On the Weight Distribution of N-th Root Codes

Size: px
Start display at page:

Download "On the Weight Distribution of N-th Root Codes"

Transcription

1 Fabrizio Caruso Marta Giorgetti June 10, 2009

2 The Recurrence Proof by Generating Functions A Computer-Generated Proof Computing Some Steps of the Recurrence A Computer-Provable Identity Proving the Guessed Closed Form Efficiency Considerations

3 A Generalization of Cyclic Codes

4 A Generalization of Cyclic Codes Cyclic codes are a very important class of codes since they have a rich algebraic structure, permitting both fast and sharp estimates on their most important parameters.

5 A Generalization of Cyclic Codes Cyclic codes are a very important class of codes since they have a rich algebraic structure, permitting both fast and sharp estimates on their most important parameters. In [Gio06], [GS09] the nth-root codes have been introduced. This class is a generalization of the class of cyclic codes and a representation of all non-trivial linear codes.

6 Our Approach

7 Our Approach We construct an ideal for each possible weight of the codewords. We compute the Gröbner bases of such ideals and count the number of corresponding solutions.

8 Our Approach We construct an ideal for each possible weight of the codewords. We compute the Gröbner bases of such ideals and count the number of corresponding solutions. In this paper we only consider binary nth-root codes because of the special structure of the ideals describing them.

9 Our Approach We construct an ideal for each possible weight of the codewords. We compute the Gröbner bases of such ideals and count the number of corresponding solutions. In this paper we only consider binary nth-root codes because of the special structure of the ideals describing them. We speed up the computation by considering the Gröbner basis of a smaller ideal and by counting the spurious solutions.

10 Preliminaries

11 Preliminaries We denote by q a power of a prime and n an natural number such (n, q) = 1.

12 Preliminaries We denote by q a power of a prime and n an natural number such (n, q) = 1. Let m N such that the field F q m is the smallest extension field of F q containing all the zeros of x n 1. We denote the set of all the n-th roots of unity by R n.

13 Definition Let L R n {0}, L = {l 1,..., l N } and P = {g 1 (x),..., g r (x)} a subset of F q m[x] such that i = 1,..., N there is at least one j = 1,..., r such that g j (l i ) 0. We denote by C = Ω(q, n, q m, L, P) the code defined over F q having H = g 1 (l 1 ),..., g 1 (l N ) g 2 (l 1 ),..., g 2 (l N ).. g r (l 1 )..., g r (l N ) as its parity-check matrix. We say that C is an nth-root code.

14 Example Let q = 2, n = 5, q m = 2 4, F 16 = a {0}, with minimal polynomial x 4 + x + 1 and P = {g 1 (z) = a 5 z 4 + a 10 z 3 + a 10 z 2 + a 5 z + 1, g 2 (z) = az 4 + a 2 z 3 + a 8 z 2 + a 4 z + 1, g 3 (z) = a 8 z 4 + az 3 + a 4 z 2 + a 2 z}. The five fifth roots of unity are R 5 = {a 3, a 6, a 9, a 12, 1}. The nth-root code C = Ω(2, 5, 16, R 5, {g 1, g 2, g 3 }) is zerofree (0 / L) and its parity-check matrix H is the following: g 1(a 3 ) g 1 (a 6 ) g 1 (a 9 ) g 1 (a 12 ) g 1 (1) g 2 (a 3 ) g 2 (a 6 ) g 2 (a 9 ) g 2 (a 12 ) g 2 (1) g 3 (a 3 ) g 3 (a 6 ) g 3 (a 9 ) g 3 (a 12 ) g 3 (1) =

15 Definition Let C = Ω(2, n, 2 m, L, P) be a binary zerofree nth-root code, w be a natural number such that 2 w N. We denote by J w (C) the following ideal J w = J w (C) F 2 m[z 1,..., z w ], defined by { w } g s (z h ) h=1 1 s r { z n } j 1, l L (z, {p ij (z i, z j )} j l) 1 i<j w, 1 j w where p ij = n 1 h=0 zh i zn 1 h j = zn i zj n z i z j F 2 m[z i, z j ]. Remark In the non-binary case the ideal would involve twice as many variables and its polynomials would have a less symmetric form.

16 Since the number of solutions of an ideal J is directly computed from any Gröbner basis of J (see [BCRT93]) we can obtain easily an algorithm to compute the weight distribution from the following proposition. Proposition Let C = Ω(2, n, 2 m, L, P) be a binary zerofree nth-root code. There is at least one codeword of weight w in C if and only if there exists at least one solution of J w (C). Moreover the number of codewords of weight w is A w = V(J w ) /w!.

17 As proposed in [GS09] one can accelerate the computation of Gröbner basis G of the ideal J w (C) by removing the polynomials p i,j (z i, z j ), which guarantee z i z j for any i j. This introduces spurious solutions, that may be counted, with combinatorial arguments, in a recursive way. Definition Let C = Ω(2, n, 2 m, L, P) be a binary zerofree nth-root code. We denote by I w = I w (C) the following ideal in F 2 m[z] I w = { w k=1 g t (z k ) } { 1 t r, zj n 1 } l L (z j l) 1 j w

18 Definition Let V = ( z 1,..., z w ) (F) w, with w 2. We say that V is strongly double-coordinate (sdc) if w is even and for any i, 1 i w, {h z h = z i } is even. Example (α, β, β, γ, β, α, γ, β) is sdc (α, α, β, γ, β, γ, γ, α) is not sdc Definition If w 2 is even, we say that J w is a sdc ideal if all its solutions are sdc.

19 Theorem For any 1 w d 1 the ideal I w (C) is sdc. Moreover:

20 Theorem For any 1 w d 1 the ideal I w (C) is sdc. Moreover: if d is odd, V(I d (C)) = V(J d (C)),

21 Theorem For any 1 w d 1 the ideal I w (C) is sdc. Moreover: if d is odd, V(I d (C)) = V(J d (C)), if d is even, V(I d (C)) = V(J d (C)) S d, where S d is the set z of all sdc vectors in (V( n 1 Ql L (z l)))d (F 2 m) d

22 Corollary Let C = Ω(2, n, 2 m, L, P) be a binary zerofree nth-root code. Then A d is: A d = V(I d)(c) E(d/2, N) (d even), d! A d = V(I d)(c) (d odd). d! where E(λ, γ) is the number of sdc 2λ-uples with values in {1,..., γ}.

23 Example Let C = Ω(2, 255, 2 8, L, P) be the binary nth-root code such that L = F 256 \ {0} and P = {x, x 2, x 3, x 4, x 5, x 6 } F 2 [x]. C cannot have words of weight 5. By computing a Gröbner basis of I 5 (C) and J 5 (C), we obtain as expected I 5 (C) = J 5 (C) = 0, but I 5 (C) takes less than 3 seconds, whereas J 5 (C) takes 17 seconds. By computing a Gröbner basis of I 6 (C) and J 6 (C), we obtain that I 6 (C) = and J 6 (C) = 0, so that A 6 (C) = 0, as expected, but I 6 (C) takes seconds, while J 6 (C) takes seconds.

24 Proof by Generating Functions A Computer-Generated Proof Efficiency Considerations We are interested in computing E(λ, γ) efficiently. We can do this in different ways: by recurrences or by explicit formulae. Property For any positive integers λ and γ we have: E(λ, γ) = λ k=0 (( ) ) 2λ E(k, γ 1). 2k Moreover we have E(0, γ) = 1, γ N 0 ; E(λ, 0) = δ λ,0, where δ λ,0 is the Kronecker delta.

25 Proof by Generating Functions A Computer-Generated Proof Efficiency Considerations Fact E(λ, γ) can be expressed in terms of integer compositions of λ of length γ and multinomial coefficients. For λ, γ 1 one can easily prove that ( ) 2λ E(λ, γ) = (a 1,...,a γ) λ=a 1 + +a γ, 0 a 1,...,a γ γ 2a 1 2a a γ In particular one can prove that cosh γ is the generating function for E(λ, γ)/λ!, i.e. E(λ, γ)/λ! = [x λ ] cosh γ (x). from which one can derive a closed form.

26 Proof by Generating Functions A Computer-Generated Proof Efficiency Considerations An alternative strategy for the solution of the combinatorial problem is

27 Proof by Generating Functions A Computer-Generated Proof Efficiency Considerations An alternative strategy for the solution of the combinatorial problem is 1. unroll the recurrence and compute some steps (fully algorithmic);

28 Proof by Generating Functions A Computer-Generated Proof Efficiency Considerations An alternative strategy for the solution of the combinatorial problem is 1. unroll the recurrence and compute some steps (fully algorithmic); 2. guess how the recurrence acts on the previous result;

29 Proof by Generating Functions A Computer-Generated Proof Efficiency Considerations An alternative strategy for the solution of the combinatorial problem is 1. unroll the recurrence and compute some steps (fully algorithmic); 2. guess how the recurrence acts on the previous result; 3. formally prove the guessed formula (elementary inductive proof).

30 Proof by Generating Functions A Computer-Generated Proof Efficiency Considerations In order to compute, say the first 2 steps of the recurrence (i.e. for γ = 1, 2), we could use Maxima as follows load(zeilbeger); Zeilberger(binomial(2*L,2*k),k,L); which yields a recurrence which gives 2 2L 1, Zeilberger(binomial(2*L,2*k)*2^{2*k-1},k,L); which yields a recurrence whose solution is 1/4(3 2L 3). By looking at these two steps we realize that we must find an expression for the sums of products of the binomial coefficient ( ) 2λ 2k and 2k-th powers of integers. This leads us to the next step.

31 Proof by Generating Functions A Computer-Generated Proof Efficiency Considerations Property For any positive integer λ and α we have: λ k=0 ( 2λ )α 2k = (α + 1)2λ + (α 1) 2λ. 2k 2 In order to compute the recurrence and at the same time get a computer-generated proof of it in English, it is enough to execute the following Maxima commands load(zeilberger); sm : Zeilberger(binomial(2*L,2*k)*a^(2*k),k,L); zb_prove(binomial(2*l,2*k)*a^(2*k),k,l,sm);

32 Proof by Generating Functions A Computer-Generated Proof Efficiency Considerations We can now prove and find a general form for E(λ, γ): Theorem For any positive integer λ and γ we have: E(λ, γ) = 2 γ γ i=0 ( γ i )(γ 2i) 2λ = 2 γ+1 γ/2 1 i=0 ( ) γ (γ 2i) 2λ i Proof. We prove the theorem by induction on γ.

33 Complexity Proof by Generating Functions A Computer-Generated Proof Efficiency Considerations The recurrence allows us to compute in reasonable time just a few values of E(λ, γ) for very small values of λ and γ.

34 Complexity Proof by Generating Functions A Computer-Generated Proof Efficiency Considerations The recurrence allows us to compute in reasonable time just a few values of E(λ, γ) for very small values of λ and γ. The number of arithmetic operations if the recurrence is used is a function in Θ( ( ) λ+γ γ ).

35 Complexity Proof by Generating Functions A Computer-Generated Proof Efficiency Considerations The recurrence allows us to compute in reasonable time just a few values of E(λ, γ) for very small values of λ and γ. The number of arithmetic operations if the recurrence is used is a function in Θ( ( ) λ+γ γ ). The total number of arithmetic operations needed to compute E(λ, γ) through the explicit formula given is O(γ log(λ)).

36 Some of the things that remain to be done:

37 Some of the things that remain to be done: Extending this method to the whole distribution of weights (done but needs to be checked)

38 Some of the things that remain to be done: Extending this method to the whole distribution of weights (done but needs to be checked) Applying this approach to Hermitian Codes and other codes (probably easy but it might not pay off as much)

39 [BCRT93] A. M. Bigatti, P. Conti, L. Robbiano, and C. Traverso. A divide and conquer algorithm for Hilbert-Poincaré series, multiplicity and dimension of monomial ideals. In Applied algebra, algebraic algorithms and error-correcting codes (San Juan, PR, 1993), volume 673 of Lecture Notes in Comput. Sci., pages Springer, Berlin, [Gio06] [GS09] M. Giorgetti. On some algebraic interpretation of classical codes. PhD thesis, University of Milan, M. Giorgetti and M. Sala. A commutative algebra approach to linear codes. Journal of Algebra, 321(8): , 2009.

General error locator polynomials for nth-root codes

General error locator polynomials for nth-root codes General error locator polynomials for nth-root codes Marta Giorgetti 1 and Massimiliano Sala 2 1 Department of Mathematics, University of Milano, Italy 2 Boole Centre for Research in Informatics, UCC Cork,

More information

A commutative algebra approach to linear codes

A commutative algebra approach to linear codes A commutative algebra approach to linear codes Marta Giorgetti (giorge@mat.unimi.it) Department of Mathematics, University of Milano, Italy. Massimiliano Sala (msala@bcri.ucc.ie) Boole Centre for Research

More information

Groebner basis techniques to compute weight distributions of shortened cyclic codes

Groebner basis techniques to compute weight distributions of shortened cyclic codes Groebner basis techniques to compute weight distributions of shortened cyclic codes 2nd February 2007 Massimiliano Sala (msala@bcri.ucc.ie) Boole Centre for Research in Informatics, UCC Cork, Ireland.

More information

General error locator polynomials for binary cyclic codes with t 2 and n < 63

General error locator polynomials for binary cyclic codes with t 2 and n < 63 General error locator polynomials for binary cyclic codes with t 2 and n < 63 April 22, 2005 Teo Mora (theomora@disi.unige.it) Department of Mathematics, University of Genoa, Italy. Emmanuela Orsini (orsini@posso.dm.unipi.it)

More information

The primitive root theorem

The primitive root theorem The primitive root theorem Mar Steinberger First recall that if R is a ring, then a R is a unit if there exists b R with ab = ba = 1. The collection of all units in R is denoted R and forms a group under

More information

Algorithmic Approach to Counting of Certain Types m-ary Partitions

Algorithmic Approach to Counting of Certain Types m-ary Partitions Algorithmic Approach to Counting of Certain Types m-ary Partitions Valentin P. Bakoev Abstract Partitions of integers of the type m n as a sum of powers of m (the so called m-ary partitions) and their

More information

Recommended questions: a-d 4f 5 9a a 27.

Recommended questions: a-d 4f 5 9a a 27. Sheet jacques@ucsdedu Recommended questions: 2 3 4a-d 4f 5 9a 0 2 3 5 6 8 9 20 22 23 24 25a 27 Recommended reading for this assignment: Aigner Chapter, Chapter 2-24 Formal power series Question Let R be

More information

Elementary 2-Group Character Codes. Abstract. In this correspondence we describe a class of codes over GF (q),

Elementary 2-Group Character Codes. Abstract. In this correspondence we describe a class of codes over GF (q), Elementary 2-Group Character Codes Cunsheng Ding 1, David Kohel 2, and San Ling Abstract In this correspondence we describe a class of codes over GF (q), where q is a power of an odd prime. These codes

More information

Chapter 1 Divide and Conquer Algorithm Theory WS 2016/17 Fabian Kuhn

Chapter 1 Divide and Conquer Algorithm Theory WS 2016/17 Fabian Kuhn Chapter 1 Divide and Conquer Algorithm Theory WS 2016/17 Fabian Kuhn Formulation of the D&C principle Divide-and-conquer method for solving a problem instance of size n: 1. Divide n c: Solve the problem

More information

Interesting Examples on Maximal Irreducible Goppa Codes

Interesting Examples on Maximal Irreducible Goppa Codes Interesting Examples on Maximal Irreducible Goppa Codes Marta Giorgetti Dipartimento di Fisica e Matematica, Universita dell Insubria Abstract. In this paper a full categorization of irreducible classical

More information

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur

Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Advanced Engineering Mathematics Prof. Pratima Panigrahi Department of Mathematics Indian Institute of Technology, Kharagpur Lecture No. # 02 Vector Spaces, Subspaces, linearly Dependent/Independent of

More information

SOME HINTS AND ANSWERS TO 18.S34 SUPPLEMENTARY PROBLEMS (Fall 2007)

SOME HINTS AND ANSWERS TO 18.S34 SUPPLEMENTARY PROBLEMS (Fall 2007) SOME HINTS AND ANSWERS TO 18.S34 SUPPLEMENTARY PROBLEMS (Fall 2007) 2. (b) Answer: (n 3 + 3n 2 + 8n)/6, which is 13 for n = 3. For a picture, see M. Gardner, The 2nd Scientific American Book of Mathematical

More information

Toric statistical models: parametric and binomial representations

Toric statistical models: parametric and binomial representations AISM (2007) 59:727 740 DOI 10.1007/s10463-006-0079-z Toric statistical models: parametric and binomial representations Fabio Rapallo Received: 21 February 2005 / Revised: 1 June 2006 / Published online:

More information

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers

ALGEBRA. 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers ALGEBRA CHRISTIAN REMLING 1. Some elementary number theory 1.1. Primes and divisibility. We denote the collection of integers by Z = {..., 2, 1, 0, 1,...}. Given a, b Z, we write a b if b = ac for some

More information

Lecture 20 FUNDAMENTAL Theorem of Finitely Generated Abelian Groups (FTFGAG)

Lecture 20 FUNDAMENTAL Theorem of Finitely Generated Abelian Groups (FTFGAG) Lecture 20 FUNDAMENTAL Theorem of Finitely Generated Abelian Groups (FTFGAG) Warm up: 1. Let n 1500. Find all sequences n 1 n 2... n s 2 satisfying n i 1 and n 1 n s n (where s can vary from sequence to

More information

Binomial coefficients and k-regular sequences

Binomial coefficients and k-regular sequences Binomial coefficients and k-regular sequences Eric Rowland Hofstra University New York Combinatorics Seminar CUNY Graduate Center, 2017 12 22 Eric Rowland Binomial coefficients and k-regular sequences

More information

Exercises for Chapter 1

Exercises for Chapter 1 Solution Manual for A First Course in Abstract Algebra, with Applications Third Edition by Joseph J. Rotman Exercises for Chapter. True or false with reasons. (i There is a largest integer in every nonempty

More information

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction

Math 324 Summer 2012 Elementary Number Theory Notes on Mathematical Induction Math 4 Summer 01 Elementary Number Theory Notes on Mathematical Induction Principle of Mathematical Induction Recall the following axiom for the set of integers. Well-Ordering Axiom for the Integers If

More information

Math Circle: Recursion and Induction

Math Circle: Recursion and Induction Math Circle: Recursion and Induction Prof. Wickerhauser 1 Recursion What can we compute, using only simple formulas and rules that everyone can understand? 1. Let us use N to denote the set of counting

More information

Chapter 1 Divide and Conquer Polynomial Multiplication Algorithm Theory WS 2015/16 Fabian Kuhn

Chapter 1 Divide and Conquer Polynomial Multiplication Algorithm Theory WS 2015/16 Fabian Kuhn Chapter 1 Divide and Conquer Polynomial Multiplication Algorithm Theory WS 2015/16 Fabian Kuhn Formulation of the D&C principle Divide-and-conquer method for solving a problem instance of size n: 1. Divide

More information

arithmetic properties of weighted catalan numbers

arithmetic properties of weighted catalan numbers arithmetic properties of weighted catalan numbers Jason Chen Mentor: Dmitry Kubrak May 20, 2017 MIT PRIMES Conference background: catalan numbers Definition The Catalan numbers are the sequence of integers

More information

Design and Analysis of Algorithms

Design and Analysis of Algorithms Design and Analysis of Algorithms CSE 5311 Lecture 5 Divide and Conquer: Fast Fourier Transform Junzhou Huang, Ph.D. Department of Computer Science and Engineering CSE5311 Design and Analysis of Algorithms

More information

Algorithm Analysis Recurrence Relation. Chung-Ang University, Jaesung Lee

Algorithm Analysis Recurrence Relation. Chung-Ang University, Jaesung Lee Algorithm Analysis Recurrence Relation Chung-Ang University, Jaesung Lee Recursion 2 Recursion 3 Recursion in Real-world Fibonacci sequence = + Initial conditions: = 0 and = 1. = + = + = + 0, 1, 1, 2,

More information

The decomposability of simple orthogonal arrays on 3 symbols having t + 1 rows and strength t

The decomposability of simple orthogonal arrays on 3 symbols having t + 1 rows and strength t The decomposability of simple orthogonal arrays on 3 symbols having t + 1 rows and strength t Wiebke S. Diestelkamp Department of Mathematics University of Dayton Dayton, OH 45469-2316 USA wiebke@udayton.edu

More information

A classification of MDS binary systematic codes

A classification of MDS binary systematic codes A classification of MDS binary systematic codes Eleonora Guerrini (guerrini@science.unitn.it) Department of Mathematics, University of Trento, Italy. Massimiliano Sala (msala@bcri.ucc.ie) Boole Centre

More information

MATH 310 Course Objectives

MATH 310 Course Objectives MATH 310 Course Objectives Upon successful completion of MATH 310, the student should be able to: Apply the addition, subtraction, multiplication, and division principles to solve counting problems. Apply

More information

Spectra of Semidirect Products of Cyclic Groups

Spectra of Semidirect Products of Cyclic Groups Spectra of Semidirect Products of Cyclic Groups Nathan Fox 1 University of Minnesota-Twin Cities Abstract The spectrum of a graph is the set of eigenvalues of its adjacency matrix A group, together with

More information

9. Finite fields. 1. Uniqueness

9. Finite fields. 1. Uniqueness 9. Finite fields 9.1 Uniqueness 9.2 Frobenius automorphisms 9.3 Counting irreducibles 1. Uniqueness Among other things, the following result justifies speaking of the field with p n elements (for prime

More information

Basic counting techniques. Periklis A. Papakonstantinou Rutgers Business School

Basic counting techniques. Periklis A. Papakonstantinou Rutgers Business School Basic counting techniques Periklis A. Papakonstantinou Rutgers Business School i LECTURE NOTES IN Elementary counting methods Periklis A. Papakonstantinou MSIS, Rutgers Business School ALL RIGHTS RESERVED

More information

Algebra Performance Level Descriptors

Algebra Performance Level Descriptors Limited A student performing at the Limited Level demonstrates a minimal command of Ohio s Learning Standards for Algebra. A student at this level has an emerging ability to A student whose performance

More information

Formal Groups. Niki Myrto Mavraki

Formal Groups. Niki Myrto Mavraki Formal Groups Niki Myrto Mavraki Contents 1. Introduction 1 2. Some preliminaries 2 3. Formal Groups (1 dimensional) 2 4. Groups associated to formal groups 9 5. The Invariant Differential 11 6. The Formal

More information

1 Fields and vector spaces

1 Fields and vector spaces 1 Fields and vector spaces In this section we revise some algebraic preliminaries and establish notation. 1.1 Division rings and fields A division ring, or skew field, is a structure F with two binary

More information

Galois fields/1. (M3) There is an element 1 (not equal to 0) such that a 1 = a for all a.

Galois fields/1. (M3) There is an element 1 (not equal to 0) such that a 1 = a for all a. Galois fields 1 Fields A field is an algebraic structure in which the operations of addition, subtraction, multiplication, and division (except by zero) can be performed, and satisfy the usual rules. More

More information

Outline. We will cover (over the next few weeks) Induction Strong Induction Constructive Induction Structural Induction

Outline. We will cover (over the next few weeks) Induction Strong Induction Constructive Induction Structural Induction Outline We will cover (over the next few weeks) Induction Strong Induction Constructive Induction Structural Induction Induction P(1) ( n 2)[P(n 1) P(n)] ( n 1)[P(n)] Why Does This Work? I P(1) ( n 2)[P(n

More information

A strongly polynomial algorithm for linear systems having a binary solution

A strongly polynomial algorithm for linear systems having a binary solution A strongly polynomial algorithm for linear systems having a binary solution Sergei Chubanov Institute of Information Systems at the University of Siegen, Germany e-mail: sergei.chubanov@uni-siegen.de 7th

More information

are the q-versions of n, n! and . The falling factorial is (x) k = x(x 1)(x 2)... (x k + 1).

are the q-versions of n, n! and . The falling factorial is (x) k = x(x 1)(x 2)... (x k + 1). Lecture A jacques@ucsd.edu Notation: N, R, Z, F, C naturals, reals, integers, a field, complex numbers. p(n), S n,, b(n), s n, partition numbers, Stirling of the second ind, Bell numbers, Stirling of the

More information

An explicit construction of distinguished representations of polynomials nonnegative over finite sets

An explicit construction of distinguished representations of polynomials nonnegative over finite sets An explicit construction of distinguished representations of polynomials nonnegative over finite sets Pablo A. Parrilo Automatic Control Laboratory Swiss Federal Institute of Technology Physikstrasse 3

More information

Algebraic Characterization of Minimum Weight Codewords of Cyclic Codes

Algebraic Characterization of Minimum Weight Codewords of Cyclic Codes Algebraic Characterization of Minimum Weight Codewords of Cyclic Codes Daniel Augot Abstract We consider primitive cyclic codes of length n over GF (q), where n = q m 1, and for any such code with defining

More information

Decomposing Bent Functions

Decomposing Bent Functions 2004 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 8, AUGUST 2003 Decomposing Bent Functions Anne Canteaut and Pascale Charpin Abstract In a recent paper [1], it is shown that the restrictions

More information

The group (Z/nZ) February 17, In these notes we figure out the structure of the unit group (Z/nZ) where n > 1 is an integer.

The group (Z/nZ) February 17, In these notes we figure out the structure of the unit group (Z/nZ) where n > 1 is an integer. The group (Z/nZ) February 17, 2016 1 Introduction In these notes we figure out the structure of the unit group (Z/nZ) where n > 1 is an integer. If we factor n = p e 1 1 pe, where the p i s are distinct

More information

Polynomials, Ideals, and Gröbner Bases

Polynomials, Ideals, and Gröbner Bases Polynomials, Ideals, and Gröbner Bases Notes by Bernd Sturmfels for the lecture on April 10, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra We fix a field K. Some examples of fields

More information

NOTES FOR DRAGOS: MATH 210 CLASS 12, THURS. FEB. 22

NOTES FOR DRAGOS: MATH 210 CLASS 12, THURS. FEB. 22 NOTES FOR DRAGOS: MATH 210 CLASS 12, THURS. FEB. 22 RAVI VAKIL Hi Dragos The class is in 381-T, 1:15 2:30. This is the very end of Galois theory; you ll also start commutative ring theory. Tell them: midterm

More information

AUTOMORPHISM GROUPS AND SPECTRA OF CIRCULANT GRAPHS

AUTOMORPHISM GROUPS AND SPECTRA OF CIRCULANT GRAPHS AUTOMORPHISM GROUPS AND SPECTRA OF CIRCULANT GRAPHS MAX GOLDBERG Abstract. We explore ways to concisely describe circulant graphs, highly symmetric graphs with properties that are easier to generalize

More information

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime.

PUTNAM TRAINING NUMBER THEORY. Exercises 1. Show that the sum of two consecutive primes is never twice a prime. PUTNAM TRAINING NUMBER THEORY (Last updated: December 11, 2017) Remark. This is a list of exercises on Number Theory. Miguel A. Lerma Exercises 1. Show that the sum of two consecutive primes is never twice

More information

LIMITING CASES OF BOARDMAN S FIVE HALVES THEOREM

LIMITING CASES OF BOARDMAN S FIVE HALVES THEOREM Proceedings of the Edinburgh Mathematical Society Submitted Paper Paper 14 June 2011 LIMITING CASES OF BOARDMAN S FIVE HALVES THEOREM MICHAEL C. CRABB AND PEDRO L. Q. PERGHER Institute of Mathematics,

More information

PELL S EQUATION NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA, ODISHA

PELL S EQUATION NATIONAL INSTITUTE OF TECHNOLOGY ROURKELA, ODISHA PELL S EQUATION A Project Report Submitted by PANKAJ KUMAR SHARMA In partial fulfillment of the requirements For award of the degree Of MASTER OF SCIENCE IN MATHEMATICS UNDER GUIDANCE OF Prof GKPANDA DEPARTMENT

More information

Section V.8. Cyclotomic Extensions

Section V.8. Cyclotomic Extensions V.8. Cyclotomic Extensions 1 Section V.8. Cyclotomic Extensions Note. In this section we explore splitting fields of x n 1. The splitting fields turn out to be abelian extensions (that is, algebraic Galois

More information

Lecture 3: Probability Measures - 2

Lecture 3: Probability Measures - 2 Lecture 3: Probability Measures - 2 1. Continuation of measures 1.1 Problem of continuation of a probability measure 1.2 Outer measure 1.3 Lebesgue outer measure 1.4 Lebesgue continuation of an elementary

More information

A Super Introduction to Reverse Mathematics

A Super Introduction to Reverse Mathematics A Super Introduction to Reverse Mathematics K. Gao December 12, 2015 Outline Background Second Order Arithmetic RCA 0 and Mathematics in RCA 0 Other Important Subsystems Reverse Mathematics and Other Branches

More information

Vectors in Function Spaces

Vectors in Function Spaces Jim Lambers MAT 66 Spring Semester 15-16 Lecture 18 Notes These notes correspond to Section 6.3 in the text. Vectors in Function Spaces We begin with some necessary terminology. A vector space V, also

More information

Introduction to Decision Sciences Lecture 10

Introduction to Decision Sciences Lecture 10 Introduction to Decision Sciences Lecture 10 Andrew Nobel October 17, 2017 Mathematical Induction Given: Propositional function P (n) with domain N + Basis step: Show that P (1) is true Inductive step:

More information

Fall 2017 Test II review problems

Fall 2017 Test II review problems Fall 2017 Test II review problems Dr. Holmes October 18, 2017 This is a quite miscellaneous grab bag of relevant problems from old tests. Some are certainly repeated. 1. Give the complete addition and

More information

Counting on Chebyshev Polynomials

Counting on Chebyshev Polynomials DRAFT VOL. 8, NO., APRIL 009 1 Counting on Chebyshev Polynomials Arthur T. Benjamin Harvey Mudd College Claremont, CA 91711 benjamin@hmc.edu Daniel Walton UCLA Los Angeles, CA 90095555 waltond@ucla.edu

More information

Lecture 1. (i,j) N 2 kx i y j, and this makes k[x, y]

Lecture 1. (i,j) N 2 kx i y j, and this makes k[x, y] Lecture 1 1. Polynomial Rings, Gröbner Bases Definition 1.1. Let R be a ring, G an abelian semigroup, and R = i G R i a direct sum decomposition of abelian groups. R is graded (G-graded) if R i R j R i+j

More information

Rolle s theorem: from a simple theorem to an extremely powerful tool

Rolle s theorem: from a simple theorem to an extremely powerful tool Rolle s theorem: from a simple theorem to an extremely powerful tool Christiane Rousseau, Université de Montréal November 10, 2011 1 Introduction How many solutions an equation or a system of equations

More information

3 Finite continued fractions

3 Finite continued fractions MTH628 Number Theory Notes 3 Spring 209 3 Finite continued fractions 3. Introduction Let us return to the calculation of gcd(225, 57) from the preceding chapter. 225 = 57 + 68 57 = 68 2 + 2 68 = 2 3 +

More information

CHARACTER-FREE APPROACH TO PROGRESSION-FREE SETS

CHARACTER-FREE APPROACH TO PROGRESSION-FREE SETS CHARACTR-FR APPROACH TO PROGRSSION-FR STS VSVOLOD F. LV Abstract. We present an elementary combinatorial argument showing that the density of a progression-free set in a finite r-dimensional vector space

More information

ACO Comprehensive Exam October 14 and 15, 2013

ACO Comprehensive Exam October 14 and 15, 2013 1. Computability, Complexity and Algorithms (a) Let G be the complete graph on n vertices, and let c : V (G) V (G) [0, ) be a symmetric cost function. Consider the following closest point heuristic for

More information

Information Theory. Lecture 7

Information Theory. Lecture 7 Information Theory Lecture 7 Finite fields continued: R3 and R7 the field GF(p m ),... Cyclic Codes Intro. to cyclic codes: R8.1 3 Mikael Skoglund, Information Theory 1/17 The Field GF(p m ) π(x) irreducible

More information

. As the binomial coefficients are integers we have that. 2 n(n 1).

. As the binomial coefficients are integers we have that. 2 n(n 1). Math 580 Homework. 1. Divisibility. Definition 1. Let a, b be integers with a 0. Then b divides b iff there is an integer k such that b = ka. In the case we write a b. In this case we also say a is a factor

More information

A Conjecture on Binary String and Its Applications on Constructing Boolean Functions of Optimal Algebraic Immunity

A Conjecture on Binary String and Its Applications on Constructing Boolean Functions of Optimal Algebraic Immunity A Conjecture on Binary String and Its Applications on Constructing Boolean Functions of Optimal Algebraic Immunity Ziran Tu and Yingpu deng Abstract In this paper, we propose a combinatoric conjecture

More information

HILBERT BASIS OF THE LIPMAN SEMIGROUP

HILBERT BASIS OF THE LIPMAN SEMIGROUP Available at: http://publications.ictp.it IC/2010/061 United Nations Educational, Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL

More information

New Constructions for De Bruijn Tori

New Constructions for De Bruijn Tori New Constructions for De Bruijn Tori Glenn Hurlbert Garth Isaak Dedicated to the memory of Tony Brewster Abstract A De Bruijn torus is a periodic d dimensional k ary array such that each n 1 n d k ary

More information

Part IA Numbers and Sets

Part IA Numbers and Sets Part IA Numbers and Sets Definitions Based on lectures by A. G. Thomason Notes taken by Dexter Chua Michaelmas 2014 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

Chapter 7. Error Control Coding. 7.1 Historical background. Mikael Olofsson 2005

Chapter 7. Error Control Coding. 7.1 Historical background. Mikael Olofsson 2005 Chapter 7 Error Control Coding Mikael Olofsson 2005 We have seen in Chapters 4 through 6 how digital modulation can be used to control error probabilities. This gives us a digital channel that in each

More information

Outline. MSRI-UP 2009 Coding Theory Seminar, Week 2. The definition. Link to polynomials

Outline. MSRI-UP 2009 Coding Theory Seminar, Week 2. The definition. Link to polynomials Outline MSRI-UP 2009 Coding Theory Seminar, Week 2 John B. Little Department of Mathematics and Computer Science College of the Holy Cross Cyclic Codes Polynomial Algebra More on cyclic codes Finite fields

More information

Well-behaved Principles Alternative to Bounded Induction

Well-behaved Principles Alternative to Bounded Induction Well-behaved Principles Alternative to Bounded Induction Zofia Adamowicz 1 Institute of Mathematics, Polish Academy of Sciences Śniadeckich 8, 00-956 Warszawa Leszek Aleksander Ko lodziejczyk Institute

More information

Ex. Here's another one. We want to prove that the sum of the cubes of the first n natural numbers is. n = n 2 (n+1) 2 /4.

Ex. Here's another one. We want to prove that the sum of the cubes of the first n natural numbers is. n = n 2 (n+1) 2 /4. Lecture One type of mathematical proof that goes everywhere is mathematical induction (tb 147). Induction is essentially used to show something is true for all iterations, i, of a sequence, where i N.

More information

Enumeration of subtrees of trees

Enumeration of subtrees of trees Enumeration of subtrees of trees Weigen Yan a,b 1 and Yeong-Nan Yeh b a School of Sciences, Jimei University, Xiamen 36101, China b Institute of Mathematics, Academia Sinica, Taipei 1159. Taiwan. Theoretical

More information

A GENERALIZATION OF DAVENPORT S CONSTANT AND ITS ARITHMETICAL APPLICATIONS

A GENERALIZATION OF DAVENPORT S CONSTANT AND ITS ARITHMETICAL APPLICATIONS C O L L O Q U I U M M A T H E M A T I C U M VOL. LXIII 1992 FASC. 2 A GENERALIZATION OF DAVENPORT S CONSTANT AND ITS ARITHMETICAL APPLICATIONS BY FRANZ H A L T E R - K O C H (GRAZ) 1. For an additively

More information

CSE 421 Algorithms. T(n) = at(n/b) + n c. Closest Pair Problem. Divide and Conquer Algorithms. What you really need to know about recurrences

CSE 421 Algorithms. T(n) = at(n/b) + n c. Closest Pair Problem. Divide and Conquer Algorithms. What you really need to know about recurrences CSE 421 Algorithms Richard Anderson Lecture 13 Divide and Conquer What you really need to know about recurrences Work per level changes geometrically with the level Geometrically increasing (x > 1) The

More information

Math 3121, A Summary of Sections 0,1,2,4,5,6,7,8,9

Math 3121, A Summary of Sections 0,1,2,4,5,6,7,8,9 Math 3121, A Summary of Sections 0,1,2,4,5,6,7,8,9 Section 0. Sets and Relations Subset of a set, B A, B A (Definition 0.1). Cartesian product of sets A B ( Defintion 0.4). Relation (Defintion 0.7). Function,

More information

NEW CLASSES OF SET-THEORETIC COMPLETE INTERSECTION MONOMIAL IDEALS

NEW CLASSES OF SET-THEORETIC COMPLETE INTERSECTION MONOMIAL IDEALS NEW CLASSES OF SET-THEORETIC COMPLETE INTERSECTION MONOMIAL IDEALS M. R. POURNAKI, S. A. SEYED FAKHARI, AND S. YASSEMI Abstract. Let be a simplicial complex and χ be an s-coloring of. Biermann and Van

More information

Spherical Venn Diagrams with Involutory Isometries

Spherical Venn Diagrams with Involutory Isometries Spherical Venn Diagrams with Involutory Isometries Frank Ruskey Mark Weston Department of Computer Science University of Victoria PO BOX 3055, Victoria, BC Canada V8W 3P6 {ruskey,mweston}@cs.uvic.ca Submitted:

More information

Counting Matrices Over a Finite Field With All Eigenvalues in the Field

Counting Matrices Over a Finite Field With All Eigenvalues in the Field Counting Matrices Over a Finite Field With All Eigenvalues in the Field Lisa Kaylor David Offner Department of Mathematics and Computer Science Westminster College, Pennsylvania, USA kaylorlm@wclive.westminster.edu

More information

Dipartimento di Matematica

Dipartimento di Matematica Dipartimento di Matematica G. PISTONE, M. P. ROGANTIN INDICATOR FUNCTION AND COMPLEX CODING FOR MIXED FRACTIONAL FACTORIAL DESIGNS (REVISED 2006) Rapporto interno N. 17, luglio 2006 Politecnico di Torino

More information

Algebraic Proof Systems

Algebraic Proof Systems Algebraic Proof Systems Pavel Pudlák Mathematical Institute, Academy of Sciences, Prague and Charles University, Prague Fall School of Logic, Prague, 2009 2 Overview 1 a survey of proof systems 2 a lower

More information

p-class Groups of Cyclic Number Fields of Odd Prime Degree

p-class Groups of Cyclic Number Fields of Odd Prime Degree International Journal of Algebra, Vol. 10, 2016, no. 9, 429-435 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ija.2016.6753 p-class Groups of Cyclic Number Fields of Odd Prime Degree Jose Valter

More information

POLYNOMIAL DIVISION AND GRÖBNER BASES. Samira Zeada

POLYNOMIAL DIVISION AND GRÖBNER BASES. Samira Zeada THE TEACHING OF MATHEMATICS 2013, Vol. XVI, 1, pp. 22 28 POLYNOMIAL DIVISION AND GRÖBNER BASES Samira Zeada Abstract. Division in the ring of multivariate polynomials is usually not a part of the standard

More information

Lecture 4: Counting, Pigeonhole Principle, Permutations, Combinations Lecturer: Lale Özkahya

Lecture 4: Counting, Pigeonhole Principle, Permutations, Combinations Lecturer: Lale Özkahya BBM 205 Discrete Mathematics Hacettepe University http://web.cs.hacettepe.edu.tr/ bbm205 Lecture 4: Counting, Pigeonhole Principle, Permutations, Combinations Lecturer: Lale Özkahya Resources: Kenneth

More information

Trinity Christian School Curriculum Guide

Trinity Christian School Curriculum Guide Course Title: Calculus Grade Taught: Twelfth Grade Credits: 1 credit Trinity Christian School Curriculum Guide A. Course Goals: 1. To provide students with a familiarity with the properties of linear,

More information

E. GORLA, J. C. MIGLIORE, AND U. NAGEL

E. GORLA, J. C. MIGLIORE, AND U. NAGEL GRÖBNER BASES VIA LINKAGE E. GORLA, J. C. MIGLIORE, AND U. NAGEL Abstract. In this paper, we give a sufficient condition for a set G of polynomials to be a Gröbner basis with respect to a given term-order

More information

MCS 563 Spring 2014 Analytic Symbolic Computation Monday 14 April. Binomial Ideals

MCS 563 Spring 2014 Analytic Symbolic Computation Monday 14 April. Binomial Ideals Binomial Ideals Binomial ideals offer an interesting class of examples. Because they occur so frequently in various applications, the development methods for binomial ideals is justified. 1 Binomial Ideals

More information

GENERATING SETS KEITH CONRAD

GENERATING SETS KEITH CONRAD GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors

More information

Lecture 3 - Tuesday July 5th

Lecture 3 - Tuesday July 5th Lecture 3 - Tuesday July 5th jacques@ucsd.edu Key words: Identities, geometric series, arithmetic series, difference of powers, binomial series Key concepts: Induction, proofs of identities 3. Identities

More information

GALOIS THEORY. Contents

GALOIS THEORY. Contents GALOIS THEORY MARIUS VAN DER PUT & JAAP TOP Contents 1. Basic definitions 1 1.1. Exercises 2 2. Solving polynomial equations 2 2.1. Exercises 4 3. Galois extensions and examples 4 3.1. Exercises. 6 4.

More information

arxiv: v1 [math.co] 20 Dec 2016

arxiv: v1 [math.co] 20 Dec 2016 F-POLYNOMIAL FORMULA FROM CONTINUED FRACTIONS MICHELLE RABIDEAU arxiv:1612.06845v1 [math.co] 20 Dec 2016 Abstract. For cluster algebras from surfaces, there is a known formula for cluster variables and

More information

Midterm Exam. There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of your work! Best 5

Midterm Exam. There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of your work! Best 5 Department of Mathematical Sciences Instructor: Daiva Pucinskaite Modern Algebra June 22, 2017 Midterm Exam There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of

More information

The Hilbert functions which force the Weak Lefschetz Property

The Hilbert functions which force the Weak Lefschetz Property The Hilbert functions which force the Weak Lefschetz Property JUAN MIGLIORE Department of Mathematics, University of Notre Dame, Notre Dame, IN 46556, USA E-mail: Juan.C.Migliore.1@nd.edu FABRIZIO ZANELLO

More information

Hence, the sequence of triangular numbers is given by., the. n th square number, is the sum of the first. S n

Hence, the sequence of triangular numbers is given by., the. n th square number, is the sum of the first. S n Appendix A: The Principle of Mathematical Induction We now present an important deductive method widely used in mathematics: the principle of mathematical induction. First, we provide some historical context

More information

Periodicity and Distribution Properties of Combined FCSR Sequences

Periodicity and Distribution Properties of Combined FCSR Sequences Periodicity and Distribution Properties of Combined FCSR Sequences Mark Goresky 1, and Andrew Klapper, 1 Institute for Advanced Study, Princeton NJ www.math.ias.edu/~goresky Dept. of Computer Science,

More information

Newton, Fermat, and Exactly Realizable Sequences

Newton, Fermat, and Exactly Realizable Sequences 1 2 3 47 6 23 11 Journal of Integer Sequences, Vol. 8 (2005), Article 05.1.2 Newton, Fermat, and Exactly Realizable Sequences Bau-Sen Du Institute of Mathematics Academia Sinica Taipei 115 TAIWAN mabsdu@sinica.edu.tw

More information

Support weight enumerators and coset weight distributions of isodual codes

Support weight enumerators and coset weight distributions of isodual codes Support weight enumerators and coset weight distributions of isodual codes Olgica Milenkovic Department of Electrical and Computer Engineering University of Colorado, Boulder March 31, 2003 Abstract In

More information

Handbook of Logic and Proof Techniques for Computer Science

Handbook of Logic and Proof Techniques for Computer Science Steven G. Krantz Handbook of Logic and Proof Techniques for Computer Science With 16 Figures BIRKHAUSER SPRINGER BOSTON * NEW YORK Preface xvii 1 Notation and First-Order Logic 1 1.1 The Use of Connectives

More information

Journal of Pure and Applied Algebra

Journal of Pure and Applied Algebra Journal of Pure and Applied Algebra 217 (2013) 230 237 Contents lists available at SciVerse ScienceDirect Journal of Pure and Applied Algebra journal homepage: www.elsevier.com/locate/jpaa On differential

More information

Regular Resolution Lower Bounds for the Weak Pigeonhole Principle

Regular Resolution Lower Bounds for the Weak Pigeonhole Principle Regular Resolution Lower Bounds for the Weak Pigeonhole Principle Toniann Pitassi Department of Computer Science University of Toronto toni@cs.toronto.edu Ran Raz Department of Computer Science Weizmann

More information

What you learned in Math 28. Rosa C. Orellana

What you learned in Math 28. Rosa C. Orellana What you learned in Math 28 Rosa C. Orellana Chapter 1 - Basic Counting Techniques Sum Principle If we have a partition of a finite set S, then the size of S is the sum of the sizes of the blocks of the

More information

Computing Minimal Polynomial of Matrices over Algebraic Extension Fields

Computing Minimal Polynomial of Matrices over Algebraic Extension Fields Bull. Math. Soc. Sci. Math. Roumanie Tome 56(104) No. 2, 2013, 217 228 Computing Minimal Polynomial of Matrices over Algebraic Extension Fields by Amir Hashemi and Benyamin M.-Alizadeh Abstract In this

More information

Linear Algebra. Mark Dean. Lecture Notes for Fall 2014 PhD Class - Brown University

Linear Algebra. Mark Dean. Lecture Notes for Fall 2014 PhD Class - Brown University Linear Algebra Mark Dean Lecture Notes for Fall 2014 PhD Class - Brown University 1 Lecture 1 1 1.1 Definition of Linear Spaces In this section we define the concept of a linear (or vector) space. The

More information

The BCH Bound. Background. Parity Check Matrix for BCH Code. Minimum Distance of Cyclic Codes

The BCH Bound. Background. Parity Check Matrix for BCH Code. Minimum Distance of Cyclic Codes S-723410 BCH and Reed-Solomon Codes 1 S-723410 BCH and Reed-Solomon Codes 3 Background The algebraic structure of linear codes and, in particular, cyclic linear codes, enables efficient encoding and decoding

More information