INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

Size: px
Start display at page:

Download "INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)"

Transcription

1 INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) ISSN (Print) ISSN (Online) Volume 5, Issue 8, August (2014), pp IAEME: Journal Impact Factor (2014): (Calculated by GISI) IJEET I A E M E AN ANALYTICAL APPROACH FOR OPTIMAL PLACEMENT OF COMBINED DG AND CAPACITOR IN DISTRIBUTION FEEDER Maruthi Prasanna. H. A. 1,*, Veeresha. A. G. 1, T. Ananthapadmanabha 2, & A. D. Kulkarni 2 1 Research Scholar, Department of EEE, The National Institute of Engineering, Mysore, India 2 Professor, Department of EEE, The National Institute of Engineering, Mysore, India ABSTRACT In the present deregulated environment, optimal placement of Distributed Generation (DG) and shunt capacitor in the distribution network plays a vital role in distribution system planning. In this paper, an analytical approach for optimal placement of combined DG and units are determined with the obective of power loss reduction and voltage profile improvement. Firstly, the DG unit is placed for loss minimization obective and then the capacitor unit is placed for voltage deviation minimization. Three scenarios of DG and capacitor combinations are tried out. To validate the proposed analytical approach, it has been applied to IEEE 33-bus radial distribution systems in MATLAB R2009b. Keywords: Distributed Generation, Shunt s, Distribution System, Power loss reduction, voltage deviation reduction, Load flow, optimal placement. 1. INTRODUCTION Distributed generation is an electric power source connected directly to the distribution network or on the customer site of the meter [1]. Most of the benefits of employing DG units in existing distribution networks have both economic and technical implications and they are interrelated. The maor technical benefits are reduction of line losses, voltage profile improvement, increased overall energy efficiency, enhanced system reliability and security, relieved T&D congestion. The maor economical benefits are deferred investments for upgrades of facilities, reduced O&M costs of some DG technologies, reduced fuel costs due to increased overall efficiency, lower operating costs due to peak shaving and increased security for critical loads [2]. For the known size of DG, in order to achieve the aforementioned benefits, DG location has to be optimized. If DG units are integrated at non-optimal locations, the power losses increase, resulting in increased cost of energy, voltage increase at the end of a feeder, demand supply unbalance in 76

2 a fault condition, power quality decline and reduction of reliability levels [3]. Hence identifying location for connecting DG units is a crucial part of DG planning. In literature, there are a number of approaches developed for placement and sizing of DG units in distribution system. Chiradea and Ramkumar [2] presented a general approach and set of indices to assess and quantify the technical benefits of DG in terms of voltage profile improvement, line loss reduction and environmental impact reduction. Khan and Choudry [4] developed an algorithm based on analytical approach to improve the voltage profile and to reduce the power loss under randomly distributed load conditions with low power factor for single DG as well as multi DG systems. Hung et al. [5] used an improved analytical method for identification of the best location and optimal power factor for placing multiple DGs to achieve loss reduction in large scale primary distribution networks. Kamel and Karmanshahi [6] proposed an algorithm for optimal sizing and siting of DGs at any bus in the distribution system to minimize losses and found that the total losses in the distribution network would reduce by nearly 85%, if DGs were located at the optimal locations with optimal sizes. Dr. T. Ananthapadmanabha et. al [7] proposed an analytical approach for optimal allocation of a DG unit in radial distribution system, in which the optimal location of DG is found out by using TENVD index concerned with the improvement of tail end node voltages and optimal size of DG is found out for loss minimization. The genetic algorithm (GA) is an optimization and search technique based on the principles of genetics and natural selection. Application of GA to determine optimal allocation of DG proved to be an efficient technique and many authors has succeeded in applying it [8]-[12]. Mithulananthan et. al [8] have tried it taking power loss minimization alone as obective. Maruthi Prasanna. H. A. et. Al [12] have attempted in combining the tail end node voltage improvement along with the power loss minimization obective in optimally allocating a DG unit in a radial distribution feeder using GA. Many authors also tried particle swarm optimization (PSO) for DG optimization problem [13]-[]. Some authors have tried DG allocation problem as multi obective optimization in which they have considered voltage profile improvement as additional obective along with power loss minimization [14] & []. Installation of shunt capacitors on distribution networks is essential for power flow control, improving system stability, power factor correction, voltage profile management and losses minimization. Therefore it is important to find optimal location and sizes of capacitors required to minimize feeder losses. The solution techniques for loss minimization can be classified into four categories: Analytical, numerical programming, heuristics and artificial intelligence based. allocation problem is a well researched topic and all earlier approached differ from each other either in their problem formulation or problem solution methods employed [16]. In large distribution networks it is very difficult to predict the optimum size and location of capacitor which finally results not only in reducing losses but also improves the overall voltage profile []. Though many conventional models and techniques are used for this purpose but it becomes a cumbersome task as the complexity of the system increases. [-20] Linear and nonlinear programming methods have been proposed earlier to solve the placement problem. s are commonly used to provide reactive power support in distribution systems. The amount of reactive compensation provided is very much related to the placement of capacitors in distribution feeders. The determination of the location, size, number and type of capacitors to be placed is of great significance, as it reduces power and energy losses, increases the available capacity of the feeders and improves the feeder voltage profile. Numerous methods for solving this problem in view of minimizing losses have been suggested in the literature [21 27]. 77

3 In literature, very few attempts were seen [28-30] about the optimal placement of combined DG and capacitor. The present paper considers the optimal placement of DG and capacitor with the key obective of minimizing the power loss and voltage deviation. In this paper, an analytical approach for optimal placement of combined DG and units are determined with the obective of power loss reduction and voltage profile improvement. Firstly, the DG unit is placed for loss minimization obective and then the capacitor unit is placed for voltage deviation minimization. Three scenarios of DG and capacitor combinations are tried out. To validate the proposed analytical approach, it has been applied to IEEE 33-bus radial distribution systems in MATLAB R2009b. The organization of this paper is as follows; section 2 defines the problem, section 3 defines the proposed methodology, Section 4 discusses the results obtained by the proposed method and finally section 5 concludes the paper. 2. PROBLEM FORMULATION In order to determine benefits from combined DG and integration, two sets of indices are proposed in this paper Viz PLRI and VDRI. They are explained below. 2.1 Power Loss Reduction Index (PLRI) The total real power loss in a distribution system with N buses as a function of active and reactive power inection at all buses can be calculated using the following equation (1) [31] Where, PL = N N [ α i ( Pi P + QiQ ) + β i ( Qi P Pi Q )] i= 1 = 1 ri α i = V V i cos( δ i δ ) ; ri β i = V V i sin( δ i δ ) ; PL is the exact loss of the distribution system; r i is the resistance between bus i and bus ; V i and V is the voltage magnitude of buses i and respectively; δ i is the voltage angle at bus i; δ is the voltage angle at bus ; P i and Q i active and reactive power inection at bus i ; P and Q is the active and reactive power inection at bus. The Power Loss Reduction Index of i th bus when DG is connected to that bus is given by, PL( i) PLRI ( i) = (2) PL( base) Where, PL(i) is the distribution system real power loss when DG is connected to the i th bus; PL(base) is the distribution system real power loss without DG connection; 2.2 Voltage Deviation Reduction Index (VDRI) The voltage deviation index (VDI) of the distribution system is given by, VDI N = b i= 1 78 (1) spec 2 ( V i V ) (3) Where, V i spec is the Voltage specified in pu. In this paper, it is taken as 1 pu; V i is the Voltage at the i th bus in pu. The VDI is a measure of the voltage profile of the distribution system and it indicates how the voltage values of the distribution nodes are nearer to the specified voltage. It is expected that this value should be nearer to zero, so that all the nodes of the distribution system will be having voltage nearer to the specified voltage (1 pu). i

4 The Voltage Deviation Reduction Index (VDRI) of i th bus when capacitor is connected to that bus is given by, VDI ( i) VDRI ( i) = VDI( base) (4) Where, VDI (i) is the voltage deviation index of distribution system when capacitor is connected to ith bus; VDI (base) is the voltage deviation index of the distribution system without capacitor connection. The obective of the optimal DG placement is to achieve minimum power loss in the distribution system with DG and the obective of the optimal capacitor placement is to achieve minimum voltage deviation in the distribution system subect to the following constraints: Line load ability limit: P line( i, ) < Pline ( i, ) max (5) Where, P line(i,) is the line flow between nodes i and ; P line(i,)max is the maximum line flow capacity of line between nodes i and ; Bus Voltage limit: V < Vi < (6) min V max Where, V min is the minimum acceptable voltage at any bus; V max is the maximum allowable voltage at any bus; V i is the voltage of any bus i. 3. PROBLEM FORMULATION In this paper, it is proposed to determine optimal location for both DG and capacitor units. The optimal location for DG unit is located such that it offers maximum power loss reduction and the optimal location for capacitor unit is decided such that it offers maximum voltage deviation reduction. Firstly, the DG unit is placed at the optimal location decided for loss reduction and then the capacitor is placed for voltage deviation reduction. The purpose of such a procedure is to use DG as a way for power loss reduction by inecting real power in the distribution system and to use capacitor as a way for voltage deviation reduction by inecting reactive power in the distribution system. The overall procedure of determining optimal locations for combined DG and capacitor is shown in Fig SIMULATION RESULTS The proposed methodology using FEM is tested on IEEE-33bus Radial Distribution System (RDS) [32] (Fig 2) having following characteristics: Number of buses=33; Number of lines=32; Slack Bus no=1; Base Voltage=12.66KV; Base MVA=100 MVA; The forward backward method of load flow (FBLF) is employed in this paper, whose details are given in [33]. Initially, the base case FBLF is run for the IEEE 33bus RDS and the base case voltage profile is shown in Figure 3. The base case real power loss is kw and base case VDI is pu. The test system is simulated in MATLAB R2009b & the proposed methodology has been tested, whose results are as shown below. In this paper, 3 scenarios of optimal DG placement are carried out: Scenario-1 in which a 1DG of unity pf & 1 is to be placed. Scenario-2 in which 2 DG units of unity pf & 2 s are to be placed. Scenario-3 in which 3 DG units of unity pf & 3 s are to be placed. 79

5 The procedure of determining optimal location for combined DG and capacitor units is explained in Figure 1. In each scenario, the DG sizes of available sizes and the practically available capacitor sizes are considered. The details of available capacitors can be found in [34]. The results of each scenario are tabulated in Table 1, Table 2 and Table 3 respectively. Figure 1: Flowchart for Optimal Placement of Combined DG and 80

6 Figure 2. Single line diagram of IEEE-33 bus RDS Figure 3. Base Case Voltage Profile of IEEE-33 bus RDS In each scenario, the power loss after placement is compared with the base case power loss and loss reduction in Kw is tabulated. Similarly the VDI after placement is compared with base case VDI and VDI reduction in pu is tabulated. From each scenario, it is very clear that the proposed methodology yields maximum power loss reduction and maximum voltage deviation reduction. 81

7 Capacity in KW Table 1: Optimal Placement Results of IEEE 33 bus RDS for Scenario-1 Base Case After Placement of Combined DG and DG Parameters Loss Power Power Optimal Capacity Optimal VDI in Reducti VDI in Loss in Loss in Location in KVAr Location pu on in pu KW KW Kw VDI Reduction in Pu Capacity in KW Capacity in KW Table 2: Optimal Placement Results of IEEE 33 bus RDS for Scenario-2 Base Case After Placement of Combined DG and DG Parameters Power Power Loss Optimal Capacity Optimal VDI in VDI in Loss in Loss in Reductio Location in KVAr Location pu pu KW KW n in Kw VDI Reduction in Pu Table 3: Optimal Placement Results of IEEE 33 bus RDS for Scenario-3 Base Case After Placement of Combined DG and DG Parameters Loss Power Power Optimal Capacity Optimal VDI in Reducti VDI in Loss in Loss in Location in KVAr Location pu on in pu KW KW Kw VDI Reduction in Pu

8 5. CONCLUSION An analytical approach for determining the optimal locations for combined DG and capacitor units is presented in this paper. The optimal location of DG is decided such that it provides maximum real power loss reduction and the optimal location of capacitor is decided such that it provides maximum voltage deviation reduction. The proposed methodology is validated by applying it to IEEE 33 bus Radial Distribution system with three different scenarios. In each scenario, it is found that the proposed methodology has the capability of simultaneously reducing the real power losses in the distribution system with voltage profile improvement. The proposed method can be used as a tool by utilities in distribution system planning in deregulated environment. ACKNOWLEDGEMENT The authors Maruthi Prasanna. H. A. and Veeresha. A. G. acknowledge the Technical Education Quality Improvement Programme (TEQIP)-II of All India Council for Technical Education (AICTE), New Delhi, India and Dr. G. L. Shekar, Principal, NIE, Mysore for providing financial assistance for carrying out this research work. The author Maruthi Prasanna. H. A. also acknowledge the Karntaka Power Transmission Corporation Limited (KPTCL), Karnataka for providing leave to pursue Integrated M.Tech + PhD programme. REFERENCES [1] T. Ackermann, G. Anderson and L. Soder, Distributed generation: a definition, Electrical Power System Research. 2001, 57 (3): [2] P. Chiradea and R. Ramkumar. An approach to quantify the technical benefits of distributed generation, IEEE Transaction on Energy Conversion. 2004, 19 (4): [3] Augusto C Rueda-Medina, John F Franco, Marcos J Rider, Antonio Padilha-Feltrin and Rubén Romero, A mixed-integer linear programming approach for optimal type, size and allocation of distributed generation in radial distribution systems, Electric Power Systems Research, Vol.97, pp , [4] H. Khan and M.A. Choudhry, Implementation of distributed generation algorithm for performance enhancement of distribution feeder under extreme load growth, International Journal of Electrical Power and Energy Systems. 2010, 32 (9): [5] D.Q. Hung, N. Mithulanathan and R.C. Bansal, Multiple distributed generators placement in primary distribution networks for loss reduction, IEEE Transactions on Industrial Electronics, Vol 60, Issue 4, 00 08, April [6] R.M. Kamel and B. Karmanshahi, Optimal size and location of DGs for minimizing power losses in a primary distribution network, Transaction on Computer Science and Electrical and Electronics Engineering. 2009, 16 (2): [7] Dr. T. Ananthapadmanabha, Maruthi Prasanna. H. A., Veeresha. A. G. and Likith Kumar. M. V., A new simplified approach for optimum allocation of a distributed generation unit in the distribution network for voltage improvement and loss minimization, International Journal of Electrical Engineering & Technology (IJEET), Volume 4, Issue 2 (2013), pages: [8] Mithulananthan, T. Oo, L. Van Phu, Distributed generator placement in power distribution system using genetic algorithm to reduce losses, Thammasat International Journal of Science and Technology, Vol. 9, No. 3, July-September [9] M. Sedighizadeh, and A. Rezazadeh, Using Genetic Algorithm for Distributed Generation Allocation to Reduce Losses and Improve Voltage Profile, World Academy of Science, Engineering and Technology, 37, 2008,

9 [10] Pisică, C. Bulac, and M. Eremia, Optimal Distributed Generation Location and Sizing using Genetic Algorithms, th International Conference on Intelligent System Applications to Power Systems, Curitiba, Brazil, 8-12 November 2009, /09 IEEE Digital Explore. [11] A.A. Abou El-Ela a, S.M. Allama, M.M. Shatlab, Maximal optimal benefits of distributed generation using genetic algorithms, Electric Power Systems Research, 80 (2010) [12] Maruthi Prasanna. H. A., Likith Kumar. M. V., and T. Ananthapadmanabha, A Novel Approach for Optimal Allocation of a Distributed Generator in a Radial Distribution Feeder for Loss Minimization and Tail End Node Voltage Improvement during Peak Load, International Transaction of Electrical and Computer Engineers System, vol. 2, no. 2 (2014): doi: /iteces [13] Wichit Krueasuk, Weerakorn Ongsakul, Optimal placement of distributed generation using particle swarm optimization, in proceedings of the 2006 Australian Universities Power Engineering Conference (AUPEC), Melbourne, Victoria, Australia. [14] K. Varesi, Optimal allocation of DG units for power loss reduction and voltage profile improvement of distribution networks using PSO algorithm, World Academy of Science, Engineering and Technology, Vol. 60, [] Maruthi Prasanna. H. A., Likith Kumar. M.V., Veeresha. A. G., Dr. T. Ananthapadmanabha and Dr. A. D. Kulkarni, "Multi obective Optimal Allocation of a Distributed Generation Unit in Distribution Network using PSO", in Proceedings of the 2014 International Conference on Advances in Energy Conversion Technologies (ICAECT), Manipal, India, January 2014, pp , IEEE explore digital library. [16] Sundharaan, S and Pahwa, A., Optimal Selection of s for Radial Distribution Systems using a Genetic Algorithm, IEEE Transactions on Power Systems, Vol. 9, No. 3, August 1994,pp [] Grainger, J.J and Lee, S.H., Optimum size and location of shunt capacitors for reduction in loss in distribution systems, IEEE Transactions on Power Apparatus and Systems, Vol. PAS 100, No. 3, March 1981, pp [] Baran, M.E. and Wu, F.F., Optimal Placement on Radial Distribution Feeders, IEEE Transactions on Power Delivery, Vol. 4, No.1, January 1989, pp [19] Chiang, H.D., Wang, J.C. and Shin, H.D., Optimal Placement in Distribution Systems: Part 1: A New Formulation and the overall problem, Part II Solution Algorithms and Numerical Results., IEEE Transactions on Power Delivery, Vol.5, No.2, April 1990, pp , and pp [20] Chis, M., Salama, M.M.A and Jayaram, S., placement in distribution systems using heuristic search strategies, IEE Proceedings Generation, Transmission and Distribution, vol. 144, no. 2, pp , May [21] Haque MH. placement in radial distribution systems for loss reduction. IEE Proc Gen Trans Dist 1999;146(5): [22] Carlisle JC, El-Keib AA. A graph search algorithm for optimal placement of fixed and switched capacitors on radial distribution systems. IEEE Trans Power Deliverv 2000;(1): [23] Prakash K, Sydulu M. A novel approach for optimal locations and sizing of capacitors on radial distribution systems using loss sensitivity factors anda-coefficients. In: IEEE PES, power system conference and exposition; p [24] Su CT, Chang CF, Chiou JP. Optimal capacitor placement in distribution systems employing ant colony search algorithm. Electric Power Compo Syst 2004;33(8): [25] Venkatesh B, Ranan B. Fuzzy EP algorithm and dynamic data structure for optimal capacitor allocation in radial distribution systems. IEE Proc Gen Trans Dist 2006;3(5):

10 [26] Abul Wafa Ahmed R. Optimal capacitor allocation in radial distribution systems for loss reduction: a two stage method. Electric Power Syst Res 2013; 95: [27] Kai Zou, Agalgaonkar AP, Muttaqi KM, Perera S. Voltage support by distributed generation units and shunt capacitors in distribution systems. In: IEEE power and energy society general meeting; p [28] Zou Kai, Agalgaonkar AP, Muttaqi KM, Perera S. Optimization of distributed generation units and shunt capacitors for economic operation of distribution systems. In: Australasian universities power, engineering conference; p.1 7. [29] Gunda Jagadeesh, Khan Nasim Ali. Optimal location and sizing of DG and shunt capacitors using differential evolution. Int J Soft Comput 2011;6(4): [30] Elgerd IO. Electric energy system theory: an introduction. New York: McGraw-Hill Inc.; [31] Kashem. M. A, Ganapathy V, Jasmon G B, Buhari M I, A novel method for loss minimization in distribution networks, in Proceedings of international conference on electric utility deregulation and restructuring and power technologies, p [32] M.H. Haque. Efficient load flow method for distribution systems with radial or mesh configuration, IET Proc. On Generation, Transmission and Distribution. 1996, 143 (1): [33] R. Srinivasas Rao, S.V.L. Narasimham, M. Ramalingarau, Optimal capacitor placement in a radial distribution system using Plant Growth Simulation Algorithm, Electrical Power and Energy Systems 33 (2011)

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET)

INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) INTERNATIONAL JOURNAL OF ELECTRICAL ENGINEERING & TECHNOLOGY (IJEET) Proceedings of the 2 nd International Conference on Current Trends in Engineering and Management ICCTEM -2014 ISSN 0976 6545(Print)

More information

Optimal Performance Enhancement of Capacitor in Radial Distribution System Using Fuzzy and HSA

Optimal Performance Enhancement of Capacitor in Radial Distribution System Using Fuzzy and HSA IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 2 Ver. I (Mar Apr. 2014), PP 26-32 Optimal Performance Enhancement of Capacitor in

More information

OPTIMAL LOCATION OF COMBINED DG AND CAPACITOR FOR REAL POWER LOSS MINIMIZATION IN DISTRIBUTION NETWORKS

OPTIMAL LOCATION OF COMBINED DG AND CAPACITOR FOR REAL POWER LOSS MINIMIZATION IN DISTRIBUTION NETWORKS OPTIMAL LOCATION OF COMBINED DG AND CAPACITOR FOR REAL POWER LOSS MINIMIZATION IN DISTRIBUTION NETWORKS Purushottam Singh Yadav 1, Laxmi Srivastava 2 1,2 Department of Electrical Engineering, MITS Gwalior,

More information

A PROPOSED STRATEGY FOR CAPACITOR ALLOCATION IN RADIAL DISTRIBUTION FEEDERS

A PROPOSED STRATEGY FOR CAPACITOR ALLOCATION IN RADIAL DISTRIBUTION FEEDERS A PROPOSED STRATEGY FOR CAPACITOR ALLOCATION IN RADIAL DISTRIBUTION FEEDERS 1 P.DIVYA, 2 PROF. G.V.SIVA KRISHNA RAO A.U.College of Engineering, Andhra University, Visakhapatnam Abstract: Capacitors in

More information

CAPACITOR PLACEMENT USING FUZZY AND PARTICLE SWARM OPTIMIZATION METHOD FOR MAXIMUM ANNUAL SAVINGS

CAPACITOR PLACEMENT USING FUZZY AND PARTICLE SWARM OPTIMIZATION METHOD FOR MAXIMUM ANNUAL SAVINGS CAPACITOR PLACEMENT USING FUZZY AND PARTICLE SWARM OPTIMIZATION METHOD FOR MAXIMUM ANNUAL SAVINGS M. Damodar Reddy and V. C. Veera Reddy Department of Electrical and Electronics Engineering, S.V. University,

More information

K. Valipour 1 E. Dehghan 2 M.H. Shariatkhah 3

K. Valipour 1 E. Dehghan 2 M.H. Shariatkhah 3 International Research Journal of Applied and Basic Sciences 2013 Available online at www.irjabs.com ISSN 21-838X / Vol, 4 (7): 1663-1670 Science Explorer Publications Optimal placement of Capacitor Banks

More information

PROPOSED STRATEGY FOR CAPACITOR ALLOCATION IN RADIAL DISTRIBUTION FEEDERS

PROPOSED STRATEGY FOR CAPACITOR ALLOCATION IN RADIAL DISTRIBUTION FEEDERS IMPACT: International ournal of Research in Engineering & Technology (IMPACT: IRET) ISSN 2321-8843 Vol. 1, Issue 3, Aug 2013, 85-92 Impact ournals PROPOSED STRATEGY FOR CAPACITOR ALLOCATION IN RADIAL DISTRIBUTION

More information

Optimal Capacitor Placement in Distribution System with Random Variations in Load

Optimal Capacitor Placement in Distribution System with Random Variations in Load I J C T A, 10(5) 2017, pp. 651-657 International Science Press Optimal Capacitor Placement in Distribution System with Random Variations in Load Ajay Babu B *, M. Ramalinga Raju ** and K.V.S.R. Murthy

More information

Simultaneous placement of Distributed Generation and D-Statcom in a radial distribution system using Loss Sensitivity Factor

Simultaneous placement of Distributed Generation and D-Statcom in a radial distribution system using Loss Sensitivity Factor Simultaneous placement of Distributed Generation and D-Statcom in a radial distribution system using Loss Sensitivity Factor 1 Champa G, 2 Sunita M N University Visvesvaraya college of Engineering Bengaluru,

More information

Optimal capacitor placement and sizing via artificial bee colony

Optimal capacitor placement and sizing via artificial bee colony International Journal of Smart Grid and Clean Energy Optimal capacitor placement and sizing via artificial bee colony Mohd Nabil Muhtazaruddin a*, Jasrul Jamani Jamian b, Danvu Nguyen a Nur Aisyah Jalalludin

More information

Comparison of Loss Sensitivity Factor & Index Vector methods in Determining Optimal Capacitor Locations in Agricultural Distribution

Comparison of Loss Sensitivity Factor & Index Vector methods in Determining Optimal Capacitor Locations in Agricultural Distribution 6th NATIONAL POWER SYSTEMS CONFERENCE, 5th-7th DECEMBER, 200 26 Comparison of Loss Sensitivity Factor & Index Vector s in Determining Optimal Capacitor Locations in Agricultural Distribution K.V.S. Ramachandra

More information

A Novel Analytical Technique for Optimal Allocation of Capacitors in Radial Distribution Systems

A Novel Analytical Technique for Optimal Allocation of Capacitors in Radial Distribution Systems 236 J. Eng. Technol. Sci., Vol. 49, No. 2, 2017, 236-246 A Novel Analytical Technique for Optimal Allocation of Capacitors in Radial Distribution Systems Sarfaraz Nawaz*, Ajay Kumar Bansal & Mahaveer Prasad

More information

J. Electrical Systems x-x (2010): x-xx. Regular paper

J. Electrical Systems x-x (2010): x-xx. Regular paper JBV Subrahmanyam Radhakrishna.C J. Electrical Systems x-x (2010): x-xx Regular paper A novel approach for Optimal Capacitor location and sizing in Unbalanced Radial Distribution Network for loss minimization

More information

International Journal of Mechatronics, Electrical and Computer Technology

International Journal of Mechatronics, Electrical and Computer Technology A Hybrid Algorithm for Optimal Location and Sizing of Capacitors in the presence of Different Load Models in Distribution Network Reza Baghipour* and Seyyed Mehdi Hosseini Department of Electrical Engineering,

More information

Farzaneh Ostovar, Mahdi Mozaffari Legha

Farzaneh Ostovar, Mahdi Mozaffari Legha Quantify the Loss Reduction due Optimization of Capacitor Placement Using DPSO Algorithm Case Study on the Electrical Distribution Network of north Kerman Province Farzaneh Ostovar, Mahdi Mozaffari Legha

More information

Congestion Alleviation using Reactive Power Compensation in Radial Distribution Systems

Congestion Alleviation using Reactive Power Compensation in Radial Distribution Systems IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 11, Issue 6 Ver. III (Nov. Dec. 2016), PP 39-45 www.iosrjournals.org Congestion Alleviation

More information

ENERGY LOSS MINIMIZATION AND RELIABILITY ENHANCEMENT IN RADIAL DISTRIBUTION SYSTEMS DURING LINE OUTAGES

ENERGY LOSS MINIMIZATION AND RELIABILITY ENHANCEMENT IN RADIAL DISTRIBUTION SYSTEMS DURING LINE OUTAGES ENERGY LOSS MINIMIZATION AND RELIABILITY ENHANCEMENT IN RADIAL DISTRIBUTION SYSTEMS DURING LINE OUTAGES N. Gnanasekaran 1, S. Chandramohan 2, P. Sathish Kumar 3 and T. D. Sudhakar 4 1 Misrimal Navajee

More information

Distribution System s Loss Reduction by Optimal Allocation and Sizing of Distributed Generation via Artificial Bee Colony Algorithm

Distribution System s Loss Reduction by Optimal Allocation and Sizing of Distributed Generation via Artificial Bee Colony Algorithm American Journal of Engineering Research (AJER) e-issn : 2320-0847 p-issn : 2320-0936 Volume-03, Issue-06, pp-30-36 www.ajer.org Research Paper Open Access Distribution System s Loss Reduction by Optimal

More information

THE loss minimization in distribution systems has assumed

THE loss minimization in distribution systems has assumed Optimal Capacitor Allocation for loss reduction in Distribution System Using Fuzzy and Plant Growth Simulation Algorithm R. Srinivasa Rao Abstract This paper presents a new and efficient approach for capacitor

More information

Optimal capacitor placement in radial distribution networks with artificial honey bee colony algorithm

Optimal capacitor placement in radial distribution networks with artificial honey bee colony algorithm Bulletin of Environment, Pharmacology and Life Sciences Bull. Env.Pharmacol. Life Sci., Vol 4 [Spl issue 1] 2015: 255-260 2014 Academy for Environment and Life Sciences, India Online ISSN 2277-1808 Journal

More information

Optimal Capacitor Placement and Sizing on Radial Distribution System by using Fuzzy Expert System

Optimal Capacitor Placement and Sizing on Radial Distribution System by using Fuzzy Expert System 274 Optimal Placement and Sizing on Radial Distribution System by using Fuzzy Expert System T. Ananthapadmanabha, K. Parthasarathy, K.Nagaraju, G.V. Venkatachalam Abstract:--This paper presents a mathematical

More information

A Study of the Factors Influencing the Optimal Size and Site of Distributed Generations

A Study of the Factors Influencing the Optimal Size and Site of Distributed Generations Journal of Clean Energy Technologies, Vol. 2, No. 1, January 2014 A Study of the Factors Influencing the Optimal Size and Site of Distributed Generations Soma Biswas, S. K. Goswami, and A. Chatterjee system

More information

Performance Improvement of the Radial Distribution System by using Switched Capacitor Banks

Performance Improvement of the Radial Distribution System by using Switched Capacitor Banks Int. J. on Recent Trends in Engineering and Technology, Vol. 10, No. 2, Jan 2014 Performance Improvement of the Radial Distribution System by using Switched Capacitor Banks M. Arjun Yadav 1, D. Srikanth

More information

Optimal Placement of Capacitor Banks in order to Improvement of Voltage Profile and Loss Reduction based on PSO

Optimal Placement of Capacitor Banks in order to Improvement of Voltage Profile and Loss Reduction based on PSO Research Journal of Applied Sciences, Engineering and Technology 4(8): 957-961, 2012 ISSN: 2040-7467 Maxwell Scientific Organization, 2012 Submitted: October 26, 2011 Accepted: November 25, 2011 ublished:

More information

Optimal Capacitor placement in Distribution Systems with Distributed Generators for Voltage Profile improvement by Particle Swarm Optimization

Optimal Capacitor placement in Distribution Systems with Distributed Generators for Voltage Profile improvement by Particle Swarm Optimization Optimal Capacitor placement in Distribution Systems with Distributed Generators for Voltage Profile improvement by Particle Swarm Optimization G. Balakrishna 1, Dr. Ch. Sai Babu 2 1 Associate Professor,

More information

OPTIMAL DG AND CAPACITOR ALLOCATION IN DISTRIBUTION SYSTEMS USING DICA

OPTIMAL DG AND CAPACITOR ALLOCATION IN DISTRIBUTION SYSTEMS USING DICA Journal of Engineering Science and Technology Vol. 9, No. 5 (2014) 641-656 School of Engineering, Taylor s University OPTIMAL AND CAPACITOR ALLOCATION IN DISTRIBUTION SYSTEMS USING DICA ARASH MAHARI 1,

More information

Multiple Distribution Generation Location in Reconfigured Radial Distribution System Distributed generation in Distribution System

Multiple Distribution Generation Location in Reconfigured Radial Distribution System Distributed generation in Distribution System IOP Conference Series: Earth and Environmental Science PAPER OPEN ACCESS Multiple Distribution Generation Location in Reconfigured Radial Distribution System Distributed generation in Distribution System

More information

ELECTRICAL energy is continuously lost due to resistance

ELECTRICAL energy is continuously lost due to resistance 814 IEEE TRANSACTIONS ON ENERGY CONVERSION, VOL. 25, NO. 3, SEPTEMBER 2010 Analytical Expressions for DG Allocation in Primary Distribution Networks Duong Quoc Hung, Nadarajah Mithulananthan, Member, IEEE,

More information

Optimal placement of capacitor in distribution networks according to the proposed method based on gradient search

Optimal placement of capacitor in distribution networks according to the proposed method based on gradient search Applied mathematics in Engineering, Management and Technology 2 (6) 2014:570-581 www.amiemt-journal.com Optimal placement of capacitor in distribution networks according to the proposed method based on

More information

A Comparative Study Of Optimization Techniques For Capacitor Location In Electrical Distribution Systems

A Comparative Study Of Optimization Techniques For Capacitor Location In Electrical Distribution Systems A Comparative Study Of Optimization Techniques For Capacitor Location In Electrical Distribution Systems Ganiyu A. Ajenikoko 1, Jimoh O. Ogunwuyi 2 1, Department of Electronic & Electrical Engineering,

More information

NEW EVOLUTIONARY TECHNIQUE FOR OPTIMIZATION SHUNT CAPACITORS IN DISTRIBUTION NETWORKS

NEW EVOLUTIONARY TECHNIQUE FOR OPTIMIZATION SHUNT CAPACITORS IN DISTRIBUTION NETWORKS Journal of ELECTRICAL ENGINEERING, VOL. 62, NO. 3, 2011, 163 167 NEW EVOLUTIONARY TECHNIQUE FOR OPTIMIZATION SHUNT CAPACITORS IN DISTRIBUTION NETWORKS Ali Elmaouhab Mohamed Boudour Rabah Gueddouche The

More information

OPTIMAL LOCATION AND SIZING OF DISTRIBUTED GENERATOR IN RADIAL DISTRIBUTION SYSTEM USING OPTIMIZATION TECHNIQUE FOR MINIMIZATION OF LOSSES

OPTIMAL LOCATION AND SIZING OF DISTRIBUTED GENERATOR IN RADIAL DISTRIBUTION SYSTEM USING OPTIMIZATION TECHNIQUE FOR MINIMIZATION OF LOSSES 780 OPTIMAL LOCATIO AD SIZIG OF DISTRIBUTED GEERATOR I RADIAL DISTRIBUTIO SYSTEM USIG OPTIMIZATIO TECHIQUE FOR MIIMIZATIO OF LOSSES A. Vishwanadh 1, G. Sasi Kumar 2, Dr. D. Ravi Kumar 3 1 (Department of

More information

OPTIMAL CAPACITOR PLACEMENT USING FUZZY LOGIC

OPTIMAL CAPACITOR PLACEMENT USING FUZZY LOGIC CHAPTER - 5 OPTIMAL CAPACITOR PLACEMENT USING FUZZY LOGIC 5.1 INTRODUCTION The power supplied from electrical distribution system is composed of both active and reactive components. Overhead lines, transformers

More information

Optimal DG allocation and sizing in a Radial Distribution System using Analytical Approach

Optimal DG allocation and sizing in a Radial Distribution System using Analytical Approach Optimal allocation and sizing in a Radial Distribution System using Analytical Approach N.Ramya PG Student GITAM University, T.Padmavathi, Asst.Prof, GITAM University Abstract This paper proposes a comprehensive

More information

Optimal Placement and Sizing of Distributed Generators in 33 Bus and 69 Bus Radial Distribution System Using Genetic Algorithm

Optimal Placement and Sizing of Distributed Generators in 33 Bus and 69 Bus Radial Distribution System Using Genetic Algorithm American International Journal of Research in Science, Technology, Engineering & Mathematics Available online at http://www.iasir.net ISSN (Print): 2328-3491, ISSN (Online): 2328-3580, ISSN (CD-ROM): 2328-3629

More information

Transmission Line Compensation using Neuro-Fuzzy Approach for Reactive Power

Transmission Line Compensation using Neuro-Fuzzy Approach for Reactive Power Transmission Line Compensation using Neuro-Fuzzy Approach for Reactive Power 1 Gurmeet, 2 Daljeet kaur 1,2 Department of Electrical Engineering 1,2 Giani zail singh college of Engg., Bathinda (Punjab),India.

More information

Optimal Placement and Sizing of Distributed Generation for Power Loss Reduction using Particle Swarm Optimization

Optimal Placement and Sizing of Distributed Generation for Power Loss Reduction using Particle Swarm Optimization Available online at www.sciencedirect.com Energy Procedia 34 (2013 ) 307 317 10th Eco-Energy and Materials Science and Engineering (EMSES2012) Optimal Placement and Sizing of Distributed Generation for

More information

Genetic Algorithm for Optimal Capacitor Allocation in Radial Distribution Systems

Genetic Algorithm for Optimal Capacitor Allocation in Radial Distribution Systems Genetic Algorithm for Optimal Allocation in Radial Distribution Systems K. S. Swarup Abstract Optimum location and size of capacitors for a radial distribution system is presented. In the present study

More information

Optimal capacitor placement and sizing using combined fuzzy-hpso method

Optimal capacitor placement and sizing using combined fuzzy-hpso method MultiCraft International Journal of Engineering, Science and Technology Vol. 2, No. 6, 2010, pp. 75-84 INTERNATIONAL JOURNAL OF ENGINEERING, SCIENCE AND TECHNOLOGY www.ijest-ng.com 2010 MultiCraft Limited.

More information

Optimal Placement of Multi DG Unit in Distribution Systems Using Evolutionary Algorithms

Optimal Placement of Multi DG Unit in Distribution Systems Using Evolutionary Algorithms IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume, Issue 6 Ver. IV (Nov Dec. 2014), PP 47-52 www.iosrjournals.org Optimal Placement of Multi

More information

OPTIMAL CAPACITORS PLACEMENT IN DISTRIBUTION NETWORKS USING GENETIC ALGORITHM: A DIMENSION REDUCING APPROACH

OPTIMAL CAPACITORS PLACEMENT IN DISTRIBUTION NETWORKS USING GENETIC ALGORITHM: A DIMENSION REDUCING APPROACH OPTIMAL CAPACITORS PLACEMENT IN DISTRIBUTION NETWORKS USING GENETIC ALGORITHM: A DIMENSION REDUCING APPROACH S.NEELIMA #1, DR. P.S.SUBRAMANYAM *2 #1 Associate Professor, Department of Electrical and Electronics

More information

Network reconfiguration and capacitor placement for power loss reduction using a combination of Salp Swarm Algorithm and Genetic Algorithm

Network reconfiguration and capacitor placement for power loss reduction using a combination of Salp Swarm Algorithm and Genetic Algorithm International Journal of Engineering Research and Technology. ISSN 0974-3154 Volume 11, Number 9 (2018), pp. 1383-1396 International Research Publication House http://www.irphouse.com Network reconfiguration

More information

AN IMMUNE BASED MULTI-OBJECTIVE APPROACH TO ENHANCE THE PERFORMANCE OF ELECTRICAL DISTRIBUTION SYSTEM

AN IMMUNE BASED MULTI-OBJECTIVE APPROACH TO ENHANCE THE PERFORMANCE OF ELECTRICAL DISTRIBUTION SYSTEM AN IMMUNE BASED MULTI-OBJECTIVE APPROACH TO ENHANCE THE PERFORMANCE OF ELECTRICAL DISTRIBUTION SYSTEM P. RAVI BABU Head of the Department of Electrical Engineering Sreenidhi Institute of science and technology

More information

Analytical approach for placement and sizing of distributed generation on distribution systems

Analytical approach for placement and sizing of distributed generation on distribution systems Analytical approach for placement and sizing of distributed generation on distribution systems Salem Elsaiah, Mohammed Benidris, Joydeep Mitra Department of Electrical and Computer Engineering, Michigan

More information

Application of Teaching Learning Based Optimization for Size and Location Determination of Distributed Generation in Radial Distribution System.

Application of Teaching Learning Based Optimization for Size and Location Determination of Distributed Generation in Radial Distribution System. Application of Teaching Learning Based Optimization for Size and Location Determination of Distributed Generation in Radial Distribution System. Khyati Mistry Electrical Engineering Department. Sardar

More information

Multi-objective Placement of Capacitor Banks in Distribution System using Bee Colony Optimization Algorithm

Multi-objective Placement of Capacitor Banks in Distribution System using Bee Colony Optimization Algorithm Journal of Advances in Computer Research Quarterly pissn: 2345-606x eissn: 2345-6078 Sari Branch, Islamic Azad University, Sari, I.R.Iran (Vol. 6, No. 2, May 2015), Pages: 117-127 www.jacr.iausari.ac.ir

More information

Power System Security Analysis. B. Rajanarayan Prusty, Bhagabati Prasad Pattnaik, Prakash Kumar Pandey, A. Sai Santosh

Power System Security Analysis. B. Rajanarayan Prusty, Bhagabati Prasad Pattnaik, Prakash Kumar Pandey, A. Sai Santosh 849 Power System Security Analysis B. Rajanarayan Prusty, Bhagabati Prasad Pattnaik, Prakash Kumar Pandey, A. Sai Santosh Abstract: In this paper real time security analysis is carried out. First contingency

More information

Optimal Placement & sizing of Distributed Generator (DG)

Optimal Placement & sizing of Distributed Generator (DG) Chapter - 5 Optimal Placement & sizing of Distributed Generator (DG) - A Single Objective Approach CHAPTER - 5 Distributed Generation (DG) for Power Loss Minimization 5. Introduction Distributed generators

More information

CAPACITOR PLACEMENT IN UNBALANCED POWER SYSTEMS

CAPACITOR PLACEMENT IN UNBALANCED POWER SYSTEMS CAPACITOR PLACEMET I UBALACED POWER SSTEMS P. Varilone and G. Carpinelli A. Abur Dipartimento di Ingegneria Industriale Department of Electrical Engineering Universita degli Studi di Cassino Texas A&M

More information

Determination of Optimal Location and Sizing of Distributed Generator in Radial Distribution Systems for Different Types of Loads

Determination of Optimal Location and Sizing of Distributed Generator in Radial Distribution Systems for Different Types of Loads AMSE JOURNALS 015-Series: Modelling A; Vol. 88; N 1; pp 1-3 Submitted Feb. 014; Revised July 0, 014; Accepted March 15, 015 Determination of Optimal Location and Sizing of Distributed Generator in Radial

More information

LINE FLOW ANALYSIS OF IEEE BUS SYSTEM WITH THE LOAD SENSITIVITY FACTOR

LINE FLOW ANALYSIS OF IEEE BUS SYSTEM WITH THE LOAD SENSITIVITY FACTOR LINE FLOW ANALYSIS OF IEEE BUS SYSTEM WITH THE LOAD SENSITIVITY FACTOR Puneet Sharma 1, Jyotsna Mehra 2, Virendra Kumar 3 1,2,3 M.Tech Research scholar, Galgotias University, Greater Noida, India Abstract

More information

Distribution System Power Loss Reduction by Optical Location and Size of Capacitor

Distribution System Power Loss Reduction by Optical Location and Size of Capacitor International Journal of Research in Advent Technology, Vol.2, No.3, March 2014 E-ISSN: 2321-9637 Distribution System Power Loss Reduction by Optical Location and Size of Capacitor PUSHPENDRA SINGH, BALVENDER

More information

Analytical approaches for Optimal Placement and sizing of Distributed generation in Power System

Analytical approaches for Optimal Placement and sizing of Distributed generation in Power System IOSR Journal of Electrical and Electronics Engineering (IOSRJEEE) ISSN : 2278-1676 Volume 1, Issue 1 (May-June 2012), PP 20- Analytical approaches for Optimal Placement and sizing of Distributed generation

More information

Classification of Capacitor Allocation Techniques

Classification of Capacitor Allocation Techniques IEEE TRANSACTIONS ON POWER DELIVERY, VOL. 15, NO. 1, JANUARY 2000 387 Classification of Capacitor Allocation Techniques H. N. Ng, Student Member, IEEE, M. M. A. Salama, Member, IEEE, and A. Y. Chikhani,

More information

A Particle Swarm Optimization for Reactive Power Optimization

A Particle Swarm Optimization for Reactive Power Optimization ISSN (e): 2250 3005 Vol, 04 Issue, 11 November 2014 International Journal of Computational Engineering Research (IJCER) A Particle Swarm Optimization for Reactive Power Optimization Suresh Kumar 1, Sunil

More information

A LOOP BASED LOAD FLOW METHOD FOR WEAKLY MESHED DISTRIBUTION NETWORK

A LOOP BASED LOAD FLOW METHOD FOR WEAKLY MESHED DISTRIBUTION NETWORK VOL. 3, NO. 4, AUGUST 28 ISSN 89-668 26-28 Asian Research Publishing Network (ARPN). All rights reserved. A LOOP BASED LOAD FLOW METHOD FOR WEAKLY MESHED S. Sivanagaraju, J. Viswanatha Rao 2 and M. Giridhar

More information

Meta Heuristic Harmony Search Algorithm for Network Reconfiguration and Distributed Generation Allocation

Meta Heuristic Harmony Search Algorithm for Network Reconfiguration and Distributed Generation Allocation Department of CSE, JayShriram Group of Institutions, Tirupur, Tamilnadu, India on 6 th & 7 th March 2014 Meta Heuristic Harmony Search Algorithm for Network Reconfiguration and Distributed Generation Allocation

More information

OPTIMAL DG UNIT PLACEMENT FOR LOSS REDUCTION IN RADIAL DISTRIBUTION SYSTEM-A CASE STUDY

OPTIMAL DG UNIT PLACEMENT FOR LOSS REDUCTION IN RADIAL DISTRIBUTION SYSTEM-A CASE STUDY 2006-2007 Asian Research Pulishing Network (ARPN). All rights reserved. OPTIMAL DG UNIT PLACEMENT FOR LOSS REDUCTION IN RADIAL DISTRIBUTION SYSTEM-A CASE STUDY A. Lakshmi Devi 1 and B. Suramanyam 2 1 Department

More information

Capacitor Placement for Economical Electrical Systems using Ant Colony Search Algorithm

Capacitor Placement for Economical Electrical Systems using Ant Colony Search Algorithm Capacitor Placement for Economical Electrical Systems using Ant Colony Search Algorithm Bharat Solanki Abstract The optimal capacitor placement problem involves determination of the location, number, type

More information

Optimal Placement And Sizing Of Dg Using New Power Stability Index

Optimal Placement And Sizing Of Dg Using New Power Stability Index International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 10, Issue 9 (September 2014), PP.06-18 Optimal Placement And Sizing Of Dg Using

More information

Energy Conversion and Management

Energy Conversion and Management Energy Conversion and Management 51 (2010) 518 523 Contents lists available at ScienceDirect Energy Conversion and Management journal homepage: www.elsevier.com/locate/enconman Heuristic method for reactive

More information

Tanuj Manglani 1, Y.S.Shishodia 2

Tanuj Manglani 1, Y.S.Shishodia 2 International Journal of Recent Research and Review, Vol. I, March 2012 ISSN 2277 8322 A Survey of Optimal Capacitor Placement Techniques on Distribution Lines to Reduce Losses Tanuj Manglani 1, Y.S.Shishodia

More information

An Adaptive Approach to Posistioning And Optimize Size of DG Source to Minimise Power Loss in Distribution Network

An Adaptive Approach to Posistioning And Optimize Size of DG Source to Minimise Power Loss in Distribution Network International Journal of Engineering Research and Development e-issn: 2278-067X, p-issn: 2278-800X, www.ijerd.com Volume 12, Issue 10 (October 2016), PP.52-57 An Adaptive Approach to Posistioning And Optimize

More information

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 03 Mar p-issn:

International Research Journal of Engineering and Technology (IRJET) e-issn: Volume: 03 Issue: 03 Mar p-issn: Optimum Size and Location of Distributed Generation and for Loss Reduction using different optimization technique in Power Distribution Network Renu Choudhary 1, Pushpendra Singh 2 1Student, Dept of electrical

More information

Reactive Power Contribution of Multiple STATCOM using Particle Swarm Optimization

Reactive Power Contribution of Multiple STATCOM using Particle Swarm Optimization Reactive Power Contribution of Multiple STATCOM using Particle Swarm Optimization S. Uma Mageswaran 1, Dr.N.O.Guna Sehar 2 1 Assistant Professor, Velammal Institute of Technology, Anna University, Chennai,

More information

PARTICLE SWARM OPTIMIZATION BASED APPROACH FOR LOSS REDUCTION IN UNBALANCED RADIAL DISTRIBUTION SYSTEM

PARTICLE SWARM OPTIMIZATION BASED APPROACH FOR LOSS REDUCTION IN UNBALANCED RADIAL DISTRIBUTION SYSTEM PARTICLE SWARM OPTIMIZATION BASED APPROACH FOR LOSS REDUCTION IN UNBALANCED RADIAL DISTRIBUTION SYSTEM P. UMAPATHI REDDY Department of Electrical and Electronics Engineering, Sree Vidyaniethan Engineering

More information

Transient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods

Transient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods International Journal of Electrical and Electronics Research ISSN 348-6988 (online) Vol., Issue 3, pp: (58-66), Month: July - September 04, Available at: www.researchpublish.com Transient Stability Analysis

More information

FEEDER RECONFIGURATION AND CAPACITOR SETTINGS ON DISTRIBUTION SYSTEMS : AN APPROACH FOR SIMULTANEOUS SOLUTION USING A GENETIC ALGORITHM

FEEDER RECONFIGURATION AND CAPACITOR SETTINGS ON DISTRIBUTION SYSTEMS : AN APPROACH FOR SIMULTANEOUS SOLUTION USING A GENETIC ALGORITHM C I R E D th International Conference on Electricity Distribution Barcelona, -5 May 00 FEEDER RECONFIGURATION AND CAPACITOR SETTINGS ON DISTRIBUTION SYSTEMS : AN APPROACH FOR SIMULTANEOUS SOLUTION USING

More information

Maximum Cost Saving Approach for Optimal Capacitor Placement in Radial Distribution Systems using Modified ABC Algorithm

Maximum Cost Saving Approach for Optimal Capacitor Placement in Radial Distribution Systems using Modified ABC Algorithm International Journal on Electrical Engineering and Informatics - Volume 7, Number 4, Desember 2015 Maximum Cost Saving Approach for Optimal Capacitor Placement in Radial Distribution Systems using Modified

More information

A Neuro-Fuzzy Approach to Reactive Power Compensation for Improvement of Transmission Line Performance

A Neuro-Fuzzy Approach to Reactive Power Compensation for Improvement of Transmission Line Performance A Neuro-Fuzzy Approach to Reactive Power Compensation for Improvement of Transmission Line Performance 1 Paramjit Singh, 2 Rajesh Chaudhary, 3 R.S. Sachdev 1 Mtech Scholar, 2 Assistant Prof., 3 Assistant

More information

Optimal Compensation of Reactive Power in Transmission Networks using PSO, Cultural and Firefly Algorithms

Optimal Compensation of Reactive Power in Transmission Networks using PSO, Cultural and Firefly Algorithms Volume 114 No. 9 2017, 367-388 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu Optimal Compensation of Reactive Power in Transmission Networks using

More information

Real Time Voltage Control using Genetic Algorithm

Real Time Voltage Control using Genetic Algorithm Real Time Voltage Control using Genetic Algorithm P. Thirusenthil kumaran, C. Kamalakannan Department of EEE, Rajalakshmi Engineering College, Chennai, India Abstract An algorithm for control action selection

More information

DG-Embedded Radial Distribution System Planning Using Binary-Selective PSO

DG-Embedded Radial Distribution System Planning Using Binary-Selective PSO DG-Embedded Radial Distribution System Planning Using Binary-Selective PSO Ahvand Jalali S K. Mohammadi H. Sangrody A. Rahim-Zadegan University of Melbourne, Islamic Azad University, Binghamton University,

More information

State Estimation and Power Flow Analysis of Power Systems

State Estimation and Power Flow Analysis of Power Systems JOURNAL OF COMPUTERS, VOL. 7, NO. 3, MARCH 01 685 State Estimation and Power Flow Analysis of Power Systems Jiaxiong Chen University of Kentucky, Lexington, Kentucky 40508 U.S.A. Email: jch@g.uky.edu Yuan

More information

Multi-Deployment of Dispersed Power Sources Using RBF Neural Network

Multi-Deployment of Dispersed Power Sources Using RBF Neural Network Energy and Power Engineering, 2010, 2, 213-222 doi:10.4236/epe.2010.24032 Published Online November 2010 (http://www.scirp.org/journal/epe) Multi-Deployment of Dispersed Power Sources Using RBF Neural

More information

J. Electrical Systems 10-1 (2014): Regular paper. Optimal Power Flow and Reactive Compensation Using a Particle Swarm Optimization Algorithm

J. Electrical Systems 10-1 (2014): Regular paper. Optimal Power Flow and Reactive Compensation Using a Particle Swarm Optimization Algorithm Ahmed Elsheikh 1, Yahya Helmy 1, Yasmine Abouelseoud 1,*, Ahmed Elsherif 1 J. Electrical Systems 10-1 (2014): 63-77 Regular paper Optimal Power Flow and Reactive Compensation Using a Particle Swarm Optimization

More information

Optimal Sizing And Placement Of Capacitor In A Radial Distribution System Using Loss Sensitivity Factor And Firefly Algorithm.

Optimal Sizing And Placement Of Capacitor In A Radial Distribution System Using Loss Sensitivity Factor And Firefly Algorithm. www.ijecs.in International Journal Of Engineering And Computer Science ISSN:2319-7242 Volume 3 Issue 4 April, 2014 Page No. 5346-5352 Optimal Sizing And Placement Of Capacitor In A Radial Distribution

More information

Optimal Capacitor Placement in Radial Distribution System to minimize the loss using Fuzzy Logic Control and Hybrid Particle Swarm Optimization

Optimal Capacitor Placement in Radial Distribution System to minimize the loss using Fuzzy Logic Control and Hybrid Particle Swarm Optimization Optimal Capacitor Placement in Radial Distribution System to minimize the loss using Fuzzy Logic Control and Hybrid Particle Swarm Optimization 1 S.Joyal Isac, 2 K.Suresh Kumar Department of EEE, Saveetha

More information

THE OPTIMAL PLANNING OF DISTRIBUTED GENERATION USING OPF AND BUTTERFLY-PSO (BF-PSO) TECHNIQUE

THE OPTIMAL PLANNING OF DISTRIBUTED GENERATION USING OPF AND BUTTERFLY-PSO (BF-PSO) TECHNIQUE THE OPTIMAL PLANNING OF DISTRIBUTED GENERATION USING OPF AND BUTTERFLY-PSO (BF-PSO) TECHNIQUE Aashish Kumar BOHRE 1 Dr. Ganga AGNIHOTRI 2 Dr. Manisha DUBEY 3 1, 2, 3 Electrical Engineering Department 1,

More information

Power Flow Analysis of Radial Distribution System using Backward/Forward Sweep Method

Power Flow Analysis of Radial Distribution System using Backward/Forward Sweep Method Power Flow Analysis of Radial Distribution System using Backward/Forward Sweep Method Gurpreet Kaur 1, Asst. Prof. Harmeet Singh Gill 2 1,2 Department of Electrical Engineering, Guru Nanak Dev Engineering

More information

Distributed vs Bulk Power in Distribution Systems Considering Distributed Generation

Distributed vs Bulk Power in Distribution Systems Considering Distributed Generation Distributed vs Bulk Power in Distribution Systems Considering Distributed Generation Abdullah A. Alghamdi 1 and Prof. Yusuf A. Al-Turki 2 1 Ministry Of Education, Jeddah, Saudi Arabia. 2 King Abdulaziz

More information

EE5250 TERM PROJECT. Report by: Akarsh Sheilendranath

EE5250 TERM PROJECT. Report by: Akarsh Sheilendranath EE5250 TERM PROJECT Analytical Approaches for Optimal Placement of Distributed Generation Sources in Power System Caisheng Wang, student member, IEEE, and M. Hashem Nehrir, senior member, IEEE Report by:

More information

Chapter-2 Literature Review

Chapter-2 Literature Review Chapter-2 Literature Review ii CHAPTER - 2 LITERATURE REVIEW Literature review is divided into two parts; Literature review of load flow analysis and capacitor allocation techniques. 2.1 LITERATURE REVIEW

More information

ABSTRACT I. INTRODUCTION

ABSTRACT I. INTRODUCTION ABSTRACT 2015 ISRST Volume 1 Issue 2 Print ISSN: 2395-6011 Online ISSN: 2395-602X Themed Section: Science Network Reconfiguration for Loss Reduction of a Radial Distribution System Laxmi. M. Kottal, Dr.

More information

Power Quality improvement of Distribution System by Optimal Location and Size of DGs Using Particle Swarm Optimization

Power Quality improvement of Distribution System by Optimal Location and Size of DGs Using Particle Swarm Optimization 72 Power Quality improvement of Distribution System by Optimal Location and Size of DGs Using Particle Swarm Optimization Ankita Mishra 1, Arti Bhandakkar 2 1(PG Scholar, Department of Electrical & Electronics

More information

OPTIMAL CAPACITOR PLACEMENT AND SIZING IN A RADIAL DISTRIBUTION SYSTEM USING CLONAL SELECTION ALGORITHM

OPTIMAL CAPACITOR PLACEMENT AND SIZING IN A RADIAL DISTRIBUTION SYSTEM USING CLONAL SELECTION ALGORITHM OPTIMAL CAPACITOR PLACEMENT AND SIZING IN A RADIAL DISTRIBUTION SYSTEM USING CLONAL SELECTION ALGORITHM V. Tamilselvan 1, K. Muthulakshmi 1 and T. Jayabarathi 2 1 Department of Electrical and Electronics

More information

OPTIMAL POWER FLOW BASED ON PARTICLE SWARM OPTIMIZATION

OPTIMAL POWER FLOW BASED ON PARTICLE SWARM OPTIMIZATION U.P.B. Sci. Bull., Series C, Vol. 78, Iss. 3, 2016 ISSN 2286-3540 OPTIMAL POWER FLOW BASED ON PARTICLE SWARM OPTIMIZATION Layth AL-BAHRANI 1, Virgil DUMBRAVA 2 Optimal Power Flow (OPF) is one of the most

More information

A PARTICLE SWARM OPTIMIZATION TO OPTIMAL SHUNT-CAPACITOR PLACEMENT IN RADIAL DISTRIBUTION SYSTEMS

A PARTICLE SWARM OPTIMIZATION TO OPTIMAL SHUNT-CAPACITOR PLACEMENT IN RADIAL DISTRIBUTION SYSTEMS ISSN (Print) : 30 3765 ISSN (Online): 78 8875 (An ISO 397: 007 Certified Organization) ol., Issue 0, October 03 A PARTICLE SWARM OPTIMIZATION TO OPTIMAL SHUNT-CAPACITOR PLACEMENT IN RADIAL DISTRIBUTION

More information

OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION AND CAPACITOR IN DISTRIBUTION NETWORKS BY ANT COLONY ALGORITHM

OPTIMAL PLACEMENT OF DISTRIBUTED GENERATION AND CAPACITOR IN DISTRIBUTION NETWORKS BY ANT COLONY ALGORITHM International Journal on Technical and Physical Problems of Engineering (IJTPE) Published by International Organization of IOTPE ISSN 2077-3528 IJTPE Journal www.iotpe.com ijtpe@iotpe.com September 204

More information

Optimal Capacitor Placement in Radial Distribution Systems Using Flower Pollination Algorithm

Optimal Capacitor Placement in Radial Distribution Systems Using Flower Pollination Algorithm Optimal Capacitor Placement in Radial Distribution Systems Using Flower Pollination Algorithm K. Prabha Rani, U. P. Kumar Chaturvedula Aditya College of Engineering, Surampalem, Andhra Pradesh, India Abstract:

More information

Optimal Location and Sizing of Distributed Generation Based on Gentic Algorithm

Optimal Location and Sizing of Distributed Generation Based on Gentic Algorithm Location and Sizing of Distributed Generation Based on Gentic Algorithm Ahmed Helal #,Motaz Amer *, and Hussien Eldosouki # # Electrical and Control Engineering Dept., Arab Academy for Sciences & Technology

More information

An Improved Method for Determining Voltage Collapse Proximity of Radial Distribution Networks

An Improved Method for Determining Voltage Collapse Proximity of Radial Distribution Networks An Improved Method for Determining Voltage Collapse Proximity of Radial Distribution Networks A. AUGUGLIARO, L. DUSONCHET, S. FAVUA, S. MANGIONE Dept. of Electrical, Electronic and Telecommunication Engineering

More information

Journal of Artificial Intelligence in Electrical Engineering, Vol. 1, No. 2, September 2012

Journal of Artificial Intelligence in Electrical Engineering, Vol. 1, No. 2, September 2012 Multi-objective Based Optimization Using Tap Setting Transformer, DG and Capacitor Placement in Distribution Networks Abdolreza Sadighmanesh 1, Mehran Sabahi 2, Kazem Zare 2, and Babak Taghavi 3 1 Department

More information

Failure Rate Modification For Evaluating Reliability Indices A Case Study of IEEE 30 Bus System For Optimal Capacitor Placement

Failure Rate Modification For Evaluating Reliability Indices A Case Study of IEEE 30 Bus System For Optimal Capacitor Placement Failure Rate Modification For Evaluating Reliability Indices A Case Study of IEEE 30 Bus System For Optimal Capacitor Placement Pravin Machhindra Sonwane Associate Professor, Electrical Engg. Dept., K.K.Wagh

More information

Optimal Unified Power Quality Conditioner Allocation in Distribution Systems for Loss Minimization using Grey Wolf Optimization

Optimal Unified Power Quality Conditioner Allocation in Distribution Systems for Loss Minimization using Grey Wolf Optimization RESEARCH ARTICLE OPEN ACCESS Optimal Unified Power Quality Conditioner Allocation in Distribution Systems for Loss Minimization using Grey Wolf Optimization M. Laxmidevi Ramanaiah*, Dr. M. Damodar Reddy**

More information

Fast Power Loss Computation and Shunt Capacitor Insertion Using Fuzzy Logic Technique

Fast Power Loss Computation and Shunt Capacitor Insertion Using Fuzzy Logic Technique American Journal of Applied Sciences 4 (): 37-4, 27 ISSN 546-9239 27 Science ublications Fast ower Loss Computation and Shunt Capacitor Insertion Using Fuzzy Logic Technique Wagah F. Mohammad, Nabil Tawalbeh

More information

Analyzing the Effect of Loadability in the

Analyzing the Effect of Loadability in the Analyzing the Effect of Loadability in the Presence of TCSC &SVC M. Lakshmikantha Reddy 1, V. C. Veera Reddy 2, Research Scholar, Department of Electrical Engineering, SV University, Tirupathi, India 1

More information

Elevated Neutral to Earth Voltages Due to Harmonics A T&D Update

Elevated Neutral to Earth Voltages Due to Harmonics A T&D Update Elevated Neutral to Earth Voltages Due to Harmonics A T&D Update E. R. (Randy) Collins, PhD, PE Dept. of Electrical and Computer Engineering Clemson University Clemson, South Carolina Stray Voltage Panel

More information

Voltage Profile Improvement by Capacitor Placement and Control in Unbalanced Distribution Systems Using Differential Evolution Algorithm

Voltage Profile Improvement by Capacitor Placement and Control in Unbalanced Distribution Systems Using Differential Evolution Algorithm Voltage Profile Improvement by Capacitor Placement and Control in Unbalanced Distribution Systems Using Differential Evolution Algorithm A.Hemasekhar 1, Chevireddy Harika 2 Associate professor, H.O.D,

More information

Network Topology Based Back/Forward Sweeping for Load Flow of Radial Distribution Systems

Network Topology Based Back/Forward Sweeping for Load Flow of Radial Distribution Systems Network Topology Based Back/Forward Sweeping for Load Flow of Radial Distribution Systems Soumitri Jena 1, Abhisek Mishra 2, Vivek Rastogi 3 P.G Scholar [Power System], Dept. of EE, National Institute

More information