Chemical Evolution of the Universe

Size: px
Start display at page:

Download "Chemical Evolution of the Universe"

Transcription

1 Chemical Evolution of the Universe Part 5 Jochen Liske Fachbereich Physik Hamburger Sternwarte jochen.liske@uni-hamburg.de

2 Astronomical news of the week

3 Astronomical news of the week

4 Astronomical news of the week

5 Astronomical news of the week

6 Astronomical news of the week

7 Contents 1. Cosmological background 2. Primordial nucleosynthesis 3. Stellar structure, nucleosynthesis and evolution 4. Galactic chemical evolution 5. Chemical evolution in the intergalactic medium

8 Contents 1. Cosmological background 2. Primordial nucleosynthesis 3. Stellar structure, nucleosynthesis and evolution 3.1 Hertzsprung-Russell diagram 3.2 Timescales 3.3 Stellar structure 3.5 Stellar evolution 4. Galactic chemical evolution 5. Chemical evolution in the intergalactic medium

9 3.1 Hertzsprung-Russell diagram The HRD relates two fundamental properties of stars: total luminosity and flux through surface Stars occupy only certain regions in this parameter space These correspond to different evolutionary phases of stars The HRD is central to our understanding of stars and their evolution

10 3.1 Hertzsprung-Russell diagram Developed around 1910 by: Ejnar Hertzsprung ( ) Danish astronomer and chemist 1905: definition of absolute magnitude : Göttingen : Leiden Henry Norris Russell ( ) American astronomer : Princeton 1923: Russell-Saunders (LS) coupling (atomic physics) Ejnar Hertzsprung Henry Norris Russell

11 3.1 Hertzsprung-Russell diagram Different versions of the HRD: Theoretical version: L vs T eff Observational versions: Photometry: M V vs colour index (colour magnitude diagram, CMD) Spectroscopy: M V vs spectral class All versions are closely related to one another, but not identical

12 3.1 Hertzsprung-Russell diagram Different regions in the HRD correspond to different evolutionary phases: Main sequence: normal state of stars, H burning, stars spend most of their lives here Giants: later evolutionary phases White dwarfs: degenerate final state of stars of a particular mass range (the other possible final states are not represented in the HRD: neutron stars and black holes)

13 3.1 Hertzsprung-Russell diagram Different regions in the HRD correspond to different evolutionary phases: Main sequence: normal state of stars, H burning, stars spend most of their lives here Giants: later evolutionary phases White dwarfs: degenerate final state of stars of a particular mass range (the other possible final states are not represented in the HRD: neutron stars and black holes) The population density of different regions provides clues to the duration of the associated evolutionary phases

14 3.1 Hertzsprung-Russell diagram Different regions in the HRD correspond to different evolutionary phases: Main sequence: normal state of stars, H burning, stars spend most of their lives here Giants: later evolutionary phases White dwarfs: degenerate final state of stars of a particular mass range (the other possible final states are not represented in the HRD: neutron stars and black holes) The population density of different regions provides clues to the duration of the associated evolutionary phases In general: HRD extremely important to test our understanding of stellar evolution

15 3.1 Hertzsprung-Russell diagram Different regions in the HRD correspond to different evolutionary phases: Main sequence: normal state of stars, H burning, stars spend most of their lives here Giants: later evolutionary phases White dwarfs: degenerate final state of stars of a particular mass range (the other possible final states are not represented in the HRD: neutron stars and black holes) The population density of different regions provides clues to the duration of the associated evolutionary phases In general: HRD extremely important to test our understanding of stellar evolution Vice versa: assuming we understand stellar evolution, we can use properties of the HRD to infer characteristics of stellar population (age, metallicity) and/or its distance

16 3.1 Hertzsprung-Russell diagram The Main Sequence (MS) H burning in core Normal state Longest phase of a star s life More or less one-dimensional Hints at a simple relation between M, R, L, T eff Need only 1 parameter for its description?

17 3.1 Hertzsprung-Russell diagram Empirically we find the following relations between M and L, R for MS stars: L M 3.5 R M 0.8 Exponents slightly mass dependent Relations can be derived theoretically using some simplifying assumptions From L = 4 R 2 σt eff 4 log T eff = 0.5 log M + const The MS is a 1-parameter sequence Mass is the central characteristic of MS stars

18 3.1 Hertzsprung-Russell diagram Mass is the only free parameter on the MS

19 Contents 1. Cosmological background 2. Primordial nucleosynthesis 3. Stellar structure, nucleosynthesis and evolution 3.1 Hertzsprung-Russell diagram 3.2 Timescales 3.3 Stellar structure 3.5 Stellar evolution 4. Galactic chemical evolution 5. Chemical evolution in the intergalactic medium

20 3.2 Timescales Stars are spheres of gas held in quasi-static equilibrium by the balance between their own gravity and their inner pressure Energy balance of star: Time until energy reservoir is depleted: Then: decrease of L or tap into new reservoir Reason for stellar evolution

21 3.2 Timescales Nuclear timescale t N x 0.1 x M ʘ c 2 / L ʘ yr For M = 30 M ʘ L = 10 5 L ʘ : t N 3 x 10 6 yr Kelvin-Helmholtz (thermal) timescale (energy from contraction) t KH E therm / L ʘ = 1/2 E pot / L ʘ = 3/10 G M ʘ2 / R ʘ / L ʘ 10 7 yr Hydrostatic (dynamical) timescale t hyd R / c sound = R / (P/) 1/ s

22 3.2 Timescales t N >> t KH >> t hyd Most stars, most of the time, are in hydrostatic and thermal equilibrium, with slow changes in structure and composition occurring on the (long) nuclear timescale Most stars, most of the time, are on the Main Sequence Nevertheless, evolution on timescales t KH and t hyd is also seen: t KH : pre-ms evolution t hyd : pulsations (variable stars), collapse, supernova

23 3.3 Stellar structure Stars are spheres of gas held in quasi-static equilibrium by the balance between their own gravity and their inner pressure Only the outer layers are visible (photosphere and chromosphere) Size 10 3 of the star s size Mass of the star s mass Source of energy: nuclear fusion, not directly observable Determines stellar evolution Need theoretical modeling

24 3.3 Stellar structure Goal: Determination of M(r), ρ(r), P(r), T(r), L(r) Assumptions: Non-rotating No strong magnetic field No close companion Spherically symmetric distribution of gas Hydrostatic and local thermal equilibrium Constant production of energy Time-independent, quasi-static problem Fundamentals: Differential equations (hydrodynamics) Material equations Boundary conditions (at r = 0 and r = R)

25 3.3 Stellar structure Goal: Determination of M(r), ρ(r), P(r), T(r), L(r) Assumptions: Non-rotating No strong magnetic field No close companion Spherically symmetric distribution of gas Hydrostatic and local thermal equilibrium Constant production of energy Time-independent, quasi-static problem Fundamentals: Differential equations (hydrodynamics) Material equations Boundary conditions (at r = 0 and r = R)

26 3.3 Stellar structure Mass distribution 1st differential equation:

27 3.3 Stellar structure Hydrostatic equilibrium Pressure = gravitation 2nd differential equation:

28 Contents 1. Cosmological background 2. Primordial nucleosynthesis 3. Stellar structure, nucleosynthesis and evolution 3.1 Hertzsprung-Russell diagram 3.2 Timescales 3.3 Stellar structure 3.5 Stellar evolution 4. Galactic chemical evolution 5. Chemical evolution in the intergalactic medium

29 What is the energy source of stars? By considering erosion processes in the English countryside Charles Darwin already concluded that the Earth and therefore the Sun are > 3 x 10 8 yr old (today: > 10 9 yr) Radiation power of Sun 4 x W Problem: which processes can deliver this much energy over such extended periods of time? Total energy 4 x W x 10 9 yr x 3 x 10 7 s/yr J

30 Chemical energy: Typical energy a few ev (1.6 x J) per reaction Sun consists of ~10 57 atoms Total energy of ~ J Only lasts for s 8 x yr

31 Chemical energy: Typical energy a few ev (1.6 x J) per reaction Sun consists of ~10 57 atoms Total energy of ~ J Only lasts for s 8 x yr

32 Kelvin-Helmholtz mechanism (energy from contraction): Virial theorem: E therm = 1/2 E pot = 3/10 G M 2 / R = J Only lasts for ~10 7 yr

33 Kelvin-Helmholtz mechanism (energy from contraction): Virial theorem: E therm = 1/2 E pot = 3/10 G M 2 / R = J Only lasts for ~10 7 yr

34 Binding energy per nucleon has a maximum at iron group elements (8.8 MeV/nucleon) Energy can be released by moving towards the maximum Fission of massive nuclei Fusion of light nuclei Most energy released: 4 1 H 4 He ΔE = 0.7% mc 2 = 26.7 MeV

35 Binding energy per nucleon has a maximum at iron group elements (8.8 MeV/nucleon) Energy can be released by moving towards the maximum Fission of massive nuclei Fusion of light nuclei Most energy released: 4 1 H 4 He ΔE = 0.7% mc 2 = 26.7 MeV

36 Simplest example of nuclear fusion: Fusion of H to He (4 1 H 4 He) 4 H nuclei are heavier than one 4 He nucleus Mass defect = Δm = 4.8 x kg = 0.7% of original mass (in this case) 1 kg H kg He ΔE = 0.7% mc 2 = MeV = 4.2 x J for 4 1 H 4 He Assumption: 10% of the Sun s mass are fused to He Total energy x 0.1 x M ʘ c J Lasts for yr

37 Simplest example of nuclear fusion: Fusion of H to He (4 1 H 4 He) 4 H nuclei are heavier than one 4 He nucleus Mass defect = Δm = 4.8 x kg = 0.7% of original mass (in this case) 1 kg H kg He ΔE = 0.7% mc 2 = MeV = 4.2 x J for 4 1 H 4 He Assumption: 10% of the Sun s mass are fused to He Total energy x 0.1 x M ʘ c J Lasts for yr

38 Nuclear fusion Problem: particles must overcome Coulomb barrier: Attractive nuclear potential only kicks in at r x A 1/3 m E coul (r 0 ) 1 MeV

39 Thermal energy (T central 10 7 K): E therm = 3/2 k B T 1 kev << E Coul (r 0 ) No fusion reactions possible? But: particles with E = E Coul 1 MeV are nevertheless possible: Maxwell-Boltzmann distribution: However: P reaction exp( E Coul /E therm ) But only ~10 57 particles in the sun No fusion reactions possible after all?

40 Solution: quantum-mechanical tunnelling (G. Gamov 1928): For pp reactions and E = E therm 1 kev: P QM Controlled fusion Probability increases with increasing energy More massive nuclei require higher temperatures for fusion Separate burning phases

41 Probability of fusion reaction: P reaction (E) P MB x P QM Gamov Peak (still far below E Coul (r 0 )) Total reaction rate = P reaction (E) de

42 Hydrogen burning Most stars fuse H to He (90%) Direct reaction 4 1 H 4 He is extremely unlikely Need reactions with intermediate steps reaction chains For 3 x 10 6 K < T < 1.7 x 10 7 K: pp chain D 3 He 4 He

43 ppi chain: 1 H + 1 H 2 H + e + + ν e 2 H + 1 H 3 He + γ 3 He + 3 He 4 He H Reaction rate determined by the slowest reaction. Which is it?

44 ppi chain: 1 H + 1 H 2 H + e + + ν e 2 H + 1 H 3 He + γ 3 He + 3 He 4 He H Reaction rate determined by the slowest reaction. Which is it?

45 ppi chain: 1 H + 1 H 2 H + e + + ν e 2 H + 1 H 3 He + γ 3 He + 3 He 4 He H Reaction rate determined by the slowest reaction. Which is it? First one, because it is mediated by the weak force

46 There are, in fact, multiple pp chains:

47 Alternative reaction chain, in the presence of C, N, O: CNO chain C,N,O = catalyst for 4 1 H 4 He Dominates at T > 1.7 x 10 7 K Sun: 1% of energy production

48 Energy production rates: pp chain: ε T 4 CNO chain: ε T 12 18

49 Helium burning When most H is burned Mean molecular weight, T, radiation pressure P drops Core collapses Central T and P increase At T > 10 8 K He fusion: 4 He + 4 He 8 Be + γ 8 Be + 4 He 12 C + γ Triple Alpha Process ΔE 3α = 7.3 MeV

50 8 Be production is endothermic 8 Be lifetime in ground state s ( 8 Be 2 4 He) Need high 4 He density (> 10 5 kg m -3 ) Energy production: ΔE 3α = 7.3 MeV per 12 C Per unit mass: only 10% of ΔE CNO Extreme T-dependence: ε ρt 30 Additional reactions during He burning by α capture: 12 C + 4 He 16 O + γ ΔE = 7.16 MeV 16 O + 4 He 20 Ne + γ ΔE = 4.73 MeV (rare) C and O most abundant elements after H und He ( ashes of He burning )

51 Carbon burning Once He is burned up, T and P increase in core Fusion of heavier elements becomes possible At T > 6 x 10 8 K: C fusion Complex problem with many fusion channels and imprecisely known reaction rates: 16 O He 20 Ne + 4 He 12 C + 12 C 23 Na + 1 H 23 Mg + n 24 Mg + γ

52 Oxygen burning At T > 2 x 10 9 K: O fusion Fusion channels: 28 Si + 4 He 31 P + 1 H 16 O + 16 O 31 S + n 32 S + γ 24 Mg He At T > 4 x 10 9 K: Si fusion Production of elements up to 56 Fe ( 62 Ni has a problem with photodisintegration) Beyond Fe group elements the binding energy per nucleon drops fusion can no longer produce energy Collapse of star to neutron star or black hole + supernova

53 Energy production rates at T > 10 7 K extremely T dependent Fusion proceeds quickly Quick death of star

54 Fusion reaction of heaviest elements are taking place in the core Previous reactions are taking place in shells around the core Onion-like structure

55 Energy produced is transported to the outside L(r) = local power being transported to the outside ε = energy production rate per unit mass (determined by nuclear physics) 3rd differential equation:

11/19/08. Gravitational equilibrium: The outward push of pressure balances the inward pull of gravity. Weight of upper layers compresses lower layers

11/19/08. Gravitational equilibrium: The outward push of pressure balances the inward pull of gravity. Weight of upper layers compresses lower layers Gravitational equilibrium: The outward push of pressure balances the inward pull of gravity Weight of upper layers compresses lower layers Gravitational equilibrium: Energy provided by fusion maintains

More information

High Mass Stars. Dr Ken Rice. Discovering Astronomy G

High Mass Stars. Dr Ken Rice. Discovering Astronomy G High Mass Stars Dr Ken Rice High mass star formation High mass star formation is controversial! May form in the same way as low-mass stars Gravitational collapse in molecular clouds. May form via competitive

More information

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure

Fundamental Stellar Parameters. Radiative Transfer. Stellar Atmospheres. Equations of Stellar Structure Fundamental Stellar Parameters Radiative Transfer Stellar Atmospheres Equations of Stellar Structure Nuclear Reactions in Stellar Interiors Binding Energy Coulomb Barrier Penetration Hydrogen Burning Reactions

More information

What Powers the Stars?

What Powers the Stars? What Powers the Stars? In brief, nuclear reactions. But why not chemical burning or gravitational contraction? Bright star Regulus (& Leo dwarf galaxy). Nuclear Energy. Basic Principle: conversion of mass

More information

Stellar Interior: Physical Processes

Stellar Interior: Physical Processes Physics Focus on Astrophysics Focus on Astrophysics Stellar Interior: Physical Processes D. Fluri, 29.01.2014 Content 1. Mechanical equilibrium: pressure gravity 2. Fusion: Main sequence stars: hydrogen

More information

Life of a High-Mass Stars

Life of a High-Mass Stars Life of a High-Mass Stars 1 Evolutionary Tracks Paths of high-mass stars on the HR Diagram are different from those of low-mass stars. Once these stars leave the main sequence, they quickly grow in size

More information

Stellar Structure. Observationally, we can determine: Can we explain all these observations?

Stellar Structure. Observationally, we can determine: Can we explain all these observations? Stellar Structure Observationally, we can determine: Flux Mass Distance Luminosity Temperature Radius Spectral Type Composition Can we explain all these observations? Stellar Structure Plan: Use our general

More information

Nuclear Binding Energy

Nuclear Binding Energy Nuclear Energy Nuclei contain Z number of protons and (A - Z) number of neutrons, with A the number of nucleons (mass number) Isotopes have a common Z and different A The masses of the nucleons and the

More information

Low mass stars. Sequence Star Giant. Red. Planetary Nebula. White Dwarf. Interstellar Cloud. White Dwarf. Interstellar Cloud. Planetary Nebula.

Low mass stars. Sequence Star Giant. Red. Planetary Nebula. White Dwarf. Interstellar Cloud. White Dwarf. Interstellar Cloud. Planetary Nebula. Low mass stars Interstellar Cloud Main Sequence Star Red Giant Planetary Nebula White Dwarf Interstellar Cloud Main Sequence Star Red Giant Planetary Nebula White Dwarf Low mass stars Interstellar Cloud

More information

Stars and their properties: (Chapters 11 and 12)

Stars and their properties: (Chapters 11 and 12) Stars and their properties: (Chapters 11 and 12) To classify stars we determine the following properties for stars: 1. Distance : Needed to determine how much energy stars produce and radiate away by using

More information

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1

13 Synthesis of heavier elements. introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 13 Synthesis of heavier elements introduc)on to Astrophysics, C. Bertulani, Texas A&M-Commerce 1 The triple α Reaction When hydrogen fusion ends, the core of a star collapses and the temperature can reach

More information

Section 12. Nuclear reactions in stars Introduction

Section 12. Nuclear reactions in stars Introduction Section 12 Nuclear reactions in stars 12.1 Introduction Consider two types of nuclei, A and B, number densities n(a), n(b). The rate at which a particular (nuclear) reaction occurs is r(v) = n(a)n(b)v

More information

Nuclear Binding Energy

Nuclear Binding Energy 5. NUCLEAR REACTIONS (ZG: P5-7 to P5-9, P5-12, 16-1D; CO: 10.3) Binding energy of nucleus with Z protons and N neutrons is: Q(Z, N) = [ZM p + NM n M(Z, N)] c 2. } {{ } mass defect Nuclear Binding Energy

More information

ORIGIN OF THE ELEMENETS

ORIGIN OF THE ELEMENETS VISUAL PHYSICS ONLINE ORIGIN OF THE ELEMENETS Watch Video: The Origin of the Elements The ordinary matter in our universe (known as baryonic matter) is made up of 94 naturally occurring elements. It is

More information

Outline - March 18, H-R Diagram Review. Protostar to Main Sequence Star. Midterm Exam #2 Tuesday, March 23

Outline - March 18, H-R Diagram Review. Protostar to Main Sequence Star. Midterm Exam #2 Tuesday, March 23 Midterm Exam #2 Tuesday, March 23 Outline - March 18, 2010 Closed book Will cover Lecture 8 (Special Relativity) through Lecture 14 (Star Formation) only If a topic is in the book, but was not covered

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS3010W1 SEMESTER 2 EXAMINATION 2014-2015 STELLAR EVOLUTION: MODEL ANSWERS Duration: 120 MINS (2 hours) This paper contains 8 questions. Answer all questions in Section A and

More information

From Last Time: We can more generally write the number densities of H, He and metals.

From Last Time: We can more generally write the number densities of H, He and metals. From Last Time: We can more generally write the number densities of H, He and metals. n H = Xρ m H,n He = Y ρ 4m H, n A = Z Aρ Am H, How many particles results from the complete ionization of hydrogen?

More information

How Do Stars Appear from Earth?

How Do Stars Appear from Earth? How Do Stars Appear from Earth? Magnitude: the brightness a star appears to have from Earth Apparent Magnitude depends on 2 things: (actual intrinsic brightness) The color of a star is related to its temperature:

More information

Stars: Their Life and Afterlife

Stars: Their Life and Afterlife The 68 th Compton Lecture Series Stars: Their Life and Afterlife Lecture 3: The Life and Times of Low Mass Stars Brian Humensky, lecturer http://kicp.uchicago.edu/~humensky/comptonlectures.htm October

More information

Astro Instructors: Jim Cordes & Shami Chatterjee.

Astro Instructors: Jim Cordes & Shami Chatterjee. Astro 2299 The Search for Life in the Universe Lecture 8 Last time: Formation and function of stars This time (and probably next): The Sun, hydrogen fusion Virial theorem and internal temperatures of stars

More information

Pre Main-Sequence Evolution

Pre Main-Sequence Evolution Stellar Astrophysics: Stellar Evolution Pre Main-Sequence Evolution The free-fall time scale is describing the collapse of the (spherical) cloud to a protostar 1/2 3 π t ff = 32 G ρ With the formation

More information

THIRD-YEAR ASTROPHYSICS

THIRD-YEAR ASTROPHYSICS THIRD-YEAR ASTROPHYSICS Problem Set: Stellar Structure and Evolution (Dr Ph Podsiadlowski, Michaelmas Term 2006) 1 Measuring Stellar Parameters Sirius is a visual binary with a period of 4994 yr Its measured

More information

Lecture 7: Stellar evolution I: Low-mass stars

Lecture 7: Stellar evolution I: Low-mass stars Lecture 7: Stellar evolution I: Low-mass stars Senior Astrophysics 2018-03-21 Senior Astrophysics Lecture 7: Stellar evolution I: Low-mass stars 2018-03-21 1 / 37 Outline 1 Scaling relations 2 Stellar

More information

IB Test. Astrophysics HL. Name_solution / a) Describe what is meant by a nebula [1]

IB Test. Astrophysics HL. Name_solution / a) Describe what is meant by a nebula [1] IB Test Astrophysics HL Name_solution / 47 1. a) Describe what is meant by a nebula [1] an intergalactic cloud of gas and dust where all stars begin to form b) Explain how the Jeans criterion applies to

More information

MAJOR NUCLEAR BURNING STAGES

MAJOR NUCLEAR BURNING STAGES MAJOR NUCLEAR BURNING STAGES The Coulomb barrier is higher for heavier nuclei with high charge: The first reactions to occur are those involving light nuclei -- Starting from hydrogen burning, helium burning

More information

Stellar Models ASTR 2110 Sarazin

Stellar Models ASTR 2110 Sarazin Stellar Models ASTR 2110 Sarazin Jansky Lecture Tuesday, October 24 7 pm Room 101, Nau Hall Bernie Fanaroff Observing the Universe From Africa Trip to Conference Away on conference in the Netherlands

More information

Computational Applications in Nuclear Astrophysics using JAVA

Computational Applications in Nuclear Astrophysics using JAVA Computational Applications in Nuclear Astrophysics using JAVA Lecture: Friday 10:15-11:45 Room NB 6/99 Jim Ritman and Elisabetta Prencipe j.ritman@fz-juelich.de e.prencipe@fz-juelich.de Computer Lab: Friday

More information

In the Beginning. After about three minutes the temperature had cooled even further, so that neutrons were able to combine with 1 H to form 2 H;

In the Beginning. After about three minutes the temperature had cooled even further, so that neutrons were able to combine with 1 H to form 2 H; In the Beginning Obviously, before we can have any geochemistry we need some elements to react with one another. The most commonly held scientific view for the origin of the universe is the "Big Bang"

More information

Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro Lecture 25 1

Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro Lecture 25 1 Chapter 12: The Life Cycle of Stars (contʼd) How are stars born, and how do they die? 4/9/09 Habbal Astro 110-01 Lecture 25 1 12.3 Life as a High-Mass Star Learning Goals What are the life stages of a

More information

Ay 1 Lecture 8. Stellar Structure and the Sun

Ay 1 Lecture 8. Stellar Structure and the Sun Ay 1 Lecture 8 Stellar Structure and the Sun 8.1 Stellar Structure Basics How Stars Work Hydrostatic Equilibrium: gas and radiation pressure balance the gravity Thermal Equilibrium: Energy generated =

More information

Announcements. L! m 3.5 BRIGHT FAINT. Mass Luminosity Relation: Why? Homework#3 will be handed out at the end of this lecture.

Announcements. L! m 3.5 BRIGHT FAINT. Mass Luminosity Relation: Why? Homework#3 will be handed out at the end of this lecture. Announcements BRIGHT Homework#3 will be handed out at the end of this lecture. Due October 14 (next Thursday) Review of Mid-term exam will be handed out Tuesday. Mid-term exam will be variants (if not

More information

Nuclear Astrophysics

Nuclear Astrophysics Nuclear Astrophysics I. Stellar burning Karlheinz Langanke GSI & TU Darmstadt Aarhus, October 6-10, 2008 Karlheinz Langanke ( GSI & TU Darmstadt) Nuclear Astrophysics Aarhus, October 6-10, 2008 1 / 32

More information

ASTR-1020: Astronomy II Course Lecture Notes Section VI

ASTR-1020: Astronomy II Course Lecture Notes Section VI ASTR-1020: Astronomy II Course Lecture Notes Section VI Dr. Donald G. Luttermoser East Tennessee State University Edition 4.0 Abstract These class notes are designed for use of the instructor and students

More information

Brock University. Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017

Brock University. Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017 Brock University Test 1, February, 2017 Number of pages: 9 Course: ASTR 1P02 Number of Students: 480 Date of Examination: February 6, 2017 Number of hours: 50 min Time of Examination: 18:00 18:50 Instructor:

More information

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9

Phys 100 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9 Phys 0 Astronomy (Dr. Ilias Fernini) Review Questions for Chapter 9 MULTIPLE CHOICE 1. We know that giant stars are larger in diameter than the sun because * a. they are more luminous but have about the

More information

Chapter 19: The Evolution of Stars

Chapter 19: The Evolution of Stars Chapter 19: The Evolution of Stars Why do stars evolve? (change from one state to another) Energy Generation fusion requires fuel, fuel is depleted [fig 19.2] at higher temperatures, other nuclear process

More information

The Sun. Nearest Star Contains most of the mass of the solar system Source of heat and illumination

The Sun. Nearest Star Contains most of the mass of the solar system Source of heat and illumination The Sun Nearest Star Contains most of the mass of the solar system Source of heat and illumination Outline Properties Structure Solar Cycle Energetics Equation of Stellar Structure TBC Properties of Sun

More information

Nucleosynthesis. W. F. McDonough 1. Neutrino Science, Tohoku University, Sendai , Japan. (Dated: Tuesday 24 th April, 2018)

Nucleosynthesis. W. F. McDonough 1. Neutrino Science, Tohoku University, Sendai , Japan. (Dated: Tuesday 24 th April, 2018) Nucleosynthesis W. F. McDonough 1 1 Department of Earth Sciences and Research Center for Neutrino Science, Tohoku University, Sendai 980-8578, Japan (Dated: Tuesday 24 th April, 2018) Goals Where were

More information

Astronomy 404 October 9, 2013

Astronomy 404 October 9, 2013 Nuclear reaction rate: Astronomy 404 October 9, 2013 from the tunneling increases with increasing E from the velocity distrib. decreases with increasing E The Gamow peak occurs at energy Energy generation

More information

Filling the intellectual Vacuum: Energy Production. Contenders: From early 1920s: probably fusion, but how?

Filling the intellectual Vacuum: Energy Production. Contenders: From early 1920s: probably fusion, but how? Life of Stars Filling the intellectual Vacuum: Contenders: Energy Production Gravitational contraction Radioactivity (1903) Annihilation (E=mc 2, 1905) of proton and electron Hydrogen to helium nuclear

More information

Brock University. Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015

Brock University. Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015 Brock University Test 1, January, 2015 Number of pages: 9 Course: ASTR 1P02 Number of Students: 500 Date of Examination: January 29, 2015 Number of hours: 50 min Time of Examination: 18:00 15:50 Instructor:

More information

Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars.

Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars. Stellar Evolution Stars spend most of their lives on the main sequence. Evidence: 90% of observable stars are main-sequence stars. Stellar evolution during the main-sequence life-time, and during the post-main-sequence

More information

17.3 Life as a High-Mass Star

17.3 Life as a High-Mass Star 17.3 Life as a High-Mass Star Our goals for learning: What are the life stages of a high-mass star? How do high-mass stars make the elements necessary for life? How does a high-mass star die? What are

More information

LIFE CYCLE OF A STAR

LIFE CYCLE OF A STAR LIFE CYCLE OF A STAR First stage = Protostar PROTOSTAR Cloud of gas and dust many light-years across Gravity tries to pull the materials together Eventually, at the center of the ball of dust and gas,

More information

Why Do Stars Leave the Main Sequence? Running out of fuel

Why Do Stars Leave the Main Sequence? Running out of fuel Star Deaths Why Do Stars Leave the Main Sequence? Running out of fuel Observing Stellar Evolution by studying Globular Cluster HR diagrams Plot stars in globular clusters in Hertzsprung-Russell diagram

More information

Chapters 12 and 13 Review: The Life Cycle and Death of Stars. How are stars born, and how do they die? 4/1/2009 Habbal Astro Lecture 27 1

Chapters 12 and 13 Review: The Life Cycle and Death of Stars. How are stars born, and how do they die? 4/1/2009 Habbal Astro Lecture 27 1 Chapters 12 and 13 Review: The Life Cycle and Death of Stars How are stars born, and how do they die? 4/1/2009 Habbal Astro 110-01 Lecture 27 1 Stars are born in molecular clouds Clouds are very cold:

More information

Chapter 12 Stellar Evolution

Chapter 12 Stellar Evolution Chapter 12 Stellar Evolution Guidepost Stars form from the interstellar medium and reach stability fusing hydrogen in their cores. This chapter is about the long, stable middle age of stars on the main

More information

Thermonuclear Reactions

Thermonuclear Reactions Thermonuclear Reactions Eddington in 1920s hypothesized that fusion reactions between light elements were the energy source of the stars. Stellar evolution = (con) sequence of nuclear reactions E kinetic

More information

Stellar Evolution. Eta Carinae

Stellar Evolution. Eta Carinae Stellar Evolution Eta Carinae Evolution of Main Sequence Stars solar mass star: from: Markus Bottcher lecture notes, Ohio University Evolution off the Main Sequence: Expansion into a Red Giant Inner core

More information

read 9.4-end 9.8(HW#6), 9.9(HW#7), 9.11(HW#8) We are proceding to Chap 10 stellar old age

read 9.4-end 9.8(HW#6), 9.9(HW#7), 9.11(HW#8) We are proceding to Chap 10 stellar old age HW PREVIEW read 9.4-end Questions 9.9(HW#4), 9(HW#4) 9.14(HW#5), 9.8(HW#6), 9.9(HW#7), 9.11(HW#8) We are proceding to Chap 10 stellar old age Chap 11 The death of high h mass stars Contraction of Giant

More information

Stellar processes, nucleosynthesis OUTLINE

Stellar processes, nucleosynthesis OUTLINE Stellar processes, nucleosynthesis OUTLINE Reading this week: White 313-326 and 421-464 Today 1. Stellar processes 2. Nucleosynthesis Powerpoint credit: Using significant parts of a WHOI ppt 1 Question

More information

The dying sun/ creation of elements

The dying sun/ creation of elements The dying sun/ creation of elements Homework 6 is due Thurs, 2 April at 6:00am OBAFGKM extra credit Angel: Lessons>Extra Credit Due 11:55pm, 31 March Final exam (new, later time) 6 May, 3:00-5:00, BPS

More information

Life and Death of a Star. Chapters 20 and 21

Life and Death of a Star. Chapters 20 and 21 Life and Death of a Star Chapters 20 and 21 90 % of a stars life Most stars spend most of their lives on the main sequence. A star like the Sun, for example, after spending a few tens of millions of years

More information

THE NUCLEUS: A CHEMIST S VIEW Chapter 20

THE NUCLEUS: A CHEMIST S VIEW Chapter 20 THE NUCLEUS: A CHEMIST S VIEW Chapter 20 "For a long time I have considered even the craziest ideas about [the] atom[ic] nucleus... and suddenly discovered the truth." [shell model of the nucleus]. Maria

More information

1. Star: A object made of gas found in outer space that radiates.

1. Star: A object made of gas found in outer space that radiates. 1. Star: A object made of gas found in outer space that radiates. 2. Stars produce extremely great quantities of energy through the process of. The chemical formula for nuclear fusion looks like this:

More information

1 Stellar Energy Generation Physics background

1 Stellar Energy Generation Physics background 1 Stellar Energy Generation Physics background 1.1 Relevant relativity synopsis We start with a review of some basic relations from special relativity. The mechanical energy E of a particle of rest mass

More information

Interactions. Laws. Evolution

Interactions. Laws. Evolution Lecture Origin of the Elements MODEL: Origin of the Elements or Nucleosynthesis Fundamental Particles quarks, gluons, leptons, photons, neutrinos + Basic Forces gravity, electromagnetic, nuclear Interactions

More information

Stars IV Stellar Evolution

Stars IV Stellar Evolution Stars IV Stellar Evolution Attendance Quiz Are you here today? Here! (a) yes (b) no (c) my views are evolving on the subject Today s Topics Stellar Evolution An alien visits Earth for a day A star s mass

More information

Today. Stars. Evolution of High Mass Stars. Nucleosynthesis. Supernovae - the explosive deaths of massive stars

Today. Stars. Evolution of High Mass Stars. Nucleosynthesis. Supernovae - the explosive deaths of massive stars Today Stars Evolution of High Mass Stars Nucleosynthesis Supernovae - the explosive deaths of massive stars 1 Another good job on exam! Class average was 71% Given the difficulty of the exam, this was

More information

Today. Homework Due. Stars. Properties (Recap) Nuclear Reactions. proton-proton chain. CNO cycle. Stellar Lifetimes

Today. Homework Due. Stars. Properties (Recap) Nuclear Reactions. proton-proton chain. CNO cycle. Stellar Lifetimes Today Stars Properties (Recap) Nuclear Reactions proton-proton chain CNO cycle Stellar Lifetimes Homework Due Stellar Properties Luminosity Surface Temperature Size Mass Composition Stellar Properties

More information

Life of stars, formation of elements

Life of stars, formation of elements Life of stars, formation of elements Recap life of sun Life of massive stars Creation of elements Formation of stars Profs. Jack Baldwin & Horace Smith will teach course for the remainder of the term to

More information

The Virial Theorem for Stars

The Virial Theorem for Stars The Virial Theorem for Stars Stars are excellent examples of systems in virial equilibrium. To see this, let us make two assumptions: 1) Stars are in hydrostatic equilibrium 2) Stars are made up of ideal

More information

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM

Introductory Astrophysics A113. Death of Stars. Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Goals: Death of Stars Relation between the mass of a star and its death White dwarfs and supernovae Enrichment of the ISM Low Mass Stars (M

More information

Evolution of Intermediate-Mass Stars

Evolution of Intermediate-Mass Stars Evolution of Intermediate-Mass Stars General properties: mass range: 2.5 < M/M < 8 early evolution differs from M/M < 1.3 stars; for 1.3 < M/M < 2.5 properties of both mass ranges MS: convective core and

More information

Abundance of Elements. Relative abundance of elements in the Solar System

Abundance of Elements. Relative abundance of elements in the Solar System Abundance of Elements Relative abundance of elements in the Solar System What is the origin of elements in the universe? Three elements formed in the first minutes after the big bang (hydrogen, helium

More information

Chapter 17 Lecture. The Cosmic Perspective Seventh Edition. Star Stuff Pearson Education, Inc.

Chapter 17 Lecture. The Cosmic Perspective Seventh Edition. Star Stuff Pearson Education, Inc. Chapter 17 Lecture The Cosmic Perspective Seventh Edition Star Stuff Star Stuff 17.1 Lives in the Balance Our goals for learning: How does a star's mass affect nuclear fusion? How does a star's mass affect

More information

Review: HR Diagram. Label A, B, C respectively

Review: HR Diagram. Label A, B, C respectively Stellar Evolution Review: HR Diagram Label A, B, C respectively A C B a) A: White dwarfs, B: Giants, C: Main sequence b) A: Main sequence, B: Giants, C: White dwarfs c) A: Main sequence, B: White Dwarfs,

More information

LIFE CYCLE OF A STAR

LIFE CYCLE OF A STAR LIFE CYCLE OF A STAR First stage = Protostar PROTOSTAR Cloud of gas and dust many light-years across Gravity tries to pull the materials together Eventually, at the center of the ball of dust and gas,

More information

Chapter 7 Particle physics in the stars

Chapter 7 Particle physics in the stars Chapter 7 Particle physics in the stars Stellar evolution 1. Early stage - protostar. Hydrogen burning. Helium burning 4. Production of heavy elements 5. Electron degenerary pressure and stellar stability

More information

The Sun: Our Nearest Star

The Sun: Our Nearest Star The Sun: Our Nearest Star Check out: http://www.boston.com/bigpicture/2008/10/the_sun.html http://sohowww.nascom.nasa.gov/gallery/ 6 day animation in Ultraviolet http://www.youtube.com/watch?v=jeamkkrivlc

More information

ASTR-101 4/4/2018 Stellar Evolution: Part II Lecture 19

ASTR-101 4/4/2018 Stellar Evolution: Part II Lecture 19 ASTR-101 4/4/2018 Stellar Evolution: Part II Lecture 19 WHEN S THE NEXT TEST?!?!?!? If anyone is following the syllabus, you know that it says there is a test today. The test will be on April 11 th (a

More information

Week 4: Nuclear physics relevant to stars

Week 4: Nuclear physics relevant to stars Week 4: Nuclear physics relevant to stars So, in week 2, we did a bit of formal nuclear physics just setting out the reaction rates in terms of cross sections, but not worrying about what nuclear reactions

More information

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium

Protostars on the HR Diagram. Lifetimes of Stars. Lifetimes of Stars: Example. Pressure-Temperature Thermostat. Hydrostatic Equilibrium Protostars on the HR Diagram Once a protostar is hot enough to start, it can blow away the surrounding gas Then it is visible: crosses the on the HR diagram The more the cloud, the it will form stars Lifetimes

More information

7. The Evolution of Stars a schematic picture (Heavily inspired on Chapter 7 of Prialnik)

7. The Evolution of Stars a schematic picture (Heavily inspired on Chapter 7 of Prialnik) 7. The Evolution of Stars a schematic picture (Heavily inspired on Chapter 7 of Prialnik) In the previous chapters we have seen that the timescale of stellar evolution is set by the (slow) rate of consumption

More information

Today in Astronomy 142

Today in Astronomy 142 Today in Astronomy 142! Elementary particles and their interactions, nuclei, and energy generation in stars.! Nuclear fusion reactions in stars TT Cygni: Carbon Star Credit: H. Olofsson (Stockholm Obs.)

More information

Selected Topics in Nuclear Astrophysics

Selected Topics in Nuclear Astrophysics Selected Topics in Nuclear Astrophysics Edward Brown Overview I. A brief primer on stellar physics II. Neutron stars and nuclear physics III. Observing neutron stars in the wild Basics of stellar physics

More information

Solar Neutrinos. Solar Neutrinos. Standard Solar Model

Solar Neutrinos. Solar Neutrinos. Standard Solar Model Titelseite Standard Solar Model 08.12.2005 1 Abstract Cross section, S factor and lifetime ppi chain ppii and ppiii chains CNO circle Expected solar neutrino spectrum 2 Solar Model Establish a model for

More information

Homologous Stellar Models and Polytropes

Homologous Stellar Models and Polytropes Homologous Stellar Models and Polytropes Main Sequence Stars Stellar Evolution Tracks and Hertzsprung-Russell Diagram Star Formation and Pre-Main Sequence Contraction Main Sequence Star Characteristics

More information

Stellar Evolution and the HertzsprungRussell Diagram 7/14/09. Astronomy 101

Stellar Evolution and the HertzsprungRussell Diagram 7/14/09. Astronomy 101 Stellar Evolution and the HertzsprungRussell Diagram 7/14/09 Astronomy 101 Astronomy Picture of the Day Astronomy 101 Outline for Today Astronomy Picture of the Day News Articles Business Return Lab 5

More information

ASTRONOMY 1 EXAM 3 a Name

ASTRONOMY 1 EXAM 3 a Name ASTRONOMY 1 EXAM 3 a Name Identify Terms - Matching (20 @ 1 point each = 20 pts.) Multiple Choice (25 @ 2 points each = 50 pts.) Essays (choose 3 of 4 @ 10 points each = 30 pt 1.Luminosity D 8.White dwarf

More information

Comparing a Supergiant to the Sun

Comparing a Supergiant to the Sun The Lifetime of Stars Once a star has reached the main sequence stage of it life, it derives its energy from the fusion of hydrogen to helium Stars remain on the main sequence for a long time and most

More information

Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams:

Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams: Before proceeding to Chapter 20 More on Cluster H-R diagrams: The key to the chronology of our Galaxy Below are two important HR diagrams: 1. The evolution of a number of stars all formed at the same time

More information

Nuclear Astrophysics

Nuclear Astrophysics I. Hydrostatic burning and onset of collapse Karlheinz Langanke GSI & TU Darmstadt 15 Stellar energy source Energy comes from nuclear reactions in the core. E = mc 2 4 1 H 4 He + neutrinos + 26.7MeV The

More information

They developed a graph, called the H-R diagram, that relates the temperature of a star to its absolute magnitude.

They developed a graph, called the H-R diagram, that relates the temperature of a star to its absolute magnitude. Ejnar Hertzsprung and Henry Russell noticed that stars with higher temperatures and large sizes also have brighter absolute magnitudes the actual amount of light given off by a star. (also referred to

More information

Reading and Announcements. Read Chapter 14.1, 14.2 Homework #6 due Tuesday, March 26 Exam #2, Thursday, March 28

Reading and Announcements. Read Chapter 14.1, 14.2 Homework #6 due Tuesday, March 26 Exam #2, Thursday, March 28 Reading and Announcements Read Chapter 14.1, 14.2 Homework #6 due Tuesday, March 26 Exam #2, Thursday, March 28 The life of the Sun The Sun started as a cloud of gas. Gravity caused the cloud to collapse.

More information

Evolution and nucleosynthesis prior to the AGB phase

Evolution and nucleosynthesis prior to the AGB phase Evolution and nucleosynthesis prior to the AGB phase Amanda Karakas Research School of Astronomy & Astrophysics Mount Stromlo Observatory Lecture Outline 1. Introduction to AGB stars, and the evolution

More information

Solar Interior. Sources of energy for Sun Nuclear fusion Solar neutrino problem Helioseismology

Solar Interior. Sources of energy for Sun Nuclear fusion Solar neutrino problem Helioseismology Solar Interior Sources of energy for Sun Nuclear fusion Solar neutrino problem Helioseismology Solar Atmosphere Solar interior Solar facts Luminosity: 3.8x10 26 J/s Mass: 2.0x10 30 kg Composition: 73%

More information

Ch. 16 & 17: Stellar Evolution and Death

Ch. 16 & 17: Stellar Evolution and Death Ch. 16 & 17: Stellar Evolution and Death Stars have lives: born, evolve, die Mass determines stellar evolution: Really Low Mass (0.08 to 0.4 M sun ) Low Mass: (0.4 to 4 M sun ) Long lives High Mass (4

More information

Lecture 33: The Lives of Stars

Lecture 33: The Lives of Stars Lecture 33 The Lives of Stars Astronomy 141 Winter 2012 This lecture concerns the life cycle of normal stars. Stars shine because they are hot, and need a source of energy to keep shining. Main Sequence

More information

Nuclear Physics and Astrophysics of Exploding Stars

Nuclear Physics and Astrophysics of Exploding Stars Nuclear Physics and Astrophysics of Exploding Stars Lars Bildsten Kavli Institute for Theoretical Physics Department of Physics University of California, Santa Barbara Dan Kasen (UCSC), Kevin Moore (UCSB),

More information

Stellar Evolution. The lives of low-mass stars. And the lives of massive stars

Stellar Evolution. The lives of low-mass stars. And the lives of massive stars Stellar Evolution The lives of low-mass stars And the lives of massive stars Stars of High Mass High mass stars fuse H He, but do so in a different reaction: the CNO cycle Carbon is a catalyst, speeding

More information

A Star Becomes a Star

A Star Becomes a Star A Star Becomes a Star October 28, 2002 1) Stellar lifetime 2) Red Giant 3) White Dwarf 4) Supernova 5) More massive stars Review Solar winds/sunspots Gases and Dust Molecular clouds Protostars/Birth of

More information

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc.

Chapter 14: The Bizarre Stellar Graveyard. Copyright 2010 Pearson Education, Inc. Chapter 14: The Bizarre Stellar Graveyard Assignments 2 nd Mid-term to be held Friday Nov. 3 same basic format as MT1 40 mult. choice= 80 pts. 4 short answer = 20 pts. Sample problems on web page Origin

More information

Stellar Evolution Notes

Stellar Evolution Notes Name: Block: Stellar Evolution Notes Stars mature, grow old and die. The more massive a star is, the shorter its life will be. Our Sun will live about 10 billion years. It is already 5 billion years old,

More information

Conceptos generales de astrofísica

Conceptos generales de astrofísica Tema 14 Conceptos generales de astrofísica Asignatura de Física Nuclear Curso académico 2009/2010 Universidad de Santiago de Compostela 1 1. Nuclear Astrophysic s domain Nuclear Astrophysics is a relatively

More information

Evolution of High Mass Stars

Evolution of High Mass Stars Luminosity (L sun ) Evolution of High Mass Stars High Mass Stars O & B Stars (M > 4 M sun ): Burn Hot Live Fast Die Young Main Sequence Phase: Burn H to He in core Build up a He core, like low-mass stars

More information

The Stars. Chapter 14

The Stars. Chapter 14 The Stars Chapter 14 Great Idea: The Sun and other stars use nuclear fusion reactions to convert mass into energy. Eventually, when a star s nuclear fuel is depleted, the star must burn out. Chapter Outline

More information

10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure

10/26/ Star Birth. Chapter 13: Star Stuff. How do stars form? Star-Forming Clouds. Mass of a Star-Forming Cloud. Gravity Versus Pressure 10/26/16 Lecture Outline 13.1 Star Birth Chapter 13: Star Stuff How do stars form? Our goals for learning: How do stars form? How massive are newborn stars? Star-Forming Clouds Stars form in dark clouds

More information

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Astronomy Ch. 21 Stellar Explosions. MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Name: Period: Date: Astronomy Ch. 21 Stellar Explosions MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A surface explosion on a white dwarf, caused

More information

Stellar Structure and Evolution

Stellar Structure and Evolution Stellar Structure and Evolution Achim Weiss Max-Planck-Institut für Astrophysik 01/2014 Stellar Structure p.1 Stellar evolution overview 01/2014 Stellar Structure p.2 Mass ranges Evolution of stars with

More information