SCHEME OF BE 100 ENGINEERING MECHANICS DEC 2015

Size: px
Start display at page:

Download "SCHEME OF BE 100 ENGINEERING MECHANICS DEC 2015"

Transcription

1 Part A Qn. No SCHEME OF BE 100 ENGINEERING MECHANICS DEC 201 Module No BE100 ENGINEERING MECHANICS Answer ALL Questions 1 1 Theorem of three forces states that three non-parallel forces can be in equilibrium only when they lie in one plane, intersect in one point, and their free vectors build a closed triangle. (give 3 marks) Law of superposition states that, the action of a given system of forces on a rigid body will in no way be changed if we add to or subtract from them another system of forces in equilibrium.(give 2 marks) 2 2 A free body diagram is a graphic, dematerialized, symbolic representation of the body (structure, element or segment of an element) in which all connecting "pieces" have been removed. (give 2 marks) Free-body diagrams are diagrams used to show the relative magnitude and direction of all forces acting upon an object in a given situation. (give 1 marks) Marks (give 2 marks) 3 3 Parallel axis theorem states that moment of inertia of a plane area with respect to any axis in its plane is equal to the moment of inertia with respect to a parallel centroidal axis plus the product of the area and the square of the distance between the two axes. (give 2 marks) Proof: In Fig. 1 OXY axes is set parallel to the centroidal Oxy axes. Now the moment of inertia of the given area A expressed in terms of the elemental area da shown about OX axis is I XX = Y 2 da = (b + y) 2 da = y 2 da + 2b yda + b 2 da Similarly about OY axis is I YY = X 2 da = (a + x) 2 da = x 2 da + 2a xda + a 2 da Here yda and xda represents the first moment of the Al- Ameen Engg. College 1

2 area da with respect to the centroidal axes. Since Oxy is the centroidal axes, the above in the above terms must be zero. The first terms in the above equations represent the moment of inertia about the centroidal axes and they are denoted by ICx and I Cy. I XX = I Cx + A b 2 I = + A a 2 YY I Cy Adding the above equations gives Polar moment of inertia J O = I XX + I YY = I Cx + I Cy + A (a 2 + b 2 ) J O = J C + Ad 2 (give 3 marks) 4 4 Weight of the body = 00N Angle of friction, = 20 0 We know, Coefficient of friction, µ= tan = tan20 0 = 0.36 Resolving forces normal to the plane, R= 00cos2 0 = 43.1N We know, F=µR = 0.36 x 43.1 = N Resolving forces along the plane, P = 00sin2 0 + F = N = Maximum value of P Therefore Minimum value of P = 00sin2 0 F = 48.18N Al- Ameen Engg. College 2

3 Law of conservation of energy states that the total energy of an isolated system remains constant it is said to be conserved over time. ( 2 marks) Example with explanation of any system. Eg Thermodynamics, Mass, etc - ( 3 marks) 6 Linear Velocity Angular Velocity The rate of change of The rate of change of angular displacement between an displacement is known as object and a fixed point. angular velocity Linear velocity is a vector Angular velocity is vector quantity. quantity Linear velocity is measured in The unit of angular velocity is meters per second. radians per second Denoted by v This is usually denoted by ω. Example Motion of car in a straight line Example - Motions like blades of a rotating fan or a running wheel 7 6 i) In mechanics, the degree of freedom (DOF) of a mechanical system is the number of independent parameters that define its configuration. Example - The position of a single car (engine) moving along a track has one degree of freedom because the position of the car is defined by the distance along the track. The position and orientation of a rigid body in space is defined by three components of translation and three components of rotation, which means that it has six degrees of freedom. ii) the reaction due to the inertia of an accelerated body is equal and opposite to the force causing the acceleration and results in a condition of kinetic equilibrium Example A reaction of baseball is equal to the blow of the bat upon the baseball iii) The acceleration of an object as produced by a net force is directly proportional to the magnitude of the net force, in the same direction as the net force, and inversely proportional to the mass of the object. F = ma 8 6 i) Amplitude is the maximum displacement of points on a wave, which you can think of as the degree or intensity of change. This maximum displacement is measured from the equilibrium position. For a simple harmonic wave, shown below, A o is the amplitude Al- Ameen Engg. College 3

4 ii) The frequency, f, of a wave is the number of waves passing a point in a certain time. We normally use a time of one second, so this gives frequency the unit hertz (Hz), since one hertz is equal to one wave per second. B Set 1 Answer ANY 2 Questions 9a 1 Algebraic sum of horizontal components is given by, H = 20cos cos4 0-3cos40 0 = N Algebraic sum of vertical components is given by, V = 20sin sin4 0-3sin40 0 = 33.73N Magnitude of resultant, R= [ (HH)] 2 + [ (VV)] 2 = 4.6N The direction of resultant is given by, tanθ = VV HH θ = Here H = -ve and V = +ve, therefore angle between 90 0 to Ie, actual angle, θ = = Al- Ameen Engg. College 4

5 9b 1 Al- Ameen Engg. College

6 10a 1 10b 2 Use F y = 0 (give 1 marks) Use M a = 0 (give 1 marks) R A = 80 KN (give 1. marks) R B = 0 KN (give 1. marks) 11a 2 Here given the mass of crate is 163kg, Therefore weight = mg= =199.03N From the figure the sum of tensions are equal to the weight of the crate. T AB +T AC +T AD = j eq(1) T AB = T AB ( 360i+600j 270k) AB (-.48i+.8j-.36k) Similarly, T AC = T AC (.8j+.47k) T AD =T AD (.2i+.78j-.3k) Ie, T AB (-.48i+.8j-.36k) + T AC (.8j+.47k) + T AD (.2i+.78j-.3k) = j Equate the coefficients of i,j&k on both sides, T AB = 71.3N T AC = 830.3N T AD = 27.4N 11b 2 Free body diagram Al- Ameen Engg. College 6

7 Use F y = 0 Use F x = 0 (give 1 marks) R A = KN (give 1 marks) R B = 2000 KN (give 1 marks) R c = KN (give 1 marks) R d = KN (give 1 marks) Set 2 Answer ANY 2 Questions 12a 3 Pappus-Guldinus first theorem states that the area of the surface of revolution is equal to the length of the generating curve times the distance travelled by the centroid of the curve while the surface is being generated. (give 2 mark) Pappus-Guldinus second theorem states that the volume of a body of revolution is equal to the generating area times the distance travelled by the centroid of the area while the body is being generated. (give 2 mark) 12 b 3 The area shown in Fig. 7 is formed by adding the area elements 1 and 2 and then removing the element 3. Centroid of the given plane area about OXY axis can be calculated as 4 6 Al- Ameen Engg. College 7

8 13a 3 A 1 = 72 cm 2 X 1 = -6 cm A 2 = 36 cm 2 X 2 = -4 cm A 3 = 18π cm 2 X 3 = -8/π cm Centroid, x= cm 13b T =.94T T=116.04N Case II (Block B):- Weight of block B = 10N Coefficient of friction, µ = 0.32 Resolving forces normal to the plane, R 2 = Tsin W= = N We know, F 2 =µr 2 = 0.32 x = 61.6N Resolving forces along the plane, P = F 2 + Tcos20 0 = = 170.6N 14a 4 8 Al- Ameen Engg. College 8

9 R 2 = P Resolving forces along the plane, F 2 + T = Pcos30 0 We know, F 2 = µr 2 ie, µr 2 + T = Pcos P = 0.87PP P = 22.47N 14b 4 Any 2 uses of virtual work- Explanation 2 Set 3 Answer ANY 2 Questions 1a Difference between each with explanations (2 marks) 3 Examples for each case (1 mark each) 1b Free Body Diagram (2 mark) 7 Acceleration a = 0.98 m/s 2 (2 mark) Tension T = 80 N (3 mark) 16a Free Body Diagram (1 mark) Force in upward direction = 61.16N (1 mark) Pressure exerted by man = Tension in cable = N (2 marks) 16b 6 Angular Acceleration = 2ππ = 3.93 rad/s (1 mark) ωω Velocity = ωr sin (ωt) = 2.9 m/s 2 (2 marks) Acceleration = -ω2r cos (ωt) = 3.02 m/s 2 (2 marks) 17a 6 Free vibration occurs when a mechanical system is set off with an initial input and then allowed to vibrate freely. Examples - pulling a child back on a swing and then letting go or 3 hitting a tuning fork and letting it ring. (1. marks) Forced vibrations is when a time-varying disturbance (load, displacement or velocity) is applied to a mechanical system. The disturbance can be a periodic, steady-state input, a transient input, or a random input. The periodic input can be a harmonic or a non-harmonic disturbance. Examples - shaking washing machine due to an imbalance, transportation vibration (caused by truck engine, springs, road, etc.), or the vibration of a building during an earthquake. (1. marks) 17b 6 Stress in spindle = kn/m 2 (2 mark) Increase in length = x 10-6 m (2 marks) Frequency (3 marks) 7 Al- Ameen Engg. College 9

10 1 Subject BE 100 ENGINEERING MECHANICS 2 Name of Faculty SHAFEEK.K 3 Designation ASSISTANT PROFESSOR 4 Department MECHANICAL ENGINEERING shafeekup@gmail.com 6 Mobile No Name of College Al Ameen Engineering College, Kulappully Al- Ameen Engg. College 10

1. Replace the given system of forces acting on a body as shown in figure 1 by a single force and couple acting at the point A.

1. Replace the given system of forces acting on a body as shown in figure 1 by a single force and couple acting at the point A. Code No: Z0321 / R07 Set No. 1 I B.Tech - Regular Examinations, June 2009 CLASSICAL MECHANICS ( Common to Mechanical Engineering, Chemical Engineering, Mechatronics, Production Engineering and Automobile

More information

E 490 FE Exam Prep. Engineering Mechanics

E 490 FE Exam Prep. Engineering Mechanics E 490 FE Exam Prep Engineering Mechanics 2008 E 490 Course Topics Statics Newton s Laws of Motion Resultant Force Systems Moment of Forces and Couples Equilibrium Pulley Systems Trusses Centroid of an

More information

AP Physics. Harmonic Motion. Multiple Choice. Test E

AP Physics. Harmonic Motion. Multiple Choice. Test E AP Physics Harmonic Motion Multiple Choice Test E A 0.10-Kg block is attached to a spring, initially unstretched, of force constant k = 40 N m as shown below. The block is released from rest at t = 0 sec.

More information

Dept of ECE, SCMS Cochin

Dept of ECE, SCMS Cochin B B2B109 Pages: 3 Reg. No. Name: APJ ABDUL KALAM TECHNOLOGICAL UNIVERSITY SECOND SEMESTER B.TECH DEGREE EXAMINATION, MAY 2017 Course Code: BE 100 Course Name: ENGINEERING MECHANICS Max. Marks: 100 Duration:

More information

2. a) Explain the equilibrium of i) Concurrent force system, and ii) General force system.

2. a) Explain the equilibrium of i) Concurrent force system, and ii) General force system. Code No: R21031 R10 SET - 1 II B. Tech I Semester Supplementary Examinations Dec 2013 ENGINEERING MECHANICS (Com to ME, AE, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions

More information

Oscillatory Motion and Wave Motion

Oscillatory Motion and Wave Motion Oscillatory Motion and Wave Motion Oscillatory Motion Simple Harmonic Motion Wave Motion Waves Motion of an Object Attached to a Spring The Pendulum Transverse and Longitudinal Waves Sinusoidal Wave Function

More information

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter

Oscillation the vibration of an object. Wave a transfer of energy without a transfer of matter Oscillation the vibration of an object Wave a transfer of energy without a transfer of matter Equilibrium Position position of object at rest (mean position) Displacement (x) distance in a particular direction

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions (In summer 2014 we have not covered questions 30-35,40,41) 1.Which quantity can be converted from the English system to the metric system by the conversion factor

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

PSI AP Physics I Rotational Motion

PSI AP Physics I Rotational Motion PSI AP Physics I Rotational Motion Multiple-Choice questions 1. Which of the following is the unit for angular displacement? A. meters B. seconds C. radians D. radians per second 2. An object moves from

More information

Quantitative Skills in AP Physics 1

Quantitative Skills in AP Physics 1 This chapter focuses on some of the quantitative skills that are important in your AP Physics 1 course. These are not all of the skills that you will learn, practice, and apply during the year, but these

More information

PHYS 1303 Final Exam Example Questions

PHYS 1303 Final Exam Example Questions PHYS 1303 Final Exam Example Questions 1.Which quantity can be converted from the English system to the metric system by the conversion factor 5280 mi f 12 f in 2.54 cm 1 in 1 m 100 cm 1 3600 h? s a. feet

More information

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering)

B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) I B.Tech. Civil (Construction Management) / B.Tech. Civil (Water Resources Engineering) Term-End Examination 00 December, 2009 Co : ENGINEERING MECHANICS CD Time : 3 hours Maximum Marks : 70 Note : Attempt

More information

TOPIC : 8 : Balancing

TOPIC : 8 : Balancing TOPIC : 8 : Balancing --------------------------------------------------------------- Q.1. What is balancing? What are its objectives? What are types of balancing? BALANCING: Balancing is the technique

More information

Physics Kinematics, Projectile Motion, Free-Body Diagrams, and Rotational Motion

Physics Kinematics, Projectile Motion, Free-Body Diagrams, and Rotational Motion Physics Kinematics, Projectile Motion, Free-Body Diagrams, and Rotational Motion Kinematics and Projectile Motion Problem Solving Steps 1. Read and Re-Read the whole problem carefully before trying to

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 AERONAUTICAL ENGINEERING DEFINITIONS AND TERMINOLOGY Course Name : ENGINEERING MECHANICS Course Code : AAEB01 Program :

More information

TOPIC E: OSCILLATIONS SPRING 2019

TOPIC E: OSCILLATIONS SPRING 2019 TOPIC E: OSCILLATIONS SPRING 2019 1. Introduction 1.1 Overview 1.2 Degrees of freedom 1.3 Simple harmonic motion 2. Undamped free oscillation 2.1 Generalised mass-spring system: simple harmonic motion

More information

A-level Physics (7407/7408)

A-level Physics (7407/7408) A-level Physics (7407/7408) Further Mechanics Test Name: Class: Date: September 2016 Time: 55 Marks: 47 Page 1 Q1.The diagram shows a strobe photograph of a mark on a trolley X, moving from right to left,

More information

where G is called the universal gravitational constant.

where G is called the universal gravitational constant. UNIT-I BASICS & STATICS OF PARTICLES 1. What are the different laws of mechanics? First law: A body does not change its state of motion unless acted upon by a force or Every object in a state of uniform

More information

CIRCULAR MOTION, HARMONIC MOTION, ROTATIONAL MOTION

CIRCULAR MOTION, HARMONIC MOTION, ROTATIONAL MOTION CIRCULAR MOTION, HARMONIC MOTION, ROTATIONAL MOTION 1 UNIFORM CIRCULAR MOTION path circle distance arc Definition: An object which moves on a circle, travels equal arcs in equal times. Periodic motion

More information

CHAPTER 12 OSCILLATORY MOTION

CHAPTER 12 OSCILLATORY MOTION CHAPTER 1 OSCILLATORY MOTION Before starting the discussion of the chapter s concepts it is worth to define some terms we will use frequently in this chapter: 1. The period of the motion, T, is the time

More information

Pre-AP Physics Review Problems

Pre-AP Physics Review Problems Pre-AP Physics Review Problems SECTION ONE: MULTIPLE-CHOICE QUESTIONS (50x2=100 points) 1. The graph above shows the velocity versus time for an object moving in a straight line. At what time after t =

More information

Chapter 4. Forces and Newton s Laws of Motion. continued

Chapter 4. Forces and Newton s Laws of Motion. continued Chapter 4 Forces and Newton s Laws of Motion continued 4.9 Static and Kinetic Frictional Forces When an object is in contact with a surface forces can act on the objects. The component of this force acting

More information

Name: Date: Period: AP Physics C Rotational Motion HO19

Name: Date: Period: AP Physics C Rotational Motion HO19 1.) A wheel turns with constant acceleration 0.450 rad/s 2. (9-9) Rotational Motion H19 How much time does it take to reach an angular velocity of 8.00 rad/s, starting from rest? Through how many revolutions

More information

CHAPTER 1: PHYSICAL QUANTITIES AMD MEASUREMENT

CHAPTER 1: PHYSICAL QUANTITIES AMD MEASUREMENT CHAPTER 1: PHYSICAL UANTITIES AMD MEASUREMENT 11 Physical uantities and Units a) State basic quantities and their respective SI units: length (m), time (s), mass (kg), electrical current (A), temperature

More information

C7047. PART A Answer all questions, each carries 5 marks.

C7047. PART A Answer all questions, each carries 5 marks. 7047 Reg No.: Total Pages: 3 Name: Max. Marks: 100 PJ DUL KLM TEHNOLOGIL UNIVERSITY FIRST SEMESTER.TEH DEGREE EXMINTION, DEEMER 2017 ourse ode: E100 ourse Name: ENGINEERING MEHNIS PRT nswer all questions,

More information

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds?

variable Formula S or v SI variable Formula S or v SI 4. How is a Newton defined? What does a Newton equal in pounds? Newton s Laws 1 1. Define mass variable Formula S or v SI 2. Define inertia, how is inertia related to mass 3. What is a Force? variable Formula S or v SI 4. How is a Newton defined? What does a Newton

More information

r r Sample Final questions for PS 150

r r Sample Final questions for PS 150 Sample Final questions for PS 150 1) Which of the following is an accurate statement? A) Rotating a vector about an axis passing through the tip of the vector does not change the vector. B) The magnitude

More information

Chapter 2 Mechanical Equilibrium

Chapter 2 Mechanical Equilibrium Chapter 2 Mechanical Equilibrium I. Force (2.1) A. force is a push or pull 1. A force is needed to change an object s state of motion 2. State of motion may be one of two things a. At rest b. Moving uniformly

More information

AP Physics QUIZ Chapters 10

AP Physics QUIZ Chapters 10 Name: 1. Torque is the rotational analogue of (A) Kinetic Energy (B) Linear Momentum (C) Acceleration (D) Force (E) Mass A 5-kilogram sphere is connected to a 10-kilogram sphere by a rigid rod of negligible

More information

Chapter a. Spring constant, k : The change in the force per unit length change of the spring. b. Coefficient of subgrade reaction, k:

Chapter a. Spring constant, k : The change in the force per unit length change of the spring. b. Coefficient of subgrade reaction, k: Principles of Soil Dynamics 3rd Edition Das SOLUTIONS MANUAL Full clear download (no formatting errors) at: https://testbankreal.com/download/principles-soil-dynamics-3rd-editiondas-solutions-manual/ Chapter

More information

Oscillations and Waves

Oscillations and Waves Oscillations and Waves Oscillation: Wave: Examples of oscillations: 1. mass on spring (eg. bungee jumping) 2. pendulum (eg. swing) 3. object bobbing in water (eg. buoy, boat) 4. vibrating cantilever (eg.

More information

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week!

Chapter 13. Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition. Next Week! Chapter 13 Hooke s Law: F = - kx Periodic & Simple Harmonic Motion Springs & Pendula Waves Superposition Next Week! Review Physics 2A: Springs, Pendula & Circular Motion Elastic Systems F = kx Small Vibrations

More information

St. Joseph s Anglo-Chinese School

St. Joseph s Anglo-Chinese School Time allowed:.5 hours Take g = 0 ms - if necessary. St. Joseph s Anglo-Chinese School 008 009 First Term Examination Form 6 ASL Physics Section A (40%) Answer ALL questions in this section. Write your

More information

Chapter 6: Momentum Analysis

Chapter 6: Momentum Analysis 6-1 Introduction 6-2Newton s Law and Conservation of Momentum 6-3 Choosing a Control Volume 6-4 Forces Acting on a Control Volume 6-5Linear Momentum Equation 6-6 Angular Momentum 6-7 The Second Law of

More information

RIGID BODY MOTION (Section 16.1)

RIGID BODY MOTION (Section 16.1) RIGID BODY MOTION (Section 16.1) There are cases where an object cannot be treated as a particle. In these cases the size or shape of the body must be considered. Rotation of the body about its center

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 4.8-kg block attached to a spring executes simple harmonic motion on a frictionless

More information

Physics 1135 Version A

Physics 1135 Version A Physics 1135 Version A Spring 2017 Answer Sheet Solution Rec Sec E ini-test First Name: & Final Exam Remove this page from your exam when you begin. Write clearly in the space provided on this Answer Sheet

More information

General Physics Contest 2012

General Physics Contest 2012 General Physics Contest May 6, (9:am-:5am), Total of 5 pages. Some useful constants: Gas constant R = 8.34 J/mol K Electron mass m e = 9.9-3 kg Electron charge e =.6-9 C Electric constant (permittivity)

More information

On my honor, I have neither given nor received unauthorized aid on this examination.

On my honor, I have neither given nor received unauthorized aid on this examination. Instructor(s): Field/inzler PHYSICS DEPATMENT PHY 2053 Final Exam April 27, 2013 Name (print, last first): Signature: On my honor, I have neither given nor received unauthorized aid on this examination.

More information

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx

Chapter 12. Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx Chapter 1 Lecture Notes Chapter 1 Oscillatory Motion Recall that when a spring is stretched a distance x, it will pull back with a force given by: F = -kx When the mass is released, the spring will pull

More information

Q2. A machine carries a 4.0 kg package from an initial position of d ˆ. = (2.0 m)j at t = 0 to a final position of d ˆ ˆ

Q2. A machine carries a 4.0 kg package from an initial position of d ˆ. = (2.0 m)j at t = 0 to a final position of d ˆ ˆ Coordinator: Dr. S. Kunwar Monday, March 25, 2019 Page: 1 Q1. An object moves in a horizontal circle at constant speed. The work done by the centripetal force is zero because: A) the centripetal force

More information

Simple harmonic motion the motion of springs is a very important topic in physics.

Simple harmonic motion the motion of springs is a very important topic in physics. Chapter 11 Potential and Kinetic Energy Together: Simple Harmonic Motion In This Chapter Using Hooke s law Working with simple harmonic motion Calculating simple harmonic motion velcoity Finding simple

More information

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina Chapter Contents Describing Angular Motion Rolling Motion and the Moment of Inertia Torque Static Equilibrium

More information

Physics 161 Lecture 17 Simple Harmonic Motion. October 30, 2018

Physics 161 Lecture 17 Simple Harmonic Motion. October 30, 2018 Physics 161 Lecture 17 Simple Harmonic Motion October 30, 2018 1 Lecture 17: learning objectives Review from lecture 16 - Second law of thermodynamics. - In pv cycle process: ΔU = 0, Q add = W by gass

More information

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums

Oscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Mass-spring system Energy in SHM Pendulums PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Mass-spring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function

More information

LOVELY PROFESSIONAL UNIVERSITY BASIC ENGINEERING MECHANICS MCQ TUTORIAL SHEET OF MEC Concurrent forces are those forces whose lines of action

LOVELY PROFESSIONAL UNIVERSITY BASIC ENGINEERING MECHANICS MCQ TUTORIAL SHEET OF MEC Concurrent forces are those forces whose lines of action LOVELY PROFESSIONAL UNIVERSITY BASIC ENGINEERING MECHANICS MCQ TUTORIAL SHEET OF MEC 107 1. Concurrent forces are those forces whose lines of action 1. Meet on the same plane 2. Meet at one point 3. Lie

More information

EXAMPLE 2: CLASSICAL MECHANICS: Worked examples. b) Position and velocity as integrals. Michaelmas Term Lectures Prof M.

EXAMPLE 2: CLASSICAL MECHANICS: Worked examples. b) Position and velocity as integrals. Michaelmas Term Lectures Prof M. CLASSICAL MECHANICS: Worked examples Michaelmas Term 2006 4 Lectures Prof M. Brouard EXAMPLE 2: b) Position and velocity as integrals Calculate the position of a particle given its time dependent acceleration:

More information

MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL 3 PERIODIC FUNCTIONS

MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL 3 PERIODIC FUNCTIONS MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL 3 PERIODIC FUNCTIONS This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.

More information

Physics for Scientists and Engineers 4th Edition, 2017

Physics for Scientists and Engineers 4th Edition, 2017 A Correlation of Physics for Scientists and Engineers 4th Edition, 2017 To the AP Physics C: Mechanics Course Descriptions AP is a trademark registered and/or owned by the College Board, which was not

More information

Outline. Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves

Outline. Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves Outline Hook s law. Mass spring system Simple harmonic motion Travelling waves Waves in string Sound waves Hooke s Law Force is directly proportional to the displacement of the object from the equilibrium

More information

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm!

Wiley Plus. Final Assignment (5) Is Due Today: Before 11 pm! Wiley Plus Final Assignment (5) Is Due Today: Before 11 pm! Final Exam Review December 9, 009 3 What about vector subtraction? Suppose you are given the vector relation A B C RULE: The resultant vector

More information

2. Mass, Force and Acceleration

2. Mass, Force and Acceleration . Mass, Force and Acceleration [This material relates predominantly to modules ELP034, ELP035].1 ewton s first law of motion. ewton s second law of motion.3 ewton s third law of motion.4 Friction.5 Circular

More information

2016 ENGINEERING MECHANICS

2016 ENGINEERING MECHANICS Set No 1 I B. Tech I Semester Regular Examinations, Dec 2016 ENGINEERING MECHANICS (Com. to AE, AME, BOT, CHEM, CE, EEE, ME, MTE, MM, PCE, PE) Time: 3 hours Max. Marks: 70 Question Paper Consists of Part-A

More information

G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam

G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice exam G r a d e 1 1 P h y s i c s ( 3 0 s ) Final Practice Exam Instructions The final exam will be weighted as follows: Modules 1 6 15 20% Modules

More information

Name: M1 - Dynamics. Date: Time: Total marks available: Total marks achieved:

Name: M1 - Dynamics. Date: Time: Total marks available: Total marks achieved: Name: M1 - Dynamics Date: Time: Total marks available: Total marks achieved: Questions Q1. A railway truck P, of mass m kg, is moving along a straight horizontal track with speed 15 ms 1. Truck P collides

More information

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves

Raymond A. Serway Chris Vuille. Chapter Thirteen. Vibrations and Waves Raymond A. Serway Chris Vuille Chapter Thirteen Vibrations and Waves Periodic Motion and Waves Periodic motion is one of the most important kinds of physical behavior Will include a closer look at Hooke

More information

PHYS 1114, Lecture 33, April 10 Contents:

PHYS 1114, Lecture 33, April 10 Contents: PHYS 1114, Lecture 33, April 10 Contents: 1 This class is o cially cancelled, and has been replaced by the common exam Tuesday, April 11, 5:30 PM. A review and Q&A session is scheduled instead during class

More information

Uniform Circular Motion

Uniform Circular Motion Slide 1 / 112 Uniform Circular Motion 2009 by Goodman & Zavorotniy Slide 2 / 112 Topics of Uniform Circular Motion (UCM) Kinematics of UCM Click on the topic to go to that section Period, Frequency, and

More information

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th )

Physics 41 HW Set 1 Chapter 15 Serway 8 th ( 7 th ) Conceptual Q: 4 (7), 7 (), 8 (6) Physics 4 HW Set Chapter 5 Serway 8 th ( 7 th ) Q4(7) Answer (c). The equilibrium position is 5 cm below the starting point. The motion is symmetric about the equilibrium

More information

5. Plane Kinetics of Rigid Bodies

5. Plane Kinetics of Rigid Bodies 5. Plane Kinetics of Rigid Bodies 5.1 Mass moments of inertia 5.2 General equations of motion 5.3 Translation 5.4 Fixed axis rotation 5.5 General plane motion 5.6 Work and energy relations 5.7 Impulse

More information

P211 Spring 2004 Form A

P211 Spring 2004 Form A 1. A 2 kg block A traveling with a speed of 5 m/s as shown collides with a stationary 4 kg block B. After the collision, A is observed to travel at right angles with respect to the initial direction with

More information

Chapter 14 Periodic Motion

Chapter 14 Periodic Motion Chapter 14 Periodic Motion 1 Describing Oscillation First, we want to describe the kinematical and dynamical quantities associated with Simple Harmonic Motion (SHM), for example, x, v x, a x, and F x.

More information

We define angular displacement, θ, and angular velocity, ω. What's a radian?

We define angular displacement, θ, and angular velocity, ω. What's a radian? We define angular displacement, θ, and angular velocity, ω Units: θ = rad ω = rad/s What's a radian? Radian is the ratio between the length of an arc and its radius note: counterclockwise is + clockwise

More information

Physics 101 Fall 2006: Final Exam Free Response and Instructions

Physics 101 Fall 2006: Final Exam Free Response and Instructions Last Name: First Name: Physics 101 Fall 2006: Final Exam Free Response and Instructions Print your LAST and FIRST name on the front of your blue book, on this question sheet, the multiplechoice question

More information

Chapter 5 Oscillatory Motion

Chapter 5 Oscillatory Motion Chapter 5 Oscillatory Motion Simple Harmonic Motion An object moves with simple harmonic motion whenever its acceleration is proportional to its displacement from some equilibrium position and is oppositely

More information

Chapter 8. Centripetal Force and The Law of Gravity

Chapter 8. Centripetal Force and The Law of Gravity Chapter 8 Centripetal Force and The Law of Gravity Centripetal Acceleration An object traveling in a circle, even though it moves with a constant speed, will have an acceleration The centripetal acceleration

More information

Multiple Choice -- TEST I

Multiple Choice -- TEST I Multiple Choice Test I--Classical Mechanics Multiple Choice -- TEST I 1) The position function for an oscillating body is x = 20 sin (6t - /2) At t = 0, the magnitude of the body's acceleration is: a)

More information

= y(x, t) =A cos (!t + kx)

= y(x, t) =A cos (!t + kx) A harmonic wave propagates horizontally along a taut string of length L = 8.0 m and mass M = 0.23 kg. The vertical displacement of the string along its length is given by y(x, t) = 0. m cos(.5 t + 0.8

More information

Jurong Junior College 2014 J1 H1 Physics (8866) Tutorial 3: Forces (Solutions)

Jurong Junior College 2014 J1 H1 Physics (8866) Tutorial 3: Forces (Solutions) Jurong Junior College 2014 J1 H1 Physics (8866) Tutorial 3: Forces (Solutions) Take g = 9.81 m s -2, P atm = 1.0 x 10 5 Pa unless otherwise stated Learning Outcomes (a) Sub-Topic recall and apply Hooke

More information

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches AP Physics B Practice Questions: Rotational Motion Multiple-Choice Questions 1. Which of the following is the unit for angular displacement? A. Meters B. Seconds C. Radians D. Radian per second E. Inches

More information

Version PREVIEW Semester 1 Review Slade (22222) 1

Version PREVIEW Semester 1 Review Slade (22222) 1 Version PREVIEW Semester 1 Review Slade () 1 This print-out should have 48 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Holt SF 0Rev 10A

More information

Gravitational potential energy

Gravitational potential energy Gravitational potential energ m1 Consider a rigid bod of arbitrar shape. We want to obtain a value for its gravitational potential energ. O r1 1 x The gravitational potential energ of an assembl of N point-like

More information

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS

EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1 - TRIGONOMETRICAL GRAPHS CONTENTS 3 Be able to understand how to manipulate trigonometric expressions and apply

More information

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS

Engineering Science OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS Unit 2: Unit code: QCF Level: 4 Credit value: 5 Engineering Science L/60/404 OUTCOME 2 - TUTORIAL 3 FREE VIBRATIONS UNIT CONTENT OUTCOME 2 Be able to determine the behavioural characteristics of elements

More information

The distance of the object from the equilibrium position is m.

The distance of the object from the equilibrium position is m. Answers, Even-Numbered Problems, Chapter..4.6.8.0..4.6.8 (a) A = 0.0 m (b).60 s (c) 0.65 Hz Whenever the object is released from rest, its initial displacement equals the amplitude of its SHM. (a) so 0.065

More information

Multiple Choice Questions Choose the best answer and write the corresponding letter in the space provided on the solution workbook.

Multiple Choice Questions Choose the best answer and write the corresponding letter in the space provided on the solution workbook. Los Altos Physics Spring 2006 MC Sample Multiple Choice Questions Choose the best answer and write the corresponding letter in the space provided on the solution workbook. Version # 1_ 1. A football player

More information

Important because SHM is a good model to describe vibrations of a guitar string, vibrations of atoms in molecules, etc.

Important because SHM is a good model to describe vibrations of a guitar string, vibrations of atoms in molecules, etc. Simple Harmonic Motion Oscillatory motion under a restoring force proportional to the amount of displacement from equilibrium A restoring force is a force that tries to move the system back to equilibrium

More information

Force, Energy & Periodic Motion. Preparation for unit test

Force, Energy & Periodic Motion. Preparation for unit test Force, Energy & Periodic Motion Preparation for unit test Summary of assessment standards (Unit assessment standard only) In the unit test you can expect to be asked at least one question on each sub-skill.

More information

STATICS. Bodies VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr.

STATICS. Bodies VECTOR MECHANICS FOR ENGINEERS: Ninth Edition CHAPTER. Ferdinand P. Beer E. Russell Johnston, Jr. N E 4 Equilibrium CHAPTER VECTOR MECHANICS FOR ENGINEERS: STATICS Ferdinand P. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Texas Tech University of Rigid Bodies 2010 The McGraw-Hill Companies,

More information

Grade XI. Physics Exam Preparation Booklet. Chapter-wise Important Questions. #GrowWithGreen

Grade XI. Physics Exam Preparation Booklet. Chapter-wise Important Questions. #GrowWithGreen Grade XI Physics Exam Preparation Booklet Chapter-wise Important Questions #GrowWithGreen Units and Measurements Q1. After reading the physics book, Anamika recalled and noted down the expression for the

More information

Good Vibes: Introduction to Oscillations

Good Vibes: Introduction to Oscillations Good Vibes: Introduction to Oscillations Description: Several conceptual and qualitative questions related to main characteristics of simple harmonic motion: amplitude, displacement, period, frequency,

More information

Chapter 12 Vibrations and Waves Simple Harmonic Motion page

Chapter 12 Vibrations and Waves Simple Harmonic Motion page Chapter 2 Vibrations and Waves 2- Simple Harmonic Motion page 438-45 Hooke s Law Periodic motion the object has a repeated motion that follows the same path, the object swings to and fro. Examples: a pendulum

More information

Waves Part 1: Travelling Waves

Waves Part 1: Travelling Waves Waves Part 1: Travelling Waves Last modified: 15/05/2018 Links Contents Travelling Waves Harmonic Waves Wavelength Period & Frequency Summary Example 1 Example 2 Example 3 Example 4 Transverse & Longitudinal

More information

Chapter 8 Rotational Motion

Chapter 8 Rotational Motion Chapter 8 Rotational Motion Chapter 8 Rotational Motion In this chapter you will: Learn how to describe and measure rotational motion. Learn how torque changes rotational velocity. Explore factors that

More information

Section 1 Simple Harmonic Motion. Chapter 11. Preview. Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum

Section 1 Simple Harmonic Motion. Chapter 11. Preview. Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum Section 1 Simple Harmonic Motion Preview Objectives Hooke s Law Sample Problem Simple Harmonic Motion The Simple Pendulum Section 1 Simple Harmonic Motion Objectives Identify the conditions of simple harmonic

More information

Your Name: PHYSICS 101 MIDTERM. Please circle your section 1 9 am Galbiati 2 10 am Kwon 3 11 am McDonald 4 12:30 pm McDonald 5 12:30 pm Kwon

Your Name: PHYSICS 101 MIDTERM. Please circle your section 1 9 am Galbiati 2 10 am Kwon 3 11 am McDonald 4 12:30 pm McDonald 5 12:30 pm Kwon 1 Your Name: PHYSICS 101 MIDTERM October 26, 2006 2 hours Please circle your section 1 9 am Galbiati 2 10 am Kwon 3 11 am McDonald 4 12:30 pm McDonald 5 12:30 pm Kwon Problem Score 1 /13 2 /20 3 /20 4

More information

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm.

6. Find the net torque on the wheel in Figure about the axle through O if a = 10.0 cm and b = 25.0 cm. 1. During a certain period of time, the angular position of a swinging door is described by θ = 5.00 + 10.0t + 2.00t 2, where θ is in radians and t is in seconds. Determine the angular position, angular

More information

I B.TECH EXAMINATIONS, JUNE ENGINEERING MECHANICS (COMMON TO CE, ME, CHEM, MCT, MMT, AE, AME, MIE, MIM)

I B.TECH EXAMINATIONS, JUNE ENGINEERING MECHANICS (COMMON TO CE, ME, CHEM, MCT, MMT, AE, AME, MIE, MIM) Code.No: 09A1BS05 R09 SET-1 I B.TECH EXAMINATIONS, JUNE - 2011 ENGINEERING MECHANICS (COMMON TO CE, ME, CHEM, MCT, MMT, AE, AME, MIE, MIM) Time: 3 hours Max. Marks: 75 Answer any FIVE questions All questions

More information

Course Name: AP Physics. Team Names: Jon Collins. Velocity Acceleration Displacement

Course Name: AP Physics. Team Names: Jon Collins. Velocity Acceleration Displacement Course Name: AP Physics Team Names: Jon Collins 1 st 9 weeks Objectives Vocabulary 1. NEWTONIAN MECHANICS and lab skills: Kinematics (including vectors, vector algebra, components of vectors, coordinate

More information

Chapter 5. Distributed Forces: Centroids and Centers of Gravity

Chapter 5. Distributed Forces: Centroids and Centers of Gravity Chapter 5 Distributed Forces: Centroids and Centers of Gravity Application There are many examples in engineering analysis of distributed loads. It is convenient in some cases to represent such loads as

More information

Use the following to answer question 1:

Use the following to answer question 1: Use the following to answer question 1: On an amusement park ride, passengers are seated in a horizontal circle of radius 7.5 m. The seats begin from rest and are uniformly accelerated for 21 seconds to

More information

Rotation. Rotational Variables

Rotation. Rotational Variables Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that

More information

Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed.

Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed. Uniform circular motion (UCM) is the motion of an object in a perfect circle with a constant or uniform speed. 1. Distance around a circle? circumference 2. Distance from one side of circle to the opposite

More information

4) Vector = and vector = What is vector = +? A) B) C) D) E)

4) Vector = and vector = What is vector = +? A) B) C) D) E) 1) Suppose that an object is moving with constant nonzero acceleration. Which of the following is an accurate statement concerning its motion? A) In equal times its speed changes by equal amounts. B) In

More information

Exam Question 6/8 (HL/OL): Circular and Simple Harmonic Motion. February 1, Applied Mathematics: Lecture 7. Brendan Williamson.

Exam Question 6/8 (HL/OL): Circular and Simple Harmonic Motion. February 1, Applied Mathematics: Lecture 7. Brendan Williamson. in a : Exam Question 6/8 (HL/OL): Circular and February 1, 2017 in a This lecture pertains to material relevant to question 6 of the paper, and question 8 of the Ordinary Level paper, commonly referred

More information

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial

is acting on a body of mass m = 3.0 kg and changes its velocity from an initial PHYS 101 second major Exam Term 102 (Zero Version) Q1. A 15.0-kg block is pulled over a rough, horizontal surface by a constant force of 70.0 N acting at an angle of 20.0 above the horizontal. The block

More information

Physics. Student Materials Advanced Higher. Tutorial Problems Mechanics HIGHER STILL. Spring 2000

Physics. Student Materials Advanced Higher. Tutorial Problems Mechanics HIGHER STILL. Spring 2000 Spring 2000 HIGHER STILL Physics Student Materials Advanced Higher Tutorial Problems Mechanics TUTORIAL 1 You will find tutorials on each topic. The fully worked out answers are available. The idea is

More information

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B.

(a) On the dots below that represent the students, draw and label free-body diagrams showing the forces on Student A and on Student B. 2003 B1. (15 points) A rope of negligible mass passes over a pulley of negligible mass attached to the ceiling, as shown above. One end of the rope is held by Student A of mass 70 kg, who is at rest on

More information

Physics 202 Homework 1

Physics 202 Homework 1 Physics 202 Homework Apr 3, 203. A person who weighs 670 newtons steps onto a spring scale in the bathroom, (a) 85 kn/m (b) 290 newtons and the spring compresses by 0.79 cm. (a) What is the spring constant?

More information