New aspects on square roots of a real 2 2 matrix and their geometric applications

Size: px
Start display at page:

Download "New aspects on square roots of a real 2 2 matrix and their geometric applications"

Transcription

1 MATHEMATICAL SCIENCES AND APPLICATIONS E-NOTES X (X 1-6 (018 c MSAEN New aspects on square roots of a real matrix and their geometric applications Mircea Crasmareanu*, Andrei Plugariu (Communicated by Cihan ÖZGÜR Abstract We present a new study on the square roots of real matrices with a special view towards examples, some of them inspired by geometry. Keywords: real matrix; square root. AMS Subject Classification (010: Primary: 15A4 ; Secondary: 15A18. *Corresponding author a c We begin with the following general matrix A = M b d (R and ask: is there a matrix B M (R such that B = A? Such a matrix B is called square root of A. We point out that the more complicated case of a real matrix of order 3 is discussed in [4]. Although the case we consider is also well studied (according to the bibliography of [3] we add several examples and facts concerning this notion as well as a series of geometrical applications. The Euclidean example We recall the n-orthogonal group: O(n = {A M n (R : A t A = I n }; is the invariant group of the Euclidean inner product <, > (yielding the usual Euclidean norm. If A O(n then (det A t (det A = deti n = 1 implies that det A = ±1. Hence, the orthogonal group splits into two components: O(n = SO(n O (n where SO(n contains the matrices from O(n having deta = 1 and O (n those with deta = 1; represents the disjoint reunion of sets. SO(n is a subgroup in O(n and is called n-special orthogonal group. O (n is not closed under product: A 1, A O (n implies that A 1 A SO(n. Since M 1 (R = R we have that O(1 = {±1} with SO(1 = {1} and O (1 = { 1}; we remark that O(1 contains the integer unit roots! We know O( as well: cos t sin t cos t sin t R(t = SO(, S(t = O (, t R. sin t cos t sin t cos t Hence, we have that: S(t cos t sin t cos t sin t = = I sin t cos t sin t cos t which means that any S(t is a root of the unit matrix I. We recall that from a geometrical point of view a square root of the unit matrix is called almost product structure, see for example [6]. Geometrical significance: R(t is the matrix of rotation of angle t in trigonometrical sense (i.e anticlockwise around the origin and S(t is the matrix of axial symmetry with respect to d t/ =line from plane R which contains the origin O and makes the oriented angle t/ with Ox. We have that S(t S(t 1 = A(t t 1 S(t 1 S(t. Received : , Accepted : dd month yyyy

2 M. Crâşmăreanu, A. Plugariu We return to the general case of matrix A. We remind that A has two invariants: T ra := a + d, det A := ad bc. Properties: i T r : M (R R is a linear operator: T r(αa 1 + βa = αt ra 1 + βt ra, ii det : M (R R is a multiplicative function: det(a 1 A = det A 1 det A, iii The characteristic equation of A: A T ra A + det A I = O. The multiplicative property of the determinant yields: The necessary condition for existence of square roots: Hence we assume from now on that det A 0. B : B = A det A 0. Revised Euclidean example 1: T rs(t = 0, dets(t = 1 which says that S(t does not admit roots. A root of order 4 of unit matrix is called structure of electromagnetic type according to [7, p. 3807]. We also have relationships between the invariants of A and B: T ra = (T rb det B, det A = (det B. (0 Proof. It is enough to proof the first identity. We write the characteristic equation of B: which gives: We square this relation: or: From (1 we have that: which is replaced in square brackets from (3: A T rb B + det B I = O (1 A = T rb B det B I. ( A = (T rb A T rb det B B + (det B I A (T rb A + det B[T rb B] (det B I = O. (3 T rb B = A + det B I (4 A (T rb A + det B[A + det B I ] (det B I = A [(T rb det B] A + (det B I = O and by comparing with the characteristic equation of A we obtain the conclusion. The relation (4 is fundamental for finding B and we have two cases: Case I: T rb = 0 implies that: A = det B I. Case II T rb 0 implies that: B = 1 T rb [A + det B I ]. (5 From the first relation (0 we have that: hence, if A ai, we obtain that: II1 T ra + det A 0 implies that A does not have roots, II T ra + det A > 0 but T ra det A 0 implies that A has two roots: (T rb = T ra + det A (6 1 B ± = ± T ra + det A [A + det AI ] (7

3 New aspects on square roots of a real matrix and their geometric applications 3 II3 T ra det A > 0 (which implies that T ra + det A > 0 implies that A has four roots: 1 B ± (ε = ± T ra + ε det A [A + ε det AI ], ε = ±1. (8 Revised Euclidean example For A(t we have: T rr(t = cos t, det R(t = 1, T rr(t + det R(t = 4 cos t, T rr(t det R(t = (cos t 1 0. (9 From Case II, we get that R(t has two roots: B ± (t = ± 1 ( cos t + 1 sin t cos t sin t cos t + 1 = ±R t. (10 The relation (10 can be considered the matrix version of the well-known Moivre s relation from complex algebra (C, +, : (cos t + i sin t = cos(t + i sin(t. (11 The group law of SO( is: R(t 1 R(t = R(t 1 + t = R(t R(t 1 which gives: R(t = R(t and the fact that SO( is a group isomorphic to the multiplicative group (S 1, of all unit complex numbers. Inspired by characteristic equation of A we introduce the characteristic polynomial of A, namely p A R[X]: p A (X = X T ra X + det A. (1 We know that the possible real roots of p A are called eigenvalues of A and are useful in studying the diagonalisation of A. So, if the eigenvalues exist and are different, we denote them by λ 1 < λ and it follows that A admits a diagonal form: A = S 1 diag(λ 1, λ S (13 with S GL(, R=-general linear group i.e. the group of all real invertible matrices of order. Obviously, the condition of existence and inequality for λ 1, holds when the discriminant (p A is strictly positive: The relationship between (p A and (p B is given by: Proposition Let B be a square root of A. Then: (p A := (T ra 4 det A. (14 (p A = (T rb (p B. (15 Thus, if T rb 0 then A has different eigenvalues if and only if B has different eigenvalues. Proof. The relation (15 is a direct consequence of (0. Corollary Suppose the matrix A with det A > 0 has the root B with T rb 0. Assume that A is diagonalisable with S GL(, R and different eigenvalues λ 1 < λ. Then, 0 < λ 1 < λ and B is diagonalisable with the same matrix S having the eigenvalues { λ 1, λ } or { λ 1, λ } or { λ 1, λ } or { λ 1, λ }. Equivalently, we are in case II3 with: 1 B ± (ε = ± λ + ε [A + ε λ 1 λ I ] = S diag(± λ 1, ± λ S 1. (16 λ 1 Proof. Because det A > 0 we have that λ 1 and λ have the same sign. We suppose that λ 1 < λ < 0. From (6 we have that (T rb = λ 1 + λ ± λ 1 λ > 0. It follows only the case with + i.e. λ 1 λ + λ 1 λ > 0 but this is impossible because of the AM-GM inequality. Recall that the AM GM inequality states that the arithmetic mean of a list of non-negative real numbers is greater than or equal to the geometric mean of the same list.

4 4 M. Crâşmăreanu, A. Plugariu The golden example It is known that the golden proportion (or the golden number is the positive root, φ = 5+1, of the equation [6]: x x 1 = 0. (17 The negative root is φ 1 = 1 5. Let us consider the matrix: 3 A =, T ra = 6, det A = 5. (18 3 A is diagonalisable, being symmetric, with 0 < λ 1 = 1 < λ = 5. We have that: T ra + ε det A = 6 + ε 5 = ( 5 + ε (19 We are in Case II3 and for example: B ± (1 = ± ( = ± 1 ( φ φ φ 1 φ φ = ± φ 1 φ. (0 By analogy with the problem studied here, we call the matrix A M n (R satisfying A A I n = O n, as being an almost golden structure. In [6] we study the relationship between almost golden structures and almost product structures. We return to the case I given by A = ai and we present the solution from [3, p. 491]. We have, irrespective of a s sign, an infinity of roots: c s B ± (c, s := ±, c R, s R. (1 c a c s If a = 0 then we add the infinite set of almost tangent structures: ( 0 0 B ± (u := ± u 0, u R. ( If a > 0 then we add the infinite set: ( ± a 0 B ± (u := u a ( ± a 0, B ± := 0 ± a. (3 Revised Euclidean example 3 For a = 1 the family B + (c, s becomes: c s B(c, s = c 1 c s (4 which gives: B(cos t, sin t = S(t. (5 This way we obtain the matrices from O (. We consider now a right triangle with sides x, y and hypotenuse z. We have that: S(t = 1 x y. (6 z y x If (x, y, z (N 3 then (x, y, z is a Pythagorean triple. This example of almost product structures provided by Pythagorean triples appears on the Web page [1]. In [5] we gave a method for finding matrices A M 3 (R which transforms a Pythagorean triple into another Pythagorean triple. Open problem Do the matrices A which preserve Pythagorean triples admit roots? We return now to the given corollary: a symmetric matrix A with different and strictly positive eigenvalues is positive definite, []. Thus, A defines a new inner product on R n : < x, ȳ > A :=< x, Aȳ >. (7

5 New aspects on square roots of a real matrix and their geometric applications 5 If A admits B as a root then: If B is also symmetric, which happens when n =, then: hence: < x, ȳ > A :=< x, B ȳ >=< B t x, Bȳ >. (8 < x, ȳ > A :=< B x, Bȳ > (9 x A = B x. (30 Thus, for nonzero vectors x, ȳ R n, the angle ϕ A ( x, ȳ between them with respect to <, > A is given by: cos ϕ A ( x, ȳ = cos ϕ(b x, Bȳ. (31 Generalized golden example The matrix A M (R is called bi-symmetric if it has the form: a b A =. (3 b a Then det A = a b and, for having roots, we assume that a > b. We are in case II3 and obtain that: B ± (ε = ± 1 ( a + b + ε a b a + b ε a b a + b ε a b a + b + ε a b (33 which gives us the result that any of its root is also bi-symmetric. The conversely: If B is bi-symmetric then B is bi-symmetric is obvious from calculus. Hyperbolic example We consider: ( cosh t sinh t A(t := sinh t cosh t A is a bi-symmetric matrix with a > b and with formula (33 we obtain that: ( cosh t B ± (1 = ± sinh t sinh t sinh t cosh t, B ± ( 1 = ± cosh t cosh t sinh t Fibonacci example In [8, p. 4] is introduced the Q-Fibonacci matrix: 1 1 Q = 1 0 that has the natural powers: ( Q n Fn+1 F = n F n F n 1. (34. (35 (36. (37 Because of the golden example, we consider the matrix: Fn+1 F Q(n = n. (38 F n F n+1 With relation (33 we have the roots: Q ± (n, ε = ± 1 ( Fn+ + ε F n Fn+ ε Fn+ F n ε F n Fn+ + ε. (39 F n Almost complex example A root of the matrix I is called almost complex structure. According to (1 we have: ( B ± (s, c := ± s 1 s c c s, s R, c R. (40

6 6 M. Crâşmăreanu, A. Plugariu An interesting particular case is: ( sinh t cosh t B ± (sinh t, cosh t := B(t = ± cosh t sinh t. (41 Acknowledgements The authors are extremely indebted to two anonymous referees for their extremely useful remarks and improvements. References [1] [] [3] Anghel, N., Square roots of real matrices, Gaz. Mat. Ser. B 118 (013, no. 11, [4] Anghel, N., Square roots of real 3x3 matrices vs. quartic polynomials with real zero, An. Ştiinţ. Univ. Ovidius Constanţa, Ser. Mat. 5 (017, no. 3, [5] Crasmareanu, M., A new method to obtain Pythagorean triple preserving matrices, Missouri J. Math. Sci. 14 (00, no. 3, MR (003h:15041, Zbl [6] M. Crasmareanu, M. and Hreţcanu, Cristina-Elena, Golden differential geometry, Chaos, Solitons & Fractals 38 (008, no. 5, MR 45653(009k:53059 [7] Reyes, E., Cruceanu, V. and Gadea, P. M., Structures of electromagnetic type on vector bundle, J. Phys. A, Math. Gen. 3 (1999, no. 0, Zbl [8] Stakhov A. and Aranson S., The golden non-euclidean geometry. Hilbert s fourth problem, golden dynamical systems, and the fine-structure constant. With the assistance of Scott Olsen. Series on Analysis, Applications and Computation 7. Hackensack, NJ: World Scientific, 017. Zbl Affiliations MIRCEA CRASMAREANU ADDRESS: University "Al. I.Cuza", Faculty of Mathematics, , Iasi-Romania. mcrasm@uaic.ro ANDREI PLUGARIU ADDRESS: University "Al. I.Cuza", Faculty of Mathematics, , Iasi-Romania. plugariu.andrei@yahoo.ro

Доклади на Българската академия на науките Comptes rendus de l Académie bulgare des Sciences Tome 69, No 9, 2016 GOLDEN-STATISTICAL STRUCTURES

Доклади на Българската академия на науките Comptes rendus de l Académie bulgare des Sciences Tome 69, No 9, 2016 GOLDEN-STATISTICAL STRUCTURES 09-02 I кор. Доклади на Българската академия на науките Comptes rendus de l Académie bulgare des Sciences Tome 69, No 9, 2016 GOLDEN-STATISTICAL STRUCTURES MATHEMATIQUES Géométrie différentielle Adara

More information

NORMS ON SPACE OF MATRICES

NORMS ON SPACE OF MATRICES NORMS ON SPACE OF MATRICES. Operator Norms on Space of linear maps Let A be an n n real matrix and x 0 be a vector in R n. We would like to use the Picard iteration method to solve for the following system

More information

LIE ALGEBRAS AND LIE BRACKETS OF LIE GROUPS MATRIX GROUPS QIZHEN HE

LIE ALGEBRAS AND LIE BRACKETS OF LIE GROUPS MATRIX GROUPS QIZHEN HE LIE ALGEBRAS AND LIE BRACKETS OF LIE GROUPS MATRIX GROUPS QIZHEN HE Abstract. The goal of this paper is to study Lie groups, specifically matrix groups. We will begin by introducing two examples: GL n

More information

Final Exam. Linear Algebra Summer 2011 Math S2010X (3) Corrin Clarkson. August 10th, Solutions

Final Exam. Linear Algebra Summer 2011 Math S2010X (3) Corrin Clarkson. August 10th, Solutions Final Exam Linear Algebra Summer Math SX (3) Corrin Clarkson August th, Name: Solutions Instructions: This is a closed book exam. You may not use the textbook, notes or a calculator. You will have 9 minutes

More information

MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003

MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003 MATH 23a, FALL 2002 THEORETICAL LINEAR ALGEBRA AND MULTIVARIABLE CALCULUS Solutions to Final Exam (in-class portion) January 22, 2003 1. True or False (28 points, 2 each) T or F If V is a vector space

More information

Final Exam Practice Problems Answers Math 24 Winter 2012

Final Exam Practice Problems Answers Math 24 Winter 2012 Final Exam Practice Problems Answers Math 4 Winter 0 () The Jordan product of two n n matrices is defined as A B = (AB + BA), where the products inside the parentheses are standard matrix product. Is the

More information

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product.

MATH Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. MATH 311-504 Topics in Applied Mathematics Lecture 12: Evaluation of determinants. Cross product. Determinant is a scalar assigned to each square matrix. Notation. The determinant of a matrix A = (a ij

More information

PYTHAGOREAN TRIPLES KEITH CONRAD

PYTHAGOREAN TRIPLES KEITH CONRAD PYTHAGOREAN TRIPLES KEITH CONRAD 1. Introduction A Pythagorean triple is a triple of positive integers (a, b, c) where a + b = c. Examples include (3, 4, 5), (5, 1, 13), and (8, 15, 17). Below is an ancient

More information

Weaker hypotheses for the general projection algorithm with corrections

Weaker hypotheses for the general projection algorithm with corrections DOI: 10.1515/auom-2015-0043 An. Şt. Univ. Ovidius Constanţa Vol. 23(3),2015, 9 16 Weaker hypotheses for the general projection algorithm with corrections Alexru Bobe, Aurelian Nicola, Constantin Popa Abstract

More information

BEST APPROXIMATIONS AND ORTHOGONALITIES IN 2k-INNER PRODUCT SPACES. Seong Sik Kim* and Mircea Crâşmăreanu. 1. Introduction

BEST APPROXIMATIONS AND ORTHOGONALITIES IN 2k-INNER PRODUCT SPACES. Seong Sik Kim* and Mircea Crâşmăreanu. 1. Introduction Bull Korean Math Soc 43 (2006), No 2, pp 377 387 BEST APPROXIMATIONS AND ORTHOGONALITIES IN -INNER PRODUCT SPACES Seong Sik Kim* and Mircea Crâşmăreanu Abstract In this paper, some characterizations of

More information

On the Hadamard Product of Fibonacci Q n matrix and Fibonacci Q n matrix

On the Hadamard Product of Fibonacci Q n matrix and Fibonacci Q n matrix Int J Contemp Math Sciences, Vol, 006, no 6, 753-76 On the Hadamard Product of Fibonacci Q n matrix and Fibonacci Q n matrix Ayşe NALLI Department of Mathematics, Selcuk University 4070, Campus-Konya,

More information

Solutions Problem Set 8 Math 240, Fall

Solutions Problem Set 8 Math 240, Fall Solutions Problem Set 8 Math 240, Fall 2012 5.6 T/F.2. True. If A is upper or lower diagonal, to make det(a λi) 0, we need product of the main diagonal elements of A λi to be 0, which means λ is one of

More information

Methods in Computer Vision: Introduction to Matrix Lie Groups

Methods in Computer Vision: Introduction to Matrix Lie Groups Methods in Computer Vision: Introduction to Matrix Lie Groups Oren Freifeld Computer Science, Ben-Gurion University June 14, 2017 June 14, 2017 1 / 46 Definition and Basic Properties Definition (Matrix

More information

MATH 304 Linear Algebra Lecture 19: Least squares problems (continued). Norms and inner products.

MATH 304 Linear Algebra Lecture 19: Least squares problems (continued). Norms and inner products. MATH 304 Linear Algebra Lecture 19: Least squares problems (continued). Norms and inner products. Orthogonal projection Theorem 1 Let V be a subspace of R n. Then any vector x R n is uniquely represented

More information

Review of linear algebra

Review of linear algebra Review of linear algebra 1 Vectors and matrices We will just touch very briefly on certain aspects of linear algebra, most of which should be familiar. Recall that we deal with vectors, i.e. elements of

More information

The Lorentz group provides another interesting example. Moreover, the Lorentz group SO(3, 1) shows up in an interesting way in computer vision.

The Lorentz group provides another interesting example. Moreover, the Lorentz group SO(3, 1) shows up in an interesting way in computer vision. 190 CHAPTER 3. REVIEW OF GROUPS AND GROUP ACTIONS 3.3 The Lorentz Groups O(n, 1), SO(n, 1) and SO 0 (n, 1) The Lorentz group provides another interesting example. Moreover, the Lorentz group SO(3, 1) shows

More information

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form

Chapter 5. Linear Algebra. A linear (algebraic) equation in. unknowns, x 1, x 2,..., x n, is. an equation of the form Chapter 5. Linear Algebra A linear (algebraic) equation in n unknowns, x 1, x 2,..., x n, is an equation of the form a 1 x 1 + a 2 x 2 + + a n x n = b where a 1, a 2,..., a n and b are real numbers. 1

More information

MATH 235. Final ANSWERS May 5, 2015

MATH 235. Final ANSWERS May 5, 2015 MATH 235 Final ANSWERS May 5, 25. ( points) Fix positive integers m, n and consider the vector space V of all m n matrices with entries in the real numbers R. (a) Find the dimension of V and prove your

More information

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.

More information

SPACES ENDOWED WITH A GRAPH AND APPLICATIONS. Mina Dinarvand. 1. Introduction

SPACES ENDOWED WITH A GRAPH AND APPLICATIONS. Mina Dinarvand. 1. Introduction MATEMATIČKI VESNIK MATEMATIQKI VESNIK 69, 1 (2017), 23 38 March 2017 research paper originalni nauqni rad FIXED POINT RESULTS FOR (ϕ, ψ)-contractions IN METRIC SPACES ENDOWED WITH A GRAPH AND APPLICATIONS

More information

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.

More information

INNER PRODUCT SPACE. Definition 1

INNER PRODUCT SPACE. Definition 1 INNER PRODUCT SPACE Definition 1 Suppose u, v and w are all vectors in vector space V and c is any scalar. An inner product space on the vectors space V is a function that associates with each pair of

More information

(x, y) = d(x, y) = x y.

(x, y) = d(x, y) = x y. 1 Euclidean geometry 1.1 Euclidean space Our story begins with a geometry which will be familiar to all readers, namely the geometry of Euclidean space. In this first chapter we study the Euclidean distance

More information

c Igor Zelenko, Fall

c Igor Zelenko, Fall c Igor Zelenko, Fall 2017 1 18: Repeated Eigenvalues: algebraic and geometric multiplicities of eigenvalues, generalized eigenvectors, and solution for systems of differential equation with repeated eigenvalues

More information

Dot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem.

Dot Products. K. Behrend. April 3, Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem. Dot Products K. Behrend April 3, 008 Abstract A short review of some basic facts on the dot product. Projections. The spectral theorem. Contents The dot product 3. Length of a vector........................

More information

Inner Product Spaces 6.1 Length and Dot Product in R n

Inner Product Spaces 6.1 Length and Dot Product in R n Inner Product Spaces 6.1 Length and Dot Product in R n Summer 2017 Goals We imitate the concept of length and angle between two vectors in R 2, R 3 to define the same in the n space R n. Main topics are:

More information

7 Planar systems of linear ODE

7 Planar systems of linear ODE 7 Planar systems of linear ODE Here I restrict my attention to a very special class of autonomous ODE: linear ODE with constant coefficients This is arguably the only class of ODE for which explicit solution

More information

NOTES on LINEAR ALGEBRA 1

NOTES on LINEAR ALGEBRA 1 School of Economics, Management and Statistics University of Bologna Academic Year 207/8 NOTES on LINEAR ALGEBRA for the students of Stats and Maths This is a modified version of the notes by Prof Laura

More information

1. General Vector Spaces

1. General Vector Spaces 1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule

More information

Throughout these notes we assume V, W are finite dimensional inner product spaces over C.

Throughout these notes we assume V, W are finite dimensional inner product spaces over C. Math 342 - Linear Algebra II Notes Throughout these notes we assume V, W are finite dimensional inner product spaces over C 1 Upper Triangular Representation Proposition: Let T L(V ) There exists an orthonormal

More information

Math 315: Linear Algebra Solutions to Assignment 7

Math 315: Linear Algebra Solutions to Assignment 7 Math 5: Linear Algebra s to Assignment 7 # Find the eigenvalues of the following matrices. (a.) 4 0 0 0 (b.) 0 0 9 5 4. (a.) The characteristic polynomial det(λi A) = (λ )(λ )(λ ), so the eigenvalues are

More information

1 Planar rotations. Math Abstract Linear Algebra Fall 2011, section E1 Orthogonal matrices and rotations

1 Planar rotations. Math Abstract Linear Algebra Fall 2011, section E1 Orthogonal matrices and rotations Math 46 - Abstract Linear Algebra Fall, section E Orthogonal matrices and rotations Planar rotations Definition: A planar rotation in R n is a linear map R: R n R n such that there is a plane P R n (through

More information

we have the following equation:

we have the following equation: 1 VMTS Homework #1 due Thursday, July 6 Exercise 1 In triangle ABC, let P be 2 3 of the way from A to B, let Q be 1 3 of the way from P to C, and let the line BQ intersect AC in R How far is R along the

More information

SPLIT QUATERNIONS and CANAL SURFACES. in MINKOWSKI 3-SPACE

SPLIT QUATERNIONS and CANAL SURFACES. in MINKOWSKI 3-SPACE INTERNATIONAL JOURNAL OF GEOMETRY Vol. 5 (016, No., 51-61 SPLIT QUATERNIONS and CANAL SURFACES in MINKOWSKI 3-SPACE SELAHATTIN ASLAN and YUSUF YAYLI Abstract. A canal surface is the envelope of a one-parameter

More information

88 CHAPTER 3. SYMMETRIES

88 CHAPTER 3. SYMMETRIES 88 CHAPTER 3 SYMMETRIES 31 Linear Algebra Start with a field F (this will be the field of scalars) Definition: A vector space over F is a set V with a vector addition and scalar multiplication ( scalars

More information

Linear Algebra. Min Yan

Linear Algebra. Min Yan Linear Algebra Min Yan January 2, 2018 2 Contents 1 Vector Space 7 1.1 Definition................................. 7 1.1.1 Axioms of Vector Space..................... 7 1.1.2 Consequence of Axiom......................

More information

From Lay, 5.4. If we always treat a matrix as defining a linear transformation, what role does diagonalisation play?

From Lay, 5.4. If we always treat a matrix as defining a linear transformation, what role does diagonalisation play? Overview Last week introduced the important Diagonalisation Theorem: An n n matrix A is diagonalisable if and only if there is a basis for R n consisting of eigenvectors of A. This week we ll continue

More information

Part IA. Vectors and Matrices. Year

Part IA. Vectors and Matrices. Year Part IA Vectors and Matrices Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2018 Paper 1, Section I 1C Vectors and Matrices For z, w C define the principal value of z w. State de Moivre s

More information

MTH Linear Algebra. Study Guide. Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education

MTH Linear Algebra. Study Guide. Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education MTH 3 Linear Algebra Study Guide Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education June 3, ii Contents Table of Contents iii Matrix Algebra. Real Life

More information

MATRICES. a m,1 a m,n A =

MATRICES. a m,1 a m,n A = MATRICES Matrices are rectangular arrays of real or complex numbers With them, we define arithmetic operations that are generalizations of those for real and complex numbers The general form a matrix of

More information

On the closures of orbits of fourth order matrix pencils

On the closures of orbits of fourth order matrix pencils On the closures of orbits of fourth order matrix pencils Dmitri D. Pervouchine Abstract In this work we state a simple criterion for nilpotentness of a square n n matrix pencil with respect to the action

More information

10-6 Functions as Infinite Series

10-6 Functions as Infinite Series Use Use to find a power series representation of g(x) Indicate the interval on which the series converges Use a graphing calculator to graph g(x) and the sixth partial sum of its power series 1 g(x) to

More information

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS SPRING 006 PRELIMINARY EXAMINATION SOLUTIONS 1A. Let G be the subgroup of the free abelian group Z 4 consisting of all integer vectors (x, y, z, w) such that x + 3y + 5z + 7w = 0. (a) Determine a linearly

More information

MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial.

MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial. MATH 423 Linear Algebra II Lecture 20: Geometry of linear transformations. Eigenvalues and eigenvectors. Characteristic polynomial. Geometric properties of determinants 2 2 determinants and plane geometry

More information

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices

Matrix Algebra Determinant, Inverse matrix. Matrices. A. Fabretti. Mathematics 2 A.Y. 2015/2016. A. Fabretti Matrices Matrices A. Fabretti Mathematics 2 A.Y. 2015/2016 Table of contents Matrix Algebra Determinant Inverse Matrix Introduction A matrix is a rectangular array of numbers. The size of a matrix is indicated

More information

AN ITERATION. In part as motivation, we consider an iteration method for solving a system of linear equations which has the form x Ax = b

AN ITERATION. In part as motivation, we consider an iteration method for solving a system of linear equations which has the form x Ax = b AN ITERATION In part as motivation, we consider an iteration method for solving a system of linear equations which has the form x Ax = b In this, A is an n n matrix and b R n.systemsof this form arise

More information

METALLIC STRUCTURES ON RIEMANNIAN MANIFOLDS

METALLIC STRUCTURES ON RIEMANNIAN MANIFOLDS REVISTA DE LA UNIÓN MATEMÁTICA ARGENTINA Vol. 54, No., 013, Pages 15 7 Published online: December 16, 013 METALLIC STRUCTURES ON RIEMANNIAN MANIFOLDS CRISTINA-ELENA HREŢCANU AND MIRCEA CRASMAREANU Abstract.

More information

NOTES ON LINEAR ALGEBRA CLASS HANDOUT

NOTES ON LINEAR ALGEBRA CLASS HANDOUT NOTES ON LINEAR ALGEBRA CLASS HANDOUT ANTHONY S. MAIDA CONTENTS 1. Introduction 2 2. Basis Vectors 2 3. Linear Transformations 2 3.1. Example: Rotation Transformation 3 4. Matrix Multiplication and Function

More information

LECTURE VI: SELF-ADJOINT AND UNITARY OPERATORS MAT FALL 2006 PRINCETON UNIVERSITY

LECTURE VI: SELF-ADJOINT AND UNITARY OPERATORS MAT FALL 2006 PRINCETON UNIVERSITY LECTURE VI: SELF-ADJOINT AND UNITARY OPERATORS MAT 204 - FALL 2006 PRINCETON UNIVERSITY ALFONSO SORRENTINO 1 Adjoint of a linear operator Note: In these notes, V will denote a n-dimensional euclidean vector

More information

Cambridge University Press The Mathematics of Signal Processing Steven B. Damelin and Willard Miller Excerpt More information

Cambridge University Press The Mathematics of Signal Processing Steven B. Damelin and Willard Miller Excerpt More information Introduction Consider a linear system y = Φx where Φ can be taken as an m n matrix acting on Euclidean space or more generally, a linear operator on a Hilbert space. We call the vector x a signal or input,

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

Homework 2. Solutions T =

Homework 2. Solutions T = Homework. s Let {e x, e y, e z } be an orthonormal basis in E. Consider the following ordered triples: a) {e x, e x + e y, 5e z }, b) {e y, e x, 5e z }, c) {e y, e x, e z }, d) {e y, e x, 5e z }, e) {

More information

Some Geometric Applications of Timelike Quaternions

Some Geometric Applications of Timelike Quaternions Some Geometric Applications of Timelike Quaternions M. Özdemir, A.A. Ergin Department of Mathematics, Akdeniz University, 07058-Antalya, Turkey mozdemir@akdeniz.edu.tr, aaergin@akdeniz.edu.tr Abstract

More information

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI?

Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Section 5. The Characteristic Polynomial Question: Given an n x n matrix A, how do we find its eigenvalues? Idea: Suppose c is an eigenvalue of A, then what is the determinant of A-cI? Property The eigenvalues

More information

Optimization Theory. A Concise Introduction. Jiongmin Yong

Optimization Theory. A Concise Introduction. Jiongmin Yong October 11, 017 16:5 ws-book9x6 Book Title Optimization Theory 017-08-Lecture Notes page 1 1 Optimization Theory A Concise Introduction Jiongmin Yong Optimization Theory 017-08-Lecture Notes page Optimization

More information

A crash course the geometry of hyperbolic surfaces

A crash course the geometry of hyperbolic surfaces Lecture 7 A crash course the geometry of hyperbolic surfaces 7.1 The hyperbolic plane Hyperbolic geometry originally developed in the early 19 th century to prove that the parallel postulate in Euclidean

More information

Examples include: (a) the Lorenz system for climate and weather modeling (b) the Hodgkin-Huxley system for neuron modeling

Examples include: (a) the Lorenz system for climate and weather modeling (b) the Hodgkin-Huxley system for neuron modeling 1 Introduction Many natural processes can be viewed as dynamical systems, where the system is represented by a set of state variables and its evolution governed by a set of differential equations. Examples

More information

A connection between number theory and linear algebra

A connection between number theory and linear algebra A connection between number theory and linear algebra Mark Steinberger Contents 1. Some basics 1 2. Rational canonical form 2 3. Prime factorization in F[x] 4 4. Units and order 5 5. Finite fields 7 6.

More information

Linear Algebra 1. M.T.Nair Department of Mathematics, IIT Madras. and in that case x is called an eigenvector of T corresponding to the eigenvalue λ.

Linear Algebra 1. M.T.Nair Department of Mathematics, IIT Madras. and in that case x is called an eigenvector of T corresponding to the eigenvalue λ. Linear Algebra 1 M.T.Nair Department of Mathematics, IIT Madras 1 Eigenvalues and Eigenvectors 1.1 Definition and Examples Definition 1.1. Let V be a vector space (over a field F) and T : V V be a linear

More information

Contents. 1 Vectors, Lines and Planes 1. 2 Gaussian Elimination Matrices Vector Spaces and Subspaces 124

Contents. 1 Vectors, Lines and Planes 1. 2 Gaussian Elimination Matrices Vector Spaces and Subspaces 124 Matrices Math 220 Copyright 2016 Pinaki Das This document is freely redistributable under the terms of the GNU Free Documentation License For more information, visit http://wwwgnuorg/copyleft/fdlhtml Contents

More information

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T

The goal of this chapter is to study linear systems of ordinary differential equations: dt,..., dx ) T 1 1 Linear Systems The goal of this chapter is to study linear systems of ordinary differential equations: ẋ = Ax, x(0) = x 0, (1) where x R n, A is an n n matrix and ẋ = dx ( dt = dx1 dt,..., dx ) T n.

More information

A REPRESENTATION OF DE MOIVRE S FORMULA OVER PAULI-QUATERNIONS

A REPRESENTATION OF DE MOIVRE S FORMULA OVER PAULI-QUATERNIONS ISSN 066-6594 Ann. Acad. Rom. Sci. Ser. Math. Appl. Vol. 9, No. /017 A REPRESENTATION OF DE MOIVRE S FORMULA OVER PAULI-QUATERNIONS J. E. Kim Abstract We investigate algebraic and analytic properties of

More information

MTH 2032 SemesterII

MTH 2032 SemesterII MTH 202 SemesterII 2010-11 Linear Algebra Worked Examples Dr. Tony Yee Department of Mathematics and Information Technology The Hong Kong Institute of Education December 28, 2011 ii Contents Table of Contents

More information

Tripotents: a class of strongly clean elements in rings

Tripotents: a class of strongly clean elements in rings DOI: 0.2478/auom-208-0003 An. Şt. Univ. Ovidius Constanţa Vol. 26(),208, 69 80 Tripotents: a class of strongly clean elements in rings Grigore Călugăreanu Abstract Periodic elements in a ring generate

More information

Algebraic groups Lecture 1

Algebraic groups Lecture 1 Algebraic groups Lecture Notes by Tobias Magnusson Lecturer: WG September 3, 207 Administration Registration: A sheet of paper (for registration) was passed around. The lecturers will alternate between

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Review of Linear Algebra Denis Helic KTI, TU Graz Oct 9, 2014 Denis Helic (KTI, TU Graz) KDDM1 Oct 9, 2014 1 / 74 Big picture: KDDM Probability Theory

More information

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journal of Inequalities in Pure and Applied Mathematics MATRIX AND OPERATOR INEQUALITIES FOZI M DANNAN Department of Mathematics Faculty of Science Qatar University Doha - Qatar EMail: fmdannan@queduqa

More information

Symmetric and anti symmetric matrices

Symmetric and anti symmetric matrices Symmetric and anti symmetric matrices In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, matrix A is symmetric if. A = A Because equal matrices have equal

More information

Differential Topology Final Exam With Solutions

Differential Topology Final Exam With Solutions Differential Topology Final Exam With Solutions Instructor: W. D. Gillam Date: Friday, May 20, 2016, 13:00 (1) Let X be a subset of R n, Y a subset of R m. Give the definitions of... (a) smooth function

More information

STABLY FREE MODULES KEITH CONRAD

STABLY FREE MODULES KEITH CONRAD STABLY FREE MODULES KEITH CONRAD 1. Introduction Let R be a commutative ring. When an R-module has a particular module-theoretic property after direct summing it with a finite free module, it is said to

More information

LINEAR ALGEBRA REVIEW

LINEAR ALGEBRA REVIEW LINEAR ALGEBRA REVIEW JC Stuff you should know for the exam. 1. Basics on vector spaces (1) F n is the set of all n-tuples (a 1,... a n ) with a i F. It forms a VS with the operations of + and scalar multiplication

More information

Linear Algebra Review

Linear Algebra Review Chapter 1 Linear Algebra Review It is assumed that you have had a course in linear algebra, and are familiar with matrix multiplication, eigenvectors, etc. I will review some of these terms here, but quite

More information

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups

LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS. 1. Lie groups LECTURE 16: LIE GROUPS AND THEIR LIE ALGEBRAS 1. Lie groups A Lie group is a special smooth manifold on which there is a group structure, and moreover, the two structures are compatible. Lie groups are

More information

A matrix over a field F is a rectangular array of elements from F. The symbol

A matrix over a field F is a rectangular array of elements from F. The symbol Chapter MATRICES Matrix arithmetic A matrix over a field F is a rectangular array of elements from F The symbol M m n (F ) denotes the collection of all m n matrices over F Matrices will usually be denoted

More information

SQUARE ROOTS OF 2x2 MATRICES 1. Sam Northshield SUNY-Plattsburgh

SQUARE ROOTS OF 2x2 MATRICES 1. Sam Northshield SUNY-Plattsburgh SQUARE ROOTS OF x MATRICES Sam Northshield SUNY-Plattsburgh INTRODUCTION A B What is the square root of a matrix such as? It is not, in general, A B C D C D This is easy to see since the upper left entry

More information

Lie Algebra of Unit Tangent Bundle in Minkowski 3-Space

Lie Algebra of Unit Tangent Bundle in Minkowski 3-Space INTERNATIONAL ELECTRONIC JOURNAL OF GEOMETRY VOLUME 12 NO. 1 PAGE 1 (2019) Lie Algebra of Unit Tangent Bundle in Minkowski 3-Space Murat Bekar (Communicated by Levent Kula ) ABSTRACT In this paper, a one-to-one

More information

Differential Topology Solution Set #2

Differential Topology Solution Set #2 Differential Topology Solution Set #2 Select Solutions 1. Show that X compact implies that any smooth map f : X Y is proper. Recall that a space is called compact if, for every cover {U } by open sets

More information

MATRICES ARE SIMILAR TO TRIANGULAR MATRICES

MATRICES ARE SIMILAR TO TRIANGULAR MATRICES MATRICES ARE SIMILAR TO TRIANGULAR MATRICES 1 Complex matrices Recall that the complex numbers are given by a + ib where a and b are real and i is the imaginary unity, ie, i 2 = 1 In what we describe below,

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Systems of Algebraic Equations and Systems of Differential Equations

Systems of Algebraic Equations and Systems of Differential Equations Systems of Algebraic Equations and Systems of Differential Equations Topics: 2 by 2 systems of linear equations Matrix expression; Ax = b Solving 2 by 2 homogeneous systems Functions defined on matrices

More information

0. Introduction. Math 407: Modern Algebra I. Robert Campbell. January 29, 2008 UMBC. Robert Campbell (UMBC) 0. Introduction January 29, / 22

0. Introduction. Math 407: Modern Algebra I. Robert Campbell. January 29, 2008 UMBC. Robert Campbell (UMBC) 0. Introduction January 29, / 22 0. Introduction Math 407: Modern Algebra I Robert Campbell UMBC January 29, 2008 Robert Campbell (UMBC) 0. Introduction January 29, 2008 1 / 22 Outline 1 Math 407: Abstract Algebra 2 Sources 3 Cast of

More information

3 Matrix Algebra. 3.1 Operations on matrices

3 Matrix Algebra. 3.1 Operations on matrices 3 Matrix Algebra A matrix is a rectangular array of numbers; it is of size m n if it has m rows and n columns. A 1 n matrix is a row vector; an m 1 matrix is a column vector. For example: 1 5 3 5 3 5 8

More information

Some notes on Coxeter groups

Some notes on Coxeter groups Some notes on Coxeter groups Brooks Roberts November 28, 2017 CONTENTS 1 Contents 1 Sources 2 2 Reflections 3 3 The orthogonal group 7 4 Finite subgroups in two dimensions 9 5 Finite subgroups in three

More information

Chapter 5 Eigenvalues and Eigenvectors

Chapter 5 Eigenvalues and Eigenvectors Chapter 5 Eigenvalues and Eigenvectors Outline 5.1 Eigenvalues and Eigenvectors 5.2 Diagonalization 5.3 Complex Vector Spaces 2 5.1 Eigenvalues and Eigenvectors Eigenvalue and Eigenvector If A is a n n

More information

Math 121 Homework 2 Solutions

Math 121 Homework 2 Solutions Math 121 Homework 2 Solutions Problem 13.2 #16. Let K/F be an algebraic extension and let R be a ring contained in K that contains F. Prove that R is a subfield of K containing F. We will give two proofs.

More information

Problem Set 9 Due: In class Tuesday, Nov. 27 Late papers will be accepted until 12:00 on Thursday (at the beginning of class).

Problem Set 9 Due: In class Tuesday, Nov. 27 Late papers will be accepted until 12:00 on Thursday (at the beginning of class). Math 3, Fall Jerry L. Kazdan Problem Set 9 Due In class Tuesday, Nov. 7 Late papers will be accepted until on Thursday (at the beginning of class).. Suppose that is an eigenvalue of an n n matrix A and

More information

Numerical Ranges and Dilations. Dedicated to Professor Yik-Hoi Au-Yeung on the occasion of his retirement

Numerical Ranges and Dilations. Dedicated to Professor Yik-Hoi Au-Yeung on the occasion of his retirement Numerical Ranges and Dilations Dedicated to Professor Yik-Hoi Au-Yeung on the occasion of his retirement Man-Duen Choi Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3.

More information

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam

Math 18, Linear Algebra, Lecture C00, Spring 2017 Review and Practice Problems for Final Exam Math 8, Linear Algebra, Lecture C, Spring 7 Review and Practice Problems for Final Exam. The augmentedmatrix of a linear system has been transformed by row operations into 5 4 8. Determine if the system

More information

Linear algebra 2. Yoav Zemel. March 1, 2012

Linear algebra 2. Yoav Zemel. March 1, 2012 Linear algebra 2 Yoav Zemel March 1, 2012 These notes were written by Yoav Zemel. The lecturer, Shmuel Berger, should not be held responsible for any mistake. Any comments are welcome at zamsh7@gmail.com.

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra Definitions An m n (read "m by n") matrix, is a rectangular array of entries, where m is the number of rows and n the number of columns. 2 Definitions (Con t) A is square if m=

More information

Completion Date: Monday February 11, 2008

Completion Date: Monday February 11, 2008 MATH 4 (R) Winter 8 Intermediate Calculus I Solutions to Problem Set #4 Completion Date: Monday February, 8 Department of Mathematical and Statistical Sciences University of Alberta Question. [Sec..9,

More information

A = 3 1. We conclude that the algebraic multiplicity of the eigenvalues are both one, that is,

A = 3 1. We conclude that the algebraic multiplicity of the eigenvalues are both one, that is, 65 Diagonalizable Matrices It is useful to introduce few more concepts, that are common in the literature Definition 65 The characteristic polynomial of an n n matrix A is the function p(λ) det(a λi) Example

More information

Background on Chevalley Groups Constructed from a Root System

Background on Chevalley Groups Constructed from a Root System Background on Chevalley Groups Constructed from a Root System Paul Tokorcheck Department of Mathematics University of California, Santa Cruz 10 October 2011 Abstract In 1955, Claude Chevalley described

More information

Math 443 Differential Geometry Spring Handout 3: Bilinear and Quadratic Forms This handout should be read just before Chapter 4 of the textbook.

Math 443 Differential Geometry Spring Handout 3: Bilinear and Quadratic Forms This handout should be read just before Chapter 4 of the textbook. Math 443 Differential Geometry Spring 2013 Handout 3: Bilinear and Quadratic Forms This handout should be read just before Chapter 4 of the textbook. Endomorphisms of a Vector Space This handout discusses

More information

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88

Math Camp Lecture 4: Linear Algebra. Xiao Yu Wang. Aug 2010 MIT. Xiao Yu Wang (MIT) Math Camp /10 1 / 88 Math Camp 2010 Lecture 4: Linear Algebra Xiao Yu Wang MIT Aug 2010 Xiao Yu Wang (MIT) Math Camp 2010 08/10 1 / 88 Linear Algebra Game Plan Vector Spaces Linear Transformations and Matrices Determinant

More information

ON SOME INVARIANT SUBMANIFOLDS IN A RIEMANNIAN MANIFOLD WITH GOLDEN STRUCTURE

ON SOME INVARIANT SUBMANIFOLDS IN A RIEMANNIAN MANIFOLD WITH GOLDEN STRUCTURE ANALELE ŞTIINŢIFICE ALE UNIVERSITĂŢII AL.I. CUZA DIN IAŞI (S.N.) MATEMATICĂ, Tomul LIII, 2007, Supliment ON SOME INVARIANT SUBMANIFOLDS IN A RIEMANNIAN MANIFOLD WITH GOLDEN STRUCTURE BY C.-E. HREŢCANU

More information

4. Linear transformations as a vector space 17

4. Linear transformations as a vector space 17 4 Linear transformations as a vector space 17 d) 1 2 0 0 1 2 0 0 1 0 0 0 1 2 3 4 32 Let a linear transformation in R 2 be the reflection in the line = x 2 Find its matrix 33 For each linear transformation

More information

October 25, 2013 INNER PRODUCT SPACES

October 25, 2013 INNER PRODUCT SPACES October 25, 2013 INNER PRODUCT SPACES RODICA D. COSTIN Contents 1. Inner product 2 1.1. Inner product 2 1.2. Inner product spaces 4 2. Orthogonal bases 5 2.1. Existence of an orthogonal basis 7 2.2. Orthogonal

More information