Improved PARAFAC based Blind MIMO System Estimation

Size: px
Start display at page:

Download "Improved PARAFAC based Blind MIMO System Estimation"

Transcription

1 Improved PARAFAC based Blind MIMO System Estimation Yuanning Yu, Athina P. Petropulu Department of Electrical and Computer Engineering Drexel University, Philadelphia, PA, 19104, USA This work has been supported by ONR under grant N CSPL Drexel University Asilomar 05 p. 1/1

2 Blind MIMO System Identification Memoryless (scalar) System Identification Independent component analysis (ICA) Convolutive System Identification Time domain methods need the channel length information Cumulant-based identification [Y. Inouye, K.Hirano, 1997] HOS based reverse filter [J.K. Tugnait, 1997] Frequency domain methods do not need system length information, and can use the results for memoryless MIMO problem. However, we need to resolve frequency-dependent permutation, scaling and phase ambiguities. Second-order Spectra [I. Bradaric, A.P. Petropulu, et 2003] Joint Diagonalization [B. Chen, A.P. Petropulu 2001] CSPL Drexel University Asilomar 05 p. 2/1

3 Blind MIMO System Identification Second-order statistics (SOS) methods can deal short data length and involve low complexity. However, they require channel diversity and only apply to non-white inputs. Subspace type appraoches [K.Abed-Meraim, J.F. Cardoso et.al. 1997] Second-order spectra based methods [I.Bradaric, A.P. Petropulu et.al. 2003] High-order statistics (HOS) methods do not need channel diversity, and also can deal with white inputs (must be Non-Gaussian) Joint Diagonalization [B.Chen, A.P.Petropulu, 2001] High order based inverse filter [J.K.Tugnait 2000] CSPL Drexel University Asilomar 05 p. 3/1

4 PARALLEL FACTORIZATION PARAFAC, a low rank decomposition of three- or higher-way arrays. A 3-way tensor X with dimensions J I K, F -component: x i,j,k = F a i,f b j,f c k,f f=1 expresses the three-way array X as a sum of F rank-one three-way factors, each one of which is the outer product of three factors. In a compact form, X can be expressed in terms of its slices: X i = BD i [A]C T where A is a I F matrix with entries a i,f ; B is a J F matrix with entries b j,f ; C is a K F matrix with entries c k,f. CSPL Drexel University Asilomar 05 p. 4/1

5 PARALLEL FACTORIZATION Definition 1: Consider an I J matrix A. If rank(a) = r then A contains r linearly independent columns. If every l J columns of A are linearly independent, but this does not hold for every l + 1 columns, then A has k rank k A = l. Theorem 1: Let X be a three-way tensor. X can be decomposed into A,B and C uniquely up to permutation and scaling ambiguities if k A + k B + k C 2F + 2 Under Theorem 1, the tensor can be decomposed into: Â = APΛ 1 ˆB = BPΛ2 Ĉ = CPΛ 3 Λ 2 Λ 1 Λ 3 = I CSPL Drexel University Asilomar 05 p. 5/1

6 Problem Formulation Let us consider a N i -input N o -output LTI system: x(k) = L 1 l=0 h(l)s(k l) + n(k) Let H(k) (N o N i ) be the N-point DFT of h(n) H(k) = L 1 n=0 h(n)e j 2π N kn, k = 0,..., N 1 where N > L Our goal is to estimate H(k) based on the system output up to some inherent ambiguities: Ĥ(k) = H(k)PΛe j 2π N km The input can be recovered within a scalar ambiguity and a circular shift. Also, the inputs would be recovered in some unknown order. CSPL Drexel University Asilomar 05 p. 6/1

7 Review of the SPD method Here are the assumptions made in the SPD method [Y.Yu, A.P.Petropulu, 2005]: A1) Each s i (.) is a zero mean, non-symmetrically distributed, i.i.d., stationary process with nonzero skewness. A2) The matrix H(k) is invertible for all k = 0,..., N 1. A3) The k-rank of H(k) satisfies: 3k H 2N i + 2 for every k. A4) n i (.), i = 1,..., N o are zero mean Gaussian stationary random processes with variance σ 2 n, mutually independent and independent of the inputs. Assumption (A2)is satisfied if the channel taps in matrix h(n) are independent, where h(n) is full-rank with probability one. A full rank matrix is also full k-rank. In that case, condition (A3) is equivalent to 3min(N i, N o ) 2N i + 2. For N i N o this is satisfied for N i 2. CSPL Drexel University Asilomar 05 p. 7/1

8 SPD: Channel Estimation Under assumptions (A1) and (A4), the third-order cross-cumulants of the system outputs c 3 lij (τ, ρ) equals: Cum[x l (k), x i (k+τ), x j (k+ρ)] = The cross-bispectrum equals: C 3 lij(k 1, k 2 ) = N i p=1 N i p=1 L 1 γs 3 p m=0 h lp (m)h ip(m+τ)h jp (m+ρ) γ 3 s p H lp ( k 1 k 2 )H ip( k 1 )H jp (k 2 ), k 1, k 2 = 0,..., N 1 The l-th slice of the tensor C 3 (k 1, k 2 ) (N o N o N o ) equals: C 3 l (k 1, k 2 ) = H ( k 1 )Γ 3 D l [H( k 1 k 2 )]H T (k 2 ) where Γ 3 = Diag{γ 3 s 1,..., γ 3 s Ni }. CSPL Drexel University Asilomar 05 p. 8/1

9 SPD: Channel Estimation First we apply the PARAFAC decomposition to the tensor C 3 ( m + rδ, δ). Under assumption (A3) and via Theorem 1, the tensor can be decomposed into: Â 0 = H(m δ)pλ1, ˆB 0 = H (m)γ 3 PΛ 2, Ĉ 0 = H(δ)PΛ3 For r = [1, 2,...2N 1], define: Â l (r) = (Â (r 1)) 1 C 3 l ( m + rδ, δ)(ĉ T 0 ) 1, l = 1,..., N o Â(r) = [diag(â 1 (r)),..., diag(â No (r))] T Â(0) = Â 0 It can be shown that: Â(r) = H(m rδ δ)pk ((r))2 e j(φ 1+rΦ 2 ) where Φ 1,Φ 2 are diagonal matrices, K 1,K 0 are diagonal matrices with positive elements, and ((.)) 2 denotes modulo 2 operation. CSPL Drexel University Asilomar 05 p. 9/1

10 SPD: Solve the Phase Ambiguity Let us consider N to be even, and δ to be co-prime to N, then H(m rδ δ) can be obtained within trivial ambiguities as: Ĥ(m rδ δ) = Â(r)[Â 1 (N + i)â(i)] r/n, r = 0,..., N 1 = H(m rδ δ)pk ((r)) 2 e j(φ 1+ 2π N kr) Let us take m δ = Rδ, where R is some integer. We get: Ĥ( rδ) = H( δr)pk ((r+r)) 2 e j(φ 1 + 2π N kr) Applying an N/2-point IDFT on the even samples of Ĥ( ((r)) Nδ): ĥ(n) = h δ ((n + k)) N/2 PK ((R)) 2 e jφ 1 which is an upsampled by δ version of h(n) circularly shifted by k. By downsampling ĥ(n) by δ we can get a circularly shifted version of h(n). CSPL Drexel University Asilomar 05 p. 10/1

11 Proposed ISPD method Drawback of the SPD method: In each iteration, uses only one slice of output tensor in order to recover one row of the channel response matrix, not robust. Require the MIMO system has N o N i, limit the applications. Here we propose an approach (Improved SPD) that fully exploits the information in the output tensor, and can recover the entire channel response matrix. The proposed method not only achieves lower error values but also becomes applicable to MIMO systems with more inputs than outputs. CSPL Drexel University Asilomar 05 p. 11/1

12 ISPD method, continued Let us stack the matrices C 3 i ( m + rδ, δ) for i = 1,..., N o to form a tall matrix U A (r). It holds: U A (r) = (B r C r )A T r, (N 2 o N o ) where is the Khatri-Rao(column-wise Kronecker) Product. Instead of assumption (A2), we have (B2): The Khatri-Rao product (H(k 1 ) H(k 2 )) has left inverse for all k 1, k 2 = 0,..., N 1. Under (B2), we can solve A r as: A r = ((B r C r ) 1 U A (r)) T where (B r C r ) 1 is the left pseudo inverse of (B r C r ). CSPL Drexel University Asilomar 05 p. 12/1

13 ISPD method, continued Let us define the iteration of ISPD method for r = 1,..., N as: Â(r) = ((Â (r 1) Ĉ0) 1 U A (r)) T Â(0) = Â0 It can be shown that (see Appendix): Â(r) = H(m rδ δ)pk ((r))2 e j(φ 1+rΦ 2 ), r = 0,..., N where Φ 1,Φ 2 are diagonal matrices, K 1,K 0 are diagonal matrices with positive elements, and ((.)) 2 denotes modulo 2 operation. Let us consider N to be even and co-prime to δ. The phase ambiguity can be solved in the same manner as in the SPD method. CSPL Drexel University Asilomar 05 p. 13/1

14 Simulation The inputs were taken to be i.i.d. single-sided exponentially distributed; the additive noise processes were white, zero-mean, complex Gaussian with identical variances. The cross-polyspectrum was estimated via the indirect class method, and the sample cross-cumulant estimate was windowed by a Hamming window, and the data length used to obtain the cross-cumulant estimates is denoted by T. Each bandlimited subchannel (i,j=1,2) was generated by: h ij (n) = r 1 c(0.25(n 10), 0.11)+r 2 c(0.25(n 6), 0.11)+r 3 (0.25(n 8), 0.11) where c(n, α) is a raised cosine function with delay m and rolloff α, and r i s are zero-mean Gaussian random variables. The channel length is set to L=6, and the window size used to estimate the cumulant is set to L e > L. CSPL Drexel University Asilomar 05 p. 14/1

15 Simulation The metric used here is the overall NMSE (ONMSE), ONMSE ij = 1 N i N o N o N i i=1 j=1 1 Mc M c l=1 Le 1 k=0 (ĥij(k) h ij (k)) 2 Le 1 k=0 (h ij(k)) 2 A lower bound of the ONMSE was generated by assuming input is known and obtaining the channel estimate by cross-correlating input and output. Each curve is based on 50 Monte-Carlo runs, and we took L e = 10, T = 8000 in all methods. CSPL Drexel University Asilomar 05 p. 15/1

16 Simulation Results SPD T=4k, Le=10 NSPD T=4k, Le=10 SPD T=8k, Le=10 NSPD T=8k, Le=10 SPD T=8k, Le=6 NSPD T=8k, Le=6 lower bound ONMSE SNR ONMSE Comparison with different T and L e CSPL Drexel University Asilomar 05 p. 16/1

17 Simulation Results 1 Cum Prob method of [7] method of [4] SPD ISPD lower bound ONMSE Cumulative distribution of ONMSE over 50 independent channels CSPL Drexel University Asilomar 05 p. 17/1

18 Conclusions We present a more robust iterative scheme under the frequency domain framework for the identification of a multiple-input multiple-output (MIMO) system driven by white, mutually independent unobservable inputs. The proposed SPD method, requires only one PARAFAC decomposition. The frequency response samples are then obtained via a recursive scheme. The proposed SPD method does not require prewhitening, which will increase the global length of the channel response, and can achieves lower ONMSE. The proposed ISPD method, can achieve lower ONMSE value compare with the SPD method, and can be even applied to systems with more inputs than outputs. CSPL Drexel University Asilomar 05 p. 18/1

19 Appendix I A(1) = ((A (0) Ĉ0) 1 U A (1)) T = ((A 0P 0Λ 10 C 0 P 0 Λ 30 ) 1 U A (1)) T = ((B 1 (Γ 3 ) 1 P 0 Λ 10 C 1 P 0 Λ 30 ) 1 U A (1)) T = ((B 1 P 0 (Γ 3 p ) 1 Λ 10 C 1 P 0 Λ 30 ) 1 U A (1)) T = (((B 1 C 1 )P 0 (Γ 3 p) 1 Λ 10Λ 30 ) 1 U A (1)) T = ((P 0 (Γ 3 p) 1 Λ 10Λ 30 ) 1 (B 1 C 1 ) 1 U A (1)) T = (Λ 1 30 (Λ 10) 1 Γ 3 pp T 0 A T 1 ) T = A 1 P 0 Λ 20 Γ 3 p ej(φ 10 Φ 30 ) Similarly, based on C 3 l ( m + rδ, δ) we can get: A(r) = H(m rδ δ)p 0 K r e j(φ 10+r(Φ Γ 3 p Φ 30 )), where K r = Λ 20 Γ 3 p for r odd Λ 10 for r even CSPL Drexel University Asilomar 05 p. 19/1

Tensor approach for blind FIR channel identification using 4th-order cumulants

Tensor approach for blind FIR channel identification using 4th-order cumulants Tensor approach for blind FIR channel identification using 4th-order cumulants Carlos Estêvão R Fernandes Gérard Favier and João Cesar M Mota contact: cfernand@i3s.unice.fr June 8, 2006 Outline 1. HOS

More information

BLIND DECONVOLUTION ALGORITHMS FOR MIMO-FIR SYSTEMS DRIVEN BY FOURTH-ORDER COLORED SIGNALS

BLIND DECONVOLUTION ALGORITHMS FOR MIMO-FIR SYSTEMS DRIVEN BY FOURTH-ORDER COLORED SIGNALS BLIND DECONVOLUTION ALGORITHMS FOR MIMO-FIR SYSTEMS DRIVEN BY FOURTH-ORDER COLORED SIGNALS M. Kawamoto 1,2, Y. Inouye 1, A. Mansour 2, and R.-W. Liu 3 1. Department of Electronic and Control Systems Engineering,

More information

/16/$ IEEE 1728

/16/$ IEEE 1728 Extension of the Semi-Algebraic Framework for Approximate CP Decompositions via Simultaneous Matrix Diagonalization to the Efficient Calculation of Coupled CP Decompositions Kristina Naskovska and Martin

More information

SYSTEM RECONSTRUCTION FROM SELECTED HOS REGIONS. Haralambos Pozidis and Athina P. Petropulu. Drexel University, Philadelphia, PA 19104

SYSTEM RECONSTRUCTION FROM SELECTED HOS REGIONS. Haralambos Pozidis and Athina P. Petropulu. Drexel University, Philadelphia, PA 19104 SYSTEM RECOSTRUCTIO FROM SELECTED HOS REGIOS Haralambos Pozidis and Athina P. Petropulu Electrical and Computer Engineering Department Drexel University, Philadelphia, PA 94 Tel. (25) 895-2358 Fax. (25)

More information

An Iterative Blind Source Separation Method for Convolutive Mixtures of Images

An Iterative Blind Source Separation Method for Convolutive Mixtures of Images An Iterative Blind Source Separation Method for Convolutive Mixtures of Images Marc Castella and Jean-Christophe Pesquet Université de Marne-la-Vallée / UMR-CNRS 8049 5 bd Descartes, Champs-sur-Marne 77454

More information

Nonnegative Tensor Factorization using a proximal algorithm: application to 3D fluorescence spectroscopy

Nonnegative Tensor Factorization using a proximal algorithm: application to 3D fluorescence spectroscopy Nonnegative Tensor Factorization using a proximal algorithm: application to 3D fluorescence spectroscopy Caroline Chaux Joint work with X. Vu, N. Thirion-Moreau and S. Maire (LSIS, Toulon) Aix-Marseille

More information

GENERALIZED DEFLATION ALGORITHMS FOR THE BLIND SOURCE-FACTOR SEPARATION OF MIMO-FIR CHANNELS. Mitsuru Kawamoto 1,2 and Yujiro Inouye 1

GENERALIZED DEFLATION ALGORITHMS FOR THE BLIND SOURCE-FACTOR SEPARATION OF MIMO-FIR CHANNELS. Mitsuru Kawamoto 1,2 and Yujiro Inouye 1 GENERALIZED DEFLATION ALGORITHMS FOR THE BLIND SOURCE-FACTOR SEPARATION OF MIMO-FIR CHANNELS Mitsuru Kawamoto,2 and Yuiro Inouye. Dept. of Electronic and Control Systems Engineering, Shimane University,

More information

Linear Algebra (Review) Volker Tresp 2018

Linear Algebra (Review) Volker Tresp 2018 Linear Algebra (Review) Volker Tresp 2018 1 Vectors k, M, N are scalars A one-dimensional array c is a column vector. Thus in two dimensions, ( ) c1 c = c 2 c i is the i-th component of c c T = (c 1, c

More information

Introduction to Tensors. 8 May 2014

Introduction to Tensors. 8 May 2014 Introduction to Tensors 8 May 2014 Introduction to Tensors What is a tensor? Basic Operations CP Decompositions and Tensor Rank Matricization and Computing the CP Dear Tullio,! I admire the elegance of

More information

A CLOSED FORM SOLUTION TO SEMI-BLIND JOINT SYMBOL AND CHANNEL ESTIMATION IN MIMO-OFDM SYSTEMS

A CLOSED FORM SOLUTION TO SEMI-BLIND JOINT SYMBOL AND CHANNEL ESTIMATION IN MIMO-OFDM SYSTEMS A CLOSED FORM SOLUTION TO SEMI-BLIND JOINT SYMBOL AND CHANNEL ESTIMATION IN MIMO-OFDM SYSTEMS Kefei Liu 1, João Paulo C. L. da Costa 2, André L. F. de Almeida 3, and H.C. So 1 1 Department of Electronic

More information

Advanced Digital Signal Processing -Introduction

Advanced Digital Signal Processing -Introduction Advanced Digital Signal Processing -Introduction LECTURE-2 1 AP9211- ADVANCED DIGITAL SIGNAL PROCESSING UNIT I DISCRETE RANDOM SIGNAL PROCESSING Discrete Random Processes- Ensemble Averages, Stationary

More information

Lecture 7 MIMO Communica2ons

Lecture 7 MIMO Communica2ons Wireless Communications Lecture 7 MIMO Communica2ons Prof. Chun-Hung Liu Dept. of Electrical and Computer Engineering National Chiao Tung University Fall 2014 1 Outline MIMO Communications (Chapter 10

More information

! Circular Convolution. " Linear convolution with circular convolution. ! Discrete Fourier Transform. " Linear convolution through circular

! Circular Convolution.  Linear convolution with circular convolution. ! Discrete Fourier Transform.  Linear convolution through circular Previously ESE 531: Digital Signal Processing Lec 22: April 18, 2017 Fast Fourier Transform (con t)! Circular Convolution " Linear convolution with circular convolution! Discrete Fourier Transform " Linear

More information

Algebra C Numerical Linear Algebra Sample Exam Problems

Algebra C Numerical Linear Algebra Sample Exam Problems Algebra C Numerical Linear Algebra Sample Exam Problems Notation. Denote by V a finite-dimensional Hilbert space with inner product (, ) and corresponding norm. The abbreviation SPD is used for symmetric

More information

1 Determinants. 1.1 Determinant

1 Determinants. 1.1 Determinant 1 Determinants [SB], Chapter 9, p.188-196. [SB], Chapter 26, p.719-739. Bellow w ll study the central question: which additional conditions must satisfy a quadratic matrix A to be invertible, that is to

More information

BLIND SOURCE SEPARATION ALGORITHM FOR MIMO CONVOLUTIVE MIXTURES. Kamran Rahbar and James P. Reilly

BLIND SOURCE SEPARATION ALGORITHM FOR MIMO CONVOLUTIVE MIXTURES. Kamran Rahbar and James P. Reilly BLIND SOURCE SEPARATION ALGORITHM FOR MIMO CONVOLUTIVE MIXTURES Kamran Rahbar and James P. Reilly Electrical & Computer Eng. Mcmaster University, Hamilton, Ontario, Canada Email: kamran@reverb.crl.mcmaster.ca,

More information

SPARSE signal representations have gained popularity in recent

SPARSE signal representations have gained popularity in recent 6958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011 Blind Compressed Sensing Sivan Gleichman and Yonina C. Eldar, Senior Member, IEEE Abstract The fundamental principle underlying

More information

DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Uniform Linear Array with Fewer Sensors than Sources

DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Uniform Linear Array with Fewer Sensors than Sources Progress In Electromagnetics Research M, Vol. 63, 185 193, 218 DOA Estimation of Quasi-Stationary Signals Using a Partly-Calibrated Uniform Linear Array with Fewer Sensors than Sources Kai-Chieh Hsu and

More information

Analytical Method for Blind Binary Signal Separation

Analytical Method for Blind Binary Signal Separation Analytical Method for Blind Binary Signal Separation Alle-Jan van der Veen Abstract The blind separation of multiple co-channel binary digital signals using an antenna array involves finding a factorization

More information

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH

Lecture 5: Antenna Diversity and MIMO Capacity Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH : Antenna Diversity and Theoretical Foundations of Wireless Communications Wednesday, May 4, 206 9:00-2:00, Conference Room SIP Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication

More information

Properties of Matrices and Operations on Matrices

Properties of Matrices and Operations on Matrices Properties of Matrices and Operations on Matrices A common data structure for statistical analysis is a rectangular array or matris. Rows represent individual observational units, or just observations,

More information

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 11, NOVEMBER Blind MIMO Identification Using the Second Characteristic Function

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 11, NOVEMBER Blind MIMO Identification Using the Second Characteristic Function IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 53, NO 11, NOVEMBER 2005 4067 Blind MIMO Identification Using the Second Characteristic Function Eran Eidinger and Arie Yeredor, Senior Member, IEEE Abstract

More information

A Block-Jacobi Algorithm for Non-Symmetric Joint Diagonalization of Matrices

A Block-Jacobi Algorithm for Non-Symmetric Joint Diagonalization of Matrices A Block-Jacobi Algorithm for Non-Symmetric Joint Diagonalization of Matrices ao Shen and Martin Kleinsteuber Department of Electrical and Computer Engineering Technische Universität München, Germany {hao.shen,kleinsteuber}@tum.de

More information

Solving linear equations with Gaussian Elimination (I)

Solving linear equations with Gaussian Elimination (I) Term Projects Solving linear equations with Gaussian Elimination The QR Algorithm for Symmetric Eigenvalue Problem The QR Algorithm for The SVD Quasi-Newton Methods Solving linear equations with Gaussian

More information

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels

EE6604 Personal & Mobile Communications. Week 15. OFDM on AWGN and ISI Channels EE6604 Personal & Mobile Communications Week 15 OFDM on AWGN and ISI Channels 1 { x k } x 0 x 1 x x x N- 2 N- 1 IDFT X X X X 0 1 N- 2 N- 1 { X n } insert guard { g X n } g X I n { } D/A ~ si ( t) X g X

More information

BLIND SOURCE SEPARATION TECHNIQUES ANOTHER WAY OF DOING OPERATIONAL MODAL ANALYSIS

BLIND SOURCE SEPARATION TECHNIQUES ANOTHER WAY OF DOING OPERATIONAL MODAL ANALYSIS BLIND SOURCE SEPARATION TECHNIQUES ANOTHER WAY OF DOING OPERATIONAL MODAL ANALYSIS F. Poncelet, Aerospace and Mech. Eng. Dept., University of Liege, Belgium G. Kerschen, Aerospace and Mech. Eng. Dept.,

More information

Analyzing Data Boxes : Multi-way linear algebra and its applications in signal processing and communications

Analyzing Data Boxes : Multi-way linear algebra and its applications in signal processing and communications Analyzing Data Boxes : Multi-way linear algebra and its applications in signal processing and communications Nikos Sidiropoulos Dept. ECE, -Greece nikos@telecom.tuc.gr 1 Dedication In memory of Richard

More information

Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A =

Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A = 30 MATHEMATICS REVIEW G A.1.1 Matrices and Vectors Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A = a 11 a 12... a 1N a 21 a 22... a 2N...... a M1 a M2... a MN A matrix can

More information

HST.582J/6.555J/16.456J

HST.582J/6.555J/16.456J Blind Source Separation: PCA & ICA HST.582J/6.555J/16.456J Gari D. Clifford gari [at] mit. edu http://www.mit.edu/~gari G. D. Clifford 2005-2009 What is BSS? Assume an observation (signal) is a linear

More information

Review of Matrices and Block Structures

Review of Matrices and Block Structures CHAPTER 2 Review of Matrices and Block Structures Numerical linear algebra lies at the heart of modern scientific computing and computational science. Today it is not uncommon to perform numerical computations

More information

18.S34 linear algebra problems (2007)

18.S34 linear algebra problems (2007) 18.S34 linear algebra problems (2007) Useful ideas for evaluating determinants 1. Row reduction, expanding by minors, or combinations thereof; sometimes these are useful in combination with an induction

More information

Blind separation of instantaneous mixtures of dependent sources

Blind separation of instantaneous mixtures of dependent sources Blind separation of instantaneous mixtures of dependent sources Marc Castella and Pierre Comon GET/INT, UMR-CNRS 7, 9 rue Charles Fourier, 9 Évry Cedex, France marc.castella@int-evry.fr, CNRS, I3S, UMR

More information

Multidimensional digital signal processing

Multidimensional digital signal processing PSfrag replacements Two-dimensional discrete signals N 1 A 2-D discrete signal (also N called a sequence or array) is a function 2 defined over thex(n set 1 of, n 2 ordered ) pairs of integers: y(nx 1,

More information

Transforms and Orthogonal Bases

Transforms and Orthogonal Bases Orthogonal Bases Transforms and Orthogonal Bases We now turn back to linear algebra to understand transforms, which map signals between different domains Recall that signals can be interpreted as vectors

More information

Linear Algebra (Review) Volker Tresp 2017

Linear Algebra (Review) Volker Tresp 2017 Linear Algebra (Review) Volker Tresp 2017 1 Vectors k is a scalar (a number) c is a column vector. Thus in two dimensions, c = ( c1 c 2 ) (Advanced: More precisely, a vector is defined in a vector space.

More information

Sparseness Constraints on Nonnegative Tensor Decomposition

Sparseness Constraints on Nonnegative Tensor Decomposition Sparseness Constraints on Nonnegative Tensor Decomposition Na Li nali@clarksonedu Carmeliza Navasca cnavasca@clarksonedu Department of Mathematics Clarkson University Potsdam, New York 3699, USA Department

More information

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i )

1 Multiply Eq. E i by λ 0: (λe i ) (E i ) 2 Multiply Eq. E j by λ and add to Eq. E i : (E i + λe j ) (E i ) Direct Methods for Linear Systems Chapter Direct Methods for Solving Linear Systems Per-Olof Persson persson@berkeleyedu Department of Mathematics University of California, Berkeley Math 18A Numerical

More information

Acoustic MIMO Signal Processing

Acoustic MIMO Signal Processing Yiteng Huang Jacob Benesty Jingdong Chen Acoustic MIMO Signal Processing With 71 Figures Ö Springer Contents 1 Introduction 1 1.1 Acoustic MIMO Signal Processing 1 1.2 Organization of the Book 4 Part I

More information

BLIND system identification (BSI) is one of the fundamental

BLIND system identification (BSI) is one of the fundamental SUBMITTED TO IEEE SIGNAL PROCEING LETTERS, JANUARY 017 1 Structure-Based Subspace Method for Multi-Channel Blind System Identification Qadri Mayyala, Student Member, IEEE, Karim Abed-Meraim, Senior Member,

More information

Real-Valued Khatri-Rao Subspace Approaches on the ULA and a New Nested Array

Real-Valued Khatri-Rao Subspace Approaches on the ULA and a New Nested Array Real-Valued Khatri-Rao Subspace Approaches on the ULA and a New Nested Array Huiping Duan, Tiantian Tuo, Jun Fang and Bing Zeng arxiv:1511.06828v1 [cs.it] 21 Nov 2015 Abstract In underdetermined direction-of-arrival

More information

BOOLEAN TENSOR FACTORIZATIONS. Pauli Miettinen 14 December 2011

BOOLEAN TENSOR FACTORIZATIONS. Pauli Miettinen 14 December 2011 BOOLEAN TENSOR FACTORIZATIONS Pauli Miettinen 14 December 2011 BACKGROUND: TENSORS AND TENSOR FACTORIZATIONS X BACKGROUND: TENSORS AND TENSOR FACTORIZATIONS C X A B BACKGROUND: BOOLEAN MATRIX FACTORIZATIONS

More information

Wavelets and Multiresolution Processing

Wavelets and Multiresolution Processing Wavelets and Multiresolution Processing Wavelets Fourier transform has it basis functions in sinusoids Wavelets based on small waves of varying frequency and limited duration In addition to frequency,

More information

Basic Concepts in Matrix Algebra

Basic Concepts in Matrix Algebra Basic Concepts in Matrix Algebra An column array of p elements is called a vector of dimension p and is written as x p 1 = x 1 x 2. x p. The transpose of the column vector x p 1 is row vector x = [x 1

More information

Fall 2011, EE123 Digital Signal Processing

Fall 2011, EE123 Digital Signal Processing Lecture 6 Miki Lustig, UCB September 11, 2012 Miki Lustig, UCB DFT and Sampling the DTFT X (e jω ) = e j4ω sin2 (5ω/2) sin 2 (ω/2) 5 x[n] 25 X(e jω ) 4 20 3 15 2 1 0 10 5 1 0 5 10 15 n 0 0 2 4 6 ω 5 reconstructed

More information

ORIENTED PCA AND BLIND SIGNAL SEPARATION

ORIENTED PCA AND BLIND SIGNAL SEPARATION ORIENTED PCA AND BLIND SIGNAL SEPARATION K. I. Diamantaras Department of Informatics TEI of Thessaloniki Sindos 54101, Greece kdiamant@it.teithe.gr Th. Papadimitriou Department of Int. Economic Relat.

More information

the tensor rank is equal tor. The vectorsf (r)

the tensor rank is equal tor. The vectorsf (r) EXTENSION OF THE SEMI-ALGEBRAIC FRAMEWORK FOR APPROXIMATE CP DECOMPOSITIONS VIA NON-SYMMETRIC SIMULTANEOUS MATRIX DIAGONALIZATION Kristina Naskovska, Martin Haardt Ilmenau University of Technology Communications

More information

Semi-Blind approaches to source separation: introduction to the special session

Semi-Blind approaches to source separation: introduction to the special session Semi-Blind approaches to source separation: introduction to the special session Massoud BABAIE-ZADEH 1 Christian JUTTEN 2 1- Sharif University of Technology, Tehran, IRAN 2- Laboratory of Images and Signals

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 12 Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted for noncommercial,

More information

Generic properties of Symmetric Tensors

Generic properties of Symmetric Tensors 2006 1/48 PComon Generic properties of Symmetric Tensors Pierre COMON - CNRS other contributors: Bernard MOURRAIN INRIA institute Lek-Heng LIM, Stanford University 2006 2/48 PComon Tensors & Arrays Definitions

More information

Discrete Fourier Transform

Discrete Fourier Transform Discrete Fourier Transform Virtually all practical signals have finite length (e.g., sensor data, audio records, digital images, stock values, etc). Rather than considering such signals to be zero-padded

More information

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1 Fading : Theoretical Foundations of Wireless Communications 1 Thursday, May 3, 2018 9:30-12:00, Conference Room SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication 1 / 23 Overview

More information

Fundamentals of Engineering Analysis (650163)

Fundamentals of Engineering Analysis (650163) Philadelphia University Faculty of Engineering Communications and Electronics Engineering Fundamentals of Engineering Analysis (6563) Part Dr. Omar R Daoud Matrices: Introduction DEFINITION A matrix is

More information

TENSOR APPROXIMATION TOOLS FREE OF THE CURSE OF DIMENSIONALITY

TENSOR APPROXIMATION TOOLS FREE OF THE CURSE OF DIMENSIONALITY TENSOR APPROXIMATION TOOLS FREE OF THE CURSE OF DIMENSIONALITY Eugene Tyrtyshnikov Institute of Numerical Mathematics Russian Academy of Sciences (joint work with Ivan Oseledets) WHAT ARE TENSORS? Tensors

More information

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH

Lecture 6: Modeling of MIMO Channels Theoretical Foundations of Wireless Communications 1. Overview. CommTh/EES/KTH : Theoretical Foundations of Wireless Communications 1 Wednesday, May 11, 2016 9:00-12:00, Conference Room SIP 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless Communication 1 / 1 Overview

More information

CONSTRUCTION OF SLICED ORTHOGONAL LATIN HYPERCUBE DESIGNS

CONSTRUCTION OF SLICED ORTHOGONAL LATIN HYPERCUBE DESIGNS Statistica Sinica 23 (2013), 1117-1130 doi:http://dx.doi.org/10.5705/ss.2012.037 CONSTRUCTION OF SLICED ORTHOGONAL LATIN HYPERCUBE DESIGNS Jian-Feng Yang, C. Devon Lin, Peter Z. G. Qian and Dennis K. J.

More information

DSP Algorithm Original PowerPoint slides prepared by S. K. Mitra

DSP Algorithm Original PowerPoint slides prepared by S. K. Mitra Chapter 11 DSP Algorithm Implementations 清大電機系林嘉文 cwlin@ee.nthu.edu.tw Original PowerPoint slides prepared by S. K. Mitra 03-5731152 11-1 Matrix Representation of Digital Consider Filter Structures This

More information

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1

Lecture 9: Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 : Diversity-Multiplexing Tradeoff Theoretical Foundations of Wireless Communications 1 Rayleigh Friday, May 25, 2018 09:00-11:30, Kansliet 1 Textbook: D. Tse and P. Viswanath, Fundamentals of Wireless

More information

TENSOR CODING FOR CDMA-MIMO WIRELESS COMMUNICATION SYSTEMS

TENSOR CODING FOR CDMA-MIMO WIRELESS COMMUNICATION SYSTEMS 19th European Signal Processing Conference EUSIPCO 2011 Barcelona, Spain, August 29 - September 2, 2011 TENSO CODING FO CDMA-MIMO WIELESS COMMUNICATION SYSTEMS Gérard Favier a, Michele N da Costa a,b,

More information

Ranks of Hadamard Matrices and Equivalence of Sylvester Hadamard and Pseudo-Noise Matrices

Ranks of Hadamard Matrices and Equivalence of Sylvester Hadamard and Pseudo-Noise Matrices Operator Theory: Advances and Applications, Vol 1, 1 13 c 27 Birkhäuser Verlag Basel/Switzerland Ranks of Hadamard Matrices and Equivalence of Sylvester Hadamard and Pseudo-Noise Matrices Tom Bella, Vadim

More information

Short Term Memory Quantifications in Input-Driven Linear Dynamical Systems

Short Term Memory Quantifications in Input-Driven Linear Dynamical Systems Short Term Memory Quantifications in Input-Driven Linear Dynamical Systems Peter Tiňo and Ali Rodan School of Computer Science, The University of Birmingham Birmingham B15 2TT, United Kingdom E-mail: {P.Tino,

More information

MH1200 Final 2014/2015

MH1200 Final 2014/2015 MH200 Final 204/205 November 22, 204 QUESTION. (20 marks) Let where a R. A = 2 3 4, B = 2 3 4, 3 6 a 3 6 0. For what values of a is A singular? 2. What is the minimum value of the rank of A over all a

More information

CCA BASED ALGORITHMS FOR BLIND EQUALIZATION OF FIR MIMO SYSTEMS

CCA BASED ALGORITHMS FOR BLIND EQUALIZATION OF FIR MIMO SYSTEMS CCA BASED ALGORITHMS FOR BLID EQUALIZATIO OF FIR MIMO SYSTEMS Javier Vía and Ignacio Santamaría Dept of Communications Engineering University of Cantabria 395 Santander, Cantabria, Spain E-mail: {jvia,nacho}@gtasdicomunicanes

More information

An Introduction to Filterbank Frames

An Introduction to Filterbank Frames An Introduction to Filterbank Frames Brody Dylan Johnson St. Louis University October 19, 2010 Brody Dylan Johnson (St. Louis University) An Introduction to Filterbank Frames October 19, 2010 1 / 34 Overview

More information

Constrained Tensor Modeling Approach to Blind Multiple-Antenna CDMA Schemes

Constrained Tensor Modeling Approach to Blind Multiple-Antenna CDMA Schemes IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. XX, NO. XX, MONTH YEAR 1 Constrained Tensor Modeling Approach to Blind Multiple-Antenna CDMA Schemes André L. F. de Almeida, Gérard Favier, and João C. M. Mota

More information

MMSE Equalizer Design

MMSE Equalizer Design MMSE Equalizer Design Phil Schniter March 6, 2008 [k] a[m] P a [k] g[k] m[k] h[k] + ṽ[k] q[k] y [k] P y[m] For a trivial channel (i.e., h[k] = δ[k]), e kno that the use of square-root raisedcosine (SRRC)

More information

Tutorial on Blind Source Separation and Independent Component Analysis

Tutorial on Blind Source Separation and Independent Component Analysis Tutorial on Blind Source Separation and Independent Component Analysis Lucas Parra Adaptive Image & Signal Processing Group Sarnoff Corporation February 09, 2002 Linear Mixtures... problem statement...

More information

Lecture 4. CP and KSVD Representations. Charles F. Van Loan

Lecture 4. CP and KSVD Representations. Charles F. Van Loan Structured Matrix Computations from Structured Tensors Lecture 4. CP and KSVD Representations Charles F. Van Loan Cornell University CIME-EMS Summer School June 22-26, 2015 Cetraro, Italy Structured Matrix

More information

Fast and Robust Phase Retrieval

Fast and Robust Phase Retrieval Fast and Robust Phase Retrieval Aditya Viswanathan aditya@math.msu.edu CCAM Lunch Seminar Purdue University April 18 2014 0 / 27 Joint work with Yang Wang Mark Iwen Research supported in part by National

More information

Sparse Sensing in Colocated MIMO Radar: A Matrix Completion Approach

Sparse Sensing in Colocated MIMO Radar: A Matrix Completion Approach Sparse Sensing in Colocated MIMO Radar: A Matrix Completion Approach Athina P. Petropulu Department of Electrical and Computer Engineering Rutgers, the State University of New Jersey Acknowledgments Shunqiao

More information

Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization

Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization Rapid, Robust, and Reliable Blind Deconvolution via Nonconvex Optimization Shuyang Ling Department of Mathematics, UC Davis Oct.18th, 2016 Shuyang Ling (UC Davis) 16w5136, Oaxaca, Mexico Oct.18th, 2016

More information

Theoretical Development for Blind Identification of Non Linear Communication Channels

Theoretical Development for Blind Identification of Non Linear Communication Channels , pp.1-8 http://dx.doi.org/10.14257/ijeic.2015.6.6.01 Theoretical Development for Blind Identification of Non Linear Communication Channels Mohammed Zidane 1, Said Safi 2, Mohamed Sabri 1 and Ahmed Boumezzough

More information

Tensor-Tensor Product Toolbox

Tensor-Tensor Product Toolbox Tensor-Tensor Product Toolbox 1 version 10 Canyi Lu canyilu@gmailcom Carnegie Mellon University https://githubcom/canyilu/tproduct June, 018 1 INTRODUCTION Tensors are higher-order extensions of matrices

More information

Homework 2 Foundations of Computational Math 2 Spring 2019

Homework 2 Foundations of Computational Math 2 Spring 2019 Homework 2 Foundations of Computational Math 2 Spring 2019 Problem 2.1 (2.1.a) Suppose (v 1,λ 1 )and(v 2,λ 2 ) are eigenpairs for a matrix A C n n. Show that if λ 1 λ 2 then v 1 and v 2 are linearly independent.

More information

arxiv: v1 [cs.it] 25 Jan 2015

arxiv: v1 [cs.it] 25 Jan 2015 A Unified Framework for Identifiability Analysis in Bilinear Inverse Problems with Applications to Subspace and Sparsity Models Yanjun Li Kiryung Lee Yoram Bresler Abstract arxiv:1501.06120v1 [cs.it] 25

More information

From Matrix to Tensor. Charles F. Van Loan

From Matrix to Tensor. Charles F. Van Loan From Matrix to Tensor Charles F. Van Loan Department of Computer Science January 28, 2016 From Matrix to Tensor From Tensor To Matrix 1 / 68 What is a Tensor? Instead of just A(i, j) it s A(i, j, k) or

More information

Reconstruction from projections using Grassmann tensors

Reconstruction from projections using Grassmann tensors Reconstruction from projections using Grassmann tensors Richard I. Hartley 1 and Fred Schaffalitzky 2 1 Australian National University and National ICT Australia, Canberra 2 Australian National University,

More information

A Robust Form of Kruskal s Identifiability Theorem

A Robust Form of Kruskal s Identifiability Theorem A Robust Form of Kruskal s Identifiability Theorem Aditya Bhaskara (Google NYC) Joint work with Moses Charikar (Princeton University) Aravindan Vijayaraghavan (NYU Northwestern) Background: understanding

More information

BLIND SOURCE SEPARATION WITH PURE DELAY MIXTURES. Arie Yeredor

BLIND SOURCE SEPARATION WITH PURE DELAY MIXTURES. Arie Yeredor BLIND SOURCE SEPARATION WITH PURE DELAY MIXTURES Arie Yeredor Department of Electrical Engineering - Systems Tel-Aviv University, Tel-Aviv, 69978, ISRAEL e-mail: arie@eng.tau.ac.il ABSTRACT We address

More information

Third-Order Tensor Decompositions and Their Application in Quantum Chemistry

Third-Order Tensor Decompositions and Their Application in Quantum Chemistry Third-Order Tensor Decompositions and Their Application in Quantum Chemistry Tyler Ueltschi University of Puget SoundTacoma, Washington, USA tueltschi@pugetsound.edu April 14, 2014 1 Introduction A tensor

More information

Introduction to Linear Systems

Introduction to Linear Systems cfl David J Fleet, 998 Introduction to Linear Systems David Fleet For operator T, input I, and response R = T [I], T satisfies: ffl homogeniety: iff T [ai] = at[i] 8a 2 C ffl additivity: iff T [I + I 2

More information

MATRICES. a m,1 a m,n A =

MATRICES. a m,1 a m,n A = MATRICES Matrices are rectangular arrays of real or complex numbers With them, we define arithmetic operations that are generalizations of those for real and complex numbers The general form a matrix of

More information

c 2008 Society for Industrial and Applied Mathematics

c 2008 Society for Industrial and Applied Mathematics SIAM J. MATRIX ANA. APP. Vol. 30, No. 3, pp. 1033 1066 c 2008 Society for Industrial and Applied Mathematics DECOMPOSITIONS OF A HIGHER-ORDER TENSOR IN BOCK TERMS PART II: DEFINITIONS AND UNIQUENESS IEVEN

More information

Foundations of Matrix Analysis

Foundations of Matrix Analysis 1 Foundations of Matrix Analysis In this chapter we recall the basic elements of linear algebra which will be employed in the remainder of the text For most of the proofs as well as for the details, the

More information

Faloutsos, Tong ICDE, 2009

Faloutsos, Tong ICDE, 2009 Large Graph Mining: Patterns, Tools and Case Studies Christos Faloutsos Hanghang Tong CMU Copyright: Faloutsos, Tong (29) 2-1 Outline Part 1: Patterns Part 2: Matrix and Tensor Tools Part 3: Proximity

More information

Math 407: Linear Optimization

Math 407: Linear Optimization Math 407: Linear Optimization Lecture 16: The Linear Least Squares Problem II Math Dept, University of Washington February 28, 2018 Lecture 16: The Linear Least Squares Problem II (Math Dept, University

More information

Recovery of Low Rank and Jointly Sparse. Matrices with Two Sampling Matrices

Recovery of Low Rank and Jointly Sparse. Matrices with Two Sampling Matrices Recovery of Low Rank and Jointly Sparse 1 Matrices with Two Sampling Matrices Sampurna Biswas, Hema K. Achanta, Mathews Jacob, Soura Dasgupta, and Raghuraman Mudumbai Abstract We provide a two-step approach

More information

Interchange of Filtering and Downsampling/Upsampling

Interchange of Filtering and Downsampling/Upsampling Interchange of Filtering and Downsampling/Upsampling Downsampling and upsampling are linear systems, but not LTI systems. They cannot be implemented by difference equations, and so we cannot apply z-transform

More information

Wideband MIMO Channel Diagonalization in the Time Domain

Wideband MIMO Channel Diagonalization in the Time Domain Wideband MIMO Channel Diagonalization in the Time Domain c 2011 IEEE. Personal use of this material is permitted. However, permission to reprint/republish this material for advertising or promotional purposes

More information

Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix

Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix Two-View Segmentation of Dynamic Scenes from the Multibody Fundamental Matrix René Vidal Stefano Soatto Shankar Sastry Department of EECS, UC Berkeley Department of Computer Sciences, UCLA 30 Cory Hall,

More information

CP DECOMPOSITION AND ITS APPLICATION IN NOISE REDUCTION AND MULTIPLE SOURCES IDENTIFICATION

CP DECOMPOSITION AND ITS APPLICATION IN NOISE REDUCTION AND MULTIPLE SOURCES IDENTIFICATION International Conference on Computer Science and Intelligent Communication (CSIC ) CP DECOMPOSITION AND ITS APPLICATION IN NOISE REDUCTION AND MULTIPLE SOURCES IDENTIFICATION Xuefeng LIU, Yuping FENG,

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition We are interested in more than just sym+def matrices. But the eigenvalue decompositions discussed in the last section of notes will play a major role in solving general

More information

PROBLEMS ON LINEAR ALGEBRA

PROBLEMS ON LINEAR ALGEBRA 1 Basic Linear Algebra PROBLEMS ON LINEAR ALGEBRA 1. Let M n be the (2n + 1) (2n + 1) for which 0, i = j (M n ) ij = 1, i j 1,..., n (mod 2n + 1) 1, i j n + 1,..., 2n (mod 2n + 1). Find the rank of M n.

More information

Self-Calibration and Biconvex Compressive Sensing

Self-Calibration and Biconvex Compressive Sensing Self-Calibration and Biconvex Compressive Sensing Shuyang Ling Department of Mathematics, UC Davis July 12, 2017 Shuyang Ling (UC Davis) SIAM Annual Meeting, 2017, Pittsburgh July 12, 2017 1 / 22 Acknowledgements

More information

CS 246 Review of Linear Algebra 01/17/19

CS 246 Review of Linear Algebra 01/17/19 1 Linear algebra In this section we will discuss vectors and matrices. We denote the (i, j)th entry of a matrix A as A ij, and the ith entry of a vector as v i. 1.1 Vectors and vector operations A vector

More information

Acoustic Source Separation with Microphone Arrays CCNY

Acoustic Source Separation with Microphone Arrays CCNY Acoustic Source Separation with Microphone Arrays Lucas C. Parra Biomedical Engineering Department City College of New York CCNY Craig Fancourt Clay Spence Chris Alvino Montreal Workshop, Nov 6, 2004 Blind

More information

Adaptive Channel Modeling for MIMO Wireless Communications

Adaptive Channel Modeling for MIMO Wireless Communications Adaptive Channel Modeling for MIMO Wireless Communications Chengjin Zhang Department of Electrical and Computer Engineering University of California, San Diego San Diego, CA 99- Email: zhangc@ucsdedu Robert

More information

Dense LU factorization and its error analysis

Dense LU factorization and its error analysis Dense LU factorization and its error analysis Laura Grigori INRIA and LJLL, UPMC February 2016 Plan Basis of floating point arithmetic and stability analysis Notation, results, proofs taken from [N.J.Higham,

More information

Objective Type Questions

Objective Type Questions DISTANCE EDUCATION, UNIVERSITY OF CALICUT NUMBER THEORY AND LINEARALGEBRA Objective Type Questions Shyama M.P. Assistant Professor Department of Mathematics Malabar Christian College, Calicut 7/3/2014

More information

Lecture 4 Orthonormal vectors and QR factorization

Lecture 4 Orthonormal vectors and QR factorization Orthonormal vectors and QR factorization 4 1 Lecture 4 Orthonormal vectors and QR factorization EE263 Autumn 2004 orthonormal vectors Gram-Schmidt procedure, QR factorization orthogonal decomposition induced

More information

Efficient Inverse Cholesky Factorization for Alamouti Matrices in G-STBC and Alamouti-like Matrices in OMP

Efficient Inverse Cholesky Factorization for Alamouti Matrices in G-STBC and Alamouti-like Matrices in OMP Efficient Inverse Cholesky Factorization for Alamouti Matrices in G-STBC and Alamouti-like Matrices in OMP Hufei Zhu, Ganghua Yang Communications Technology Laboratory Huawei Technologies Co Ltd, P R China

More information