Normally Ordered Disentanglement of Multi- Dimensional Schrödinger Algebra Exponentials

Size: px
Start display at page:

Download "Normally Ordered Disentanglement of Multi- Dimensional Schrödinger Algebra Exponentials"

Transcription

1 Communications on Stochastic Analysis Volume Number 3 Article 5-9 Normally Ordered Disentanglement of Multi- Dimensional Schrödinger Algebra Exponentials Luigi Accardi Universitá di Roma Tor Vergata, Via di Torvergata, Roma, Italy, accardi@volterra.mat.uniroma.it Andreas Boukas Universitá di Roma Tor Vergata, Via di Torvergata, Roma, Italy, boukas.andreas@ac.eap.gr Follow this and additional works at: Part of the Analysis Commons, and the Other Mathematics Commons Recommended Citation Accardi, Luigi and Boukas, Andreas 9) "Normally Ordered Disentanglement of Multi-Dimensional Schrödinger Algebra Exponentials," Communications on Stochastic Analysis: Vol. : No. 3, Article 5. DOI:.339/cosa..3.5 Available at:

2 Communications on Stochastic Analysis Vol., No. 3 8) Serials Publications NORMALLY ORDERED DISENTANGLEMENT OF MULTI-DIMENSIONAL SCHRÖDINGER ALGEBRA EXPONENTIALS LUIGI ACCARDI AND ANDREAS BOUKAS Abstract. We derive a normally ordered disentanglement or splitting formula for exponentials of the infinite-dimensional Schrödinger Lie algebra generators. As an application we compute the vacuum characteristic function of a quantum random variable defined as a self-adjoint finite sum of Fock space operators, satisfying the multi-dimensional Schrödinger Lie algebra commutation relations.. Introduction The Lie algebra sl, C) is a building block of the Virasoro algebra, which is generated by a countable set of copies of sl, C) with non trivial commutation relations among them see [3]). At the moment a family of Fock type unitary representations of the Virasoro algebra is known. They are built on a countable tensor product of copies of the usual mode Boson Fock space where the elements of the Virasoro algebra are represented as infinite quadratic expressions of usual Boson creation and annihilation operators. Approximating these infinite quadratic expressions by finite sums naturally lea to the study of quadratic expressions in the first order) Boson creation and annihilation operators. It is known that these quadratic expressions are a Lie algebra, in fact this is the algebra of derivations on the Heisenberg Lie algebra described in section below. The structure of this algebra, that in the physics literature is known under the name of multi dimensional Schrödinger algebra, will be briefly recalled in section below. Thus the Virasoro algebra can be realized as a Lie sub algebra of an dimensional version of the Schrödinger algebra. In a series of papers [], [3], we have studied the problem of determining the vacuum distributions of the Virasoro algebra and, using a finite dimensional truncated version of the boson representation of this algebra, we have computed the vacuum characteristic functions of the Virasoro fiel in some very special cases [3]. In these cases we find a product of Gamma functions, but the product is nonhomogenous. Moreover, even for these simple fiel, the limit as N + of these characteristic functions does not exist. From the above discussion it follows that Received 8--; Communicated by the editors. Mathematics Subject Classification. Primary E3, 47C5, 8R, Secondary 46L6, 6B5. Key wor and phrases. Schrödinger algebra, Boson quadratic forms, disentanglement, splitting lemma, Fock space, quantum random variable, vacuum characteristic function. 83

3 84 LUIGI ACCARDI AND ANDREAS BOUKAS to realize the program of determining the vacuum distributions of the Virasoro fiel, one has to study exponentials of the skew adjoint elements of Schrodd), which can be interpreted as exponentials of quadratic forms in the first order Boson creators and annihilators. The study of vacuum expectations of exponentials of quadratic expressions in the boson Fock operators e iquadratic form of a i aj).) has a long history starting from Friedrichs [9] see also [5]), who first found a disentanglement formula that allows to deduce an explicit form for them. The operators in the exponent of the left hand side of.) are skew Hermitian elements of the homogeneous Schrödinger algebra Schrodd) discussed in section below and the expectations in.) are the Fourier transforms of the vacuum spectral measures of these operators. The above mentioned papers derive some expressions for these vacuum expectations, however the existing formulas are not explicit and using them it is practically impossible to find the explicit form of these characteristic functions with the exception of a few very special cases. For this reason, since Friedrichs s paper and book [9] several publications have been devoted to this problem, for example [7]. We mention in particular the paper [6] which is an important step towar the problem of determining the canonical forms of quadratic Boson expressions and contains a detailed bibliography on the physics literature on this issue. In the present paper we develop a brute force attack to the problem in which, rather than to look for explicit formulas which involve implicit quantities we look for explicit equations on explicit quantities, thus reducing the problem to finding explicit solutions of a system of Riccati type equations. We know from the previously mentioned results that a solution of this system always exists and the results of [6] may be interpreted in the sense that sometimes uniqueness may fail. We are convinced that any attempt to find really explicit forms for the characteristic functions.) will end up facing the problem of solving a system of Riccati type equations. As shown in the following text, the deduction of these equations is not an easy task. The problem of canonical forms now arises also for these equations as a preliminary step towar their solutions and will be considered in a future paper.. Definitions and Notation In this paper all algebras and Lie algebras will be on the complex numbers unless stated otherwise. By a set of generators of a Lie algebra we mean a linear basis of it. Throughout this paper we use the notation for the commutator of x and y. [x, y] := xy yx.. The mode Heisenberg algebra. The mode Heisenberg algebra, or Heis), is the 3 dimensional Lie algebra with generators {a, a, }, is a central

4 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS 85 element, satisfying the commutation and duality relations [a, a ] := ; a ) = a, =, with all other commutators vanishing. Such a pair of generators, like a an a, will also be called a Boson pair. The universal enveloping algebra of Heis) is called the mode Full Oscillator Algebra and denoted Pa, a). It can be identified with the polynomial algebra in a, a and has a natural structure of Lie algebra with generators Bk n := a n a k + δ nk, ; n, k, N, K N,.) involution given by Bk n ) = Bn k, and commutation relations see []) In these notations we have [B n k, B N K ] = k N k N) B n+n k+k..) B = a ; B = a ; B = a ; B = a ; B = a a + ; B =. The mode oscillator algebra, or Osc), is the Lie algebra generated by and its commutation relations are: {a, a, a a +, } [B, B ] = ; [B, B ] = B ; [B, B ] = B... The d mode Heisenberg algebra. With each i N \ {} := N we associate a copy of the mode Heisenberg algebra, denoted Heis) i with generators {a i, a i} and with common central element. The corresponding Full Oscillator Algebra is denoted Pa, a) i. For d N {+ }, the d dimensional Heisenberg algebra denoted Heisd) is the Lie algebra with generators {a i, a i, : i N, i d} and additional relations induced by [a i, a j ] = δ i,j := δ i,j ; [a i, a j ] = [a i, a j ] = ; i, j N, i, j d. The corresponding polynomial algebra is denoted and its generators P d a i, a j) := {polynomials in a i, a j, i, j N, i, j d} B n i)b kj) = a i n a k j ; B i) = B j) := ; i, j N satisfy the commutation relations [B n i)b kj), B N I)B KJ)] =δ i,j knb n i)b N I)B k j)b KJ) In particular δ i,j nkb n i)b N I)B kj)b K J). [B n i)b kj), B N i)b Kj)] = δ i,j k N k N) B n+n i)b k+k j)

5 86 LUIGI ACCARDI AND ANDREAS BOUKAS and the commutation relations of the are Bk n i) := a n i k ai + δ nk, = Bn i)bki) + δ nk, ; n, k, N, K N [B n k i), B N K j)] = δ i,j k N k N) B n+n k+k i)..3. The mode Schrödinger algebra. The mode Schrödinger algebra, or Schrod), is the Lie sub algebra of Pa, a) generated by {a, a, a, a, a a +, }, where n, k, N, K {,, } with n + k and N + K. In the notation.) the generators of Schrod) take the form {B n k : n, k, N, K {,, }, n + k, N + K }..3) The commutation relations among the generators of Schrod) have the general form.) with n, k, N, K satisfying the constraints in.3). The concise formula.) for the commutation relations among the generators of Schrod), in particular the inclusion of [B, B] = 4 B, was the reason behind the introduction of the additive term in the definition of the generators.)..4. The d mode Schrödinger algebra. The d mode Schrödinger algebra, or Schrodd), is the Lie sub algebra of P d a i, a j) generated by {a h, a k, a i a j, a ia j, a h a k +, : h, k, i, j {,..., d}, i j} ={B h), B k), B i)b j), B i)b j), B h)b k) +, : h, k, i, j {,..., d}, i j}. The elements of Schrodd) consist of all quadratic expressions in the generators a i, a j of the Heisenberg algebra Heisd). Two Lie sub algebras of Schrodd) will be important: The diagonal sub algebra Schrodd) diag generated by {a h,a k, a i a i, a ia i, a h a h +, : h, k, i, j {,..., d}, i j} = {Bi), Bi), Bi), Bi), Bh), : i {,..., d}, i j} and the canonical sub algebra, or Schrodd) can, generated by {a h, a k, a i a j, a ia j, a h a h +, : h, k, i, j {,..., d}, i j} = {B h), B k), B i)b j), B i)b j), B h)b k) +, : h, k, i, j {,..., d}, i j}.

6 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS The Disentanglement problem. In Schrodd) we consider a finite sum of the form, where summation from to d is understood on repeated indices: c i, j)bi)b j) + c i, j)bi)b j) + c i, j) Bh)B k) + ) +c i, j)b i) + c i, j)b i), where c n k i, j) C and we wish to split the corresponding group element e c i,j)b i)b j)+c i,j)b i)b j)+c i,j)b h)b k)+ )+c i,j)b i)+c i,j)b i) as a product of normally ordered exponentials, i.e. of the form e c i)b i)+c i,j)b i)b j) e c i,j)b h)b k)+ ) e c i)b i)+c i,j)b i)b j). In the diagonal sub algebra Schrodd) diag we consider a finite sum of the form c i)bi) + c i)bi) + c i)bi) + c i)bi) + c i)bi) ), where c n k i) C and we wish to split the corresponding group element e N c i)b i)+c i)b i)+c i)b i)+c i)b i)+c i)b i)) as a product of normally ordered exponentials, meaning that exponentials containing creators a i are listed on the left and exponentials containing annihilators a i are listed on the right. That would be a normally ordered version of the splitting formula for the multi-dimensional Heisenberg algebra given in [7]. 3. The Case of Schrodd) diag Lemma 3.. Let a and a be a Boson pair and let f be an analytic function. Then afa a) =fa a + )a 3.) fa a)a =a fa a + ) 3.) [a, fa )] =f a ). 3.3) Proof. The proof is obtained from standard Heisenberg algebra commutation formulas see [8], Propositions.4. and..) for D = a, x = a and h =.

7 88 LUIGI ACCARDI AND ANDREAS BOUKAS Lemma 3.. For all λ C: [B, e λ B ] =4 λ B e λ B + 4 λ e λ B B, 3.4) [B, e λ B ] =λb e λ B, 3.5) [B, e λ B ] =λ B e λ B, 3.6) [B, e λ B ] = λ B e λ B, 3.7) e λ B B =e λ Be λ B, 3.8) [B, e λ B ] =λe λ B, 3.9) e λ B B =e λ Be λ B, 3.) Be λ B =e λ e λ B B, 3.) [e λ B, B ] =λ e λ B λb e λ B, 3.) [e λ B, B ] =4λ Be λ B 4λB e λ B, 3.3) [e λ B, B ] =λe λ B. 3.4) Proof. The proof of 3.4)-3.7) can be found in []. The proof of 3.8) is obtained from 3.) and of 3.9) from 3.3). The proof of 3.) is obtained from 3.) and of 3.) from 3.) by taking adjoints and then replacing λ by λ throughout what you find. To prove 3.) we have e λa a =e λa aa = [e λa, a] + ae λa ) a = λe λa + ae λa ) a = λe λa a + ae λa a = λ λe λa + ae λa ) + a λe λa + ae λa ) =λ e λ a λae λ a + a e λa. Equation 3.3) is obtained by computing e λ B B with the use of 3.4) and then computing e λ B B with the use of 3.7). Finally, 3.4) is the dual of 3.9). Lemma 3.3. For n, k, N, K {,, } with n + k and N + K let Ek n s) := e wn k j;s)bn k j), j=

8 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS 89 where wk n j; s) R. Then, for each i {,,..., N}, [B i), E s)] = w i; s)b i)e s), 3.5) [B i), E s)] = w i; s)b i)e s), 3.6) E s)b i) = e w i;s) B i)e s), 3.7) [B i), E s)] = w i; s)e s), 3.8) [B i), E s)] = w i; s)b i)e s), 3.9) E s)b i) = e w i;s) B i)e s), 3.) [E s), B i)] = w i; s) ) E s) w i; s)b i)e s), 3.) [E s), B i)] = 4 w i; s) ) B i)e s) 4w i; s)b i)e s), 3.) [E s), B i)] = w i; s)e s), 3.3) E s)b i) = e w i;s) B i)e s). 3.4) Proof. To prove 3.5) we notice that E s)b i) =e w ;s)b ) e w i ;s)b i ) e w i;s)b i) B i) By Lemma 3. e w i+;s)b i+) e w N;s)B N). so B i) e w i;s)b i) = w i; s)b i) e w i;s)b i) + e w i;s) B i) B i), E s)b i) =e w ;s)b ) e w i ;s)b i ) B i) e w i;s)b i) wi; s)bi) e i)) w i;s)b e w i+;s)b i+) e w N;s)B N) =Bi)E s) wi; s)bi)e s), from which 3.5) follows immediately. Similarly, Es)B i) =e w ;s)b ) e w i ;s)b i ) e w i;s)b i) Bi) e w i+;s)b i+) e w N;s)B N), from which 3.6) follows with the use of 3.7) since e w i;s)b i) Bi) = Bi)e w i;s)b i) wi; s)bi)e w i;s)b i). The proof of 3.7) follows from Es)B i) =e w ;s)b ) e w i ;s)b i ) e w i;s)b i) Bi) e w i+;s)b i+) e w N;s)B N) and the fact that, by 3.8), e w i;s)b i) Bi) = e w i;s) Bi)e w i;s)b i).

9 9 LUIGI ACCARDI AND ANDREAS BOUKAS Similarly, 3.8) follows from Es)B i) =e w ;s)b ) e w i ;s)b i ) e w i;s)b i) Bi) e w i+;s)b i+) e w N;s)B N), and the fact that, by 3.9), e w i;s)b i) Bi) = Bi)e w i;s)b i) wi; s)e w i;s)b i). The proofs of 3.9)-3.4) are along the same lines. Theorem 3.4. For s R and N =,,... let Then F N := c i)bi) + c i)bi) + c i)bi) + c i)bi) + c i)bi) ). e s F N N =e w s) e w i;s)b i) e w i;s)b i) N e w i;s)b i) e w i;s)b i) e w i;s)b i), where, for each i {,,...}, w i; s) is the solution of the Riccati initial value problem and dw i; s) w i; s) =4c i) w i; s) =c i) c i)w i; s) 4c i) w i; s) ) = c i), w i; ) =, w i; s) =e 4c i)w i;t)+c w i; s) = w s) = Proof. Let w i; t) dt + c i) s, 3.5) e w i;t) dt, 3.6) i)) dt e t 4c i)w i;w)+c i)) dw c i) + c i)w i; t) ) dt, 3.7) c i) + c i)w i; t) ) e w i;t) dt, 3.8) c i) w i; t) ) N dt + c i) w i; t) dt. 3.9) Es) := e s N c i)b i)+c i)b i)+c i)b i)+c i)b i)+c i)b i)).

10 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS 9 Differentiating with respect to s we find des) = c i)bi) + c i)bi) + c i)bi) + c i)bi) 3.3) +c i)b i) ) Es). Let Ek n s) := e wn k i;s)bn k i). Then, de n k s) = N dw n k ) i; s) Bk n i) Ek n s) 3.3) and by the right-hand side of the formula postulated in the statement of this theorem we have Es) = e w s) E s)e s)e s)e s)e s). 3.3) Applying the differentiation rule f f f n ) = f f f n + f f f n f f f n

11 9 LUIGI ACCARDI AND ANDREAS BOUKAS to 3.3) and using 3.3) and Lemma 3.3 we obtain des) N ) = dw s) dw Es) + i; s) B i) Es) 3.33) N ) dw + i; s) B i) e w s) Es)E s)e s)e s)e s) N ) + e w s) Es)E s) dwi; s) B i) Es)E s)e s) N ) + e w s) Es)E s)e s) dwi; s) B i) Es)E s) N ) + e w s) Es)E s)e s)e s) dwi; s) B i) Es) = dw s) Es) = dw s) Es) + + dwi; s) B i)es) + dwi; s) B i)es) dwi; s) e w s) E s)es)b i)e s)e s)e s) dwi; s) e w s) E s)e s)e s)b i)e s)e s) dwi; s) e w s) E s)e s)e s)e s)b i)e s) dw i; s) dwi; s) B i)es) + B i)es) dwi; s) w i; s)bi)es) dwi; s) B i)es) dwi; s) w i; s)bi)es)

12 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS dwi; s) e w s) B i)es) dwi; s) e w s) w i; s)bi)es) dwi; s) e w s) w i; s)es) dw i; s) w i; s) ) e w i;s) Es) dwi; s) w i; s)e w i;s) Bi)Es) dwi; s) w i; s)wi; s)e w i;s) Bi)Es) dwi; s) e w i;s) B i)es) dw i; s) = dw s) Es) + w i; s) ) e w i;s) B i)es) dwi; s) w i; s)e w i;s) Bi)Es) dwi; s) e w s) E s)es)b i)e s)e s)e s) dwi; s) e w s) E s)e s)e s)b i)e s)e s) dwi; s) e w s) E s)e s)e s)e s)b i)e s) dwi; s) B i)es) + dwi; s) B i)es)

13 94 LUIGI ACCARDI AND ANDREAS BOUKAS dw i; s) B i)es) dwi; s) w i; s)bi)es) dwi; s) e w s) B i)es) dwi; s) e w s) w i; s)bi)es) dwi; s) e w s) w i; s)es) dw i; s) w i; s) ) e w i;s) Es) dwi; s) w i; s)e w i;s) Bi)Es) dwi; s) w i; s)bi)es) dwi; s) w i; s)wi; s)e w i;s) Bi)Es) dwi; s) e w i;s) B i)es) dw i; s) w i; s) ) e w i;s) B i)es) dwi; s) w i; s)e w i;s) Bi)Es). Comparing 3.33) and 3.3) and equating, for each pair n, k), the coefficients of the Bk ne terms we find that the wn k s must satisfy the differential equations: dw s) = dw i; s) w i; s) ) e w i;s) + dw i; s) e w i;s) w i; s), 3.34)

14 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS 95 and for each i =,,..., N c i) = dw i; s) dw i; s) w i; s) + 4 dw i; s) w i; s) ) e w i;s), 3.35) c i) = dw i; s) e w i;s), 3.36) c i) = dw i; s) dw i; s) + 4 dw i; s) w i; s)wi; s)e w i;s), c i) = dw i; s) c i) = dw i; s) wi; s) dw i; s) e w s) w i; s) 3.37) e w i;s) dw i; s) w i; s)e w i;s), 3.38) 4 dw i; s) w i; s)e w i;s). 3.39) We require that the wk n i; s) s satisfy the initial condition Solving equation 3.36) for dw i;s) dw i; s) and solving equation 3.39) for dw i;s) dw i; s) w n k i; ) =. we find = c i)e w i;s) 3.4) we find = 4c i)w i; s) + c i). 3.4) Substituting in 3.35) we find that w i; s) is the solution of the Riccati initial value problem dw i; s) and, by 3.4) and 3.4), c i)w i; s) 4c i) w i; s) ) = c i), w i; ) =, w i; s) =4c i) w i; s) =c i) Solving equation 3.38) for dw i;s) 3.4), we find which implies dw i; s) w i; s) = c i) w i; t) dt + c i) s, e w i;t) dt. and substituting, in what we get, dw i;s) = c i)e w i;s) + c i)w i; s)e w i;s), 3.4) e w i;t) dt + c i) w i; t)e w i;t) dt. by

15 96 LUIGI ACCARDI AND ANDREAS BOUKAS Substituting 3.4), 3.4) and 3.4) in 3.37) we find that w i; s) is the solution of the initial value problem dw i; s) so 4c i)w i; s) + c i) ) w i; s) = c i) + c i)w i; s), w i; ) =, wi; s) =e 4c i)w i;t)+c i)) dt Finally, 3.34) and 3.4) imply w s) = + = = + c i) c i) e t 4c i)w i;w)+c i)) dw c i) + c i)w i; t) ) dt. dw i; t) dt w i; t) ) e w i;t) dt dwi; t) e w i;t) w dt i; t) dt e w i;t) w i; t) ) e w i;t) dt c i)e w i;t) + c i)w i; t)e w i;t)) e w i;t) w i; t) dt w i; t) ) N dt + c i) w i; t) dt. Proposition 3.5. The solution of the Riccati initial value problem dw i; s) c i)w i; s) 4c i) w i; s) ) = c i), w i; ) =, 3.43) is where wi; c s) = i) Bi) coth Bi)s) c, 3.44) i) Bi) = c i) 4c i)c i), 3.45) provided that the coefficients of 3.43) are such that and 3.45) and 3.44) make sense, in which case w i; ) = lim s w i; s) =. Moreover, in the notation of

16 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS 97 Theorem 3.4, w i; s) = log Bi) log Bi) cosh Bi)s) c i) sinh Bi)s) ), 3.46) w i; s) = c i)c i) coshbi)s) + c i)bi) sinhbi)s) c i)c i) c i) + Bi) 4c i)c i) coshbi)s)), 3.47) wi; s) = Bi)c Bi) cothbi)s) c i)bi) i) 3.48) ) ) c i) Bi) c i)c i) c i)c i)) cothbi)s) cschbi)s)), wi; s) = α 4 i) + α 5 i) cothbi)s) α i) + α i) cothbi)s)) 3.49) cschbi)s) c i)α 3 i) arctan c i) c i)c ) i) Bi) coth Bi)s c i) +α 3 i) arctan c i) ) ) c i)c i) Bi)c i) tanh Bi)s ) 4c i)c i) Bi)c i)3 tanh cothbi)s)), Bi)s ws) c = i) 4c α 6i) + α 7 i)s 3.5) i)c i)bi) +α 8 i) arctan 4c i)c i) ) c i) Bi) coth Bi)s +α 9 i) log Bi) coshbi)s) c i) sinhbi)s) )) c + i) Bi) cothbi)s) c i) α i) + α i)s )) + α i) arctan c i)c i) c i) Bi) tanh Bi)s ) Bi) c i) + Bi)c i) tanh Bi)s + α 3 i) cothbi)s) + α 4 i)s cothbi)s) + α 5 i) arctan c i)c ) i) cothbi)s) Bi) coth c i) Bi)s

17 98 LUIGI ACCARDI AND ANDREAS BOUKAS + α 6 i)cschbi)s) + α 7 i) log cothbi)s)) + α 8 i) log + cothbi)s)) + α 9 i) cothbi)s) log cothbi)s)) + α i) cothbi)s) log + cothbi)s)) + α i) log c i) Bi) cothbi)s) ) + α i) cothbi)s) log c i) Bi) cothbi)s) ) + α 3 i) log Bi) coshbi)s) c i) sinhbi)s) ) + α 4 i) cothbi)s) log Bi) coshbi)s) c i) sinhbi)s) ), where the formulas for the coefficients α k i), k =,..., 4, are given in the Appendix. Proof. For each i, a constant solution Ai) of the differential equation is Letting dw i; s) c i)w i; s) 4c i) w i; s) ) = c i), Ai) = c i) 4c i)c i) c i) 4c i). w i; s) := Ai) + ui; s), substituting in 3.43) we find that ui; s) satisfies the linear first order ODE so Since we find that dui; s) + c i) + 8c i)ai) ) ui; s) = 4c i), 4c ui; s) = i) c i) + + c 8c e c i)ai) w i; ) = = ui; ) = Ai), c = and, after simplifications, we obtain w i; s) = 4c i) c i) + 8c i)ai) Ai), i)+4c i)ai))s. c i) c i) 4c i)c i) coth c i) 4c i)c i) s ) c i). Substituting in 3.5)-3.9) we obtain 3.46)-3.5).

18 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS 99 Remark 3.6. We could have proved Theorem 3.4 by noticing that, by the commutativity of the exponents for different values of i, = e s N c i)b i)+c i)b i)+c i)b i)+c i)b i)+c i)b i)) e s i)) c i)b i)+c i)b i)+c i)b i)+c i)b i)+c i)b, and then work separately on each copy of the Schrödinger algebra. Such work was done in [], but acting on the Fock vacuum vector Φ. The approach followed in the proof of Theorem 3.4 is a good, necessary, preparation for the non-diagonal case presented in the next section. 3.. The case d = and a single quadratic Hamiltonian. The splitting formula for Schrod) is given in the following Corollary to Theorem 3.4. Corollary 3.7. For s R e s c B +c B +c B +c B +c B ) =e w s) e w s)b e w s)b i) e w s)b e w s)b e w s)b, where w s) is the solution of the Riccati initial value problem and w s) =4c w s) =c dw s) c w s) 4c w s) ) = c, w ) =, w t) dt + c s, e w t) dt, w s) =e 4c w t)+c ) dt w s) = w s) =c c + c w t) ) e w t) dt, w t) ) dt + c wt) dt. Proof. The proof follows from Theorem 3.4 for N =. e t 4c w w)+c ) dw c + c w t) ) dt, Corollary 3.8. For s R e s c B +c B +c B ) = e w s)b e w s)b e w s)b, where w s) is the solution of the Riccati initial value problem dw s) c w s) 4c w s) ) = c, w ) =,

19 3 LUIGI ACCARDI AND ANDREAS BOUKAS and w s) =4c w s) =c w t) dt + c s, e w t) dt. Proof. The proof follows from Corollary 3.7 for c = c =, since then ws) = ws) = ws) =. Proposition 3.9. Quadratic Hamiltonian) Suppose that Φ is a Fock vacuum vector such that Φ = Φ, Φ = and aφ =. Then, for s R, Φ, e is c a ) +c a +c a) a Φ = B e ic s B cosh ibs) c sinh ibs) ), 3.5) where B = c 4c c. Proof. By Corollary 3.8 and Proposition 3.5, using the fact that B = a ), B = a, B = a a +, and B ) = B, we have e w s)b Φ = Φ, e w s)b Φ = e w s) Φ Φ, e is c a ) +c a +c a) a Φ = e isc e w is). Replacing w is) by 3.46) with is in place of s, we obtain 3.5). Remark 3.. Simplified versions of 3.5), for less general coefficients, can be found in [] and [4]. 4. The Disentanglement Formula in the General Non-diagonal Case We will use the notation µi) := wi, j; s)bj) ; νi) = wi, j; s)bj), and ξj) = E n k s) := G s) = j= j i j= j<i wi, j; s)bi) ; λi) := ξi) + νi), i>j e wn k j;s)bn k j) ; G s) = j= e w i,j;s)b i)b j) ; G s) = i,j= i>j e w i,j;s)b i)b j), i,j= i j e w i,j;s)b i)b j). i,j= i>j

20 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS 3 We assume that and w i, i; s) =, i =,,... 4.) w i, j; s) = w i, j; s) =, i j. 4.) Lemma 4.. For i =,,... [B i), G s)] =µi)b i)g s) µi) G s), 4.3) [B i), G s)] =µi)g s), 4.4) [B i), G s)] =λi)b i)g s) ξi) + 3νi) )G s), 4.5) [B i), G s)] =λi)g s), 4.6) [B i), G s)] =λi)b i)g s). 4.7) Proof. To prove 4.3) we notice that G s)b i) = = e w I,j;s)B I)B j) Bi) I,j= I j N e w i,j;s)b i)b j) j= j i j= j i I= I i = e w i,j;s)b i)b j) Bi) By 3.) with λ = µi) we have j= j i e w I,i;s)B I)B i) I= I i N I,j= j i,i I j e w I,i;s)B I)B i) e w I,j;s)B I)B j) B i) I,j= j i,i I j e w i,j;s)b i)b j) Bi) = e B i) N j= w i,j;s)b j) j i Bi) = e µi) B i) B i) Similarly, to prove 4.4) we notice that e w I,j;s)B I)B j). = B i)e µi) B i) + µi) e µi) B i) µi)b i)e µi) B i). G s)bi) = e w i,j;s)b i)b j) Bi) j= j i I,j= I i,j i,i j I= I i e w I,j;s)B I)B j). e w I,i;s)B I)B i)

21 3 LUIGI ACCARDI AND ANDREAS BOUKAS By 3.) with λ = µi) we have j= j i e w i,j;s)b i)b j) Bi) = e B i) N j= w i,j;s)b j) j i Bi) = e µi) B i) B i) = B i)e µi) B i) µi)e µi) B i). Thus G s)bi) = B i)e µi) B i) µi)e µi) i)) N B I,j= I i,j i,i j I= I i e w I,i;s)B I)B i) e w I,j;s)B I)B j) = B i)g s) µi)g s). For 4.5) we have G s)b i) = = I,j= I>j,j=i I,j= I>j,j>i I= I>i e w I,j;s)B I)B j) e w I,j;s)B I)B j) e w I,i;s)B I)B i) e w i,j;s)b i)b j) Bi) j= j<i I,j= I>j,j>i e w I,j;s)B I)B j). I,j= I>j,j<i I,j= I>j,I>i,j<i e w I,j;s)B I)B j) B i) I,j= I>j,I<i,j<i e w I,j;s)B I)B j) e w I,j;s)B I)B j) As explained above, e νi) B i) B i) = B i)e νi) B i) + νi) e νi) B i) νi)b i)e νi) B i).

22 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS 33 Thus = G s)b i) = B i) I,j= I>j,j>i j= j<i + νi) j= j<i I= I>i e w I,i;s)B I)B i) e w i,j;s)b i)b j) e w I,j;s)B I)B j) I= I>i e w I,i;s)B I)B i) e w i,j;s)b i)b j) I,j= I>j,j>i νi) B i) e w I,j;s)B I)B j) I= I>i j= j<i I,j= I>j,I<i,j<i N I,j= I>j,I<i,j<i e w I,i;s)B I)B i) e w i,j;s)b i)b j) e w I,j;s)B I)B j) e w I,i;s)B I)B i) Bi) I= I>i j= j<i e w i,j;s)b i)b j) + νi) I= I>i I,j= I>j,I<i,j<i I,j= I>j,I>i,j<i I,j= I>j,I>i,j<i e w I,j;s)B I)B j) e w I,j;s)B I)B j) e w I,j;s)B I)B j) e w I,j;s)B I)B j) I,j= I>j,I>i,j<i I,j= I>j,j>i I,j= I>j,I>i,j<i I,j= I>j,I<i,j<i e w I,i;s)B I)B i) e w I,j;s)B I)B j) e w I,j;s)B I)B j) e w I,j;s)B I)B j) e w I,j;s)B I)B j) I,j= I>j,I>i,j<i I,j= I>j,j>i e w I,j;s)B I)B j) e w I,j;s)B I)B j)

23 34 LUIGI ACCARDI AND ANDREAS BOUKAS j= j<i νi) j= j<i e w i,j;s)b i)b j) I,j= I>j,I<i,j<i e w I,i;s)B I)B i) Bi) I= I>i e w i,j;s)b i)b j) By 3.9) with λ = νi), and by 3.) with λ = ξi), I,j= I>j,I<i,j<i e w I,j;s)B I)B j) I,j= I>j,I>i,j<i e w I,j;s)B I)B j) I,j= I>j,j>i e w I,j;s)B I)B j) I,j= I>j,j>i e νi) B i) B i) = B i)e νi) B i) νi)e νi) B i), e w I,j;s)B I)B j) e w I,j;s)B I)B j). e ξi) B i) B i) = B i)e ξi) B i) + ξi) e ξi) B i) ξi)b i)e ξi) B i). Thus, using the fact that we obtain ξi) + νi) = λi), G s)b i) = B i)g s) + ξi) + 3νi) )G s) λi)b i)g s). For 4.6) we have = G s)b i) = I,j= I>j,j>i I= I>i I,j= I>j,j=i e w I,j;s)B I)B j) e w I,i;s)B I)B i) e w I,j;s)B I)B j) e w i,j;s)b i)b j) Bi) j= j<i I,j= I>j,j>i e w I,j;s)B I)B j). I,j= I>j,I>i,j<i I,j= I>j,I<i,j<i I,j= I>j,j<i e w I,j;s)B I)B j) e w I,j;s)B I)B j) B i) e w I,j;s)B I)B j) Since, as pointed out above, 3.9) with λ = νi) implies e νi) B i) B i) = B i)e νi) B i) νi)e νi) B i),

24 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS 35 we have G s)b i) = = = I,j= I>j,j=i I,j= I>j,j>i I= I>i e w I,j;s)B I)B j) e w I,j;s)B I)B j) e w I,i;s)B I)B i) B i) I,j= I>j,I<i,j<i j= j<i N I,j= I>j,j<i I,j= I>j,I>i,j<i e w i,j;s)b i)b j) νi) e w I,j;s)B I)B j) e w I,i;s)B I)B i) Bi) I= I>i j= j<i e w i,j;s)b i)b j) I,j= I>j,j>i I,j= I>j,j>i I,j= I>j,I>i,j<i I,j= I>j,I<i,j<i e w I,j;s)B I)B j) νi)g s) and, using 3.9) with λ = ξi) we obtain e w I,j;s)B I)B j) B i) e w I,j;s)B I)B j) j= j<i e w i,j;s)b i)b j) e w I,j;s)B I)B j) e w I,j;s)B I)B j) e w I,j;s)B I)B j) G s)b i) = B i)g s) ξi)g s) νi)g s) = B i)g s) λi)g s). Finally, for 4.7) we have G s)b i) = I= I>i e w I,i;s)B I)B i) e w i,j;s)b i)b j) Bi) j= j<i I,j= I>j,j>i e w I,j;s)B I)B j). I,j= I>j,I>i,j<i I,j= I>j,I<i,j<i e w I,j;s)B I)B j) e w I,j;s)B I)B j)

25 36 LUIGI ACCARDI AND ANDREAS BOUKAS By 3.6) with λ = νi), Thus G s)b i) = j= j<i e νi) B i) B i) = B i)e νi) B i) νi) B i) e νi) B i). e w I,i;s)B I)B i) Bi) I= I>i e w i,j;s)b i)b j) νi)b i)g s). I,j= I>j,I<i,j<i I,j= I>j,I>i,j<i e w I,j;s)B I)B j) e w I,j;s)B I)B j) I,j= I>j,j>i e w I,j;s)B I)B j) As above, using 3.6) with λ = ξi) to commute B i) past the product to its left we obtain G s)b i) =B i)g s) ξi)b i)g s) νi)b i)g s) = B i)g s) λi)b i)g s). Lemma 4.. Let Es) = e w s) E s)g s)e s)e s)e s)g s)g s)e s). Then, e w s) E s)g s)e s)b i)e s)e s)g s)g s)e s) 4.8) = B i) w i; s)b i) λi)b i) w i; s)b i) ) Es), e w s) Es)G s)e s)e s)b i)e s)g s)g s)es) 4.9) =e w i;s) Bi) wi; s)bi) λi) wi; s) ) Es), and e w s) Es)G s)e s)e s)e s)g s)g s)bi)e s) 4.) =e w i;s) Bi) + 4 wi; s) ) B i) 4wi; s)bi) λi)bi) + 4wi; s)λi)bi) + ξi) + 3νi) + wi; s) ) w i; s)bi) +4wi; s)wi; s)bi) + wi; s)λi) ) Es) e w i;s) N j= j i e w j;s) w i, j; s) B i)b j) w j; s)b i)b j) w i; s)b i)b j)

26 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS w i; s)w j; s)b i)b j) B j)λi) + w j; s)b j)λi) λj)b i) + w i; s)b i)λj) + λi)λj) w i; s)b j) + w i; s)w j; s)b j) + w i; s)λj) w j; s)b i) + w j; s)w i; s)b i) +wj; s)λi) + wi; s)wj; s) ) Es) + wi, j; s)wi, J; s)e w j;s) e w J;s) j= J= j i J i B J)B j) w j; s)b J)B j) w J; s)b J)B j) + 4w J; s)w j; s)b J)B j) B j)λj) + w j; s)b j)λj) λj)b J) + w J; s)b J)λj) + λj)λj) w J; s)b j) + w J; s)w j; s)b j) + w J; s)λj) w j; s)b J) + w j; s)w J; s)b J) +w j; s)λj) + w J; s)w j; s) ) Es). Moreover, for i j we have e w s) Es)G s)e s)e s)e s)b i)b j)g s)g s)es) 4.) = e w i;s) e w j;s) Bi)B i j) wj; s)e w i;s) e w j;s) Bi)B j) e w i;s) e w j;s) B i)λj) e w i;s) e w j;s) w j; s)b i) + w i; s)e w j;s) B j) w j; s)w i; s)e w j;s) B j) w i; s)e w j;s) λj) w i; s)w j; s)e w j;s)) Es), and for i > j we have e w s) Es)G s)e s)e s)e s)g s)bi)b j)g s)es) 4.) = e w i;s) Bi) wi; s)bi) λi) wi; s)) wi, j ; s)e w j ;s) Bj ) wj ; s)bj ) λj ) wj ; s)) j = j i e w j;s) B j) w j; s)b j) λj) w j; s)) wj, j ; s)e w j ;s) Bj ) wj ; s)bj ) j = j j λj ) w j ; s)) ) Es). Proof. The idea in all cases is to use Lemmas 3., 3.3 and 4. to move the B s and G s all the way to the front of the left hand sides of 4.8)-4.). Keeping in mind

27 38 LUIGI ACCARDI AND ANDREAS BOUKAS that terms like E n, B k and G m commute. The same is true for E n, B k and G m. To prove 4.8) we use 3.5), 4.7) and 3.6). We have: e w s) E s)g s)e s)b i) =e w s) E s)g s)b i)e s) w i; s)b i)e s)) =e w s) E s)g s)b i)e s) w i; s)b i)e w s) E s)g s)e s) =e w s) E s)b i)g s) λi)b i)g s))e s) w i; s)b i) e w s) E s)g s)e s) =e w s) B i)e s) w i; s)b i)e s))g s)e s) λi)b i)e w s) E s)g s)e s) w i; s)b i)e w s) E s)g s)e s), from which 4.8) follows after multiplying both sides of the above from the right by E s)e s)g s)g s)e s). For 4.9) we use 3.7), 3.8), 3.9)and 4.6). We have: e w s) E s)g s)e s)e s)b i) =e w i;s) e w s) E s)g s)e s)b i)e s) =e w i;s) e w s) E s)g s) B i)e s) w i; s)e s) ) E s) =e w i;s) e w s) E s) B i)g s) λi)g s) ) E s)e s) w i; s)e w i;s) e w s) E s)g s)e s)e s) =e w i;s) e w s) B i)e s) w i; s)b i)e s) ) G s)e s)e s) e w i;s) λi)e w s) E s)g s)e s)e s) w i; s)e w i;s) e w s) E s)g s)e s)e s), and 4.9) follows after multiplying the above by E s)g s)g s)e s). For 4.), using 4.3) to commute B i) past G s), we have e w s) E s)g s)e s)e s)e s)g s)g s)b i)e s) =e w s) E s)g s)e s)e s)e s)b i)g s)g s)e s) e w s) E s)g s)e s)e s)e s)µi)b i)g s)g s)e s) + e w s) E s)g s)e s)e s)e s)µi) G s)g s)e s). We will compute the three terms appearing on the right hand side of the above equation separately: Using 3.), 3.), 4.5), 4.6), 3.) and 3.9) to commute B i) and all the resulting B s to the left of e w s) E s)g s)e s)e s)e s)b i)

28 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS 39 and then multiplying both sides of the resulting equation by G s)g s)e s), we find e w s) Es)G s)e s)e s)e s)b i)g s)g s)es) =e w i;s) Bi) + 4wi; s)) Bi) 4wi; s)bi) λi)bi) + 4wi; s)λi)bi) + ξi) + 3νi) + wi; s)) wi; s)bi) +4wi; s)wi; s)bi) + wi; s)λi) ) Es). Similarly, using 3.7), 3.8), 4.6) and 3.9) to commute µi)b i) and all the resulting B s to the left of e w s) E s)g s)e s)e s)e s)µi)b i) and then multiplying both sides of the resulting equation by G s)g s)e s), we find e w s) E s)g s)e s)e s)e s)µi)b i)g s)g s)e s) N = e w i;s) e w j;s) wi, j; s) j= j i B i)b j) w j; s)b i)b j) w i; s)b i)b j) + 4w i; s)w j; s)b i)b j) B j)λi) + w j; s)b j)λi) λj)b i) + w i; s)b i)λj) + λi)λj) w i; s)b j) + w i; s)w j; s)b j) + w i; s)λj) w j; s)b i) + w j; s)w i; s)b i) +w j; s)λi) + w i; s)w j; s) ) Es). For the third term, writing µi) as µi)µi) and replacing the µi) s by their definition, with summation indices j and J respectively, using 3.7) twice to commute B j)b J) past E s) and noticing that the resulting term e w s) E s)g s)e s)b j)b J)E s)e s)

29 3 LUIGI ACCARDI AND ANDREAS BOUKAS has already been previously computed, we obtain e w s) Es)G s)e s)e s)e s)µi) G s)g s)es) = wi, j; s)wi, J; s)e w j;s) e w J;s) j= J= j i J i B J)B j) w j; s)b J)B j) w J; s)b J)B j) + 4w J; s)w j; s)b J)B j) B j)λj) + w j; s)b j)λj) λj)b J) + w J; s)b J)λj) + λj)λj) w J; s)b j) + w J; s)w j; s)b j) + w J; s)λj) w j; s)b J) + w j; s)w J; s)b J) +w j; s)λj) + w J; s)w j; s) ) Es). Combining the above three equations we obtain 4.). For 4.), we can use 3.3), 3.4), 3.7), 3.8), 4.6) and 3.9) to gradually move B i)b j) to the left of e w s) E s)g s)e s)e s)e s)b i)b j), where i j, and obtain e w s) Es)G s)e s)e s)e s)b i)b j) = e w i;s) e w j;s) Bi)B i j) wj; s)e w i;s) e w j;s) Bi)B j) e w i;s) e w j;s) B i)λj) e w i;s) e w j;s) w j; s)b i) + w i; s)e w j;s) B j) w j; s)w i; s)e w j;s) B j) w i; s)e w j;s) λj) w i; s)w j; s)e w j;s)) e w s) E s)g s)e s)e s)e s), which upon multiplication by G s)g s)e s) gives 4.). Finally, for 4.), using 4.4) to switch B i) past G s), and the Definition of µi) with summation index j we find e w s) E s)g s)e s)e s)e s)g s)b i)b j) The terms =e w s) Es)G s)e s)e s)b i)e s)g s)bj) wi, j ; s)e w s) Es)G s)e s)e s)b j )Es)G s)bj). j = j i e w s) E s)g s)e s)e s)b i), e w s) E s)g s)e s)e s)b j ) are similar. By 3.7), 3.8), 4.6) and 3.9) e w s) E s)g s)e s)e s)b i) =e w i;s) B i) w i; s)b i) λi) w i; s) ) e w s) E s)g s)e s)e s)

30 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS 3 Thus e w s) Es)G s)e s)e s)e s)g s)bi)b j) = e w i;s) Bi) wi; s)bi) λi) wi; s) ) wi, j ; s)e w j ;s) Bj ) wj ; s)bj ) λj ) wj ; s) ) j = j i e w s) E s)g s)e s)e s)e s)g s)b j). Replacing e w s) E s)g s)e s)e s)e s)g s)b j) on the right hand side of the above equation with the above equation without the B j) factor on the right, and with i replaced by j, we obtain e w s) Es)G s)e s)e s)e s)g s)bi)b j) = e w i;s) Bi) wi; s)bi) λi) wi; s) ) wi, j ; s)e w j ;s) Bj ) wj ; s)bj ) λj ) wj ; s) ) j = j i e w j;s) Bj) wj; s)bj) λj) wj; s) ) wj, j ; s)e w j ;s) Bj ) wj ; s)bj ) j = j j λj ) w j ; s) )) e w s) E s)g s)e s)e s)e s)g s). Multiplying both sides by G s)e s) we obtain 4.). Note: All summation indices in the statement as well as in the proof of the following Theorem 4.3, run from to N and equations 4.) and 4.) should be taken into account in the interpretation of all sums. Theorem 4.3. For s R and N =,,... let F N := c i)bi) + c i)bi) + c i)bi) + c i)bi) + c i)bi) ) + c i, j)bi)b j) + c i, j)bi)b j) ) + i,j= i>j c i, j)bi)b j). i,j= i j

31 3 LUIGI ACCARDI AND ANDREAS BOUKAS Then e s F N =e w s) e w i;s)b i) e w i;s)b i) i,j= i j i,j= i>j e w i,j;s)b i)b j) e w i,j;s)b i)b j) N e w i,j;s)b i)b j) e w i;s)b i), i,j= i>j e w i;s)b i) e w i;s)b i) where, for each i, w i; s) is the solution of the Riccati initial value problem dw i; s) c i)w i; s) 4c i) w i; s) ) = c i) ; w i; ) =, and w i; s) =c i)s + 4c i) w i; s) =c i) e w i;u) du. w i; u) du, For i, j) {,,..., N} {,,..., N}, the 3N unknowns w i, j; s), w i, j; s) and w i, j; s) are determined by their initial value w i, j; ) = w i, j; ) = w i, j; ) =,

32 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS 33 and the system of 3N first order differential equations 4.3)-4.5): c i, j) = dw i, j; s) + b w i, j; s) + wj, i; s) ) + b wi, j; s) 4.3) dw + b i, j; s) dw + b i, j; s) + b3 wi, k; s)wj, k; s) + b 4 wk, i; s)wk, j; s) k + b 5 wk, i; s) + b 7 wi, k; s) ) wk, j; s) + wj, k; s) ) +b 6 wk, j; s)wk, i; s) ) + k,m b8 w k, m; s) w k, i; s)w m, j; s) + w k, i; s)w j, m; s) +w i, k; s)w m, j; s) + w i, k; s)w j, m; s) ) + b 9 w k, j; s)w k, m; s) w m, i; s) + w i, m; s) ) +b wk, i; s)wk, m; s) wm, j; s) + wj, m; s) )) + dw b i, k; s) 3 w k, j; s) + wj, k; s) ) k dw + b k, j; s) 4 w dw k, i; s) + b i, k; s) 5 w k, j; s) dw + b k, i; s) 6 w k, j; s) + wj, k; s) ) dw +b i, k; s) 7 w k, j; s) + wj, k; s) )) + dwk, m; s) b8 w k, i; s)wm, j; s) k,m + b 9 w k, j; s) + wj, k; s) ) + b w k, i; s) w m, j; s) + w j, m; s) ) + b w k, i; s)w m, j; s) + w k, i; s)w j, k; s) +w i, k; s)w m, j; s) + w i, k; s)w j, k; s) ) + b w k, m; s) w m, j; s) + w j, m; s) ) + b 3 wk, m; s) wm, j; s) + wj, m; s) )) + b4 wk, m; s)wk, l; s) wn, i; s)wm, j; s) k,m,l +w n, i; s)w j, m; s) + w i, n; s)w m, j; s) + w i, n; s)w j, m; s) ) + dw k, m; s) b5 w k, l; s)w m, i; s) w l, j; s) + w j, l; s) )

33 34 LUIGI ACCARDI AND ANDREAS BOUKAS + b 6 w k, l; s) w k, i; s)w l, j; s) +w k, i; s)w j, l; s) + w i, k; s)w l, j; s) + w i, k; s)w j, l; s) ) + b 7 w k, i; s)w m, l; s) w l, j; s) + w j, l; s) ) + b 8 wm, l; s) wk, i; s)wl, j; s) +wk, i; s)wj, l; s) + wi, k; s)wl, j; s) + wi, k; s)wj, l; s) ))) + dw b k, m; s) 9 w k, l; s)wm, n; s) wl, i; s)wn, j; s) k,m,l,n +w l, i; s)w j, n; s) + w i, l; s)w n, j; s) + w i, l; s)w j, n; s) ), c i, j) =p wi, dw j; s) + p i, j; s) 4.4) + p 3 wk, j; s)w dw k, i; s) + p i, k; s) 4 w k, j; s) k dw ) +p k, j; s) 5 w k, i; s) + dw p k, m; s) 6 w k, i; s)wm, j; s), k,m c i, j) =q wj, i; s) + wi, j; s)) 4.5) + q wj, dw i; s) + q 3 + q i, j; s) dw 4 + q i, j; s) 5 + q6 wk, i; s) + wi, k; s)) + q 7 wk, i; s)wk, j; s) k dw + q j, k; s) 8 w k, i; s) + wi, k; s)) dw + q j, k; s) 9 w dw k, i; s) + q i, k; s) w k, j; s)

34 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS 35 + q dw k, j; s) dw +q k, j; s) 3 w k, i; s) wk, i; s) + wi, dw k; s)) + q k, i; s) w k, i; s) ) + k,m q4 w k, j; s)w k, m; s)w m, i; s) + w i, m; s)) + q 5 w k, m; s)w k, i; s)w m, i; s) + w i, m; s)) dw + q j, m; s) 6 w m, k; s)wk, i; s) + wi, k; s)) dw + q k, j; s) 7 w k, m; s)wm, i; s) + wi, m; s)) dw + q k, m; s) 8 w m, j; s)wk, i; s) + wi, k; s)) dw + q k, m; s) 9 w k, j; s)wm, i; s) + wi, m; s)) dw + q k, m; s) w k, j; s)wm, i; s) dw ) +q k, m; s) w k, i; s)wm, j; s) + dw q k, m; s) w k, j; s)wm, l; s) + wk, l; s)wm, j; s)) k,m,l w l, i; s) + w i, l; s)), and for i {,,..., N}, the N unknowns w i; s) and w i; s) are determined by their initial value w i; ) = w i; ) =, and the system of N first order differential equations 4.6)-4.7): c dw i) =r i; s) + r w i; s) + r3 wk; s) + r 4 wk; s) ) 4.6) k + r5 wm; s) + r 6 wk; s) ) + r 7 wl; s), k,m k,m,l c i) =u + dw i; s) + k + k,j dw u k; s) 3 + u w i; s) + u dw i; s) ) + u 4 wk; s) + u 5 wk; s) u6 wk; s) + u 7 wk; s) ) + u 8 wm; s) + k,j,m k,j,m,l 4.7) u 9 w l; s), where the coefficients b, p, q, r, u appearing in 4.3)-4.7) depend on the various indices and previously terms and can be found in the Appendix. Finally, w s) is

35 36 LUIGI ACCARDI AND ANDREAS BOUKAS given by s ws) dw = i; t) e w i;t) w dt i; t) 4.8) i dwi; t) e w i;t) w dt i; t) ) e w i;t) i e w j;t) wi, j; t)wi; t)wj; t) j + wi, j; t)wi, m; t)e w j;t) e w m;t) wm; t)wj; t) j,m + i,j i,j dwi, j; t) w dt i; t)wj; t)e w j;t) dwi, j; t) e w i;t) w dt i; t) + k e w j;t) w j; t)) + m w i, k; t)e w k;t) w k; t) w j, m; t)e w m;t) w m; t)) )) dt. ) Proof. As in the proof of Theorem 3.4, let Es) = e sf N. Then, des) = F N Es). 4.9) Since Es) = e w s) E s)g s)e s)e s)e s)g s)g s)e s), we also have that des) + i,j = dw s) Es) + i dwi, j; s) B i)bj)es) dwi; s) B i)es) + i dwi; s) B i)es) + i dwi; s) e w s) E s)g s)es)b i)e s)e s)g s)g s)es)

36 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS 37 + i + i + i,j + i,j dwi; s) e w s) E s)g s)e s)e s)b i)e s)g s)g s)es) dwi; s) e w s) E s)g s)e s)e s)e s)g s)g s)bi)e s) dwi, j; s) e w s) E s)g s)e s)e s)e s)b i)b j)g s)g s)es) dwi, j; s) e w s) E s)g s)e s)e s)e s)g s)bi)b j)g s)es), which by Lemma 4. becomes des) + i,j = dw s) Es) + i dwi, j; s) B i)bj)es) dwi; s) B i)es) + i dwi; s) B i)es) 4.) + i + i + i dw i; s) B i) w i; s)b i) λi)b i) w i; s)b i) ) Es) dwi; s) e w i;s) B i) wi; s)bi) λi) wi; s) ) Es) dw i; s) e w i;s) B i) + 4 w i; s) ) B i) 4w i; s)b i) λi)b i) + 4w i; s)λi)b i) + ξi) + 3νi) + w i; s) ) w i; s)b i) +4w i; s)w i; s)b i) + w i; s)λi) ) e w i;s) j e w j;s) w i, j; s) B i)b j) w j; s)b i)b j) w i; s)b i)b j) + 4w i; s)w j; s)b i)b j) B j)λi) + w j; s)b j)λi) λj)b i) + w i; s)b i)λj) + λi)λj) w i; s)b j) + w i; s)w j; s)b j) + w i; s)λj) w j; s)b i) + w j; s)w i; s)b i) +w j; s)λi) + w i; s)w j; s) ) + wi, j; s)wi, m; s)e w j;s) e w m;s) j,m

37 38 LUIGI ACCARDI AND ANDREAS BOUKAS B m)b j) w j; s)b m)b j) w m; s)b m)b j) + 4w m; s)w j; s)b m)b j) B j)λm) + w j; s)b j)λm) λj)b m) + w m; s)b m)λj) + λm)λj) w m; s)b j) + w m; s)w j; s)b j) + w m; s)λj) w j; s)b m) + w j; s)w m; s)b m) +w j; s)λm) + w m; s)w j; s) )) Es) + i,j dw i, j; s) e w i;s) e w j;s) B i)b j) w j; s)e w i;s) e w j;s) B i)b j) e w i;s) e w j;s) B i)λj) e w i;s) e w j;s) w j; s)b i) + w i; s)e w j;s) B j) w j; s)w i; s)e w j;s) B j) w i; s)e w j;s) λj) w i; s)w j; s)e w j;s)) Es) + i,j dw i, j; s) e w i;s) B i) w i; s)b i) λi) w i; s)) wi, j ; s)e w j ;s) Bj ) wj ; s)bj ) λj ) wj ; s)) j e w j;s) Bj) wj; s)bj) λj) wj; s)) j Es). wj, j ; s)e w j ;s) Bj ) wj ; s)bj ) λj ) wj ; s)) Equating coefficients of B i), B i) and B i) in 4.9) and 4.), for each i =,,..., N, we obtain the equations c i) = dw i; s) w i; s) dw i; s) + 4e w i;s) dw i; s) w i; s) ), 4.) c i) =e w i;s) dw i; s), 4.) c i) = dw i; s) 4w i; s)e w i;s) dw i; s). 4.3) Putting 4.) in 4.3) we obtain dwi; s) = c i) + 4wi; s)c i), 4.4) while putting 4.) in 4.) we obtain dw i; s) w i; s) dw i; s) + 4c i) w i; s) ) = c i). 4.5)

38 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS 39 Substituting 4.4) in 4.5) we find that w i; s) satisfies the Riccati ODE dw i; s) c i)w i; s) 4c i) w i; s) ) = c i), which along with the initial condition wi; ) = completely determines wi; s). Equation 4.4) then implies while 4.) implies w i; s) = c i)s + 4c i) w i; s) = c i) w i; u) du, e w i;u) du. Equating coefficients of B i)b j), B i)b j), B i)b j), B i) and B i) in 4.9) and 4.), we find that for each i, j, w i, j; s), w i, j; s), w i, j; s), w i; s) and w i; s) satisfy equations 4.3)-4.7). Equating coefficients of the constant terms in 4.9) and 4.) we find that w s) is determined by equation 4.8). Remark 4.4. The formulas for w i; s), w i; s) and w i; s) are the same as in Proposition Vacuum Characteristic Function Theorem 5.. Suppose that Φ is a Fock vacuum vector such that Φ = Φ, Φ =, BΦ = BΦ = and BΦ = Φ. Then the vacuum characteristic function of the quantum random variable F N of Theorems 3.4 and 4.3, is given by Φ, e is F N Φ = e w is) e N I= w I;is) 5.) where w is) and w I; is) are obtained from w s) and w I; s) of Theorems 3.4 and 4.3, respectively, after replacing s by is. Proof. Using the expressions for e s F N, with s replaced by is, given in Theorems 3.4 and 4.3, we notice that, unless n = k =, all exponentials of the general form e Bn k act on Φ as the identity operator, either directly if n < k) or after flipping to the other side of the inner product if n > k). In the case when n = k = we have e w I;is)B I) Φ = e w I;is)B I)B I)+ ) Φ I= = I= e w I;is) Φ I= =e N I= w I;is) Φ. The only other surviving exponential is e w is). Since Φ =, we obtain 5.).

39 3 LUIGI ACCARDI AND ANDREAS BOUKAS Corollary 5.. In the notation of Theorems 4.3 and 5., let G N = I= + ) c I)a I ) + c I)a I ) + c I)a I + c I)a I + c I)a I a I I,J= I>J c I, J)a I a J + c I, J)a I a J ) + c I, J)a I a J. I,J= I J Then Φ, e is G N Φ = e is N I= c I) e w is) e N I= w I;is). Proof. The proof follows from Theorem 5., and the fact that B I) = a I ), B I) = a I ), B I) = a I, B I) = a I, B I) = a I a I +, B I)B J) = a I a J, B I)B J) = a I a J, B I)B J) = a I a J and F N = G N + c I). I= 6. Appendix: Coefficient Formulas 6.. Coefficients in Proposition 3.5. The coefficients α k i), k =,..., 4, appearing in Proposition 3.5 are given by α i) =Bi)c i)bi) c i)) Bi) + c i) + ) i)/bi)) c c i)c i) ) ) c i)/bi) c i)c i), α i) =c i)bi) c i)) Bi) + c i) Bi) c i) ) c i)/bi) c i) c i)c i) c i)c i) )), α 3 i) = 4 + ) i)/bi)) c Bi) c i) Bi) c i) c i)c i) c i)c i) ), α 4 i) = Bi)Bi) c i)) c i)bi) + c i)) 3/, α 5 i) =Bi) Bi) c i)) Bi) + c i)) 3/, α 6 i) =Bi) c i) ) c i)/bi) c i)c i)c i) c i)c i))) log B, ) α 7 i) =Bi) ) c i)/bi) c i)c i)) + ) c i)/bi) )c i)c i), α 8 i) = ) c i)/bi) c i)c i) c i)c i)), α 9 i) =Bi) c i) ) c i)/bi) c i)c i)c i) c i)c i)),

40 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS 3 α i) = Bi) Bi) c i)) Bi) + c i)) Bi)c i) c i)bi) + c i)) log /Bi)) + Bi)c i) Bi) c i)) c i) log/bi)) + Bi) 4 c i) ) c i)/bi) c i) c i)c i) c i)c i)) + Bi) 4 ) c i)/bi) c i)c i)c i)c i) + 4 ) c i)/bi) c i) c i) + c i) c i) + ) c i)/bi) + π)) + ) c i)/bi) c i)c i)c i) c i)c i)) Bi) c i) + c i) + ) c i)/bi) )c i)c i) ) c i)/bi) c i)c i))) log Bi))), α i) = Bi) Bi) c i)) Bi) + c i)) ) c i)/bi) c i)c i)c i) c i)c i)) ) c i)/bi) c i) c i)c i) c i)c i)) + Bi) 4 + ) c i)/bi) )c i)c i) ) c i)/bi) c i)c i)))), α i) = Bi) Bi) c i))3/ Bi) + c i))3/ 4 ) c i)/bi) c i)c i)c i) c i)c i)) + ) c i)/bi) ) c i)c i) ) c i)/bi) c i)c i))), α 3 i) = Bi) 3 Bi) c i)) Bi) + c i)) Bi) 3 c i) Bi) + c i)) log /Bi)) Bi) 3 c i) Bi) c i)) log/bi)) 4 ) c i)/bi) c i) 3 c i)c i) c i)c i)) + ) c i)/bi) Bi) c i)c i)c i) c i)c i)) + ) c i)/bi) )c i)c i) ) c i)/bi) c i)c i)) Bi) 4 c i) ) c i)/bi) c i)c i) + c i)c i) ) c i)/bi) π)) + ) c i)/bi) Bi) c i)c i) c i)c i)) Bi) c i) + c i) + ) c i)/bi) )c i)c i) ) c i)/bi) c i)c i))) log Bi))),

41 3 LUIGI ACCARDI AND ANDREAS BOUKAS α 4 i) = Bi)Bi) c i)) Bi) + c i)) ) c i)/bi) c i)c i) c i)c i)) ) c i)/bi) c i) c i)c i) c i)c i)) + Bi) 4 + ) c i)/bi) )c i)c i) ) c i)/bi) c i)c i)))), α 5 i) = Bi)Bi) c i))3/ Bi) + c i))3/ 4 ) c i)/bi) c i)c i) c i)c i)) + ) c i)/bi) )c i)c i) ) c i)/bi) c i)c i))), α 6 i) = Bi) 3 Bi) c i))bi) + c i)) ) c i)/bi) c i)c i) c i)c i)) Bi) c i) + ) c i)/bi) c i)c i)c i) c i)c i)))), c α 7 i) = i) c i) Bi)Bi) c, i)) α 8 i) = α 9 i) = c i) c i) Bi)Bi) + c i)), c i) Bi) c i)), c α i) = i) Bi) + c, i)) α i) = c i) c i) Bi) c i)) Bi) + c i)), Bi)c α i) = i) c i) Bi) c i)) Bi) + c, i)) α 3 i) = Bi) Bi) c i)) Bi) + c )c i)/bi) c i)c i)c i) i)) c i)c i))bi) c i) + c i) ) c i)/bi) )c i)c i) + ) c i)/bi) c i)c i)))), α 4 i) = Bi)Bi) c i)) Bi) + c )c i)/bi) c i)c i) i)) c i)c i)) Bi) c i) + c i) + ) c i)/bi) )c i)c i) ) c i)/bi) c i)c i)))).

42 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS Coefficients in Theorem 4.3. The coefficients b, p, q, r, u, appearing in Theorem 4.3 are given by b = dw i; s) + 4 dw i; s) w i; s)e w i;s), b = 8 dw i; s) w i; s)wj; s)e w i;s) e w j;s), b 3 = dw k; s) e w k;s), b 4 =3 dw k; s) e w k;s), b 5 = 4 dw k; s) w i; s)e w k;s) e w i;s), b 6 =4 dw k; s) w i; s)wj; s)e w j;s) e w i;s), b 7 = dw i; s) w i; s)e w i;s) e w k;s), b 8 = dw k; s) e w k;s) e w m;s), b 9 = dw k; s) w j; s)e w j;s) e w m;s), b = dw k; s) w i; s)e w i;s) e w m;s), b = wj; s)e w j;s) e w i;s), b =4w i; s)w j; s)e w j;s) e w i;s), b 3 = e w k;s) e w i;s), b 4 = 4w j; s)e w j;s) e w i;s), b 5 = 4w i; s)w j; s)e w j;s) e w i;s), b 6 =w i; s)e w i;s) e w k;s), b 7 =w i; s)e w i;s) e w k;s), b 8 =w i; s)w j; s)e w j;s) e w i;s), b 9 = w i; s)e w k;s) e w i;s), b = e w m;s) e w i;s), b =e w m;s) e w k;s), b = w i; s)e w m;s) e w i;s), b 3 = w i; s)e w m;s) e w i;s), b 4 = dw k; s) e w m;s) e w l;s),

43 34 LUIGI ACCARDI AND ANDREAS BOUKAS b 5 =w i; s)e w i;s) e w l;s), b 6 = e w m;s) e w l;s), b 7 =w i; s)e w i;s) e w l;s), b 8 = e w k;s) e w l;s), b 9 =e w n;s) e w l;s), p = dw i; s) e w i;s) e w j;s), p =e w i;s) e w j;s), p 3 = dw k; s) e w i;s) e w j;s), p 4 = e w i;s) e w j;s), p 5 = e w i;s) e w j;s), p 6 =e w i;s) e w j;s), q = dw j; s) e w j;s) + ), q =4 dw j; s) w i; s)e w i;s) e w j;s), q 3 = dw i; s) w i; s), q 4 =e w i;s) e w j;s), q 5 = w i; s) + w j; s))e w j;s) e w i;s), q 6 = dw k; s), q 7 =4 dw k; s) w i; s)e w i;s) e w j;s), q 8 = e w k;s) e w j;s), q 9 =e w j;s) e w i;s), q =w i; s)e w i;s) e w j;s), q = e w j;s) e w k;s), q =w i; s)e w j;s) e w i;s), q 3 =w i; s)e w j;s) e w i;s), q 4 = dw k; s) e w j;s) e w m;s),

44 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS 35 q 5 = dw k; s) e w j;s) e w m;s), q 6 =e w j;s) e w k;s), q 7 =e w j;s) e w m;s), q 8 =e w j;s) e w k;s), q 9 =e w j;s), q = w i; s)e w j;s) e w i;s), q = w i; s)e w j;s) e w i;s), q = e w j;s) e w l;s), r =e w i;s), r = e w i;s) dw i; s) r 3 = dw k; s) dw i, k; s) r 4 = dw k, i; s) e w i;s),, wk, i; s)e w i;s) e w k;s) + dw i; s) e w i;s) e w k;s) e w i;s) e w k;s) dw k, i; s) e w i;s) e w k;s), r 5 = dw k; s) w k, i; s)wk, m; s)e w i;s) e w m;s) + dw i, k; s) w k, m; s)e w i;s) e w m;s) + dw k, m; s) w k, i; s)e w i;s) e w m;s) + dw k, i; s) w k, m; s)e w i;s) e w m;s), r 6 = dw k, m; s) w m, i; s)e w i;s) e w k;s), r 7 = dw k, m; s) w k, i; s)wm, l; s) + wk, l; s)wm, i; s)) e w i;s) e w l;s),

45 36 LUIGI ACCARDI AND ANDREAS BOUKAS u = j dwi, j; s) e w i;s) e w j;s) u = dw i; s) u = w i; s)e w i;s), + 4 dw i; s) w i; s), u 3 = w k, i; s) + w i, k; s))e w k;s), u 4 = dw k; s) w k, i; s) + wi, k; s))e w k;s) 4 dw i; s) w i, k; s)wi; s)e w i;s) e w k;s) 4 dw k; s) w k, i; s)wi; s)e w i;s) e w k;s) + dw i, k; s) w i; s)e w i;s) e w k;s) + dw k, i; s) w i; s)e w i;s) e w k;s), u 5 = dw k, i; s) w i; s)e w i;s), u 6 = dw k; s) e w k;s) e w j;s) w k, j; s) wj, i; s) + wi, j; s) ) dw j; s) w j, k; s) wj, i; s) + wi, j; s) ) e w k;s) e w j;s) + 4 dw j; s) w j, i; s)wj, k; s)wi; s)e w i;s) e w k;s) dw i, j; s) w j, k; s)wi; s)e w i;s) e w k;s) dw k, j; s) w j, i; s)wi; s)e w i;s) e w k;s) dw j, k; s) w j, i; s)wi; s)e w i;s) e w k;s) dw j, i; s) w j, k; s)wi; s)e w i;s) e w k;s) + dw j, k; s) w j, i; s)e w j;s) e w k;s) + dw j, k; s) w i, j; s)e w j;s) e w k;s) + dw k, j; s) w j, i; s)e w j;s) e w k;s) + dw k, j; s) w i, j; s)e w j;s) e w k;s),

46 DISENTANGLEMENT OF SCHRÖDINGER ALGEBRA EXPONENTIALS 37 u 7 = dw k, j; s) w j, i; s) + w i, j; s) ) e w j;s), u 8 = dw k; s) w k, j; s)wk, m; s) wj, i; s) + wi, j; s) ) e w j;s) e w m;s) + dw k, j; s) w k, i; s)wj, m; s)wi; s)e w i;s) e w m;s) dw k, j; s) w k, i; s)wj, m; s)e w k;s) e w m;s) dw k, j; s) w i, k; s)wj, m; s)e w k;s) e w m;s) + dw k, j; s) w k, m; s)wj, i; s)wi; s)e w i;s) e w m;s) dw m, j; s) w j, k; s)wk, i; s)e w k;s) e w m;s) dw m, j; s) w j, k; s)wi, k; s)e w k;s) e w m;s) dw k, m; s) w k, j; s)wj, i; s)e w j;s) e w m;s) dw k, m; s) w k, j; s)wi, j; s)e w j;s) e w m;s) dw k, j; s) w k, m; s)wj, i; s)e w j;s) e w m;s) dw k, j; s) w k, m; s)wi, j; s)e w j;s) e w m;s), u 9 = dw k, j; s) w k, m; s)wj, l; s)wm, i; s)e w l;s) e w m;s) + dw k, j; s) w k, m; s)wj, l; s)wi, m; s)e w l;s) e w m;s) + dw k, j; s) w k, l; s)wj, m; s) wm, i; s) + wi, m; s) ) e w l;s) e w m;s). References. Accardi, L. and Boukas, A.: On the characteristic function of random variables associated with Boson Lie algebras, Communications on Stochastic Analysis, 4 ), no. 4, Accardi, L. and Boukas, A.: Fourier transform of random variables associated with the multi-dimensional Heisenberg Lie algebra, Proc. Amer. Math. Soc. 43 5), Accardi, L., Boukas, A., and Lu,Y. G.: The vacuum distributions of the truncated Virasoro fiel are products of Gamma distributions, Open Systems & Information Dynamics, 4 7), no., pages). 4. Accardi, L., Ouerdiane H., and Rebei H. : On the quadratic Heisenberg group, Infinite Dimensional Anal. Quantum Probab. Related Topics, 3 ), no. 4, Berezin, F. A.: The Method of Second Quantization, Pure Appl. Phys. 4, Academic Press, New York, Chebotarev, A. M. and Tlyachev, T. V. : Normal forms, inner producst and Maslov indices of general multimode squeezings, Math. Notes 95 4), 7.

Control of elementary quantum flows Luigi Accardi Centro Vito Volterra, Università di Roma Tor Vergata Via di Tor Vergata, snc Roma, Italy

Control of elementary quantum flows Luigi Accardi Centro Vito Volterra, Università di Roma Tor Vergata Via di Tor Vergata, snc Roma, Italy Control of elementary quantum flows Luigi Accardi Centro Vito Volterra, Università di Roma Tor Vergata Via di Tor Vergata, snc 0033 Roma, Italy accardi@volterra.mat.uniroma2.it Andreas Boukas Department

More information

Introduction to the Mathematics of the XY -Spin Chain

Introduction to the Mathematics of the XY -Spin Chain Introduction to the Mathematics of the XY -Spin Chain Günter Stolz June 9, 2014 Abstract In the following we present an introduction to the mathematical theory of the XY spin chain. The importance of this

More information

On the Relation of the Square of White Noise and the Finite Difference Algebra

On the Relation of the Square of White Noise and the Finite Difference Algebra On the Relation of the Square of White Noise and the Finite Difference Algebra Luigi Accardi Centro Vito Volterra Università degli Studi di Roma Tor Vergata Via di Tor Vergata, s.n.c. 00133 Roma, Italia

More information

Boolean Inner-Product Spaces and Boolean Matrices

Boolean Inner-Product Spaces and Boolean Matrices Boolean Inner-Product Spaces and Boolean Matrices Stan Gudder Department of Mathematics, University of Denver, Denver CO 80208 Frédéric Latrémolière Department of Mathematics, University of Denver, Denver

More information

STRUCTURE AND DECOMPOSITIONS OF THE LINEAR SPAN OF GENERALIZED STOCHASTIC MATRICES

STRUCTURE AND DECOMPOSITIONS OF THE LINEAR SPAN OF GENERALIZED STOCHASTIC MATRICES Communications on Stochastic Analysis Vol 9, No 2 (2015) 239-250 Serials Publications wwwserialspublicationscom STRUCTURE AND DECOMPOSITIONS OF THE LINEAR SPAN OF GENERALIZED STOCHASTIC MATRICES ANDREAS

More information

P AC COMMUTATORS AND THE R TRANSFORM

P AC COMMUTATORS AND THE R TRANSFORM Communications on Stochastic Analysis Vol. 3, No. 1 (2009) 15-31 Serials Publications www.serialspublications.com P AC COMMUTATORS AND THE R TRANSFORM AUREL I. STAN Abstract. We develop an algorithmic

More information

Math 108b: Notes on the Spectral Theorem

Math 108b: Notes on the Spectral Theorem Math 108b: Notes on the Spectral Theorem From section 6.3, we know that every linear operator T on a finite dimensional inner product space V has an adjoint. (T is defined as the unique linear operator

More information

A PRIMER ON SESQUILINEAR FORMS

A PRIMER ON SESQUILINEAR FORMS A PRIMER ON SESQUILINEAR FORMS BRIAN OSSERMAN This is an alternative presentation of most of the material from 8., 8.2, 8.3, 8.4, 8.5 and 8.8 of Artin s book. Any terminology (such as sesquilinear form

More information

PROBABILITY DISTRIBUTIONS AND ORTHOGONAL POLYNOMIALS ASSOCIATED WITH THE ONE-PARAMETER FIBONACCI GROUP. 1. Introduction

PROBABILITY DISTRIBUTIONS AND ORTHOGONAL POLYNOMIALS ASSOCIATED WITH THE ONE-PARAMETER FIBONACCI GROUP. 1. Introduction Communications on Stochastic Analysis Vol. 10, No. 1 (2016) 117-130 Serials Publications www.serialspublications.com PROBABILITY DISTRIBUTIONS AND ORTHOGONAL POLYNOMIALS ASSOCIATED WITH THE ONE-PARAMETER

More information

The Spinor Representation

The Spinor Representation The Spinor Representation Math G4344, Spring 2012 As we have seen, the groups Spin(n) have a representation on R n given by identifying v R n as an element of the Clifford algebra C(n) and having g Spin(n)

More information

Linear Algebra 2 Spectral Notes

Linear Algebra 2 Spectral Notes Linear Algebra 2 Spectral Notes In what follows, V is an inner product vector space over F, where F = R or C. We will use results seen so far; in particular that every linear operator T L(V ) has a complex

More information

Quantum Computing Lecture 2. Review of Linear Algebra

Quantum Computing Lecture 2. Review of Linear Algebra Quantum Computing Lecture 2 Review of Linear Algebra Maris Ozols Linear algebra States of a quantum system form a vector space and their transformations are described by linear operators Vector spaces

More information

Singular Value Inequalities for Real and Imaginary Parts of Matrices

Singular Value Inequalities for Real and Imaginary Parts of Matrices Filomat 3:1 16, 63 69 DOI 1.98/FIL16163C Published by Faculty of Sciences Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat Singular Value Inequalities for Real Imaginary

More information

Chapter Two Elements of Linear Algebra

Chapter Two Elements of Linear Algebra Chapter Two Elements of Linear Algebra Previously, in chapter one, we have considered single first order differential equations involving a single unknown function. In the next chapter we will begin to

More information

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0.

Linear Algebra. Matrices Operations. Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0. Matrices Operations Linear Algebra Consider, for example, a system of equations such as x + 2y z + 4w = 0, 3x 4y + 2z 6w = 0, x 3y 2z + w = 0 The rectangular array 1 2 1 4 3 4 2 6 1 3 2 1 in which the

More information

Bosonic quadratic Hamiltonians. diagonalization

Bosonic quadratic Hamiltonians. diagonalization and their diagonalization P. T. Nam 1 M. Napiórkowski 2 J. P. Solovej 3 1 Masaryk University Brno 2 University of Warsaw 3 University of Copenhagen Macroscopic Limits of Quantum Systems 70th Birthday of

More information

Phys 201. Matrices and Determinants

Phys 201. Matrices and Determinants Phys 201 Matrices and Determinants 1 1.1 Matrices 1.2 Operations of matrices 1.3 Types of matrices 1.4 Properties of matrices 1.5 Determinants 1.6 Inverse of a 3 3 matrix 2 1.1 Matrices A 2 3 7 =! " 1

More information

arxiv: v1 [math.ac] 7 Feb 2009

arxiv: v1 [math.ac] 7 Feb 2009 MIXED MULTIPLICITIES OF MULTI-GRADED ALGEBRAS OVER NOETHERIAN LOCAL RINGS arxiv:0902.1240v1 [math.ac] 7 Feb 2009 Duong Quoc Viet and Truong Thi Hong Thanh Department of Mathematics, Hanoi University of

More information

Generalized Trotter's Formula and Systematic Approximants of Exponential Operators and Inner Derivations with Applications to Many-Body Problems

Generalized Trotter's Formula and Systematic Approximants of Exponential Operators and Inner Derivations with Applications to Many-Body Problems Commun. math. Phys. 51, 183 190 (1976) Communications in MStheΓΠatJCSl Physics by Springer-Verlag 1976 Generalized Trotter's Formula and Systematic Approximants of Exponential Operators and Inner Derivations

More information

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic A FIRST COURSE IN LINEAR ALGEBRA An Open Text by Ken Kuttler Matrix Arithmetic Lecture Notes by Karen Seyffarth Adapted by LYRYX SERVICE COURSE SOLUTION Attribution-NonCommercial-ShareAlike (CC BY-NC-SA)

More information

Control and Robustness for Quantum Linear Systems

Control and Robustness for Quantum Linear Systems CCC 2013 1 Control and Robustness for Quantum Linear Systems Ian R. Petersen School of Engineering and Information Technology, UNSW Canberra CCC 2013 2 Introduction Developments in quantum technology and

More information

Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations 1

Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations 1 Diagonalization of bosonic quadratic Hamiltonians by Bogoliubov transformations 1 P. T. Nam 1 M. Napiórkowski 1 J. P. Solovej 2 1 Institute of Science and Technology Austria 2 Department of Mathematics,

More information

Linear Algebra 1. M.T.Nair Department of Mathematics, IIT Madras. and in that case x is called an eigenvector of T corresponding to the eigenvalue λ.

Linear Algebra 1. M.T.Nair Department of Mathematics, IIT Madras. and in that case x is called an eigenvector of T corresponding to the eigenvalue λ. Linear Algebra 1 M.T.Nair Department of Mathematics, IIT Madras 1 Eigenvalues and Eigenvectors 1.1 Definition and Examples Definition 1.1. Let V be a vector space (over a field F) and T : V V be a linear

More information

Deformation of the `embedding'

Deformation of the `embedding' Home Search Collections Journals About Contact us My IOPscience Deformation of the `embedding' This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1997 J.

More information

Finding eigenvalues for matrices acting on subspaces

Finding eigenvalues for matrices acting on subspaces Finding eigenvalues for matrices acting on subspaces Jakeniah Christiansen Department of Mathematics and Statistics Calvin College Grand Rapids, MI 49546 Faculty advisor: Prof Todd Kapitula Department

More information

CHARACTERIZATION THEOREMS FOR DIFFERENTIAL OPERATORS ON WHITE NOISE SPACES

CHARACTERIZATION THEOREMS FOR DIFFERENTIAL OPERATORS ON WHITE NOISE SPACES Communications on Stochastic Analysis Vol. 7, No. 1 (013) 1-15 Serials Publications www.serialspublications.com CHARACTERIZATION THEOREMS FOR DIFFERENTIAL OPERATORS ON WHITE NOISE SPACES ABDESSATAR BARHOUMI

More information

QFT PS1: Bosonic Annihilation and Creation Operators (11/10/17) 1

QFT PS1: Bosonic Annihilation and Creation Operators (11/10/17) 1 QFT PS1: Bosonic Annihilation and Creation Operators (11/10/17) 1 Problem Sheet 1: Bosonic Annihilation and Creation Operators Comments on these questions are always welcome. For instance if you spot any

More information

arxiv: v1 [math.fa] 26 May 2012

arxiv: v1 [math.fa] 26 May 2012 EXPONENTIALS OF BOUNDED NORMAL OPERATORS arxiv:1205.5888v1 [math.fa] 26 May 2012 AICHA CHABAN 1 AND MOHAMMED HICHEM MORTAD 2 * Abstract. The present paper is mainly concerned with equations involving exponentials

More information

Matrices. Chapter What is a Matrix? We review the basic matrix operations. An array of numbers a a 1n A = a m1...

Matrices. Chapter What is a Matrix? We review the basic matrix operations. An array of numbers a a 1n A = a m1... Chapter Matrices We review the basic matrix operations What is a Matrix? An array of numbers a a n A = a m a mn with m rows and n columns is a m n matrix Element a ij in located in position (i, j The elements

More information

Linear Operators Preserving the Numerical Range (Radius) on Triangular Matrices

Linear Operators Preserving the Numerical Range (Radius) on Triangular Matrices Linear Operators Preserving the Numerical Range (Radius) on Triangular Matrices Chi-Kwong Li Department of Mathematics, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA. E-mail:

More information

SEMI-INNER PRODUCTS AND THE NUMERICAL RADIUS OF BOUNDED LINEAR OPERATORS IN HILBERT SPACES

SEMI-INNER PRODUCTS AND THE NUMERICAL RADIUS OF BOUNDED LINEAR OPERATORS IN HILBERT SPACES SEMI-INNER PRODUCTS AND THE NUMERICAL RADIUS OF BOUNDED LINEAR OPERATORS IN HILBERT SPACES S.S. DRAGOMIR Abstract. The main aim of this paper is to establish some connections that exist between the numerical

More information

DAVIS WIELANDT SHELLS OF NORMAL OPERATORS

DAVIS WIELANDT SHELLS OF NORMAL OPERATORS DAVIS WIELANDT SHELLS OF NORMAL OPERATORS CHI-KWONG LI AND YIU-TUNG POON Dedicated to Professor Hans Schneider for his 80th birthday. Abstract. For a finite-dimensional operator A with spectrum σ(a), the

More information

Representations of Sp(6,R) and SU(3) carried by homogeneous polynomials

Representations of Sp(6,R) and SU(3) carried by homogeneous polynomials Representations of Sp(6,R) and SU(3) carried by homogeneous polynomials Govindan Rangarajan a) Department of Mathematics and Centre for Theoretical Studies, Indian Institute of Science, Bangalore 560 012,

More information

Means of unitaries, conjugations, and the Friedrichs operator

Means of unitaries, conjugations, and the Friedrichs operator J. Math. Anal. Appl. 335 (2007) 941 947 www.elsevier.com/locate/jmaa Means of unitaries, conjugations, and the Friedrichs operator Stephan Ramon Garcia Department of Mathematics, Pomona College, Claremont,

More information

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same.

Equality: Two matrices A and B are equal, i.e., A = B if A and B have the same order and the entries of A and B are the same. Introduction Matrix Operations Matrix: An m n matrix A is an m-by-n array of scalars from a field (for example real numbers) of the form a a a n a a a n A a m a m a mn The order (or size) of A is m n (read

More information

Counting Matrices Over a Finite Field With All Eigenvalues in the Field

Counting Matrices Over a Finite Field With All Eigenvalues in the Field Counting Matrices Over a Finite Field With All Eigenvalues in the Field Lisa Kaylor David Offner Department of Mathematics and Computer Science Westminster College, Pennsylvania, USA kaylorlm@wclive.westminster.edu

More information

Fermionic coherent states in infinite dimensions

Fermionic coherent states in infinite dimensions Fermionic coherent states in infinite dimensions Robert Oeckl Centro de Ciencias Matemáticas Universidad Nacional Autónoma de México Morelia, Mexico Coherent States and their Applications CIRM, Marseille,

More information

GENERALIZED NUMERICAL RANGES AND QUANTUM ERROR CORRECTION

GENERALIZED NUMERICAL RANGES AND QUANTUM ERROR CORRECTION J. OPERATOR THEORY 00:0(0000, 101 110 Copyright by THETA, 0000 GENERALIZED NUMERICAL RANGES AND QUANTUM ERROR CORRECTION CHI-KWONG LI and YIU-TUNG POON Communicated by Editor ABSTRACT. For a noisy quantum

More information

MAT 5330 Algebraic Geometry: Quiver Varieties

MAT 5330 Algebraic Geometry: Quiver Varieties MAT 5330 Algebraic Geometry: Quiver Varieties Joel Lemay 1 Abstract Lie algebras have become of central importance in modern mathematics and some of the most important types of Lie algebras are Kac-Moody

More information

N-particle states (fermions)

N-particle states (fermions) Product states ormalization -particle states (fermions) 1 2... ) 1 2... ( 1 2... 1 2... ) 1 1 2 2... 1, 1 2, 2..., Completeness 1 2... )( 1 2... 1 1 2... Identical particles: symmetric or antisymmetric

More information

Math 413/513 Chapter 6 (from Friedberg, Insel, & Spence)

Math 413/513 Chapter 6 (from Friedberg, Insel, & Spence) Math 413/513 Chapter 6 (from Friedberg, Insel, & Spence) David Glickenstein December 7, 2015 1 Inner product spaces In this chapter, we will only consider the elds R and C. De nition 1 Let V be a vector

More information

ON MATRIX VALUED SQUARE INTEGRABLE POSITIVE DEFINITE FUNCTIONS

ON MATRIX VALUED SQUARE INTEGRABLE POSITIVE DEFINITE FUNCTIONS 1 2 3 ON MATRIX VALUED SQUARE INTERABLE POSITIVE DEFINITE FUNCTIONS HONYU HE Abstract. In this paper, we study matrix valued positive definite functions on a unimodular group. We generalize two important

More information

Linear algebra 2. Yoav Zemel. March 1, 2012

Linear algebra 2. Yoav Zemel. March 1, 2012 Linear algebra 2 Yoav Zemel March 1, 2012 These notes were written by Yoav Zemel. The lecturer, Shmuel Berger, should not be held responsible for any mistake. Any comments are welcome at zamsh7@gmail.com.

More information

TRUNCATED TOEPLITZ OPERATORS ON FINITE DIMENSIONAL SPACES

TRUNCATED TOEPLITZ OPERATORS ON FINITE DIMENSIONAL SPACES TRUNCATED TOEPLITZ OPERATORS ON FINITE DIMENSIONAL SPACES JOSEPH A. CIMA, WILLIAM T. ROSS, AND WARREN R. WOGEN Abstract. In this paper, we study the matrix representations of compressions of Toeplitz operators

More information

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators.

MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. MATH 423 Linear Algebra II Lecture 33: Diagonalization of normal operators. Adjoint operator and adjoint matrix Given a linear operator L on an inner product space V, the adjoint of L is a transformation

More information

MATHEMATICS 217 NOTES

MATHEMATICS 217 NOTES MATHEMATICS 27 NOTES PART I THE JORDAN CANONICAL FORM The characteristic polynomial of an n n matrix A is the polynomial χ A (λ) = det(λi A), a monic polynomial of degree n; a monic polynomial in the variable

More information

1 Mathematical preliminaries

1 Mathematical preliminaries 1 Mathematical preliminaries The mathematical language of quantum mechanics is that of vector spaces and linear algebra. In this preliminary section, we will collect the various definitions and mathematical

More information

Linear Algebra Review (Course Notes for Math 308H - Spring 2016)

Linear Algebra Review (Course Notes for Math 308H - Spring 2016) Linear Algebra Review (Course Notes for Math 308H - Spring 2016) Dr. Michael S. Pilant February 12, 2016 1 Background: We begin with one of the most fundamental notions in R 2, distance. Letting (x 1,

More information

GENERATING SETS KEITH CONRAD

GENERATING SETS KEITH CONRAD GENERATING SETS KEITH CONRAD 1 Introduction In R n, every vector can be written as a unique linear combination of the standard basis e 1,, e n A notion weaker than a basis is a spanning set: a set of vectors

More information

Patryk Pagacz. Characterization of strong stability of power-bounded operators. Uniwersytet Jagielloński

Patryk Pagacz. Characterization of strong stability of power-bounded operators. Uniwersytet Jagielloński Patryk Pagacz Uniwersytet Jagielloński Characterization of strong stability of power-bounded operators Praca semestralna nr 3 (semestr zimowy 2011/12) Opiekun pracy: Jaroslav Zemanek CHARACTERIZATION OF

More information

Higher rank numerical ranges of rectangular matrix polynomials

Higher rank numerical ranges of rectangular matrix polynomials Journal of Linear and Topological Algebra Vol. 03, No. 03, 2014, 173-184 Higher rank numerical ranges of rectangular matrix polynomials Gh. Aghamollaei a, M. Zahraei b a Department of Mathematics, Shahid

More information

Angular Momentum in Quantum Mechanics

Angular Momentum in Quantum Mechanics Angular Momentum in Quantum Mechanics In classical mechanics the angular momentum L = r p of any particle moving in a central field of force is conserved. For the reduced two-body problem this is the content

More information

SOME FACTORIZATIONS IN THE TWISTED GROUP ALGEBRA OF SYMMETRIC GROUPS. University of Rijeka, Croatia

SOME FACTORIZATIONS IN THE TWISTED GROUP ALGEBRA OF SYMMETRIC GROUPS. University of Rijeka, Croatia GLASNIK MATEMATIČKI Vol. 5171)2016), 1 15 SOME FACTORIZATIONS IN THE TWISTED GROUP ALGEBRA OF SYMMETRIC GROUPS Milena Sošić University of Rijeka, Croatia Abstract. In this paper we will give a similar

More information

On the Equality of Fusion Frames 1

On the Equality of Fusion Frames 1 International Mathematical Forum, 4, 2009, no. 22, 1059-1066 On the Equality of Fusion Frames 1 Yao Xiyan 2, Gao Guibao and Mai Ali Dept. of Appl. Math., Yuncheng University Shanxi 044000, P. R. China

More information

Diagonal Representation of Density Matrix Using q-coherent States

Diagonal Representation of Density Matrix Using q-coherent States Proceedings of Institute of Mathematics of NAS of Ukraine 24, Vol. 5, Part 2, 99 94 Diagonal Representation of Density Matrix Using -Coherent States R. PARTHASARATHY and R. SRIDHAR The Institute of Mathematical

More information

Quantum Theory and Group Representations

Quantum Theory and Group Representations Quantum Theory and Group Representations Peter Woit Columbia University LaGuardia Community College, November 1, 2017 Queensborough Community College, November 15, 2017 Peter Woit (Columbia University)

More information

Quivers of Period 2. Mariya Sardarli Max Wimberley Heyi Zhu. November 26, 2014

Quivers of Period 2. Mariya Sardarli Max Wimberley Heyi Zhu. November 26, 2014 Quivers of Period 2 Mariya Sardarli Max Wimberley Heyi Zhu ovember 26, 2014 Abstract A quiver with vertices labeled from 1,..., n is said to have period 2 if the quiver obtained by mutating at 1 and then

More information

On families of anticommuting matrices

On families of anticommuting matrices On families of anticommuting matrices Pavel Hrubeš December 18, 214 Abstract Let e 1,..., e k be complex n n matrices such that e ie j = e je i whenever i j. We conjecture that rk(e 2 1) + rk(e 2 2) +

More information

Quantum stochastic Weyl operators Luigi Accardi Centro Vito Volterra, Universitá di Roma TorVergata Via di TorVergata, Roma, Italy

Quantum stochastic Weyl operators Luigi Accardi Centro Vito Volterra, Universitá di Roma TorVergata Via di TorVergata, Roma, Italy Quantum stochastic Weyl operators Luigi Accardi Centro Vito Volterra, Universitá di Roma TorVergata Via di TorVergata, 00133 Roma, Italy volterra@volterra.mat.uniroma2.it Andreas Boukas Department of Mathematics,

More information

A REMARK ON SIMPLICITY OF VERTEX ALGEBRAS AND LIE CONFORMAL ALGEBRAS

A REMARK ON SIMPLICITY OF VERTEX ALGEBRAS AND LIE CONFORMAL ALGEBRAS A REMARK ON SIMPLICITY OF VERTEX ALGEBRAS AND LIE CONFORMAL ALGEBRAS ALESSANDRO D ANDREA Ad Olivia, che mi ha insegnato a salutare il Sole ABSTRACT. I give a short proof of the following algebraic statement:

More information

Abstract. In this article, several matrix norm inequalities are proved by making use of the Hiroshima 2003 result on majorization relations.

Abstract. In this article, several matrix norm inequalities are proved by making use of the Hiroshima 2003 result on majorization relations. HIROSHIMA S THEOREM AND MATRIX NORM INEQUALITIES MINGHUA LIN AND HENRY WOLKOWICZ Abstract. In this article, several matrix norm inequalities are proved by making use of the Hiroshima 2003 result on majorization

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors /88 Chia-Ping Chen Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra Eigenvalue Problem /88 Eigenvalue Equation By definition, the eigenvalue equation for matrix

More information

Inequalities related to the Cauchy-Schwarz inequality

Inequalities related to the Cauchy-Schwarz inequality Sankhyā : he Indian Journal of Statistics 01, Volume 74-A, Part 1, pp. 101-111 c 01, Indian Statistical Institute Inequalities related to the Cauchy-Schwarz inequality R. Sharma, R. Bhandari and M. Gupta

More information

Banach Journal of Mathematical Analysis ISSN: (electronic)

Banach Journal of Mathematical Analysis ISSN: (electronic) Banach J. Math. Anal. 6 (2012), no. 1, 139 146 Banach Journal of Mathematical Analysis ISSN: 1735-8787 (electronic) www.emis.de/journals/bjma/ AN EXTENSION OF KY FAN S DOMINANCE THEOREM RAHIM ALIZADEH

More information

Resolvent Algebras. An alternative approach to canonical quantum systems. Detlev Buchholz

Resolvent Algebras. An alternative approach to canonical quantum systems. Detlev Buchholz Resolvent Algebras An alternative approach to canonical quantum systems Detlev Buchholz Analytical Aspects of Mathematical Physics ETH Zürich May 29, 2013 1 / 19 2 / 19 Motivation Kinematics of quantum

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

Recent progress on the classical and quantum Kuramoto synchronization

Recent progress on the classical and quantum Kuramoto synchronization Recent progress on the classical and quantum Kuramoto synchronization Seung Yeal Ha Department of Mathematical Sciences Seoul National University March 23rd, 2017 Outline PROLOGUE What is synchronization?

More information

Letting be a field, e.g., of the real numbers, the complex numbers, the rational numbers, the rational functions W(s) of a complex variable s, etc.

Letting be a field, e.g., of the real numbers, the complex numbers, the rational numbers, the rational functions W(s) of a complex variable s, etc. 1 Polynomial Matrices 1.1 Polynomials Letting be a field, e.g., of the real numbers, the complex numbers, the rational numbers, the rational functions W(s) of a complex variable s, etc., n ws ( ) as a

More information

Robust Linear Quantum Systems Theory

Robust Linear Quantum Systems Theory Workshop On Uncertain Dynamical Systems Udine 2011 1 Robust Linear Quantum Systems Theory Ian R. Petersen School of Engineering and Information Technology, University of New South Wales @ the Australian

More information

Dihedral groups of automorphisms of compact Riemann surfaces of genus two

Dihedral groups of automorphisms of compact Riemann surfaces of genus two Electronic Journal of Linear Algebra Volume 26 Volume 26 (2013) Article 36 2013 Dihedral groups of automorphisms of compact Riemann surfaces of genus two Qingje Yang yangqj@ruc.edu.com Dan Yang Follow

More information

Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 16 The Quantum Beam Splitter

Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras. Lecture - 16 The Quantum Beam Splitter Quantum Mechanics - I Prof. Dr. S. Lakshmi Bala Department of Physics Indian Institute of Technology, Madras Lecture - 16 The Quantum Beam Splitter (Refer Slide Time: 00:07) In an earlier lecture, I had

More information

Partition functions and graphs: A combinatorial approach

Partition functions and graphs: A combinatorial approach Partition functions and graphs: A combinatorial approach A. I. Solomon a,b, a The Open University, Physics and Astronomy Department Milton Keynes MK7 6AA, United Kingdom b Laboratoire de Physique Théorique

More information

Clifford Algebras and Spin Groups

Clifford Algebras and Spin Groups Clifford Algebras and Spin Groups Math G4344, Spring 2012 We ll now turn from the general theory to examine a specific class class of groups: the orthogonal groups. Recall that O(n, R) is the group of

More information

9. Integral Ring Extensions

9. Integral Ring Extensions 80 Andreas Gathmann 9. Integral ing Extensions In this chapter we want to discuss a concept in commutative algebra that has its original motivation in algebra, but turns out to have surprisingly many applications

More information

Maximizing the numerical radii of matrices by permuting their entries

Maximizing the numerical radii of matrices by permuting their entries Maximizing the numerical radii of matrices by permuting their entries Wai-Shun Cheung and Chi-Kwong Li Dedicated to Professor Pei Yuan Wu. Abstract Let A be an n n complex matrix such that every row and

More information

What is the Matrix? Linear control of finite-dimensional spaces. November 28, 2010

What is the Matrix? Linear control of finite-dimensional spaces. November 28, 2010 What is the Matrix? Linear control of finite-dimensional spaces. November 28, 2010 Scott Strong sstrong@mines.edu Colorado School of Mines What is the Matrix? p. 1/20 Overview/Keywords/References Advanced

More information

arxiv: v1 [math.rt] 4 Jan 2016

arxiv: v1 [math.rt] 4 Jan 2016 IRREDUCIBLE REPRESENTATIONS OF THE CHINESE MONOID LUKASZ KUBAT AND JAN OKNIŃSKI Abstract. All irreducible representations of the Chinese monoid C n, of any rank n, over a nondenumerable algebraically closed

More information

Phys 731: String Theory - Assignment 3

Phys 731: String Theory - Assignment 3 Phys 73: String Theory - Assignment 3 Andrej Pokraka November 8, 27 Problem a) Evaluate the OPE T () :e ik (,) : using Wick s theorem. Expand the exponential, then sum over contractions between T and the

More information

Linear and Multilinear Algebra. Linear maps preserving rank of tensor products of matrices

Linear and Multilinear Algebra. Linear maps preserving rank of tensor products of matrices Linear maps preserving rank of tensor products of matrices Journal: Manuscript ID: GLMA-0-0 Manuscript Type: Original Article Date Submitted by the Author: -Aug-0 Complete List of Authors: Zheng, Baodong;

More information

Vector fields in the presence of a contact structure

Vector fields in the presence of a contact structure Vector fields in the presence of a contact structure Valentin Ovsienko To cite this version: Valentin Ovsienko. Vector fields in the presence of a contact structure. Preprint ICJ. 10 pages. 2005.

More information

POISSON BRACKETS AND COMMUTATOR BRACKETS. I

POISSON BRACKETS AND COMMUTATOR BRACKETS. I PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 62, Number 2, February 1977 POISSON BRACKETS AND COMMUTATOR BRACKETS. I REESE T. PROSSER Abstract. A previous result, that for certain problems in

More information

A linear algebra proof of the fundamental theorem of algebra

A linear algebra proof of the fundamental theorem of algebra A linear algebra proof of the fundamental theorem of algebra Andrés E. Caicedo May 18, 2010 Abstract We present a recent proof due to Harm Derksen, that any linear operator in a complex finite dimensional

More information

Quantum Linear Systems Theory

Quantum Linear Systems Theory RMIT 2011 1 Quantum Linear Systems Theory Ian R. Petersen School of Engineering and Information Technology, University of New South Wales @ the Australian Defence Force Academy RMIT 2011 2 Acknowledgments

More information

A linear algebra proof of the fundamental theorem of algebra

A linear algebra proof of the fundamental theorem of algebra A linear algebra proof of the fundamental theorem of algebra Andrés E. Caicedo May 18, 2010 Abstract We present a recent proof due to Harm Derksen, that any linear operator in a complex finite dimensional

More information

Lie Matrix Groups: The Flip Transpose Group

Lie Matrix Groups: The Flip Transpose Group Rose-Hulman Undergraduate Mathematics Journal Volume 16 Issue 1 Article 6 Lie Matrix Groups: The Flip Transpose Group Madeline Christman California Lutheran University Follow this and additional works

More information

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation

where P a is a projector to the eigenspace of A corresponding to a. 4. Time evolution of states is governed by the Schrödinger equation 1 Content of the course Quantum Field Theory by M. Srednicki, Part 1. Combining QM and relativity We are going to keep all axioms of QM: 1. states are vectors (or rather rays) in Hilbert space.. observables

More information

Sampling and Interpolation on Some Nilpotent Lie Groups

Sampling and Interpolation on Some Nilpotent Lie Groups Sampling and Interpolation on Some Nilpotent Lie Groups SEAM 013 Vignon Oussa Bridgewater State University March 013 ignon Oussa (Bridgewater State University)Sampling and Interpolation on Some Nilpotent

More information

Canonical forms of structured matrices and pencils

Canonical forms of structured matrices and pencils Canonical forms of structured matrices and pencils Christian Mehl and Hongguo Xu Abstract This chapter provides a survey on the development of canonical forms for matrices and matrix pencils with symmetry

More information

Linear Algebra and its Applications

Linear Algebra and its Applications Linear Algebra and its Applications 431 (2009) 274 296 Contents lists available at ScienceDirect Linear Algebra and its Applications journal homepage: www.elsevier.com/locate/laa Boolean inner-product

More information

Ket space as a vector space over the complex numbers

Ket space as a vector space over the complex numbers Ket space as a vector space over the complex numbers kets ϕ> and complex numbers α with two operations Addition of two kets ϕ 1 >+ ϕ 2 > is also a ket ϕ 3 > Multiplication with complex numbers α ϕ 1 >

More information

The Klein-Gordon equation

The Klein-Gordon equation Lecture 8 The Klein-Gordon equation WS2010/11: Introduction to Nuclear and Particle Physics The bosons in field theory Bosons with spin 0 scalar (or pseudo-scalar) meson fields canonical field quantization

More information

Topics in linear algebra

Topics in linear algebra Chapter 6 Topics in linear algebra 6.1 Change of basis I want to remind you of one of the basic ideas in linear algebra: change of basis. Let F be a field, V and W be finite dimensional vector spaces over

More information

Archivum Mathematicum

Archivum Mathematicum Archivum Mathematicum Zdeněk Dušek; Oldřich Kowalski How many are affine connections with torsion Archivum Mathematicum, Vol. 50 (2014), No. 5, 257 264 Persistent URL: http://dml.cz/dmlcz/144068 Terms

More information

Introduction to orthogonal polynomials. Michael Anshelevich

Introduction to orthogonal polynomials. Michael Anshelevich Introduction to orthogonal polynomials Michael Anshelevich November 6, 2003 µ = probability measure on R with finite moments m n (µ) = R xn dµ(x)

More information

DM559 Linear and Integer Programming. Lecture 3 Matrix Operations. Marco Chiarandini

DM559 Linear and Integer Programming. Lecture 3 Matrix Operations. Marco Chiarandini DM559 Linear and Integer Programming Lecture 3 Matrix Operations Marco Chiarandini Department of Mathematics & Computer Science University of Southern Denmark Outline and 1 2 3 and 4 2 Outline and 1 2

More information

TWO REMARKS ABOUT NILPOTENT OPERATORS OF ORDER TWO

TWO REMARKS ABOUT NILPOTENT OPERATORS OF ORDER TWO TWO REMARKS ABOUT NILPOTENT OPERATORS OF ORDER TWO STEPHAN RAMON GARCIA, BOB LUTZ, AND DAN TIMOTIN Abstract. We present two novel results about Hilbert space operators which are nilpotent of order two.

More information

Hendrik De Bie. Hong Kong, March 2011

Hendrik De Bie. Hong Kong, March 2011 A Ghent University (joint work with B. Ørsted, P. Somberg and V. Soucek) Hong Kong, March 2011 A Classical FT New realizations of sl 2 in harmonic analysis A Outline Classical FT New realizations of sl

More information

THE UNREASONABLE SLIGHTNESS OF E 2 OVER IMAGINARY QUADRATIC RINGS

THE UNREASONABLE SLIGHTNESS OF E 2 OVER IMAGINARY QUADRATIC RINGS THE UNREASONABLE SLIGHTNESS OF E 2 OVER IMAGINARY QUADRATIC RINGS BOGDAN NICA ABSTRACT. It is almost always the case that the elementary matrices generate the special linear group SL n over a ring of integers

More information

1 Unitary representations of the Virasoro algebra

1 Unitary representations of the Virasoro algebra Week 5 Reading material from the books Polchinski, Chapter 2, 15 Becker, Becker, Schwartz, Chapter 3 Ginspargs lectures, Chapters 3, 4 1 Unitary representations of the Virasoro algebra Now that we have

More information

arxiv:hep-th/ v1 2 Feb 1996

arxiv:hep-th/ v1 2 Feb 1996 Polynomial Algebras and Higher Spins by arxiv:hep-th/9602008v1 2 Feb 1996 M. Chaichian High Energy Physics Laboratory, Department of Physics and Research Institute for High Energy Physics, University of

More information