Motion and Speed Note: You will not be able to view the videos from the internet version of this presentation. Copyright laws prevent that option.

Size: px
Start display at page:

Download "Motion and Speed Note: You will not be able to view the videos from the internet version of this presentation. Copyright laws prevent that option."

Transcription

1 Physical Science Chapter 2 Motion and Speed Note: You will not be able to view the videos from the internet version of this presentation. Copyright laws prevent that option. 1

2 Motion occurs when an object changes its position. Section 1 An object s speed depends on how far an object travels in a unit of time. Section 2 Acceleration describes how the velocity of an object is changing. Section 3 An objects motion changes only if the forces acting on the object are unbalanced.

3 Distance and time are important. In order to win a race, you must cover the distance in the shortest amount of time. How would you describe the motion of the runners in the race?

4 If you are sitting in a chair reading this sentence, you are moving. You are not moving relative to your desk or your school building, but you are moving relative to the other planets in the solar system and the Sun.

5 2:1 Motion and Speed A. Motion when an object changes its position relative to a reference point. 1. Distance how far an object has moved. 2. Displacement distance and direction of an object s change of position from a starting point. 5

6 2:1 Motion and Speed Suppose a runner jogs to the 50- m mark and then turns around and runs back to the 20-m mark. The runner travels 50 m in the original direction (north) plus 30 m in the opposite direction (south), so the total distance she ran is 80 m. 3

7 2:1 Motion and Speed Sometimes you may want to know not only your distance but also your direction from a reference point, such as from the starting point. Displacement is the distance and direction of an object's change in position from the starting point. 7

8 2:1 Motion and Speed The length of the runner's displacement and the distance traveled would be the same if the runner's motion was in a single direction. The displacement would be less if the runner s motion was reversed. 8

9 Consider the motion of a Hot Wheels car down an incline, across a level and straight section of track, around a 180- degree curve, and finally along a final straight section of track. Such a motion is depicted in the animation following. The car gains speed while moving down the incline - that is, it accelerates. Along the straight sections of track, the car slows down slightly (due to air resistance forces).

10 Again the car could be described as having an acceleration. Finally, along the 180-degree curve, the car is changing its direction; once more the car is said to have an acceleration due to the change in the direction. Accelerating objects have a changing velocity - either due to a speed change (speeding up or slowing down) or a direction change.

11 10

12 2:1 Motion and Speed B. Speed distance an object travels per unit of time. 1. Rate any change over time. 2. Calculation for speed: speed = distance/time. 3. Speed that doesn t change over time constant speed 4. Speed is usually not constant; usually an object has changing speed. 11

13 2:1 Motion and Speed 5. The SI unit of length or distance is the meter (m). Longer distances are measured in kilometers (km). 12

14 Extra Credit The distance Earth travels around the sun in one year is about 942 billion meters. One year has approximately 31,558,000 seconds. Calculate Earth s speed. TAE 39

15 Athletes and coaches in most professional sports make use of hightech equipment to analyze and, subsequently, improve the athlete's performance. High-speed video cameras are employed, for instance, to record the swing of a golf club or a tennis racket, the movement of the feet while running, and the body motion in apparatus gymnastics. Hightech and high-speed equipment, however, usually implies high-cost as well. The recorded motion remains completely undisturbed by the motion capture process. 14

16 2:1 Motion and Speed 6. Average speed speed of motion when speed is changing; speed= total distance/total travel time 15

17 2:1 Motion and Speed If the total distance traveled was 5 km and the total time was 1/4 h, or 0.25 h. The average speed was: 16

18 2:1 Motion and Speed 7. Instantaneous speed speed at any given point in time. A speedometer shows how fast a car is going at one point in time or at one instant. The speed shown on a speedometer is the instantaneous speed. Measuring Motion

19 When something is speeding up or slowing down, its instantaneous speed is changing. If an object is moving with constant speed, the instantaneous speed doesn't change. 18

20 2.1 Graphing Motion The motion of an object over a period of time can be shown on a distance-time graph. Describing Motion Click image to play movie Time is plotted along the horizontal axis of the graph and the distance traveled is plotted along the vertical axis of the graph. 19

21 2:1 Motion and Speed C. Distance-time graph displays motion of an object over time. 1.Plot distance on a(n) vertical axis 2. Plot time on a(n) horizontal axis D. Velocity speed and direction of an object s motion E. Motion of Earth s crust so slow we don t notice it. 20

22 2.1 Velocity Because velocity depends on direction as well as speed, the velocity of an object can change even if the speed of the object remains constant. The speed of this car might be constant, but its velocity is not constant because the direction of motion is always changing. 21

23 2.1 Motion of Earth's Crust As you look around the surface of the Earth from year to year, the basic structure of the planet seems the same. Yet if you examined geological evidence of what Earth's surface looked like over the past 250 million years, you would see that large changes have occurred. 22

24 2.1 Describing Motion Motion of Earth's Crust Pangea

25 2.1 Moving Continents How can continents move around on the surface of the Earth? Earth is made of layers. Together the crust and the top part of the upper mantle are called the lithosphere. 24

26 2.1 Moving Continents The lithosphere is broken into huge sections called plates that slide slowly on the puttylike layers just below. 25

27 2.1 Moving Continents These moving plates cause geological changes such as the formation of mountain ranges, earthquakes and volcanic eruptions. The movement of the plates also is changing the size of the oceans and the shapes of the continents. Complete the practice problems on page

28 2:2 Acceleration A. Acceleration change in velocity s rate 1. Positive acceleration speed is increasing 2. Negative acceleration speed is decreasing 3. When an object changes speed or direction, it is accelerating. 27

29 2.2 Acceleration Speeding Up and Slowing Down When you think of acceleration, you probably think of something speeding up. However, an object that is slowing down also is accelerating. Acceleration also has direction, just as velocity does. 28

30 2.2 Acceleration Speeding Up and Slowing Down If the acceleration is in the same direction as the velocity, the speed increases and the acceleration is positive. 29

31 2.2 Acceleration Speeding Up and Slowing Down If the speed decreases, the acceleration is in the opposite direction from the velocity, and the acceleration is negative. 30

32 2.2 Acceleration Changing Direction A change in velocity can be either a change in how fast something is moving or a change in the direction of movement. Any time a moving object changes direction, its velocity changes and it is accelerating. 31

33 2.2 Acceleration Changing Direction The speed of the horses in this carousel is constant, but the horses are accelerating because their direction is changing constantly. 32

34 2.2 Acceleration Calculating Acceleration To calculate the acceleration of an object, the change in velocity is divided by the length of time interval over which the change occurred. To calculate the change in velocity, subtract the initial velocity the velocity at the beginning of the time interval from the final velocity the velocity at the end of the time interval. 33

35 2.2 Acceleration Calculating Acceleration Then the change in velocity is: (copy this formula into your notes) Initial means first. 34

36 2.2 Calculating Acceleration Using this expression for the change in velocity, the acceleration can be calculated from the following equation: Copy this formula: 35

37 2.2 Acceleration Calculating Acceleration If the direction of motion doesn't change and the object moves in a straight line, the change in velocity is the same as the change in speed. The change in velocity then is the final speed minus the initial speed. 36

38 2.2 Acceleration Calculating Positive Acceleration The airliner is traveling in a straight line down the runway, so its speed and velocity are the same. Because it started from rest, its initial speed was zero. 37

39 2.2 Acceleration Calculating Positive Acceleration Its acceleration can be calculated as follows: 38

40 2.2 Acceleration Calculating Negative Acceleration Now imagine that a skateboarder is moving in a straight line at a constant speed of 3 m/s and comes to a stop in 2 s. The final speed is zero and the initial speed was 3 m/s. 39

41 2.2 Acceleration Calculating Negative Acceleration The skateboarder's acceleration is calculated as follows: 40

42 2.2 Calculating Negative Acceleration The skateboarder is slowing down, so the final speed is less than the initial speed and the acceleration is negative. The acceleration always will be positive if an object is speeding up and negative if the object is slowing down. 41

43 2.2 Amusement Park Acceleration Engineers use the laws of physics to design amusement park rides that are thrilling, but harmless. The highest speeds and accelerations usually are produced on steel roller coasters. 42

44 2:2 Acceleration B. Calculating acceleration 1. Acceleration = change in velocity/time 2. Change in velocity = final velocity-initial velocity. 3. Unit for acceleration meters per second squared. 4. Positive acceleration positive number with a positive slope on a velocity-time graph 5. Negative acceleration negative number with a negative slope on a velocity-time graph. 43

45 Fairground and 'thrill' rides rely on rapid changes of velocity - speed and direction - to generate large forces on the body and to give the thrill sensations. The 'Nemesis' ride at Alton Towers lasts for just 40 seconds but exerts forces of 4g (4 times normal gravity) through rapid acceleration in tight turns together with several seconds of weightlessness! Not for the faint hearted. 44

46 2:2 Acceleration C. Amusement park acceleration roller coasters 1. Changes in speed cause acceleration. 2. Changes in direction cause acceleration. 45

47 Practice Problems 2b 1. A = v f -v i t a = a = 10 m/s 2 2. Average= sum of parts /# of parts ave=45/mi/hr 3. A = v f -v i t 2 = v f 0 f 10 v f = 20m/s 4. s = d t 800/40 = 20m/s

48 Practice Problems 5. A = v f -v i t t = v f -v i a = t = 5 sec. 5

49 2.3 What is force? A force is a push or pull. Sometimes it is obvious that a force has been applied. But other forces aren't as noticeable. 48

50 2.3 Changing Motion A force can cause the motion of an object to change. If you have played billiards, you know that you can force a ball at rest to roll into a pocket by striking it with another ball. 49

51 2.3 Changing Motion The force of the moving ball causes the ball at rest to move in the direction of the force. 50

52 2.3 Balanced Forces Force does not always change velocity. When two or more forces act on an object at the same time, the forces combine to form the net force. 51

53 2.3 Balanced Forces The net force on the box is zero because the two forces cancel each other. Forces on an object that are equal in size and opposite in direction are called balanced forces. 52

54 2.3 Unbalanced Forces When two students are pushing with unequal forces in opposite directions, a net force occurs in the direction of the larger force. 53

55 2.3 Unbalanced Forces The net force that moves the box will be the difference between the two forces because they are in opposite directions. They are considered to be unbalanced forces. 54

56 2.3 Unbalanced Forces The students are pushing on the box in the same direction. These forces are combined, or added together, because they are exerted on the box in the same direction. 55

57 2.3 Unbalanced Forces The net force that acts on this box is found by adding the two forces together. 56

58 2:3 Motion and Forces A. Force a push or pull that one body applies to another. 1.A force can cause an object s motion to change. 2. When two or more forces combine at the same time, they create a net force. 3. Balanced forces are equal in size and opposite in direction. 4. Unbalanced forces are unequal in size and / or are not in the same direction. 57

59 2:3 Motion and Forces B. Inertia and Mass 1. Inertia an object s resistance to any change in motion. 2. Objects with greater mass have greater inertia. 58

60 2.3 Newton's Laws of Motion The British scientist Sir Isaac Newton ( ) was able to state rules that describe the effects of forces on the motion of objects. These rules are known as Newton's law's of motion. 59

61 2.3 Newton's First Law of Motion Newton's first law of motion states that an object moving at a constant velocity keeps moving at that velocity unless an unbalanced net force acts on it. If an object is at rest, it stays at rest unless an unbalanced net force acts on it. This law is sometimes called the law of inertia. Newton s First Law

62 2.3 What happens in a crash? The law of inertia can explain what happens in a car crash. When a car traveling about 50 km/h collides headon with something solid, the car crumples, slows down, and stops within approximately 0.1 s. 61

63 2.3 What happens in a crash? Any passenger not wearing a safety belt continues to move forward at the same speed the car was traveling. Within about 0.02 s (1/50 of a second) after the car stops, unbelted passengers slam into the dashboard, steering wheel, windshield, or the backs of the front seats. 62

64 2.3 Safety Belts The force needed to slow a person from 50 km/h to zero in 0.1 s is equal to 14 times the force that gravity exerts on the person. The belt loosens a little as it restrains the person, increasing the time it takes to slow the person down. 63

65 2.3 Safety Belts This reduces the force exerted on the person. The safety belt also prevents the person from being thrown out of the car. 64

66 2.3 Air bags also reduce injuries in car crashes by providing a cushion that reduces the force on the car's occupants. When impact occurs, a chemical reaction occurs in the air bag that produces nitrogen gas. The air bag expands rapidly and then deflates just as quickly as the nitrogen gas escapes out of tiny holes in the bag. 65

67 2:3 Motion and Forces Video 1 C. Auto crashes the law of inertia at work. 1.A passenger not wearing a seat belt keeps moving forward at the car s speed even after the car stops. 2. A passenger wearing a seat belt slows down as the car slows down and stops. Video 2 66

68 The End of Chapter 2 Test Coming Up. Homework is due.

Chapter: Motion, Acceleration, and Forces

Chapter: Motion, Acceleration, and Forces Table of Contents Chapter: Motion, Acceleration, and Forces Section 1: Describing Motion Section 2: Acceleration Section 3: Motion and Forces 1 Motion Are distance and time important in describing running

More information

Chapter: Motion, Acceleration, and Forces

Chapter: Motion, Acceleration, and Forces Table of Contents Chapter: Motion, Acceleration, and Forces Section 1: Describing Motion Section 2: Acceleration Section 3: Motion and Forces 1 Motion Are distance and time important in describing running

More information

Chapter: Motion, Acceleration, and Forces

Chapter: Motion, Acceleration, and Forces Chapter 3 Table of Contents Chapter: Motion, Acceleration, and Forces Section 1: Describing Motion Section 2: Acceleration Section 3: Motion and Forces 1 Motion Describing Motion Distance and time are

More information

9/27/12. Chapter: Motion, Acceleration, and Forces. Motion and Position. Motion. Distance. Relative Motion

9/27/12. Chapter: Motion, Acceleration, and Forces. Motion and Position. Motion. Distance. Relative Motion 9/7/ Table of Contents Chapter: Motion,, and Forces Section : Chapter Section : Section : Motion Distance and time are important. In order to win a race, you must cover the distance in the shortest amount

More information

Describing Motion. Motion. Are distance and time important in describing running events at the track-and-field meets in the Olympics?

Describing Motion. Motion. Are distance and time important in describing running events at the track-and-field meets in the Olympics? Describing Motion Section 1 Motion Are distance and time important in describing running events at the track-and-field meets in the Olympics? Comstock/JupiterImages Describing Motion Section 1 Motion Distance

More information

Table of Contents. Motion. Section 1 Describing Motion. Section 2 Velocity and Momentum. Section 3 Acceleration

Table of Contents. Motion. Section 1 Describing Motion. Section 2 Velocity and Momentum. Section 3 Acceleration Table of Contents Motion 1 Describing Motion 2 Velocity and Momentum 3 Acceleration 1 Describing Motion Motion Are distance and time important in describing running events at the track-and-field meets

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Chapter 4 Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 3 Motion and Forces Newton s Laws of Motion The British scientist

More information

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity

Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity 3 Motion Chapter 3, Section 1: Distance, Displacement, Speed, Velocity Distance An important part of describing the motion of an object is to describe how far it has moved, which is distance. The SI unit

More information

Motion and Forces study Guide

Motion and Forces study Guide Motion and Forces study Guide Completion Complete each statement. 1. The motion of an object looks different to observers in different. 2. The SI unit for measuring is the meter. 3. The direction and length

More information

Forces and Newton s Laws

Forces and Newton s Laws chapter 3 Forces and Newton s Laws section 3 Using Newton s Laws Before You Read Imagine riding on a sled, or in a wagon, or perhaps a school bus that stops quickly or suddenly. What happens to your body

More information

3 Using Newton s Laws

3 Using Newton s Laws 3 Using Newton s Laws What You ll Learn how Newton's first law explains what happens in a car crash how Newton's second law explains the effects of air resistance 4(A), 4(C), 4(D), 4(E) Before You Read

More information

Chapter: Newton s Laws of Motion

Chapter: Newton s Laws of Motion Table of Contents Chapter: Newton s Laws of Motion Section 1: Motion Section 2: Newton s First Law Section 3: Newton s Second Law Section 4: Newton s Third Law 1 Motion What is motion? Distance and Displacement

More information

Motion, Speed, Velocity & Acceleration. Physical Science Bella Vista Middle School

Motion, Speed, Velocity & Acceleration. Physical Science Bella Vista Middle School Motion, Speed, Velocity & Acceleration Physical Science Bella Vista Middle School What Is Motion? Motion is when an object changes place or position. To properly describe motion, you need to use the following:

More information

NAME DATE CLASS. Motion and Speed. position 1. When something moves, it changes iitsopon. Motion. 2. Otoinm can be described as a change in position.

NAME DATE CLASS. Motion and Speed. position 1. When something moves, it changes iitsopon. Motion. 2. Otoinm can be described as a change in position. Use with Text Pages 64 71 Motion and Speed In each of the following statements, a term has been scrambled. Unscramble the term and write it on the line provided. position 1. When something moves, it changes

More information

3 Acceleration. positive and one is negative. When a car changes direction, it is also accelerating. In the figure to the

3 Acceleration. positive and one is negative. When a car changes direction, it is also accelerating. In the figure to the What You ll Learn how acceleration, time, and velocity are related the different ways an object can accelerate how to calculate acceleration the similarities and differences between straight line motion,

More information

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION.

SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. MOTION & FORCES SPS8. STUDENTS WILL DETERMINE RELATIONSHIPS AMONG FORCE, MASS, AND MOTION. A. CALCULATE VELOCITY AND ACCELERATION. B. APPLY NEWTON S THREE LAWS TO EVERYDAY SITUATIONS BY EXPLAINING THE

More information

Chapter 2. Forces & Newton s Laws

Chapter 2. Forces & Newton s Laws Chapter 2 Forces & Newton s Laws 1st thing you need to know Everything from chapter 1 Speed formula Acceleration formula All their units There is only 1 main formula, but some equations will utilize previous

More information

5. All forces change the motion of objects. 6. The net force on an object is equal to the mass of the object times the acceleration of the object.

5. All forces change the motion of objects. 6. The net force on an object is equal to the mass of the object times the acceleration of the object. Motion, Forces, and Newton s Laws Newton s Laws of Motion What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree

More information

The Laws of Motion. Before You Read. Science Journal

The Laws of Motion. Before You Read. Science Journal The Laws of Motion Before You Read Before you read the chapter, use the What I know column to list three things you know about motion. Then list three questions you have about motion in the What I want

More information

Sir Isaac Newton ( ) One of the world s greatest scientists Developed the 3 Laws of Motion

Sir Isaac Newton ( ) One of the world s greatest scientists Developed the 3 Laws of Motion Motion and Forces Sir Isaac Newton (1643 1727) One of the world s greatest scientists Developed the 3 Laws of Motion Newton s Laws of Motion 1 st Law Law of Inertia 2 nd Law Force = Mass x Acceleration

More information

MOTION & FORCES. Observing Motion. Speed and Velocity. Distance vs. Displacement CHAPTERS 11 & 12

MOTION & FORCES. Observing Motion. Speed and Velocity. Distance vs. Displacement CHAPTERS 11 & 12 Observing Motion CHAPTERS 11 & 12 MOTION & FORCES Everything surrounding us is in motion, but it is relative to other object that remain in place. Motion is observed using a frame of reference. Motion

More information

Newton s Laws of Motion

Newton s Laws of Motion 3 Newton s Laws of Motion Key Concept Newton s laws of motion describe the relationship between forces and the motion of an object. What You Will Learn Newton s first law of motion states that the motion

More information

Motion, Forces, and Energy

Motion, Forces, and Energy Motion, Forces, and Energy What is motion? Motion - when an object changes position Types of Motion There are 2 ways of describing motion: Distance Displacement Distance Distance is the total path traveled.

More information

Figure 5.1: Force is the only action that has the ability to change motion. Without force, the motion of an object cannot be started or changed.

Figure 5.1: Force is the only action that has the ability to change motion. Without force, the motion of an object cannot be started or changed. 5.1 Newton s First Law Sir Isaac Newton, an English physicist and mathematician, was one of the most brilliant scientists in history. Before the age of thirty he had made many important discoveries in

More information

11.3 Acceleration The basketball constantly changes velocity as it rises and falls.

11.3 Acceleration The basketball constantly changes velocity as it rises and falls. The basketball constantly changes velocity as it rises and falls. Describing changes in velocity, and how fast they occur, is a part of describing motion. What Is Acceleration? How are changes in velocity

More information

Unit 4 Forces (Newton s Laws)

Unit 4 Forces (Newton s Laws) Name: Pd: Date: Unit Forces (Newton s Laws) The Nature of Forces force A push or pull exerted on an object. newton A unit of measure that equals the force required to accelerate kilogram of mass at meter

More information

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1

PYP 001 FIRST MAJOR EXAM CODE: TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 TERM: 151 SATURDAY, OCTOBER 17, 2015 PAGE: 1 *Read the following (20) questions and choose the right answer: 1 The figure below represents the speed-time graph for the motion of a vehicle during a 7.0-minute

More information

Force and Motion Notes

Force and Motion Notes Force and Motion Notes Unit 4 Force and Motion Learning Goals (TEKS): Force, motion, and energy. The student knows that there is a relationship between force, motion, and energy. The student is expected

More information

Mass the amount of matter in an object. Mass of an object is constant throughout the universe

Mass the amount of matter in an object. Mass of an object is constant throughout the universe Mass the amount of matter in an object. Mass of an object is constant throughout the universe Weight is a force, it is the measure of how strong gravity pulls on that matter. A force that produces no change

More information

(numerical value) In calculating, you will find the total distance traveled. Displacement problems will find the distance from the starting point to the ending point. *Calculate the total amount traveled

More information

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that

Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that Galileo & Friction 2000 yrs prior to inertia idea, the popular belief was that all objects want to come to a rest. BUT 1600's: Galileo reasoned that moving objects eventually stop only because of a force

More information

How Do Objects Move? Describing Motion. Different Kinds of Motion

How Do Objects Move? Describing Motion. Different Kinds of Motion How Do Objects Move? Describing Motion Different Kinds of Motion Motion is everywhere. The planets are in motion around the Sun. Cars are in motion as they are driven down the street. There s even motion

More information

Chapter 6 Study Questions Name: Class:

Chapter 6 Study Questions Name: Class: Chapter 6 Study Questions Name: Class: Multiple Choice Identify the letter of the choice that best completes the statement or answers the question. 1. A feather and a rock dropped at the same time from

More information

Section Distance and displacment

Section Distance and displacment Chapter 11 Motion Section 11.1 Distance and displacment Choosing a Frame of Reference What is needed to describe motion completely? A frame of reference is a system of objects that are not moving with

More information

TEK 8.6C: Newton s Laws

TEK 8.6C: Newton s Laws Name: Teacher: Pd. Date: TEK 8.6C: Newton s Laws TEK 8.6C: Investigate and describe applications of Newton's law of inertia, law of force and acceleration, and law of action-reaction such as in vehicle

More information

Section 1: Measuring Motion. Preview Key Ideas Bellringer Observing Motion Speed and Velocity Calculating Speed Math Skills Graphing Motion

Section 1: Measuring Motion. Preview Key Ideas Bellringer Observing Motion Speed and Velocity Calculating Speed Math Skills Graphing Motion Section 1 Section 1: Measuring Motion Preview Key Ideas Bellringer Observing Motion Speed and Velocity Calculating Speed Math Skills Graphing Motion Section 1 Key Ideas How is a frame of reference used

More information

NEWTON S LAWS OF. Forces 1 st Law of Motion 2 nd Law of Motion 3 rd Law of Motion MOTION

NEWTON S LAWS OF. Forces 1 st Law of Motion 2 nd Law of Motion 3 rd Law of Motion MOTION NEWTON S LAWS OF Forces 1 st Law of Motion 2 nd Law of Motion 3 rd Law of Motion MOTION Forces Force: a push or a pull on an object *Force is measured in Newtons* Forces Balanced and Unbalanced Forces

More information

Chapter 23 Section 2

Chapter 23 Section 2 Chapter 23 Section 2 Title: Vocabulary Activity Chapter 23 Section 2 Copy from the textbook the definitions of the following words: Force Contact force Long-range force Inertia Newton s First law of Motion

More information

Forces and Motion Study Guide

Forces and Motion Study Guide Forces and Motion Study Guide Name 8 th Grade PSI 1. A snail travels 10 m in 3000 seconds. What is the snail s average speed? a. 60000 m/s b. 0.02 m/s c. 600 m/s d. 0.003 m/s 2. A blimp travels at 3 m/s

More information

What does the lab partner observe during the instant the student pushes off?

What does the lab partner observe during the instant the student pushes off? Motion Unit Review State Test Questions 1. To create real-time graphs of an object s displacement versus time and velocity versus time, a student would need to use a A motion sensor.b low- g accelerometer.

More information

Motion and Forces. Forces

Motion and Forces. Forces CHAPTER 8 Motion and LESSON 3 What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree with the statement or a D

More information

In Motion Grade 10 Science Glenlawn Collegiate Ms W

In Motion Grade 10 Science Glenlawn Collegiate Ms W Physics of Motion Introduction: See if you can think of at least 5 words and write them around the word physics below. Leave some room and write small because we might add more Physics We encounter motion

More information

Motion. Definition a change of position

Motion. Definition a change of position Potential energy Definition stored energy an object has because of its position Characteristics the higher up an object is, the greater its potential energy Example book sitting on the desk Kinetic energy

More information

Motion *All matter in the universe is constantly at motion Motion an object is in motion if its position is changing

Motion *All matter in the universe is constantly at motion Motion an object is in motion if its position is changing Aim: What is motion? Do Now: Have you ever seen a race? Describe what occurred during it. Homework: Vocabulary Define: Motion Point of reference distance displacement speed velocity force Textbook: Read

More information

Forces. Brought to you by:

Forces. Brought to you by: Forces Brought to you by: Objects have force because of their mass and inertia Mass is a measure of the amount of matter/particles in a substance. Mass is traditionally measured with a balance. Inertia

More information

Section 11.1 Distance and Displacement (pages )

Section 11.1 Distance and Displacement (pages ) Name Class Date Section 11.1 Distance and Displacement (pages 328 331) This section defines distance and displacement. Methods of describing motion are presented. Vector addition and subtraction are introduced.

More information

Reporting Category 2: Force, Motion, and Energy. A is a push or a pull in a specific direction.

Reporting Category 2: Force, Motion, and Energy. A is a push or a pull in a specific direction. Name: Science Teacher: Reporting Category 2: Force, Motion, and Energy Unbalanced Forces 8.6A A is a push or a pull in a specific direction. The combination of all forces acting on an object is called.

More information

Newton s Laws: Force and Motion

Newton s Laws: Force and Motion Newton s Laws: Force and Motion The First Law: Force and Inertia The Second Law: Force, Mass and Acceleration The Third Law: Action and Reaction The First Law: Force and Inertia Investigation Key Question:

More information

Chapter 3, Section 3

Chapter 3, Section 3 Chapter 3, Section 3 3 What is force? Motion and Forces A force is a push or pull. Sometimes it is obvious that a force has been applied. But other forces aren t as noticeable. What Is a Force? A force......

More information

Physics 18 Spring 2011 Homework 3 Wednesday February 2, 2011

Physics 18 Spring 2011 Homework 3 Wednesday February 2, 2011 Physics 18 Spring 2011 Homework 3 Wednesday February 2, 2011 Make sure your name is on your homework, and please box your final answer. Because we will be giving partial credit, be sure to attempt all

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

Newton s Third Law KEY IDEAS READING TOOLBOX. As you read this section keep these questions in mind: Name Class Date

Newton s Third Law KEY IDEAS READING TOOLBOX. As you read this section keep these questions in mind: Name Class Date CHAPTER 12 Forces 3 SECTION KEY IDEAS Newton s Third Law As you read this section keep these questions in mind: What happens when one object exerts a force on another object? How can you calculate the

More information

Laws of Force and Motion

Laws of Force and Motion Does anything happen without a cause? Many people would say yes, because that often seems to be our experience. A cup near the edge of a table suddenly crashes to the floor. An apple falls from a tree

More information

Newton s Laws of Motion

Newton s Laws of Motion DUY TAN UNIVERSITY DEPARTMENT OF NATURAL SCIENCE Newton s Laws of Motion Lecturer: HO VAN TUYEN Da Nang, 2017 Motions Newton s Contributions Sir Isaac Newton (1643-1727) an English scientist and mathematician.

More information

Year-9- Vectors and Scalars Velocity and Acceleration

Year-9- Vectors and Scalars Velocity and Acceleration Scalar Quantity Quantities that have only magnitude (size) but no direction are scalar quantities. Examples: mass, distance, time, energy and speed. Vector Quantity Quantities that have both magnitude

More information

Do Now: Why are we required to obey the Seat- Belt law?

Do Now: Why are we required to obey the Seat- Belt law? Do Now: Why are we required to obey the Seat- Belt law? Newton s Laws of Motion Newton s First Law An object at rest remains at rest and an object in motion remains in motion with the same speed and direction.

More information

NEWTON S LAWS OF MOTION. Review

NEWTON S LAWS OF MOTION. Review NEWTON S LAWS OF MOTION Review BACKGROUND Sir Isaac Newton (1643-1727) an English scientist and mathematician famous for his discovery of the law of gravity also discovered the three laws of motion. He

More information

Forces and Newton s Laws

Forces and Newton s Laws chapter 3 section 1 Forces Forces and Newton s Laws What You ll Learn how force and motion are related what friction is between objects the difference between mass and weight Before You Read When you hit

More information

Forces. Video Demos. Graphing HW: October 03, 2016

Forces. Video Demos. Graphing HW: October 03, 2016 Distance (m or km) : Create a story using the graph. Describe what will be happening at each point during the day (A-D). Example: Trump has a busy day. He is currently at Trump Tower in NY. A- Trump jumps

More information

Newton s Laws of Motion

Newton s Laws of Motion Motion & Forces Newton s Laws of Motion If I have seen far, it is because I have stood on the shoulders of giants. - Sir Isaac Newton (referring to Galileo) A. Newton s First Law Newton s First Law of

More information

Alief ISD Middle School Science STAAR Review Reporting Category 2: Force, Motion, & Energy

Alief ISD Middle School Science STAAR Review Reporting Category 2: Force, Motion, & Energy 8.6.A demonstrate and calculate how unbalanced forces change the speed or direction of an object s motion Alief ISD Middle School Science STAAR Review Reporting Category 2: Force, Motion, & Energy Force

More information

What is force? A force is a push or pull. Sometimes it is obvious that a force has been applied. But other forces aren t as noticeable.

What is force? A force is a push or pull. Sometimes it is obvious that a force has been applied. But other forces aren t as noticeable. Chapter 3, Sec-on 3 3 What is force? Motion and Forces A force is a push or pull. Sometimes it is obvious that a force has been applied. But other forces aren t as noticeable. What Is a Force? A force......

More information

Chapter 3. Accelerated Motion

Chapter 3. Accelerated Motion Chapter 3 Accelerated Motion Chapter 3 Accelerated Motion In this chapter you will: Develop descriptions of accelerated motions. Use graphs and equations to solve problems involving moving objects. Describe

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction Newton s Laws of Motion 1 st Law An object at rest will stay at rest, and an object in motion will stay in motion at a constant velocity,

More information

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course

KEY NNHS Introductory Physics: MCAS Review Packet #1 Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information

Chapter 2: FORCE and MOTION

Chapter 2: FORCE and MOTION Chapter 2: FORCE and MOTION Linear Motion Linear motion is the movement of an object along a straight line. Distance The distance traveled by an object is the total length that is traveled by that object.

More information

Class Worksheet 3.1_Answer Forces and Newton s 1 st Law. Name: ( ) Date:

Class Worksheet 3.1_Answer Forces and Newton s 1 st Law. Name: ( ) Date: Class Worksheet 3.1_Answer Forces and Newton s 1 st Law Name: ( ) Date: Class: Sec 3/ Marks: Definition of a force: A force is defined as an influence which changes, or tries to change, the state of motion

More information

Circular Motion. For You To Do

Circular Motion. For You To Do Activity 9 Circular Motion Activity 9 Circular Motion GOALS In this activity you will: Understand that a centripetal force is required to keep a mass moving in a circular path at constant speed. Understand

More information

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion.

Chapter 6. Preview. Section 1 Gravity and Motion. Section 2 Newton s Laws of Motion. Section 3 Momentum. Forces and Motion. Forces and Motion Preview Section 1 Gravity and Motion Section 2 Newton s Laws of Motion Section 3 Momentum Concept Mapping Section 1 Gravity and Motion Bellringer Answer the following question in your

More information

Force, Friction & Gravity Notes

Force, Friction & Gravity Notes Force, Friction & Gravity Notes Key Terms to Know Speed: The distance traveled by an object within a certain amount of time. Speed = distance/time Velocity: Speed in a given direction Acceleration: The

More information

Summary. Chapter summary. Teaching Tip CHAPTER 4

Summary. Chapter summary. Teaching Tip CHAPTER 4 Chapter summary Teaching Tip Ask students to prepare a concept map for the chapter. The concept map should include most of the vocabulary terms, along with other integral terms or concepts. CHAPTER 4 Summary

More information

Chapter Introduction. Motion. Motion. Chapter Wrap-Up

Chapter Introduction. Motion. Motion. Chapter Wrap-Up Chapter Introduction Lesson 1 Lesson 2 Lesson 3 Describing Motion Graphing Motion Forces Chapter Wrap-Up What is the relationship between motion and forces? What do you think? Before you begin, decide

More information

Chapter: The Laws of Motion

Chapter: The Laws of Motion Table of Contents Chapter: The Laws of Motion Section 1: Newton s Second Law Section 2: Gravity Section 3: The Third Law of Motion 1 Newton s Second Law Force, Mass, and Acceleration Newton s first law

More information

Make sure you know the three laws inside and out! You must know the vocabulary too!

Make sure you know the three laws inside and out! You must know the vocabulary too! Newton's Laws Study Guide Test March 9 th The best plan is to study every night for 15 to 20 minutes. Make sure you know the three laws inside and out! You must know the vocabulary too! Newton s First

More information

Chapter 5. Preview. Section 1 Measuring Motion. Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion

Chapter 5. Preview. Section 1 Measuring Motion. Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion Matter in Motion Preview Section 1 Measuring Motion Section 2 What Is a Force? Section 3 Friction: A Force That Opposes Motion Section 4 Gravity: A Force of Attraction Concept Mapping Section 1 Measuring

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C ONTENT S TANDARDS Central Concept: Newton s laws of motion and gravitation describe and predict the motion of 1.1

More information

Section 2: Newton s Laws of Motion (p. 145)

Section 2: Newton s Laws of Motion (p. 145) Section 2: Newton s Laws of Motion (p. 145) 1. In 1686, published Principia, a work explaining laws to help people understand how forces relate to the of objects. Newton s First Law of Motion (p. 145)

More information

Forces. Unit 2. Why are forces important? In this Unit, you will learn: Key words. Previously PHYSICS 219

Forces. Unit 2. Why are forces important? In this Unit, you will learn: Key words. Previously PHYSICS 219 Previously Remember From Page 218 Forces are pushes and pulls that can move or squash objects. An object s speed is the distance it travels every second; if its speed increases, it is accelerating. Unit

More information

So Who was Sir Issac Newton??

So Who was Sir Issac Newton?? So Who was Sir Issac Newton?? Sir Isaac Newton (1642 1727), an English physicist and mathematician, was one of the most brilliant scientists in history. Before age 30, he had made several important discoveries

More information

Name Date Hour Table

Name Date Hour Table Name Date Hour Table Chapter 3 Pre-AP Directions: Use the clues to create your word bank for the word search. Put the answer to each question with its number in the word bank box. Then find each word in

More information

The Laws of Motion. Gravity and Friction

The Laws of Motion. Gravity and Friction CHAPTER 3 The Laws of Motion LESSON 1 Gravity and Friction What do you think? Read the two statements below and decide whether you agree or disagree with them. Place an A in the Before column if you agree

More information

Inertia and. Newton s First Law

Inertia and. Newton s First Law 5.1 Inertia and Newton s First Law SECTION Apply Newton s laws of motion to explain inertia. Evaluate appropriate processes for problem solving and decision making. KEY TERMS OUTCOMES classical/newtonian

More information

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction

Newton s Laws of Motion. I. Law of Inertia II. F=ma III. Action-Reaction Newton s Laws of Motion I. Law of Inertia II. F=ma III. Action-Reaction While most people know what Newton's laws say, many people do not know what they mean (or simply do not believe what they mean).

More information

A. true. 6. An object is in motion when

A. true. 6. An object is in motion when 1. The SI unit for speed is A. Miles per hour B. meters per second 5. Frictional forces are greatest when both surfaces are rough. A. true B. false 2. The combination of all of the forces acting on an

More information

Introductory Physics, High School Learning Standards for a Full First-Year Course

Introductory Physics, High School Learning Standards for a Full First-Year Course Introductory Physics, High School Learning Standards for a Full First-Year Course I. C O N T E N T S T A N D A R D S Central Concept: Newton s laws of motion and gravitation describe and predict the motion

More information

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force.

Force Test Review. 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. Force Test Review 1. Give two ways to increase acceleration. You can increase acceleration by decreasing mass or increasing force. 2. Define weight. The force of gravity on an object at the surface of

More information

1. Two forces are applied to a wooden box as shown below. Which statement best describes the effect these forces have on the box?

1. Two forces are applied to a wooden box as shown below. Which statement best describes the effect these forces have on the box? 1. Two forces are applied to a wooden box as shown below. Which statement best describes the effect these forces have on the box? A. The box does not move. B. The box moves to the right. C. The box moves

More information

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without

MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without MOTION, DISTANCE, AND DISPLACEMENT Q: What is motion? A: Motion is any change in the position or place of an object. is the study of motion (without considering the cause of the motion). Distance vs. Displacement

More information

Chapter 3: LINEAR MOTION

Chapter 3: LINEAR MOTION Chapter 3: LINEAR MOTION Here we'll consider only the simplest form of motion that along a straight-line path linear motion. Linear Motion (Motion in a straight line, such as falling straight downward)

More information

Newton s Laws of Motion. Steve Case NMGK-8 University of Mississippi October 2005

Newton s Laws of Motion. Steve Case NMGK-8 University of Mississippi October 2005 Newton s Laws of Motion Steve Case NMGK-8 University of Mississippi October 2005 Background Sir Isaac Newton (1643-1727) an English scientist and mathematician famous for his discovery of the law of gravity

More information

Redhound Day 2 Assignment (continued)

Redhound Day 2 Assignment (continued) Redhound Day 2 Assignment (continued) Directions: Watch the power point and answer the questions on the last slide Which Law is It? on your own paper. You will turn this in for a grade. Background Sir

More information

FORCES. Chapter 2: Section 3, Chapter 3: Sections 1-3

FORCES. Chapter 2: Section 3, Chapter 3: Sections 1-3 FORCES Chapter 2: Section 3, Chapter 3: Sections 1-3 Vocab: 2.3-3.3 DEFINE THESE Force Net force Balanced force Inertia Newton s second law of motion Friction Law of gravitation Weight Newton s third law

More information

Science Teaching Junkie Science Teaching Junkie

Science Teaching Junkie Science Teaching Junkie Science Teaching Junkie Thank you for your purchase. I hope you enjoy the Force and Motion for Interactive Science Notebooks! It includes 30 pages of foldables and flippables for student notebooks. Many

More information

AP Physics I Summer Work

AP Physics I Summer Work AP Physics I Summer Work 2018 (20 points) Please complete the following set of questions and word problems. Answers will be reviewed in depth during the first week of class followed by an assessment based

More information

Unit 2 mid term review

Unit 2 mid term review Unit 2 mid term review Modified True/False Indicate whether the sentence or statement is true or false. If false, change the identified word or phrase to make the sentence or statement true. 1. Motion

More information

Chapter 5 Matter in Motion Focus Notes

Chapter 5 Matter in Motion Focus Notes Chapter 5 Matter in Motion Focus Notes Section 1 Define the following terms: Motion, Speed, Velocity, and Acceleration Motion: an object s change in position relative to a reference point. Speed: the distance

More information

Newton s Laws of Motion

Newton s Laws of Motion Newton's Laws of Motion The British scientist Sir Isaac Newton (164 177) was able to state rules that describe the effects of forces on the motion of objects. These rules are known as Newton's law's of

More information

Forces. Dynamics FORCEMAN

Forces. Dynamics FORCEMAN 1 Forces Dynamics FORCEMAN 2 What causes things to move? Forces What is a force? A push or a pull that one body exerts on another. 3 Balanced No change in motion 4 5 Unbalanced If the forces acting on

More information

Isaac Newton was a British scientist whose accomplishments

Isaac Newton was a British scientist whose accomplishments E8 Newton s Laws of Motion R EA D I N G Isaac Newton was a British scientist whose accomplishments included important discoveries about light, motion, and gravity. You may have heard the legend about how

More information

Friction. Friction is a force that resists the motion of objects or surfaces. Many kinds of friction exist.

Friction. Friction is a force that resists the motion of objects or surfaces. Many kinds of friction exist. Friction Friction is a force that resists the motion of objects or surfaces. Many kinds of friction exist. Friction Friction depends on both of the surfaces in contact. When the hockey puck slides on

More information