Progressive Damage of GFRP Composite Plate Under Ballistic Impact: Experimental and Numerical Study

Size: px
Start display at page:

Download "Progressive Damage of GFRP Composite Plate Under Ballistic Impact: Experimental and Numerical Study"

Transcription

1 Progressive Damage of GFRP Composite Plate Under Ballistic Impact: Experimental and Numerical Study Progressive Damage of GFRP Composite Plate Under Ballistic Impact: Experimental and Numerical Study Md Muslim Ansari * and Anupam Chakrabarti Civil Engineering Department, Indian Institute of Technology Roorkee, Roorkee, India Summary In this paper, the behaviour of laminated GFRP composite plate under ballistic impact has been studied with experimental as well as numerical model. Variation of residual velocity, energy absorption, damaged area and modes of damages have been studied. A simplified three dimensional FE model for composite plate and impactor with gap interaction and Lagrangian mesh has been presented. Material characterization of GFRP composite for progressive damage analysis based on material stress/strain failure criteria has been carried out. Shock effect with nonlinear volumetric response of laminated composite during impact is also considered. Pressure wave propagation in composite plate due to impact is also studied. Numerical results from present FE model are validated with those of experimental results showing close agreements in terms of damaged length, energy absorption and variation of residual velocities. Keywords: Ballistic impact, Damage modes, FE model, GFRP laminate 1. Introduction FRP composites are versatile material for the structural application due to their light weight, high stiffness, high strength and ease of erection in any environment. Due to orthotropic nature of laminated FRP composite, behaviour of these materials are complicated mainly in terms of damage and its propagation under ballistic impact. Numerous researchers have studied the impact behaviour of composite and their works can be classified broadly in three categories such as experimental, numerical and analytical. Impact behaviour of composite plate with drop weight machine was performed by some researchers in terms of energy absorption, deflection, indentation in plate and contact force etc Some experimental works on high velocity impact on composite plate were reported in literature 5-6. Sevkat 7 conducted experimental and numerical study to estimate the ballistic limit *Corresponding authors muslimdecivil@gmail.com Smithers Information Ltd., 2016 velocity of graphite fiber/toughened SC-79 resin composite beam. Jordan and Naito 8 performed an experimental investigation to study the ballistic limit, residual velocity for different target thickness. Some analytical as well as numerical investigations on impact behaviour of composite plate in terms of residual velocity and ballistic limit were reported in past From literature review, it indicates that there is a lack in ballistic impact analysis on FRP composite plates on damage evolution and their propagation. Progressive damage and their modes in composite plate under ballistic load can be studied more efficiently by a numerical model with lesser expenditure and efforts compare to experimental and analytical works. However, there is no numerical study available in the literature highlighting the three dimensional progressive damage and modes of failure of laminated composite plates. Aim of this paper is to study the ballistic impact behaviour of GFRP composite plate and to develop a three dimensional finite element model for progressive damage analysis of GFRP composite in addition to validation of experimental results. Material characterization is carried out for those required in AUTODYN hydro code which is discussed in detail in the following section. 2. Material, Specimens and Methods 2.1 Material Characterization GFRP laminate was made by hand layup method and samples were cut according to required dimension for material characterization following the guidelines as in ASTM D3039/ D3039M and related literature 12. Nominal pressure was applied by soft roller on each layer during casting of GFRP laminate to reduce air voids. A total pressure of 250N was applied on casted samples and left for 24 hours at room temperature for complete setting. Finally, samples were cured in hot air oven at 80 0 C for three hours Polymers & Polymer Composites, Vol. 24, No. 7,

2 Md Muslim Ansari and Anupam Chakrabarti for homogeneous solidification. Test samples of size 300 mm x 25 mm x 10 mm were procured from solid GFRP laminate for material characterization. Figure 1 shows stepwise process of making test specimen and testing of sample in UTM under tension. Strain gauges are applied along longitudinal and transverse directions to measure the strain in respective directions as shown in Figure 1(c). Stress-strain curve for tensile tests of GFRP is plotted in Figure 2(a). In plan Poison s ratio of GFRP is calculated from lateral strain vs. longitudinal strain curve as shown in Figure 2(b). Material properties of GFRP composite as obtained from tensile test and material properties of steel (4340) from literature 12 are listed in Table Numerical Modeling and Methods In the present study, numerical simulation has been carried out using ANSYS/AUTODYN v14.5, a commercial hydro code. The GFRP composite plates of dimension of 140 mm x 140 mm x 3.12 mm and cylindrical bullet with ogival nose shape have been modeled with Lagrangian process and hexahedron brick element. Interaction between plate and impactor is defined by gap interaction method with gap size of 0.05 mm and frictionless contact. Due to symmetric nature of plate, quarter plate is considered with symmetric boundary condition on X=0 and Y=0 to reduce the computational domain as shown in Figure 3. Mesh convergence study has been carried out and it is found that mesh division of 70 x70 along x and y direction (in plane) shows good convergence in results. In the coordinate axis system, direction-11 is taken along z-direction or through the thickness direction of composite plate, direction-22 and 33 are along x and y direction or in plane axis of plate, direction convention are same Figure 1. Material processing and testing of GFRP; (a) air removal by soft roller, (b) hot air oven, (c) tensile test in UTM Figure 2. (a) Stress strain curve for tensile test, (b) lateral strain vs. longitudinal strain curve for in plan Poison s ratio 580 Polymers & Polymer Composites, Vol. 24, No. 7, 2016

3 Progressive Damage of GFRP Composite Plate Under Ballistic Impact: Experimental and Numerical Study Table 1. Material properties of GFRP and steel GFRP composite Equation of state: Orthotropic Tensile failure Stress 22 (kpa) 4.318e+005 Sub-Equation of State: Polynomial Maximum Shear Stress 23 (kpa) 8.0e+004 Reference density (gm/cm 3 ) Tensile Failure Strain Young s modulus 11 (kpa) 6.000e+006 Tensile Failure Strain Young s modulus 22 (kpa) 1.971e+007 Tensile Failure Strain Young s modulus 33 (kpa) 1.971e+007 Post Failure Response: Orthotropic Poisons ratio Fail 11 and 11 Only Poisons ratio Fail 22 and 22 Only Poisons ratio Fail 33 and 33 Only Strength: Elastic Fail 12 and 12 and 11 Only Shear modulus (kpa) 1.790e+006 Fail 23 and 23 and 11 Only Failure: Material Stress/Strain Fail 31 and 31 and 11 Only Residual shear Stiff. Frac Steel (4340) Equation of States: Linear Strain rate constant Reference density (gm/cm 3 ) 7.83 Thermal softening exponent 1.04 Bulk modulus (kpa) 1.59E+07 Melting temperature (K) 1793 Reference temperature (K) 300 Failure model: Johnson-Cook Specific heat capacity (J/kgK) 477 Damage constant, D1: 0.05 Strength:Johnson-Cook Damage constant, D2: Shear modulus (kpa) 7.7E+07 Damage constant, D3: Yield Stress (kpa) 7.92E+05 Damage constant, D4: Hardening constant (kpa) 5.10E+05 Damage constant, D5: 0.61 Hardening exponent 0.26 as taken in AUTODYN coordinate system convention 14. Figure 3. FE model of composite plate and impactor in AUTODYN Experimental impact test on GFRP composite plate of size 140 mm x 140 mm x 3.12 mm were carried out using pneumatic gun. All samples are impacted by ogival nose shaped steel bullet of diameter 19 mm and mass 52.0 gm under fully clamped boundary condition Damage Initiation Criteria Target plate and bullet both have been taken as a deformable body. Failure initiation criteria and growth of damage in GFRP composite plate is based on the combination of material stress and strain. Hashin failure criteria is used extensively for the modeling and to study the damage in composite due to impact. However, this criterion for matrix and fiber failure is considered only plain stresses s 22, s 33 and s 23. Modified version of these failure criteria along with the criteria for delamination has been implemented in AUTODYN. In the fiber failure and matrix cracking, out of plan shear stresses are also considered with original criteria as below; Failure along 11 plane, (1) Polymers & Polymer Composites, Vol. 24, No. 7,

4 Md Muslim Ansari and Anupam Chakrabarti Failure along 22 plane, Failure along 33 plane, (2) (3) Where s ij, e ij = stress and strain along i and j direction respectively, s ijf, e ijf = failure stress and strain along i and j direction respectively Subsequent to failure initiation, stiffness and strength properties for failed element are changed according to the modes of failure. 3. RESULTS and DISCUSSIONS Ballistic impact behaviour of laminated GFRP composite plate has been investigated with experimental as well as numerical model. In experimental impact tests, GFRP composite plate was impacted by ogival shaped cylindrical steel bullet at incidence velocities ranging between 10 m/s- 500 m/s. Numerical results of residual velocities, energy absorption and damaged length in composite plate are compared with those results obtained from the present FE model. Damage pattern in GFRP composite plates due to ballistic impact are also compared for both experimental as well as FE based numerical model. linearly at higher incidence velocity. It is also observed that the residual velocities of bullet as obtained from FE model is more than the results obtained from experimental results for every incidence velocities. This difference is due to frictionless contact as defined between bullet and composite plate in the present FE model. Ballistic limit for GFRP composite plate of size 140 mm x 140 mm x 3.12 mm is observed to be 33 m/s. Time histories of contact force are also studied for different incidence velocities with FE model as shown in Figure 5. At incidence velocity of 500 m/s, peak value of contact force is 6.57 kn at ms whereas this peak force is decreased to kn at ms for incidence velocity 100 m/s. It means that the time of occurrence of peak force increases as the incidence velocity of bullet decreases. Transfer of impact energy from bullet to composite plate is faster at high incidence velocity. It is also observe that the contact force-time history gets narrower at high incidence velocity. All the kinetic energy lost by impactor during impact is supposed to be absorbed in composite plate as below; Figure 4. Variation of residual velocity with incidence velocity where E abs = absorbed energy in composite plate, m i = mass of impactor, V i and V r = incidence and residual velocity respectively This absorbed energy causes damage in composite plate. Energy absorption in composite plate due to impact is plotted with results obtained from the present FE model and also from the available experimental results. Energy absorption in composite plate decreases with incidence velocities from both experimental and the present FE model as shown in Figure 6. It is also observed that the numerical results of energy absorption from the present FE model are less as compared to those results obtained from experimental tests and this may be due to the frictionless contact as defined in the present FE model and as discussed earlier. Variation of acceleration/retardation of impactor during the penetration process of laminated GFRP composite plate is also studied which indirectly represents the penetration resistance offered by composite plate. Retardation of ogival impactor with time at four different incidence velocities between m/s are presented in Figure 7., Figure 4 shows the variation of residual velocity with incidence velocity obtained from both experimental impact tests and FE model. Results from FE model have close agreements with experimental results as observed from Figure 4. Nonlinear variation in residual velocity is observed near ballistic limit which is behaving almost 582 Polymers & Polymer Composites, Vol. 24, No. 7, 2016

5 Progressive Damage of GFRP Composite Plate Under Ballistic Impact: Experimental and Numerical Study It is observed that the retardation of impactor increases up to maximum value and then decreases to zero for all incidence velocities as considered. Zero value of retardation shows the impactor move with constant velocity i.e. complete perforation of composite plate occurs. For lower incidence velocity (100 m/s), acceleration-time history of impactor shows so many up and downs after reaching maximum retardation which may be due to more number of constituting lamina. Acceleration-time histories of impactor get narrower at high incidence velocity. Damage pattern and modes of damages in the GFRP composite plate due to ballistic impact are studied. Bullet is fired at incidence velocity of m/s to the fully clamped composite plate and damage on the back face with side view are presented in Figure 8. Due to irregular shape of damage, it is measured in terms of damage length (L x and L y ) along x and y directions. Length of damages in plate from experimental as well as FE model is listed in Table 2. Numerical values of damaged lengths (i.e. damaged area) in composite plate obtained from the present FE model have good agreements with those obtained from experimental impact test. Figure 5. Time-histories of contact force for different incidence velocities Figure 6. Variation of absorbed energy in composite plate at different incidence velocities Table 2. Damage lengths on back face of GFRP composite plate of size 140 mm 140 mm 3.12 mm Damage length L x (mm) Damage length L y (mm) FE model Experimental Figure 7. Variation of acceleration/retardation of impactor at different incidence velocity Considering the modes of failure in laminated composite plate due to ballistic impact, it is observed that the most of damaged area in composite plate occurs mainly due to delamination as shown from the results of both experimental test and present FE model. Failure pattern of composite plate is symmetric along x and y directions which is just because of symmetric woven glass fiber. Polymers & Polymer Composites, Vol. 24, No. 7,

6 Md Muslim Ansari and Anupam Chakrabarti Figure 8. Damage pattern in FRP composite plate; FE model, a-back face, b- side view; Experimental, c-back face, d-side view It is observed that the main cause of delamination is matrix failure in tension except some delaminated part that occurs due to in plane failure (Failed 23) as indicated from material status bar of the present FE model. Fiber breakage occurs just below the bullet nose as shown in Figure 8(b, d). As the bullet hit on the composite plate, a pressure is applied on the impact point, which pressure propagates in form of pressure wave. This pressure wave causes the generation of various stresses in composite plate. Variation of pressure wave in laminated GFRP composite plate due to impact by ogival nose shaped impactor is studied. Effect of incidence velocity on pressure wave propagation is also studied. For which two different incidence velocities namely 30 m/s and 100 m/s have been chosen, one is less than ballistic limit and other is far more than ballistic limit. From Figure 9, it is observed that the pressure variation in terms of magnitude and nature is more in case of ballistic impact (V i = 100 m/s) on Figure 9. Pressure wave contour on the front face of composite plate due to impact at different incidence velocity 584 Polymers & Polymer Composites, Vol. 24, No. 7, 2016

7 Progressive Damage of GFRP Composite Plate Under Ballistic Impact: Experimental and Numerical Study composite plate. Concentration of pressure variation is more near the impact point at high velocity impact. 4. Conclusions Behaviour of GFRP composite plate under ballistic impact by a cylindrical steel bullet of ogival nose shape has been studied. Experimental impact tests were carried out with pneumatic gun. A 3D FE model is developed in AUTODYN hydro code to validate the experimental results and also studied the modes of damages in composite plate due to ballistic impact. For progressive damage study of GFRP composite plate, material characterization is also carried out in light of ASTM D3039/D3039M and related literature 14 and the same is implemented in AUTODYN. Shock effect is also considered in material modeling to study the exact damage behaviour of composite plate as appeared from experimental impact tests. Some important observations from the present ballistic impact analysis are discussed below; 1. Damage in laminated GFRP composite plate due to ballistic impact occurs mainly due to delamination. 2. Matrix failure in tension is the predominant cause of delamination as observed from experimental as well as from the present FE model. 3. Some part of delamination also occurs due to in plane failure as observed from the results obtained of the present FE model. 4. Fiber breakage occurs just below the bullet nose and some parts of materials are also flown off with bullet due to high incidence velocity. 5. Energy absorption in composite plate decreases as the incidence velocity of bullet decreases. 6. Pressure wave concentration on the surface of laminated composite plate is more in case of impact at high incidence velocity than the lower incidence velocity. REFERENCES 1. Tiberkak R., Bachene M., Rechak S. and Necib B., Compos. Struct. 83, (2008), Zhang D., Sun Y., Chen L. and Pan N., Mater. and Des.50, (2013), Evci C. and Gülgeç M., Int. J. of Impact Eng., 43, (2012), Hossainzadeh R., Shokrieh M.M. and Lessard L., Compos. Sci. and Tech., 66(1), (2006), Cantwell W.J. and Morton J.A., Compos., 20(6),(1989), Cantwell W.J. and Morton J.A., Compos. Sci. and Tech., 38, (1990), Sevkat E., Int. J. of Impact Eng., 45, (2012), Jordan J.B. and Naito C.J., Int. J. of Impact Eng, 63, (2014), Landa B.P. and Olivers F.H., Int. J. of Impact Eng, 16, (1995), Wen H.M, Compos. Struct., 49, (2000), Wen H.M., Compos. Sci. and Tech., 61, (2001), Hayhurst C.J., Livingstone I.H.J and Clegg R.A. et al., Int. J. of Impact Eng, 26, (2001), Johnson G.R. and Cook W.H., Eng. Frac. Mech., 21, (1985), ANSYS/AUTODYN 14.5, User s manual, ANSYS Inc. South Pointe. (2012). Polymers & Polymer Composites, Vol. 24, No. 7,

8 Md Muslim Ansari and Anupam Chakrabarti 586 Polymers & Polymer Composites, Vol. 24, No. 7, 2016

HIGH SPEED IMPACT ON CERAMIC PLATES

HIGH SPEED IMPACT ON CERAMIC PLATES HIGH SPEED IMPACT ON CERAMIC PLATES A. PROBLEM FORMULATION Numerical model for high speed impact of a steel projectile (NATO 5.56 x 45 mm) on Ceramic plate which is backed by an Kevlar/Epoxy plate is shown

More information

Failure analysis of serial pinned joints in composite materials

Failure analysis of serial pinned joints in composite materials Indian Journal of Engineering & Materials Sciences Vol. 18, April 2011, pp. 102-110 Failure analysis of serial pinned joints in composite materials Alaattin Aktaş* Department of Mechanical Engineering,

More information

A Constitutive Model for DYNEEMA UD composites

A Constitutive Model for DYNEEMA UD composites A Constitutive Model for DYNEEMA UD composites L Iannucci 1, D J Pope 2, M Dalzell 2 1 Imperial College, Department of Aeronautics London, SW7 2AZ l.iannucci@imperial.ac.uk 2 Dstl, Porton Down, Salisbury,

More information

QUESTION BANK Composite Materials

QUESTION BANK Composite Materials QUESTION BANK Composite Materials 1. Define composite material. 2. What is the need for composite material? 3. Mention important characterits of composite material 4. Give examples for fiber material 5.

More information

University of Sheffield The development of finite elements for 3D structural analysis in fire

University of Sheffield The development of finite elements for 3D structural analysis in fire The development of finite elements for 3D structural analysis in fire Chaoming Yu, I. W. Burgess, Z. Huang, R. J. Plank Department of Civil and Structural Engineering StiFF 05/09/2006 3D composite structures

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011 Interlaminar failure analysis of FRP cross ply laminate with elliptical cutout Venkateswara Rao.S 1, Sd. Abdul Kalam 1, Srilakshmi.S 1, Bala Krishna Murthy.V 2 1 Mechanical Engineering Department, P. V.

More information

Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala

Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala Multi Disciplinary Delamination Studies In Frp Composites Using 3d Finite Element Analysis Mohan Rentala Abstract: FRP laminated composites have been extensively used in Aerospace and allied industries

More information

Calibration and Experimental Validation of LS-DYNA Composite Material Models by Multi Objective Optimization Techniques

Calibration and Experimental Validation of LS-DYNA Composite Material Models by Multi Objective Optimization Techniques 9 th International LS-DYNA Users Conference Optimization Calibration and Experimental Validation of LS-DYNA Composite Material Models by Multi Objective Optimization Techniques Stefano Magistrali*, Marco

More information

EXPLICIT DYNAMIC SIMULATION OF DROP-WEIGHT LOW VELOCITY IMPACT ON CARBON FIBROUS COMPOSITE PANELS

EXPLICIT DYNAMIC SIMULATION OF DROP-WEIGHT LOW VELOCITY IMPACT ON CARBON FIBROUS COMPOSITE PANELS EXPLICIT DYNAMIC SIMULATION OF DROP-WEIGHT LOW VELOCITY IMPACT ON CARBON FIBROUS COMPOSITE PANELS Umar Farooq and Karl Gregory School of Built Environment and Department of Engineering, University of Bolton,

More information

Parametric Studies of Low Velocity Impact on E-glass/Epoxy using Ls-Dyna

Parametric Studies of Low Velocity Impact on E-glass/Epoxy using Ls-Dyna IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) e-issn: 2278-1684,p-ISSN: 2320-334X, Volume 11, Issue 4 Ver. V (Jul- Aug. 2014), PP 33-39 Parametric Studies of Low Velocity Impact on E-glass/Epoxy

More information

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test

Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test Effect of Specimen Dimensions on Flexural Modulus in a 3-Point Bending Test M. Praveen Kumar 1 and V. Balakrishna Murthy 2* 1 Mechanical Engineering Department, P.V.P. Siddhartha Institute of Technology,

More information

Computational Analysis for Composites

Computational Analysis for Composites Computational Analysis for Composites Professor Johann Sienz and Dr. Tony Murmu Swansea University July, 011 The topics covered include: OUTLINE Overview of composites and their applications Micromechanics

More information

Tensile behaviour of anti-symmetric CFRP composite

Tensile behaviour of anti-symmetric CFRP composite Available online at www.sciencedirect.com Procedia Engineering 1 (211) 1865 187 ICM11 Tensile behaviour of anti-symmetric CFRP composite K. J. Wong a,b, *, X. J. Gong a, S. Aivazzadeh a, M. N. Tamin b

More information

ID-1160 REAL-TIME DETECTION AND EXPLICIT FINITE ELEMENT SIMULATION OF DELAMINATION IN COMPOSITE LAMINATES UNDER IMPACT LOADING

ID-1160 REAL-TIME DETECTION AND EXPLICIT FINITE ELEMENT SIMULATION OF DELAMINATION IN COMPOSITE LAMINATES UNDER IMPACT LOADING ID-116 REAL-TIME DETECTION AND EXPLICIT FINITE ELEMENT SIMULATION OF DELAMINATION IN COMPOSITE LAMINATES UNDER IMPACT LOADING K. Minnaar and M. Zhou = School of Mechanical Engineering Georgia Institute

More information

MODELING SLAB-COLUMN CONNECTIONS REINFORCED WITH GFRP UNDER LOCALIZED IMPACT

MODELING SLAB-COLUMN CONNECTIONS REINFORCED WITH GFRP UNDER LOCALIZED IMPACT MODELING SLAB-COLUMN CONNECTIONS REINFORCED WITH GFRP UNDER LOCALIZED IMPACT QI ZHANG and AMGAD HUSSEIN Faculty of Engineering, Memorial University of Newfoundland St. John s, Newfoundland, Canada, A1B

More information

Mechanical and Thermal Properties of Coir Fiber Reinforced Epoxy Composites Using a Micromechanical Approach

Mechanical and Thermal Properties of Coir Fiber Reinforced Epoxy Composites Using a Micromechanical Approach Mechanical and Thermal Properties of Coir Fiber Reinforced Epoxy Composites Using a Micromechanical Approach Sandhyarani Biswas Department of Mechanical Engineering, N.I.T Rourkela, INDIA Abstract: Now-a-days,

More information

Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading

Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading Indian Journal of Engineering & Materials Sciences Vol. 15, October 2008, pp. 382-390 Micromechanical analysis of FRP hybrid composite lamina for in-plane transverse loading K Sivaji Babu a *, K Mohana

More information

An orthotropic damage model for crash simulation of composites

An orthotropic damage model for crash simulation of composites High Performance Structures and Materials III 511 An orthotropic damage model for crash simulation of composites W. Wang 1, F. H. M. Swartjes 1 & M. D. Gan 1 BU Automotive Centre of Lightweight Structures

More information

Strength of GRP-laminates with multiple fragment damages

Strength of GRP-laminates with multiple fragment damages Strength of GRP-laminates with multiple fragment damages S. Kazemahvazi, J. Kiele, D. Zenkert Kungliga Tekniska Högskolan, KTH 100 44 Stockholm, Sweden sohrabk@kth.se SUMMARY The strength of glass fibre

More information

Numerical sensitivity studies of a UHMWPE composite for ballistic protection

Numerical sensitivity studies of a UHMWPE composite for ballistic protection Structures Under Shock and Impact XIII 371 Numerical sensitivity studies of a UHMWPE composite for ballistic protection T. Lässig 1, W. Riedel 1, U. Heisserer 2, H. van der Werff 2, M. May 1 & S. Hiermaier

More information

THE MUTUAL EFFECTS OF SHEAR AND TRANSVERSE DAMAGE IN POLYMERIC COMPOSITES

THE MUTUAL EFFECTS OF SHEAR AND TRANSVERSE DAMAGE IN POLYMERIC COMPOSITES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS THE MUTUAL EFFECTS OF SHEAR AND TRANSVERSE DAMAGE IN POLYMERIC COMPOSITES L.V. Smith 1 *, M. Salavatian 1 1 School of Mechanical and Materials

More information

Ballistic impact behaviour of woven fabric composites: Parametric studies

Ballistic impact behaviour of woven fabric composites: Parametric studies Ballistic impact behaviour of woven fabric composites: Parametric studies N.K. Naik, P. Shrirao, B.C.K. Reddy Aerospace Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai 400076,

More information

Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost

Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost Comparison of Ply-wise Stress-Strain results for graphite/epoxy laminated plate subjected to in-plane normal loads using CLT and ANSYS ACP PrepPost 1 Mihir A. Mehta, 2 Satyen D. Ramani 1 PG Student, Department

More information

EXPERIMENTAL AND NUMERICAL STUDY OF OBLIQUE IMPACT ON HELICOPTER BLADES INFLUENCE OF THE CURVATURE

EXPERIMENTAL AND NUMERICAL STUDY OF OBLIQUE IMPACT ON HELICOPTER BLADES INFLUENCE OF THE CURVATURE EXPERIMENTAL AND NUMERICAL STUDY OF OBLIQUE IMPACT ON HELICOPTER BLADES INFLUENCE OF THE CURVATURE F. Pascal a, P. Navarro a*, S. Marguet a, J.F. Ferrero a, J. Aubry b, S. Lemaire b a Université de Toulouse,

More information

Influence of fibre proportion and position on the machinability of GFRP composites- An FEA model

Influence of fibre proportion and position on the machinability of GFRP composites- An FEA model Indian Journal of Engineering & Materials Sciences Vol. 12, October 2005, pp. 443-450 Influence of fibre proportion and position on the machinability of GFRP composites- An FEA model D Abdul Budan* Department

More information

A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE

A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE A FINITE ELEMENT MODEL TO PREDICT MULTI- AXIAL STRESS-STRAIN RESPONSE OF CERAMIC MATRIX COMPOSITES WITH STRAIN INDUCED DAMAGE Daxu Zhang and D. R. Hayhurst School of Mechanical, Aerospace and Civil Engineering,

More information

HIGH VELOCITY IMPACT ON TEXTILE REINFORCED COMPOSITES

HIGH VELOCITY IMPACT ON TEXTILE REINFORCED COMPOSITES 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS HIGH VELOCITY IMPACT ON TEXTILE REINFORCED COMPOSITES Warnet L., Akkerman R., Ravensberg M. University of Twente, Faculty of Engineering Technology,

More information

KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP)

KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP) KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP) 1 University of Science & Technology Beijing, China, niukm@ustb.edu.cn 2 Tsinghua University, Department of Engineering Mechanics, Beijing, China,

More information

PREDICTION OF OUT-OF-PLANE FAILURE MODES IN CFRP

PREDICTION OF OUT-OF-PLANE FAILURE MODES IN CFRP PREDICTION OF OUT-OF-PLANE FAILURE MODES IN CFRP R. R. Pinto 1, P. P. Camanho 2 1 INEGI - Instituto de Engenharia Mecanica e Gestao Industrial, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal 2 DEMec,

More information

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina Module III - Macro-mechanics of Lamina Lecture 23 Macro-Mechanics of Lamina For better understanding of the macromechanics of lamina, the knowledge of the material properties in essential. Therefore, the

More information

Analysis of nonlinear shear deformations in CFRP and GFRP textile laminates

Analysis of nonlinear shear deformations in CFRP and GFRP textile laminates Loughborough University Institutional Repository Analysis of nonlinear shear deformations in CFRP and GFRP textile laminates This item was submitted to Loughborough University's Institutional Repository

More information

DAMAGE SIMULATION OF CFRP LAMINATES UNDER HIGH VELOCITY PROJECTILE IMPACT

DAMAGE SIMULATION OF CFRP LAMINATES UNDER HIGH VELOCITY PROJECTILE IMPACT 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS DAMAGE SIMULATION OF CFRP LAMINATES UNDER HIGH VELOCITY PROJECTILE IMPACT A. Yoshimura 1*, T. Okabe, M. Yamada 3, T. Ogasawara 1, Y. Tanabe 3 1 Advanced

More information

Composite Damage Material Modeling for Crash Simulation: MAT54 & the Efforts of the CMH-17 Numerical Round Robin

Composite Damage Material Modeling for Crash Simulation: MAT54 & the Efforts of the CMH-17 Numerical Round Robin Composite Damage Material Modeling for Crash Simulation: MAT54 & the Efforts of the CMH-17 Numerical Round Robin 2014 Technical Review Bonnie Wade (UW) Prof. Paolo Feraboli AMTAS (JAMS) Crashworthiness

More information

Modeling of Composite Panel Under Fire and Compression

Modeling of Composite Panel Under Fire and Compression American Composites Manufacturers Association January 15-17, 2009 Tampa, FL USA Abstract Modeling of Composite Panel Under Fire and Compression By Ziqing Yu, Dept of Engineering Technology Aixi Zhou, Dept

More information

Ballistic impact behaviour of thick composites: Parametric studies

Ballistic impact behaviour of thick composites: Parametric studies Ballistic impact behaviour of thick composites: Parametric studies N.K. Naik *, A.V. Doshi Aerospace Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, India Abstract

More information

Introduction to Engineering Materials ENGR2000. Dr. Coates

Introduction to Engineering Materials ENGR2000. Dr. Coates Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed

More information

A Numerical Study on Prediction of BFS in Composite Structures under Ballistic Impact

A Numerical Study on Prediction of BFS in Composite Structures under Ballistic Impact VOL. 1, 2015 ISSN 2394 3750 EISSN 2394 3769 SCIENCE & TECHNOLOGY A Numerical Study on Prediction of BFS in Composite Structures under Ballistic Impact Bandaru Aswani Kumar 1, Suhail Ahmad 2 1. Research

More information

Investigation of the Shear Thickening Fluid Dynamic Properties and its Influence on the Impact Resistance of Multilayered Fabric Composite Barrier

Investigation of the Shear Thickening Fluid Dynamic Properties and its Influence on the Impact Resistance of Multilayered Fabric Composite Barrier 11 th International LS-DYNA Users Conference Blast / Impact (1) Investigation of the Shear Thickening Fluid Dynamic Properties and its Influence on the Impact Resistance of Multilayered Fabric Composite

More information

PLY LEVEL UNCERTAINTY EFFECTS ON FAILURE OF COMPOSITE

PLY LEVEL UNCERTAINTY EFFECTS ON FAILURE OF COMPOSITE 7th European Workshop on Structural Health Monitoring July 8-11, 2014. La Cité, Nantes, France More Info at Open Access Database www.ndt.net/?id=17206 PLY LEVEL UNCERTAINTY EFFECTS ON FAILURE OF COMPOSITE

More information

Composites: Part B 42 (2011) Contents lists available at ScienceDirect. Composites: Part B

Composites: Part B 42 (2011) Contents lists available at ScienceDirect. Composites: Part B Composites: Part B 42 (2011) 771 780 Contents lists available at ScienceDirect Composites: Part B journal homepage: www.elsevier.com/locate/compositesb Finite element simulation of ceramic/composite armor

More information

Numerical Analysis of Composite Panels in the Post-Buckling Field taking into account Progressive Failure

Numerical Analysis of Composite Panels in the Post-Buckling Field taking into account Progressive Failure Copyright c 007 ICCES ICCES, vol.1, no.3, pp.93-98, 007 Numerical Analysis of Composite Panels in the Post-Buckling Field taking into account Progressive Failure C. Bisagni 1 Summary The research here

More information

Prediction of Elastic Constants on 3D Four-directional Braided

Prediction of Elastic Constants on 3D Four-directional Braided Prediction of Elastic Constants on 3D Four-directional Braided Composites Prediction of Elastic Constants on 3D Four-directional Braided Composites Liang Dao Zhou 1,2,* and Zhuo Zhuang 1 1 School of Aerospace,

More information

CIVE 2700: Civil Engineering Materials Fall Lab 2: Concrete. Ayebabomo Dambo

CIVE 2700: Civil Engineering Materials Fall Lab 2: Concrete. Ayebabomo Dambo CIVE 2700: Civil Engineering Materials Fall 2017 Lab 2: Concrete Ayebabomo Dambo Lab Date: 7th November, 2017 CARLETON UNIVERSITY ABSTRACT Concrete is a versatile construction material used in bridges,

More information

IMPACT DAMAGE TO 3D WOVEN CFRP COMPOSITE PLATES

IMPACT DAMAGE TO 3D WOVEN CFRP COMPOSITE PLATES IMPACT DAMAGE TO 3D WOVEN CFRP COMPOSITE PLATES G. Zumpano 1,3, MPF Sutcliffe 1, C Monroy Aceves 1, WJ Stronge 1, M. Fox 2 1 Cambridge University Engineering Department Trumpington Street, Cambridge, CB2

More information

Linear Elastic Fracture Mechanics

Linear Elastic Fracture Mechanics Measure what is measurable, and make measurable what is not so. - Galileo GALILEI Linear Elastic Fracture Mechanics Krishnaswamy Ravi-Chandar Lecture presented at the University of Pierre and Marie Curie

More information

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations

Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations Modelling the nonlinear shear stress-strain response of glass fibrereinforced composites. Part II: Model development and finite element simulations W. Van Paepegem *, I. De Baere and J. Degrieck Ghent

More information

Keywords: Armor Piercing Projectile, Fragment Simulating Projectile, Ceramic/Composite Hybrid Armor, AUTODYN

Keywords: Armor Piercing Projectile, Fragment Simulating Projectile, Ceramic/Composite Hybrid Armor, AUTODYN Multidiscipline Modeling in Mat. and Str., Vol. XX, No. XX, pp. 1-28(XXXX) BRILL XXXX. Also available online-www.vsppub.com BALLISTIC PERFORMANCE OF ALUMINA/S-2 GLASS- REINFORCED POLYMER-MATRIX COMPOSITE

More information

Crash and Impact Simulation of Composite Structures by Using CAE Process Chain

Crash and Impact Simulation of Composite Structures by Using CAE Process Chain Crash and Impact Simulation of Composite Structures by Using CAE Process Chain Madhukar Chatiri 1, Thorsten Schütz 2, Anton Matzenmiller 3, Ulrich Stelzmann 1 1 CADFEM GmbH, Grafing/Munich, Germany, mchatiri@cadfem.de

More information

Finite element analysis of hypervelocity impact behaviour of CFRP-Al/HC sandwich panel

Finite element analysis of hypervelocity impact behaviour of CFRP-Al/HC sandwich panel Loughborough University Institutional Repository Finite element analysis of hypervelocity impact behaviour of CFRP-Al/HC sandwich panel This item was submitted to Loughborough University's Institutional

More information

Analysis of Flexural Properties of Carbon Fiber Reinforced / E-Poxy Composite Material

Analysis of Flexural Properties of Carbon Fiber Reinforced / E-Poxy Composite Material ISSN 2395-1621 Analysis of Flexural Properties of Carbon Fiber Reinforced / E-Poxy Composite Material #1 Kishor Shingare, #2 Dr. S.M. Shendokar, #3 Prof. P.V. Deshmukh, #4 Prof. S.S. Chavan 1 kishorshingare911@gmail.com

More information

Damage modeling for Taylor impact simulations

Damage modeling for Taylor impact simulations J. Phys. IV France 134 (2006) 331 337 C EDP Sciences, Les Ulis DOI: 10.1051/jp4:2006134051 Damage modeling for Taylor impact simulations C.E. Anderson Jr. 1, I.S. Chocron 1 and A.E. Nicholls 1 1 Engineering

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering Science and Innovative Technology (IJESIT) Volume 2, Issue 4, July 2013 Delamination Studies in Fibre-Reinforced Polymer Composites K.Kantha Rao, Dr P. Shailesh, K. Vijay Kumar 1 Associate Professor, Narasimha Reddy Engineering College Hyderabad. 2 Professor, St. Peter s Engineering

More information

EXPERIMENTAL CHARACTERIZATION AND COHESIVE LAWS FOR DELAMINATION OF OFF-AXIS GFRP LAMINATES

EXPERIMENTAL CHARACTERIZATION AND COHESIVE LAWS FOR DELAMINATION OF OFF-AXIS GFRP LAMINATES 20 th International Conference on Composite Materials Copenhagen, 19-24 th July 2015 EXPERIMENTAL CHARACTERIZATION AND COHESIVE LAWS FOR DELAMINATION OF OFF-AXIS GFRP LAMINATES Esben Lindgaard 1 and Brian

More information

Theoretical Approach to Predict Transverse Impact Response of Variable-Stiffness Curved Composite Plates

Theoretical Approach to Predict Transverse Impact Response of Variable-Stiffness Curved Composite Plates *Manuscript Click here to view linked References 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 Theoretical Approach to Predict Transverse Impact Response of Variable-Stiffness Curved Composite Plates B. Arachchige,

More information

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS - Technical Paper - Tidarut JIRAWATTANASOMKUL *1, Dawei ZHANG *2 and Tamon UEDA *3 ABSTRACT The objective of this study is to propose a new

More information

BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS

BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS BIAXIAL STRENGTH INVESTIGATION OF CFRP COMPOSITE LAMINATES BY USING CRUCIFORM SPECIMENS H. Kumazawa and T. Takatoya Airframes and Structures Group, Japan Aerospace Exploration Agency 6-13-1, Ohsawa, Mitaka,

More information

ME 2570 MECHANICS OF MATERIALS

ME 2570 MECHANICS OF MATERIALS ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation

More information

A RESEARCH ON NONLINEAR STABILITY AND FAILURE OF THIN- WALLED COMPOSITE COLUMNS WITH OPEN CROSS-SECTION

A RESEARCH ON NONLINEAR STABILITY AND FAILURE OF THIN- WALLED COMPOSITE COLUMNS WITH OPEN CROSS-SECTION A RESEARCH ON NONLINEAR STABILITY AND FAILURE OF THIN- WALLED COMPOSITE COLUMNS WITH OPEN CROSS-SECTION H. Debski a*, J. Bienias b, P. Jakubczak b a Faculty of Mechanical Engineering, Department of Machine

More information

NUMERICAL SIMULATION OF DAMAGE IN THERMOPLASTIC COMPOSITE MATERIALS

NUMERICAL SIMULATION OF DAMAGE IN THERMOPLASTIC COMPOSITE MATERIALS 5 th European LS-DYNA Users Conference Composites NUMERICAL SIMULATION OF DAMAGE IN THERMOPLASTIC COMPOSITE MATERIALS Kevin Brown 1, Richard Brooks, Nicholas Warrior School of Mechanical, Materials and

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics

Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics Impact and Crash Modeling of Composite Structures: A Challenge for Damage Mechanics Dr. A. Johnson DLR Dr. A. K. Pickett ESI GmbH EURO-PAM 99 Impact and Crash Modelling of Composite Structures: A Challenge

More information

Open-hole compressive strength prediction of CFRP composite laminates

Open-hole compressive strength prediction of CFRP composite laminates Open-hole compressive strength prediction of CFRP composite laminates O. İnal 1, A. Ataş 2,* 1 Department of Mechanical Engineering, Balikesir University, Balikesir, 10145, Turkey, inal@balikesir.edu.tr

More information

An integrated approach to the design of high performance carbon fibre reinforced risers - from micro to macro - scale

An integrated approach to the design of high performance carbon fibre reinforced risers - from micro to macro - scale An integrated approach to the design of high performance carbon fibre reinforced risers - from micro to macro - scale Angelos Mintzas 1, Steve Hatton 1, Sarinova Simandjuntak 2, Andrew Little 2, Zhongyi

More information

Indentation Energy in Bending of Sandwich Beams with Composite Laminated Faces and Foam Core

Indentation Energy in Bending of Sandwich Beams with Composite Laminated Faces and Foam Core Indentation Energy in Bending of Sandwich Beams with Composite Laminated Faces and Foam Core M. SADIGHI, H. POURIAYEVALI, and M. SAADATI Dept. of Mechanical Engineering, Amirkabir University of Tech, Tehran,

More information

IMPACT BEHAVIOR OF A SIMPLE MULTIFUNCTIONAL PLATE STRUCTURE

IMPACT BEHAVIOR OF A SIMPLE MULTIFUNCTIONAL PLATE STRUCTURE THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS IMPACT BEHAVIOR OF A SIMPLE MULTIFUNCTIONAL PLATE STRUCTURE T. Mudric 1,2 *, C. Giacomuzzo 2, U. Galvanetto 1,2, A. Francesconi 1,2, M. Zaccariotto

More information

Finite element analysis of drilled holes in uni-directional composite laminates using failure theories

Finite element analysis of drilled holes in uni-directional composite laminates using failure theories American Journal of Science and Technology 2014; 1(3): 101-105 Published online May 30, 2014 (http://www.aascit.org/journal/ajst) Finite element analysis of drilled holes in uni-directional composite laminates

More information

Modeling of Interfacial Debonding Induced by IC Crack for Concrete Beam-bonded with CFRP

Modeling of Interfacial Debonding Induced by IC Crack for Concrete Beam-bonded with CFRP Proceedings of the World Congress on Engineering 21 Vol II WCE 21, June 2 - July 1, 21, London, U.K. Modeling of Interfacial Debonding Induced by IC Crack for Concrete Beam-bonded with CFRP Lihua Huang,

More information

Hygrothermal stresses in laminates

Hygrothermal stresses in laminates Hygrothermal stresses in laminates Changing environment conditions (temperature and moisture) have an important effect on the properties which are matrix dominated. Change in temperaturet and moisture

More information

Crashworthiness of composite structures: Experiment and Simulation

Crashworthiness of composite structures: Experiment and Simulation Crashworthiness of composite structures: Experiment and Simulation Francesco Deleo, Bonnie Wade and Prof. Paolo Feraboli (UW) Dr. Mostafa Rassaian (Boeing R&T) JAMS 2010 The Joint Advanced Materials and

More information

SIMULATION STUDIES ON THE EFFECT OF PROJECTILE NOSE SHAPE IMPACTING ON ALUMINUM PLATES

SIMULATION STUDIES ON THE EFFECT OF PROJECTILE NOSE SHAPE IMPACTING ON ALUMINUM PLATES Int. J. Mech. Eng. & Rob. Res. 2014 Sivaiah A et al., 2014 Research Paper ISSN 2278 0149 www.ijmerr.com Vol. 3, No. 1, January 2014 2014 IJMERR. All Rights Reserved SIMULATION STUDIES ON THE EFFECT OF

More information

Hydrothermal ageing effects on flexural properties of GFRP composite laminates

Hydrothermal ageing effects on flexural properties of GFRP composite laminates Indian Journal of Engineering & Materials Sciences Vol. 20, October 2013, pp. 415-424 Hydrothermal ageing effects on flexural properties of GFRP composite laminates P Sampath Rao* & M Manzoor Hussain Department

More information

Chapter 5. Vibration Analysis. Workbench - Mechanical Introduction ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved.

Chapter 5. Vibration Analysis. Workbench - Mechanical Introduction ANSYS, Inc. Proprietary 2009 ANSYS, Inc. All rights reserved. Workbench - Mechanical Introduction 12.0 Chapter 5 Vibration Analysis 5-1 Chapter Overview In this chapter, performing free vibration analyses in Simulation will be covered. In Simulation, performing a

More information

IMECE CRASHWORTHINESS OF AIRCRAFT COMPOSITES STRUCTURES

IMECE CRASHWORTHINESS OF AIRCRAFT COMPOSITES STRUCTURES Proceedings of IMECE2002 ASME International Mechanical Engineering Congress & Exposition New Orleans, Louisiana, November 17-22, 2002 IMECE2002-32917 CRASHWORTHINESS OF AIRCRAFT COMPOSITES STRUCTURES F.

More information

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS

SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS SANDWICH COMPOSITE BEAMS for STRUCTURAL APPLICATIONS de Aguiar, José M., josemaguiar@gmail.com Faculdade de Tecnologia de São Paulo, FATEC-SP Centro Estadual de Educação Tecnológica Paula Souza. CEETEPS

More information

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour

Outline. Tensile-Test Specimen and Machine. Stress-Strain Curve. Review of Mechanical Properties. Mechanical Behaviour Tensile-Test Specimen and Machine Review of Mechanical Properties Outline Tensile test True stress - true strain (flow curve) mechanical properties: - Resilience - Ductility - Toughness - Hardness A standard

More information

TABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

TABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA TABLE OF CONTENTS 1. INTRODUCTION TO COMPOSITE MATERIALS 1.1 Introduction... 1.2 Classification... 1.2.1

More information

A FINITE ELEMENT MODEL FOR THE ANALYSIS OF DELAMINATIONS IN FRP SHELLS

A FINITE ELEMENT MODEL FOR THE ANALYSIS OF DELAMINATIONS IN FRP SHELLS TRENDS IN COMPUTATIONAL STRUCTURAL MECHANICS W.A. Wall, K.-U. Bletzinger and K. Schweizerhof (Eds.) c CIMNE, Barcelona, Spain 2001 A FINITE ELEMENT MODEL FOR THE ANALYSIS OF DELAMINATIONS IN FRP SHELLS

More information

Stress-strain response and fracture behaviour of plain weave ceramic matrix composites under uni-axial tension, compression or shear

Stress-strain response and fracture behaviour of plain weave ceramic matrix composites under uni-axial tension, compression or shear Xi an 2-25 th August 217 Stress-strain response and fracture behaviour of plain weave ceramic matrix composites under uni-axial tension compression or shear Heyin Qi 1 Mingming Chen 2 Yonghong Duan 3 Daxu

More information

SCALING EFFECTS IN THE LOW VELOCITY IMPACT RESPONSE OF FIBRE METAL

SCALING EFFECTS IN THE LOW VELOCITY IMPACT RESPONSE OF FIBRE METAL SCALING EFFECTS IN THE LOW VELOCITY IMPACT RESPONSE OF FIBRE METAL LAMINATES J. G. Carrillo 1, S. McKown 1, M. Mujib 1 and W. J. Cantwell 1. R. Day 2 1 Department of Engineering, University of Liverpool,

More information

REGRESSION MODELING FOR STRENGTH AND TOUGHNESS EVALUATION OF HYBRID FIBRE REINFORCED CONCRETE

REGRESSION MODELING FOR STRENGTH AND TOUGHNESS EVALUATION OF HYBRID FIBRE REINFORCED CONCRETE REGRESSION MODELING FOR STRENGTH AND TOUGHNESS EVALUATION OF HYBRID FIBRE REINFORCED CONCRETE S. Eswari 1, P. N. Raghunath and S. Kothandaraman 1 1 Department of Civil Engineering, Pondicherry Engineering

More information

Failure Analysis of Unidirectional Composite Pinned- Joints

Failure Analysis of Unidirectional Composite Pinned- Joints 217 IJEDR Volume, Issue 4 ISSN: 2321-9939 Failure Analysis of Unidirectional Composite Pinned- Joints 1 Sai Ashok.M, 2 Mr. U. Koteswara Rao 1 M-tech Machine Design, 2 Associate Professor & Asst. COE 1

More information

IMPACT STRENGTH AND RESPONSE BEHAVIOR OF CFRP GUARDER BELT FOR SIDE COLLISION OF AUTOMOBILES

IMPACT STRENGTH AND RESPONSE BEHAVIOR OF CFRP GUARDER BELT FOR SIDE COLLISION OF AUTOMOBILES IMPACT STRENGTH AND RESPONSE BEHAVIOR OF CFRP GUARDER BELT FOR SIDE COLLISION OF AUTOMOBILES AOKI Y.*, BEN G.**, KIM H. S.* *College of Science & Technology, Nihon University **College of Industrial Technology,

More information

Fracture Behaviour of FRP Cross-Ply Laminate With Embedded Delamination Subjected To Transverse Load

Fracture Behaviour of FRP Cross-Ply Laminate With Embedded Delamination Subjected To Transverse Load Fracture Behaviour of FRP Cross-Ply Laminate With Embedded Delamination Subjected To Transverse Load Sriram Chintapalli 1, S.Srilakshmi 1 1 Dept. of Mech. Engg., P. V. P. Siddhartha Institute of Technology.

More information

FINITE ELEMENT ANALYSIS OF IMPACT AND PENETRATION OF POLYCARBONATE PLATE BY A RIGID SPHERICAL PROJECTILE

FINITE ELEMENT ANALYSIS OF IMPACT AND PENETRATION OF POLYCARBONATE PLATE BY A RIGID SPHERICAL PROJECTILE FINITE ELEMENT ANALYSIS OF IMPACT AND PENETRATION OF POLYCARBONATE PLATE BY A RIGID SPHERICAL PROJECTILE C.T. Tsai Department of Mechanical Engineering Florida Atlantic University Boca Raton, FL 33431,

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS CHATR Stress MCHANICS OF MATRIALS and Strain Axial Loading Stress & Strain: Axial Loading Suitability of a structure or machine may depend on the deformations in the structure as well as the stresses induced

More information

FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS

FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS FINITE ELEMENT ANALYSIS OF COMPOSITE MATERIALS Ever J. Barbero Department of Mechanical and Aerospace Engineering West Virginia University USA CRC Press Taylor &.Francis Group Boca Raton London New York

More information

LS-DYNA MAT54 for simulating composite crash energy absorption

LS-DYNA MAT54 for simulating composite crash energy absorption LS-DYNA MAT54 for simulating composite crash energy absorption Bonnie Wade and Paolo Feraboli (UW) Mostafa Rassaian (Boeing BR&T) JAMS 2011 The Joint Advanced Materials and Structures Center of Excellence

More information

PENETRATION OF FRAGMENTS INTO AIRCRAFT COMPOSITE STRUCTURES. G. Jenaro, F.Rey, G.Rosado and P. García

PENETRATION OF FRAGMENTS INTO AIRCRAFT COMPOSITE STRUCTURES. G. Jenaro, F.Rey, G.Rosado and P. García 23 RD INTERNATIONAL SYMPOSIUM ON BALLISTICS TARRAGONA, SPAIN 16-20 APRIL 2007 PENETRATION OF FRAGMENTS INTO AIRCRAFT COMPOSITE STRUCTURES. G. Jenaro, F.Rey, G.Rosado and P. García Laboratorio Químico Central

More information

NUMERICAL AND EXPERIMENTAL STUDY OF FAILURE IN STEEL BEAMS UNDER IMPACT CONDITIONS

NUMERICAL AND EXPERIMENTAL STUDY OF FAILURE IN STEEL BEAMS UNDER IMPACT CONDITIONS Blucher Mechanical Engineering Proceedings May 2014, vol. 1, num. 1 www.proceedings.blucher.com.br/evento/10wccm NUMERICAL AND EXPERIMENTAL STUDY OF FAILURE IN STEEL BEAMS UNDER IMPACT CONDITIONS E. D.

More information

4.MECHANICAL PROPERTIES OF MATERIALS

4.MECHANICAL PROPERTIES OF MATERIALS 4.MECHANICAL PROPERTIES OF MATERIALS The diagram representing the relation between stress and strain in a given material is an important characteristic of the material. To obtain the stress-strain diagram

More information

Capability Assessment of Finite Element Software in Predicting the Last Ply Failure of Composite Laminates

Capability Assessment of Finite Element Software in Predicting the Last Ply Failure of Composite Laminates Available online at www.sciencedirect.com Procedia Engineering 41 (2012 ) 1647 1653 International Symposium on Robotics and Intelligent Sensors 2012 (IRIS 2012) Capability Assessment of Finite Element

More information

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka

12/8/2009. Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Prof. A.K.M.B. Rashid Department of MME BUET, Dhaka Introduction and classes of properties Case studies showing selection of the right material for the job Deformation of material under the action of a

More information

MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING

MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING MICROMECHANICAL ANALYSIS OF FRP COMPOSITES SUBJECTED TO LONGITUDINAL LOADING N. Krishna Vihari 1, P. Phani Prasanthi 1, V. Bala Krishna Murthy 2* and A. Srihari Prasad 3 1 Mech. Engg. Dept., P. V. P. Siddhartha

More information

Low Velocity Impact on Laminates Reinforced with Polyethylene and Aramidic Fibres

Low Velocity Impact on Laminates Reinforced with Polyethylene and Aramidic Fibres Low Velocity Impact on Laminates Reinforced with Polyethylene and Aramidic Fibres M.A.G. Silva &. ismaşiu entro de Investigação em Estruturas e onstrução UNI, Faculdade de iências e Tecnologia, Universidade

More information

Abstract. 1 Introduction

Abstract. 1 Introduction Computed radial stresses in a concrete target penetrated by a steel projectile G.R. Johnson*, S.R. Beissel", T.J. Holmquist* & D.J. Frew* "Alliant Techsystems, Incorporated, Hopkins, Minnesota, USA & U.S.

More information

Materials and Structures. Indian Institute of Technology Kanpur

Materials and Structures. Indian Institute of Technology Kanpur Introduction to Composite Materials and Structures Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 16 Behavior of Unidirectional Composites Lecture Overview Mt Material ilaxes in unidirectional

More information

The Relationship between the Applied Torque and Stresses in Post-Tension Structures

The Relationship between the Applied Torque and Stresses in Post-Tension Structures ECNDT 6 - Poster 218 The Relationship between the Applied Torque and Stresses in Post-Tension Structures Fui Kiew LIEW, Sinin HAMDAN * and Mohd. Shahril OSMAN, Faculty of Engineering, Universiti Malaysia

More information

Reliability analysis of different structure parameters of PCBA under drop impact

Reliability analysis of different structure parameters of PCBA under drop impact Journal of Physics: Conference Series PAPER OPEN ACCESS Reliability analysis of different structure parameters of PCBA under drop impact To cite this article: P S Liu et al 2018 J. Phys.: Conf. Ser. 986

More information

Numerical methods of multiaxial fatigue life prediction for elastomers under variable amplitude loadings

Numerical methods of multiaxial fatigue life prediction for elastomers under variable amplitude loadings ORIGINAL CONTRIBUTION doi: 10.1111/ffe.12401 Numerical methods of multiaxial fatigue life prediction for elastomers under variable amplitude loadings J. CHUNG and N. H. KIM Department of Mechanical and

More information

PERFORMANCE OF COMPOSITE PANELS SUBJECTED TO UNDERWATER IMPULSIVE LOADING

PERFORMANCE OF COMPOSITE PANELS SUBJECTED TO UNDERWATER IMPULSIVE LOADING PERFORMANCE OF COMPOSITE PANELS SUBJECTED TO UNDERWATER IMPULSIVE LOADING F. Latourte, D. Grégoire, R. Bellur-Ramaswamy, H.D. Espinosa* Northwestern University, 2145 Sheridan Road, Evanston IL 60202 (*)

More information