signal (observation). Based on these results, optimal

More information

Chapter10 Convolutional Codes. Dr. Chih-Peng Li ( 李 )

Chapter10 Convolutional Codes. Dr. Chih-Peng Li ( 李 ) Chapter Convolutional Codes Dr. Chih-Peng Li ( 李 ) Table of Contents. Encoding of Convolutional Codes. tructural Properties of Convolutional Codes. Distance Properties of Convolutional Codes Convolutional

More information

THIS paper is aimed at designing efficient decoding algorithms

THIS paper is aimed at designing efficient decoding algorithms IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 45, NO. 7, NOVEMBER 1999 2333 Sort-and-Match Algorithm for Soft-Decision Decoding Ilya Dumer, Member, IEEE Abstract Let a q-ary linear (n; k)-code C be used

More information

On the exact bit error probability for Viterbi decoding of convolutional codes

On the exact bit error probability for Viterbi decoding of convolutional codes On the exact bit error probability for Viterbi decoding of convolutional codes Irina E. Bocharova, Florian Hug, Rolf Johannesson, and Boris D. Kudryashov Dept. of Information Systems Dept. of Electrical

More information

Soft-Output Trellis Waveform Coding

Soft-Output Trellis Waveform Coding Soft-Output Trellis Waveform Coding Tariq Haddad and Abbas Yongaçoḡlu School of Information Technology and Engineering, University of Ottawa Ottawa, Ontario, K1N 6N5, Canada Fax: +1 (613) 562 5175 thaddad@site.uottawa.ca

More information

Maximum Likelihood Sequence Detection

Maximum Likelihood Sequence Detection 1 The Channel... 1.1 Delay Spread... 1. Channel Model... 1.3 Matched Filter as Receiver Front End... 4 Detection... 5.1 Terms... 5. Maximum Lielihood Detection of a Single Symbol... 6.3 Maximum Lielihood

More information

Channel Coding I. Exercises SS 2017

Channel Coding I. Exercises SS 2017 Channel Coding I Exercises SS 2017 Lecturer: Dirk Wübben Tutor: Shayan Hassanpour NW1, Room N 2420, Tel.: 0421/218-62387 E-mail: {wuebben, hassanpour}@ant.uni-bremen.de Universität Bremen, FB1 Institut

More information

New Trellis Codes Based on Lattices and Cosets *

New Trellis Codes Based on Lattices and Cosets * New Trellis Codes Based on Lattices and Cosets * A. R. Calderbank and N. J. A. Sloane Mathematical Sciences Research Center AT&T Bell Laboratories Murray Hill, NJ 07974 ABSTRACT A new technique is proposed

More information

EVALUATION OF PACKET ERROR RATE IN WIRELESS NETWORKS

EVALUATION OF PACKET ERROR RATE IN WIRELESS NETWORKS EVALUATION OF PACKET ERROR RATE IN WIRELESS NETWORKS Ramin Khalili, Kavé Salamatian LIP6-CNRS, Université Pierre et Marie Curie. Paris, France. Ramin.khalili, kave.salamatian@lip6.fr Abstract Bit Error

More information

Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Fall Quiz II.

Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY Fall Quiz II. 6.02 Fall 2010, Quiz 2 Page 1 of 12 Name: SOLUTIONS Department of Electrical Engineering and Computer Science MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.02 Fall 2010 Quiz II November 2, 2010 your section

More information

Error Correction Methods

Error Correction Methods Technologies and Services on igital Broadcasting (7) Error Correction Methods "Technologies and Services of igital Broadcasting" (in Japanese, ISBN4-339-06-) is published by CORONA publishing co., Ltd.

More information

Convolutional Codes. Lecture 13. Figure 93: Encoder for rate 1/2 constraint length 3 convolutional code.

Convolutional Codes. Lecture 13. Figure 93: Encoder for rate 1/2 constraint length 3 convolutional code. Convolutional Codes Goals Lecture Be able to encode using a convolutional code Be able to decode a convolutional code received over a binary symmetric channel or an additive white Gaussian channel Convolutional

More information

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 41 Pulse Code Modulation (PCM) So, if you remember we have been talking

More information

Lecture 12. Block Diagram

Lecture 12. Block Diagram Lecture 12 Goals Be able to encode using a linear block code Be able to decode a linear block code received over a binary symmetric channel or an additive white Gaussian channel XII-1 Block Diagram Data

More information

Decoding the Tail-Biting Convolutional Codes with Pre-Decoding Circular Shift

Decoding the Tail-Biting Convolutional Codes with Pre-Decoding Circular Shift Decoding the Tail-Biting Convolutional Codes with Pre-Decoding Circular Shift Ching-Yao Su Directed by: Prof. Po-Ning Chen Department of Communications Engineering, National Chiao-Tung University July

More information

Linear Codes and Syndrome Decoding

Linear Codes and Syndrome Decoding Linear Codes and Syndrome Decoding These notes are intended to be used as supplementary reading to Sections 6.7 9 of Grimaldi s Discrete and Combinatorial Mathematics. The proofs of the theorems are left

More information

Pipelined Viterbi Decoder Using FPGA

Pipelined Viterbi Decoder Using FPGA Research Journal of Applied Sciences, Engineering and Technology 5(4): 1362-1372, 2013 ISSN: 2040-7459; e-issn: 2040-7467 Maxwell Scientific Organization, 2013 Submitted: July 05, 2012 Accepted: August

More information

Sequential Decoding of Binary Convolutional Codes

Sequential Decoding of Binary Convolutional Codes Sequential Decoding of Binary Convolutional Codes Yunghsiang S. Han Dept. Computer Science and Information Engineering, National Chi Nan University Taiwan E-mail: yshan@csie.ncnu.edu.tw Y. S. Han Sequential

More information

PROBABILISTIC ALGORITHM FOR LIST VITERBI DECODING

PROBABILISTIC ALGORITHM FOR LIST VITERBI DECODING PROBABILISTIC ALGORITHM FOR LIST VITERBI DECODING by Janani Kalyanam A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science (Electrical and Computer Engineering)

More information

Convolutional Codes Klaus von der Heide

Convolutional Codes Klaus von der Heide Convolutional Codes Klaus von der Heide Convolutional codes encode a stream of symbols into n streams of symbols. 1/n = R is called the code rate. A second important parameter is the constraint length

More information

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road UNIT I

SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road UNIT I SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : CODING THEORY & TECHNIQUES(16EC3810) Course & Branch: M.Tech - DECS

More information

SOFT DECISION FANO DECODING OF BLOCK CODES OVER DISCRETE MEMORYLESS CHANNEL USING TREE DIAGRAM

SOFT DECISION FANO DECODING OF BLOCK CODES OVER DISCRETE MEMORYLESS CHANNEL USING TREE DIAGRAM Journal of ELECTRICAL ENGINEERING, VOL. 63, NO. 1, 2012, 59 64 SOFT DECISION FANO DECODING OF BLOCK CODES OVER DISCRETE MEMORYLESS CHANNEL USING TREE DIAGRAM H. Prashantha Kumar Udupi Sripati K. Rajesh

More information

6.451 Principles of Digital Communication II Wednesday, May 4, 2005 MIT, Spring 2005 Handout #22. Problem Set 9 Solutions

6.451 Principles of Digital Communication II Wednesday, May 4, 2005 MIT, Spring 2005 Handout #22. Problem Set 9 Solutions 6.45 Principles of Digital Communication II Wednesda, Ma 4, 25 MIT, Spring 25 Hand #22 Problem Set 9 Solutions Problem 8.3 (revised) (BCJR (sum-product) decoding of SPC codes) As shown in Problem 6.4 or

More information

Image Compression using DPCM with LMS Algorithm

Image Compression using DPCM with LMS Algorithm Image Compression using DPCM with LMS Algorithm Reenu Sharma, Abhay Khedkar SRCEM, Banmore -----------------------------------------------------------------****---------------------------------------------------------------

More information

Exact Probability of Erasure and a Decoding Algorithm for Convolutional Codes on the Binary Erasure Channel

Exact Probability of Erasure and a Decoding Algorithm for Convolutional Codes on the Binary Erasure Channel Exact Probability of Erasure and a Decoding Algorithm for Convolutional Codes on the Binary Erasure Channel Brian M. Kurkoski, Paul H. Siegel, and Jack K. Wolf Department of Electrical and Computer Engineering

More information

Intro to Information Theory

Intro to Information Theory Intro to Information Theory Math Circle February 11, 2018 1. Random variables Let us review discrete random variables and some notation. A random variable X takes value a A with probability P (a) 0. Here

More information

Cyclic Redundancy Check Codes

Cyclic Redundancy Check Codes Cyclic Redundancy Check Codes Lectures No. 17 and 18 Dr. Aoife Moloney School of Electronics and Communications Dublin Institute of Technology Overview These lectures will look at the following: Cyclic

More information

An analysis of the computational complexity of sequential decoding of specific tree codes over Gaussian channels

An analysis of the computational complexity of sequential decoding of specific tree codes over Gaussian channels An analysis of the computational complexity of sequential decoding of specific tree codes over Gaussian channels B. Narayanaswamy, Rohit Negi and Pradeep Khosla Department of ECE Carnegie Mellon University

More information

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x

Linear Cyclic Codes. Polynomial Word 1 + x + x x 4 + x 5 + x x + x Coding Theory Massoud Malek Linear Cyclic Codes Polynomial and Words A polynomial of degree n over IK is a polynomial p(x) = a 0 + a 1 x + + a n 1 x n 1 + a n x n, where the coefficients a 0, a 1, a 2,,

More information

2018/5/3. YU Xiangyu

2018/5/3. YU Xiangyu 2018/5/3 YU Xiangyu yuxy@scut.edu.cn Entropy Huffman Code Entropy of Discrete Source Definition of entropy: If an information source X can generate n different messages x 1, x 2,, x i,, x n, then the

More information

Is It As Easy To Discover As To Verify?

Is It As Easy To Discover As To Verify? Is It As Easy To Discover As To Verify? Sam Buss Department of Mathematics U.C. San Diego UCSD Math Circle May 22, 2004 A discovered identity The Bailey-Borwein-Plouffe formula for π (1997): π = n=0 (

More information

The Maximum-Likelihood Soft-Decision Sequential Decoding Algorithms for Convolutional Codes

The Maximum-Likelihood Soft-Decision Sequential Decoding Algorithms for Convolutional Codes The Maximum-Likelihood Soft-Decision Sequential Decoding Algorithms for Convolutional Codes Prepared by Hong-Bin Wu Directed by Prof. Po-Ning Chen In Partial Fulfillment of the Requirements For the Degree

More information

Error Correction and Trellis Coding

Error Correction and Trellis Coding Advanced Signal Processing Winter Term 2001/2002 Digital Subscriber Lines (xdsl): Broadband Communication over Twisted Wire Pairs Error Correction and Trellis Coding Thomas Brandtner brandt@sbox.tugraz.at

More information

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology

RADIO SYSTEMS ETIN15. Lecture no: Equalization. Ove Edfors, Department of Electrical and Information Technology RADIO SYSTEMS ETIN15 Lecture no: 8 Equalization Ove Edfors, Department of Electrical and Information Technology Ove.Edfors@eit.lth.se Contents Inter-symbol interference Linear equalizers Decision-feedback

More information

HIGH DIMENSIONAL TRELLIS CODED MODULATION

HIGH DIMENSIONAL TRELLIS CODED MODULATION AFRL-IF-RS-TR-2002-50 Final Technical Report March 2002 HIGH DIMENSIONAL TRELLIS CODED MODULATION Ohio University APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED. AIR FORCE RESEARCH LABORATORY INFORMATION

More information

EE 121: Introduction to Digital Communication Systems. 1. Consider the following discrete-time communication system. There are two equallly likely

EE 121: Introduction to Digital Communication Systems. 1. Consider the following discrete-time communication system. There are two equallly likely EE 11: Introduction to Digital Communication Systems Midterm Solutions 1. Consider the following discrete-time communication system. There are two equallly likely messages to be transmitted, and they are

More information

Roll No. :... Invigilator's Signature :.. CS/B.TECH(ECE)/SEM-7/EC-703/ CODING & INFORMATION THEORY. Time Allotted : 3 Hours Full Marks : 70

Roll No. :... Invigilator's Signature :.. CS/B.TECH(ECE)/SEM-7/EC-703/ CODING & INFORMATION THEORY. Time Allotted : 3 Hours Full Marks : 70 Name : Roll No. :.... Invigilator's Signature :.. CS/B.TECH(ECE)/SEM-7/EC-703/2011-12 2011 CODING & INFORMATION THEORY Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks

More information

Correlation. We don't consider one variable independent and the other dependent. Does x go up as y goes up? Does x go down as y goes up?

Correlation. We don't consider one variable independent and the other dependent. Does x go up as y goes up? Does x go down as y goes up? Comment: notes are adapted from BIOL 214/312. I. Correlation. Correlation A) Correlation is used when we want to examine the relationship of two continuous variables. We are not interested in prediction.

More information

Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing

Boolean Algebra and Digital Logic 2009, University of Colombo School of Computing IT 204 Section 3.0 Boolean Algebra and Digital Logic Boolean Algebra 2 Logic Equations to Truth Tables X = A. B + A. B + AB A B X 0 0 0 0 3 Sum of Products The OR operation performed on the products of

More information

A new analytic approach to evaluation of Packet Error Rate in Wireless Networks

A new analytic approach to evaluation of Packet Error Rate in Wireless Networks A new analytic approach to evaluation of Packet Error Rate in Wireless Networks Ramin Khalili Université Pierre et Marie Curie LIP6-CNRS, Paris, France ramin.khalili@lip6.fr Kavé Salamatian Université

More information

A Study on Simulating Convolutional Codes and Turbo Codes

A Study on Simulating Convolutional Codes and Turbo Codes A Study on Simulating Convolutional Code and Turbo Code Final Report By Daniel Chang July 27, 2001 Advior: Dr. P. Kinman Executive Summary Thi project include the deign of imulation of everal convolutional

More information

Handout 12: Error Probability Analysis of Binary Detection

Handout 12: Error Probability Analysis of Binary Detection ENGG 230-B: Principles of Communication Systems 207 8 First Term Handout 2: Error Probability Analysis of Binary Detection Instructor: Wing-Kin Ma November 4, 207 Suggested Reading: Chapter 8 of Simon

More information

INFORMATION PROCESSING ABILITY OF BINARY DETECTORS AND BLOCK DECODERS. Michael A. Lexa and Don H. Johnson

INFORMATION PROCESSING ABILITY OF BINARY DETECTORS AND BLOCK DECODERS. Michael A. Lexa and Don H. Johnson INFORMATION PROCESSING ABILITY OF BINARY DETECTORS AND BLOCK DECODERS Michael A. Lexa and Don H. Johnson Rice University Department of Electrical and Computer Engineering Houston, TX 775-892 amlexa@rice.edu,

More information

Diversity Performance of a Practical Non-Coherent Detect-and-Forward Receiver

Diversity Performance of a Practical Non-Coherent Detect-and-Forward Receiver Diversity Performance of a Practical Non-Coherent Detect-and-Forward Receiver Michael R. Souryal and Huiqing You National Institute of Standards and Technology Advanced Network Technologies Division Gaithersburg,

More information

Turbo Codes are Low Density Parity Check Codes

Turbo Codes are Low Density Parity Check Codes Turbo Codes are Low Density Parity Check Codes David J. C. MacKay July 5, 00 Draft 0., not for distribution! (First draft written July 5, 998) Abstract Turbo codes and Gallager codes (also known as low

More information

Lecture 2e Row Echelon Form (pages 73-74)

Lecture 2e Row Echelon Form (pages 73-74) Lecture 2e Row Echelon Form (pages 73-74) At the end of Lecture 2a I said that we would develop an algorithm for solving a system of linear equations, and now that we have our matrix notation, we can proceed

More information

Trellis-based Detection Techniques

Trellis-based Detection Techniques Chapter 2 Trellis-based Detection Techniques 2.1 Introduction In this chapter, we provide the reader with a brief introduction to the main detection techniques which will be relevant for the low-density

More information

1 Introduction to information theory

1 Introduction to information theory 1 Introduction to information theory 1.1 Introduction In this chapter we present some of the basic concepts of information theory. The situations we have in mind involve the exchange of information through

More information

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise.

Data Detection for Controlled ISI. h(nt) = 1 for n=0,1 and zero otherwise. Data Detection for Controlled ISI *Symbol by symbol suboptimum detection For the duobinary signal pulse h(nt) = 1 for n=0,1 and zero otherwise. The samples at the output of the receiving filter(demodulator)

More information

Hidden Markov Models 1

Hidden Markov Models 1 Hidden Markov Models Dinucleotide Frequency Consider all 2-mers in a sequence {AA,AC,AG,AT,CA,CC,CG,CT,GA,GC,GG,GT,TA,TC,TG,TT} Given 4 nucleotides: each with a probability of occurrence of. 4 Thus, one

More information

Digital Communications

Digital Communications Digital Communications Chapter 8: Trellis and Graph Based Codes Saeedeh Moloudi May 7, 2014 Outline 1 Introduction 2 Convolutional Codes 3 Decoding of Convolutional Codes 4 Turbo Codes May 7, 2014 Proakis-Salehi

More information

Lecture 7. Union bound for reducing M-ary to binary hypothesis testing

Lecture 7. Union bound for reducing M-ary to binary hypothesis testing Lecture 7 Agenda for the lecture M-ary hypothesis testing and the MAP rule Union bound for reducing M-ary to binary hypothesis testing Introduction of the channel coding problem 7.1 M-ary hypothesis testing

More information

Polar Codes: Graph Representation and Duality

Polar Codes: Graph Representation and Duality Polar Codes: Graph Representation and Duality arxiv:1312.0372v1 [cs.it] 2 Dec 2013 M. Fossorier ETIS ENSEA/UCP/CNRS UMR-8051 6, avenue du Ponceau, 95014, Cergy Pontoise, France Email: mfossorier@ieee.org

More information

On Weight Enumerators and MacWilliams Identity for Convolutional Codes

On Weight Enumerators and MacWilliams Identity for Convolutional Codes On Weight Enumerators and MacWilliams Identity for Convolutional Codes Irina E Bocharova 1, Florian Hug, Rolf Johannesson, and Boris D Kudryashov 1 1 Dept of Information Systems St Petersburg Univ of Information

More information

Theoretical Analysis and Performance Limits of Noncoherent Sequence Detection of Coded PSK

Theoretical Analysis and Performance Limits of Noncoherent Sequence Detection of Coded PSK IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 46, NO. 4, JULY 2000 1483 Theoretical Analysis and Permance Limits of Noncoherent Sequence Detection of Coded PSK Giulio Colavolpe, Student Member, IEEE, and

More information

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay

Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Information Theory and Coding Prof. S. N. Merchant Department of Electrical Engineering Indian Institute of Technology, Bombay Lecture - 13 Competitive Optimality of the Shannon Code So, far we have studied

More information

Error Floors of LDPC Coded BICM

Error Floors of LDPC Coded BICM Electrical and Computer Engineering Conference Papers, Posters and Presentations Electrical and Computer Engineering 2007 Error Floors of LDPC Coded BICM Aditya Ramamoorthy Iowa State University, adityar@iastate.edu

More information

Constant Space and Non-Constant Time in Distributed Computing

Constant Space and Non-Constant Time in Distributed Computing Constant Space and Non-Constant Time in Distributed Computing Tuomo Lempiäinen and Jukka Suomela Aalto University, Finland OPODIS 20th December 2017 Lisbon, Portugal 1 / 19 Time complexity versus space

More information

Trellis Coded Modulation

Trellis Coded Modulation Trellis Coded Modulation Trellis coded modulation (TCM) is a marriage between codes that live on trellises and signal designs We have already seen that trellises are the preferred way to view convolutional

More information

Index coding with side information

Index coding with side information Index coding with side information Ehsan Ebrahimi Targhi University of Tartu Abstract. The Index Coding problem has attracted a considerable amount of attention in the recent years. The problem is motivated

More information

ECE Advanced Communication Theory, Spring 2009 Homework #1 (INCOMPLETE)

ECE Advanced Communication Theory, Spring 2009 Homework #1 (INCOMPLETE) ECE 74 - Advanced Communication Theory, Spring 2009 Homework #1 (INCOMPLETE) 1. A Huffman code finds the optimal codeword to assign to a given block of source symbols. (a) Show that cannot be a Huffman

More information

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3

Digital Logic: Boolean Algebra and Gates. Textbook Chapter 3 Digital Logic: Boolean Algebra and Gates Textbook Chapter 3 Basic Logic Gates XOR CMPE12 Summer 2009 02-2 Truth Table The most basic representation of a logic function Lists the output for all possible

More information

Parallel Concatenated Chaos Coded Modulations

Parallel Concatenated Chaos Coded Modulations Parallel Concatenated Chaos Coded Modulations Francisco J. Escribano, M. A. F. Sanjuán Departamento de Física Universidad Rey Juan Carlos 8933 Móstoles, Madrid, Spain Email: francisco.escribano@ieee.org

More information

Factor Graphs and Message Passing Algorithms Part 1: Introduction

Factor Graphs and Message Passing Algorithms Part 1: Introduction Factor Graphs and Message Passing Algorithms Part 1: Introduction Hans-Andrea Loeliger December 2007 1 The Two Basic Problems 1. Marginalization: Compute f k (x k ) f(x 1,..., x n ) x 1,..., x n except

More information

ECE8771 Information Theory & Coding for Digital Communications Villanova University ECE Department Prof. Kevin M. Buckley Lecture Set 2 Block Codes

ECE8771 Information Theory & Coding for Digital Communications Villanova University ECE Department Prof. Kevin M. Buckley Lecture Set 2 Block Codes Kevin Buckley - 2010 109 ECE8771 Information Theory & Coding for Digital Communications Villanova University ECE Department Prof. Kevin M. Buckley Lecture Set 2 Block Codes m GF(2 ) adder m GF(2 ) multiplier

More information

channel of communication noise Each codeword has length 2, and all digits are either 0 or 1. Such codes are called Binary Codes.

channel of communication noise Each codeword has length 2, and all digits are either 0 or 1. Such codes are called Binary Codes. 5 Binary Codes You have already seen how check digits for bar codes (in Unit 3) and ISBN numbers (Unit 4) are used to detect errors. Here you will look at codes relevant for data transmission, for example,

More information

MATH 433 Applied Algebra Lecture 22: Review for Exam 2.

MATH 433 Applied Algebra Lecture 22: Review for Exam 2. MATH 433 Applied Algebra Lecture 22: Review for Exam 2. Topics for Exam 2 Permutations Cycles, transpositions Cycle decomposition of a permutation Order of a permutation Sign of a permutation Symmetric

More information

Turbo Codes for xdsl modems

Turbo Codes for xdsl modems Turbo Codes for xdsl modems Juan Alberto Torres, Ph. D. VOCAL Technologies, Ltd. (http://www.vocal.com) John James Audubon Parkway Buffalo, NY 14228, USA Phone: +1 716 688 4675 Fax: +1 716 639 0713 Email:

More information

MAXIMUM LIKELIHOOD SEQUENCE ESTIMATION FROM THE LATTICE VIEWPOINT. By Mow Wai Ho

MAXIMUM LIKELIHOOD SEQUENCE ESTIMATION FROM THE LATTICE VIEWPOINT. By Mow Wai Ho MAXIMUM LIKELIHOOD SEQUENCE ESTIMATION FROM THE LATTICE VIEWPOINT By Mow Wai Ho A thesis submitted in partial fulfillment of the requirements for the Degree of Master of Philosophy Department of Information

More information

홀로그램저장재료. National Creative Research Center for Active Plasmonics Applications Systems

홀로그램저장재료. National Creative Research Center for Active Plasmonics Applications Systems 홀로그램저장재료 Holographic materials Material Reusable Processing Type of Exposure Spectral Resol. Max. diff. hologram (J/m2) sensitivity (lim./mm) efficiency Photographic emulsion Dichromated gelatin Photoresists

More information

Decision-Point Signal to Noise Ratio (SNR)

Decision-Point Signal to Noise Ratio (SNR) Decision-Point Signal to Noise Ratio (SNR) Receiver Decision ^ SNR E E e y z Matched Filter Bound error signal at input to decision device Performance upper-bound on ISI channels Achieved on memoryless

More information

( c ) E p s t e i n, C a r t e r a n d B o l l i n g e r C h a p t e r 1 7 : I n f o r m a t i o n S c i e n c e P a g e 1

( c ) E p s t e i n, C a r t e r a n d B o l l i n g e r C h a p t e r 1 7 : I n f o r m a t i o n S c i e n c e P a g e 1 ( c ) E p s t e i n, C a r t e r a n d B o l l i n g e r 2 0 1 6 C h a p t e r 1 7 : I n f o r m a t i o n S c i e n c e P a g e 1 CHAPTER 17: Information Science In this chapter, we learn how data can

More information