x λ ϕ(x)dx x λ ϕ(x)dx = xλ+1 λ + 1 ϕ(x) u = xλ+1 λ + 1 dv = ϕ (x)dx (x))dx = ϕ(x)

Size: px
Start display at page:

Download "x λ ϕ(x)dx x λ ϕ(x)dx = xλ+1 λ + 1 ϕ(x) u = xλ+1 λ + 1 dv = ϕ (x)dx (x))dx = ϕ(x)"

Transcription

1 1. Distributions A distribution is a linear functional L : D R (or C) where D = C c (R n ) which is linear and continuous Topology on D. Let K R n be a compact set. Define D K := {f D : f outside K} f K,m = sup D s f(x). x K, s m Then f n f means (1) suppf n K same K for all n (2) for any D s, D s f n D s f uniformly. T is continuous means for every K there is C K and m > so that 1.2. The distribution x λ +. T (ψ) C ψ K,m ψ D K. T λ (x) := x λ ϕ(x)dx is well defined for λ C such that Reλ > 1. T λ (x) = x λ ϕ(x)dx = xλ+1 λ + 1 ϕ(x) 1 λ + 1 x λ+1 ϕ (x)dx du = x λ dx v = ϕ(x) So u = xλ+1 λ + 1 dv = ϕ (x)dx T λ (x) = 1 λ + 1 T λ+1 The right hand side makes sense for Re(λ + 1) > 1 or Reλ > 2. In this way we can extend T λ to Reλ > 2, but there is a pole at λ = 1. lim (λ + 1)T λ = T = λ 1 So δ is the residue of T λ at λ = 1. (ϕ (x))dx = ϕ(x) 1 = ϕ()

2 Distributions with support at. Definition. We say a distribution T vanishes in an open set U, if T (ϕ) = for any function ϕ C c (R), with support in U. The support of a distribution is the smallest closed set F such that T vanishes in the open set U = R\F. Theorem. A distribution T such that suppt = {} is a derivative of δ. Proof. Let ψ be a function in D which is 1 on ( 1/2, 1/2), and vanishes outside ( 1, 1). Then write ψ ε (x) = ψ(x/ε). ψ ε (x) is identically 1 in ( ε, ε). Let f ε = f ψ ε. Because of the support property, T (f) = T (f ε ) Indeed this is because f f ε near, so T (f f ε ) =. Because of continuity, for any compact K, T (f) C sup D j f. j <k,x K We will apply this to the functions f ε, with ε, so we can take K = [ 1, 1]. By direct calculation, we see that D j f ε is of the form ε j D j ψ D i f, i + j k. Assume that D j f() = for all j k. By Taylor s formula, D s f ε Cε k+1 s So T (f) = T (f ε ), and T (f ε ) C ε. Now suppose f is arbitrary. ( f j () f k = x )ψ j Cc j! j k and has the same first k derivatives as f. So by the previous argument, T (f f k ) =. But then T (f) = T (f k ) = ( x f (j) j ) ()T j! ψ, ( ) x and the T j ψ are fixed constants independent of f. Thus we have j! proved that (1.3.1) T (f) = j k c j D j (f)().

3 3 2. Fourier Inversion 2.1. Recall that the Fourier transform (2.1.1) F x (f) := e iξx f(x) dx takes the Schwartz space S to itself. We would like to compute its inverse. The main theorem is the following. Theorem. The operator satisfies F ξ (φ) := 1 e iξx φ(ξ) dξ F ξ F x (f) = f, F x F ξ (φ) = φ. We will treat one of the equations, the other one is the mirror image. The natural thing to try is to write out the composition, and change the order of integration: (2.1.2) F ξ F x (f)(y) = 1 e e iξy e iξx iξ(x y) f(x) dx dξ = f(x) dξ dx. But the inner integral does not make sense. Formally, (2.1.3) e iξ(x y) dξ is the Fourier transform of the function φ(ξ) = 1, at x y : (2.1.4) φ(x y) = e i(x y)ξ 1 dξ. If we write ψ x (ξ) := 1 eixξ, then (2.1.3) is also ψ( y). To deal with the inability to just change the order of integration, and evaluate the inner integral, we resort to distributions. Definition. Let T be a tempered distribution. We define the Fourier transform T to be T (f) := T ( f). This is well defined, because f S. When T = L φ, this coincides with the usual Fourier transform. (2.1.5) L φ (f) = = φ(ξ) f(x) φ(x) dx. e iξx f(x) dx dξ = f(x) e iξx φ(x) dx dξ =

4 4 The change of order of integration is justified because both f and φ are in S From this point of view, Fourier inversion comes down to asking What distribution satisfies the property δ = f? The equation is the same as f() = T ( f). Given such a T, we can implement Fourier inversion as follows. Given x, define the translation by x operator L x as (2.2.1) L x (f)(y) := f(x + y). Then (2.2.2) f(x) = (L x (f))() = T ( L x (f)). On the other hand, L x (f)(ξ) = e iξy L x (f)(y) dy = e iξy f(x + y) dy = (2.2.3) e iξ(u x) f(u) du = e iξx f(ξ). So equation (2.2.2) becomes (2.2.4) f(x) = T ( e iξx f(ξ)). ( T acts on the RHS as a function of ξ) Let h t (x) := e x2 t 2. This function is in S. Then, (2.3.1) lim e x 2 t t 2 f(x) = f(x), e x2 t 2 f(x) f(x), so by the Lesbegue dominated convergence theorem, (2.3.2) lim L ht (f) = lim e x2 t 2 f(x) dx = t t On the other hand, (2.3.3) L ht ( f) = L pt (f) f() f(x) dx. by formula (4.1.6) and lemma 4.1 in L. Gross s notes. The conclusion is that T = 1. Putting all of this together, we get the formula for Forier inversion.

5 3. Oscillator Representation 3.1. Recall V = S(R), rapidly decreasing functions. The Lie algebra { ( ) ( ) ( ) } 1 1 sl(2, C) = e =, h =, f =. 1 1 acts on V by the formulas: 5 ϖ(h) = x x (3.1.1) ϖ(e) = i 2 x2 ϖ(f) = i 2 2 x For a linear space V, denote by EndV, the space of linear maps L : V V. This is again vector space, with the usual adition and scalar multiplication (3.1.2) (L 1 + L 2 )(v) := L 1 (v) + L 2 (v), (αl)(v) := αl(v). To say that a Lie algebra g acts on a space V, means that there is a linear map (3.1.3) ϖ : g End(V ) which also satisfies (3.1.4) ϖ([x, y]) = ϖ(x)ϖ(y) ϖ(y)ϖ(x). We can also exponentiate the operators in (3.1.1): (1) ω(e th )F (x) = e t/2 F (e t x) (2) ω(e te )F (x) = e itx2 /2 F (x) (3) ω(e tf )F (x) = convolution with ( 1+i 2 )(πt) 1/2 e ix2 /2t (1) and (2) are easy. (3) needs Fourier transform. The reason for the i is that (1) and (2) are unitary operators w.r. 2 to L 2 (R). We are interested in the operator 2iω(e f) = x 2 2 x k := i(e f). This is called the Hermite operator. We want eigenfunctions. If we write a = x + x, a + = x x,

6 6 we get [a, a + 1 ] = 2, 4 (a+ a + a a + ) = ϖ(k). This is also a Lie algebra representation. The Heisenberg algebra z acts by multiplication by 2. [a, (a + ) j ] = 2j(a + ) j 1 {p, q, z}, [p, q] = z, [p, z] =, [q, z] =. [a, a +2 ] = a a +2 a +2 a = a a +2 a + (2 + a a + ) = a a +2 2a + a + a a + = a a +2 (2 + a a + )a + 2a + = 4a +. Let v = e x2 /2. Then a v =. Set v j v j s(r). So a + v j = v j+1. Furthermore := (a + ) j v, j N. Then a v j = a (a + ) j v = 2ja +j 1 v = 2 j v j 1 (v j, v l ) = 2 l l!δ jl (v, v ) = 2 l l! πδ jl e x2 dx = π Conclusion. v j = P j (x)e x2 /2, P j a polynomial. P j called Hermite Polynomial. Theorem. Hermite functions form an orthogonal basis for L 2 (R). ϖ(k)v j = ( j + 1 2) vj 4. Review of some Linear algebra 4.1. Let A be an n n matrix with complex entries. The minimal polynomial is defined as the lowest degree polynomial m = m A m(t) such that m(a) =. The chracteristic polynomial, p = p A, is defined as (4.1.1) p(t) = det(ti A). Then (4.1.2) m(t) = (t λ i ) m i, p(t) = (t λ i ) n i. The λ i are called the (generalized) eigenvalues. The Cayley-Hamilton theorem implies that 1 m i n i.

7 4.2. The results in this section hold over any field. Assume that m = p q, with p, q polynomials, such that (p, q) = 1. The Euclidean algorithm implies that there are polynomials a, b such that (4.2.1) ap + bq = 1. Then (4.2.2) a(a)p(a) + b(a)q(a) = I. Let (4.2.3) V p := q(a)v, V q = p(a)v. The first conclusion is that (4.2.4) V = V p + V q, p(a)v p = (), q(a)v q = (). The second part is clear; for example p(a)v p = p(a)q(a)v = m(a)v = () by the definition of m. For the first part, (4.2.5) v = Iv = p(a)a(a)v + q(a)b(a)v. In addition V p V q = (); if v = p(a)x = q(a)y, then (4.2.6) v =a(a)p(a)v + b(a)q(a)v = a(a)p(a)q(a)y + b(a)q(a)p(a)x = =a(a)y + b(a)m(a)x = + =. So if we change bases in such a way that say the first r vectors form a basis of V p, and the last s vectors a basis of V q, then the matrix A becomes block diagonal ( ) Ap (4.2.7) A = A q The minimal polynomial of A p ois p, and the minimal polynomial of A q is q. The similar result holds for when m decomposes into more than two factors, mutually prime to each other We return to the setting of section 4.1. There is a basis such that the matrix A is block diagonal, A λ1... A (4.3.1) A = λ A λk Each A λi has minimal polynomial (t λ i ) m i, and each block has size n i. The spaces V λi are called generalized λ i eigenspaces. 7

LECTURE 5: THE METHOD OF STATIONARY PHASE

LECTURE 5: THE METHOD OF STATIONARY PHASE LECTURE 5: THE METHOD OF STATIONARY PHASE Some notions.. A crash course on Fourier transform For j =,, n, j = x j. D j = i j. For any multi-index α = (α,, α n ) N n. α = α + + α n. α! = α! α n!. x α =

More information

MATH 205C: STATIONARY PHASE LEMMA

MATH 205C: STATIONARY PHASE LEMMA MATH 205C: STATIONARY PHASE LEMMA For ω, consider an integral of the form I(ω) = e iωf(x) u(x) dx, where u Cc (R n ) complex valued, with support in a compact set K, and f C (R n ) real valued. Thus, I(ω)

More information

Fourier Transform & Sobolev Spaces

Fourier Transform & Sobolev Spaces Fourier Transform & Sobolev Spaces Michael Reiter, Arthur Schuster Summer Term 2008 Abstract We introduce the concept of weak derivative that allows us to define new interesting Hilbert spaces the Sobolev

More information

We denote the space of distributions on Ω by D ( Ω) 2.

We denote the space of distributions on Ω by D ( Ω) 2. Sep. 1 0, 008 Distributions Distributions are generalized functions. Some familiarity with the theory of distributions helps understanding of various function spaces which play important roles in the study

More information

Jordan Canonical Form

Jordan Canonical Form Jordan Canonical Form Suppose A is a n n matrix operating on V = C n. First Reduction (to a repeated single eigenvalue). Let φ(x) = det(x A) = r (x λ i ) e i (1) be the characteristic equation of A. Factor

More information

1.5 Approximate Identities

1.5 Approximate Identities 38 1 The Fourier Transform on L 1 (R) which are dense subspaces of L p (R). On these domains, P : D P L p (R) and M : D M L p (R). Show, however, that P and M are unbounded even when restricted to these

More information

MATH 220 solution to homework 5

MATH 220 solution to homework 5 MATH 220 solution to homework 5 Problem. (i Define E(t = k(t + p(t = then E (t = 2 = 2 = 2 u t u tt + u x u xt dx u 2 t + u 2 x dx, u t u xx + u x u xt dx x [u tu x ] dx. Because f and g are compactly

More information

Topics in Harmonic Analysis Lecture 1: The Fourier transform

Topics in Harmonic Analysis Lecture 1: The Fourier transform Topics in Harmonic Analysis Lecture 1: The Fourier transform Po-Lam Yung The Chinese University of Hong Kong Outline Fourier series on T: L 2 theory Convolutions The Dirichlet and Fejer kernels Pointwise

More information

Introduction to Microlocal Analysis

Introduction to Microlocal Analysis Introduction to Microlocal Analysis First lecture: Basics Dorothea Bahns (Göttingen) Third Summer School on Dynamical Approaches in Spectral Geometry Microlocal Methods in Global Analysis University of

More information

Reminder Notes for the Course on Distribution Theory

Reminder Notes for the Course on Distribution Theory Reminder Notes for the Course on Distribution Theory T. C. Dorlas Dublin Institute for Advanced Studies School of Theoretical Physics 10 Burlington Road, Dublin 4, Ireland. Email: dorlas@stp.dias.ie March

More information

TD 1: Hilbert Spaces and Applications

TD 1: Hilbert Spaces and Applications Université Paris-Dauphine Functional Analysis and PDEs Master MMD-MA 2017/2018 Generalities TD 1: Hilbert Spaces and Applications Exercise 1 (Generalized Parallelogram law). Let (H,, ) be a Hilbert space.

More information

Chapter 1. Distributions

Chapter 1. Distributions Chapter 1 Distributions The concept of distribution generalises and extends the concept of function. A distribution is basically defined by its action on a set of test functions. It is indeed a linear

More information

MATH FALL 2014

MATH FALL 2014 MATH 126 - FALL 2014 JASON MURPHY Abstract. These notes are meant to supplement the lectures for Math 126 (Introduction to PDE) in the Fall of 2014 at the University of California, Berkeley. Contents 1.

More information

1 Fourier Integrals on L 2 (R) and L 1 (R).

1 Fourier Integrals on L 2 (R) and L 1 (R). 18.103 Fall 2013 1 Fourier Integrals on L 2 () and L 1 (). The first part of these notes cover 3.5 of AG, without proofs. When we get to things not covered in the book, we will start giving proofs. The

More information

EXPOSITORY NOTES ON DISTRIBUTION THEORY, FALL 2018

EXPOSITORY NOTES ON DISTRIBUTION THEORY, FALL 2018 EXPOSITORY NOTES ON DISTRIBUTION THEORY, FALL 2018 While these notes are under construction, I expect there will be many typos. The main reference for this is volume 1 of Hörmander, The analysis of liner

More information

Cartan s Criteria. Math 649, Dan Barbasch. February 26

Cartan s Criteria. Math 649, Dan Barbasch. February 26 Cartan s Criteria Math 649, 2013 Dan Barbasch February 26 Cartan s Criteria REFERENCES: Humphreys, I.2 and I.3. Definition The Cartan-Killing form of a Lie algebra is the bilinear form B(x, y) := Tr(ad

More information

Quantum mechanics. Chapter The quantum mechanical formalism

Quantum mechanics. Chapter The quantum mechanical formalism Chapter 5 Quantum mechanics 5.1 The quantum mechanical formalism The realisation, by Heisenberg, that the position and momentum of a quantum mechanical particle cannot be measured simultaneously renders

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

MATH 5640: Fourier Series

MATH 5640: Fourier Series MATH 564: Fourier Series Hung Phan, UMass Lowell September, 8 Power Series A power series in the variable x is a series of the form a + a x + a x + = where the coefficients a, a,... are real or complex

More information

8 Singular Integral Operators and L p -Regularity Theory

8 Singular Integral Operators and L p -Regularity Theory 8 Singular Integral Operators and L p -Regularity Theory 8. Motivation See hand-written notes! 8.2 Mikhlin Multiplier Theorem Recall that the Fourier transformation F and the inverse Fourier transformation

More information

Math 115 ( ) Yum-Tong Siu 1. Derivation of the Poisson Kernel by Fourier Series and Convolution

Math 115 ( ) Yum-Tong Siu 1. Derivation of the Poisson Kernel by Fourier Series and Convolution Math 5 (006-007 Yum-Tong Siu. Derivation of the Poisson Kernel by Fourier Series and Convolution We are going to give a second derivation of the Poisson kernel by using Fourier series and convolution.

More information

Kernel Method: Data Analysis with Positive Definite Kernels

Kernel Method: Data Analysis with Positive Definite Kernels Kernel Method: Data Analysis with Positive Definite Kernels 2. Positive Definite Kernel and Reproducing Kernel Hilbert Space Kenji Fukumizu The Institute of Statistical Mathematics. Graduate University

More information

SOLUTIONS TO HOMEWORK ASSIGNMENT 4

SOLUTIONS TO HOMEWORK ASSIGNMENT 4 SOLUTIONS TO HOMEWOK ASSIGNMENT 4 Exercise. A criterion for the image under the Hilbert transform to belong to L Let φ S be given. Show that Hφ L if and only if φx dx = 0. Solution: Suppose first that

More information

1.3.1 Definition and Basic Properties of Convolution

1.3.1 Definition and Basic Properties of Convolution 1.3 Convolution 15 1.3 Convolution Since L 1 (R) is a Banach space, we know that it has many useful properties. In particular the operations of addition and scalar multiplication are continuous. However,

More information

Math 489AB Exercises for Chapter 2 Fall Section 2.3

Math 489AB Exercises for Chapter 2 Fall Section 2.3 Math 489AB Exercises for Chapter 2 Fall 2008 Section 2.3 2.3.3. Let A M n (R). Then the eigenvalues of A are the roots of the characteristic polynomial p A (t). Since A is real, p A (t) is a polynomial

More information

1 Continuity Classes C m (Ω)

1 Continuity Classes C m (Ω) 0.1 Norms 0.1 Norms A norm on a linear space X is a function : X R with the properties: Positive Definite: x 0 x X (nonnegative) x = 0 x = 0 (strictly positive) λx = λ x x X, λ C(homogeneous) x + y x +

More information

FOURIER TRANSFORMS. 1. Fourier series 1.1. The trigonometric system. The sequence of functions

FOURIER TRANSFORMS. 1. Fourier series 1.1. The trigonometric system. The sequence of functions FOURIER TRANSFORMS. Fourier series.. The trigonometric system. The sequence of functions, cos x, sin x,..., cos nx, sin nx,... is called the trigonometric system. These functions have period π. The trigonometric

More information

Linear Algebra: Matrix Eigenvalue Problems

Linear Algebra: Matrix Eigenvalue Problems CHAPTER8 Linear Algebra: Matrix Eigenvalue Problems Chapter 8 p1 A matrix eigenvalue problem considers the vector equation (1) Ax = λx. 8.0 Linear Algebra: Matrix Eigenvalue Problems Here A is a given

More information

Lecture 8 : Eigenvalues and Eigenvectors

Lecture 8 : Eigenvalues and Eigenvectors CPS290: Algorithmic Foundations of Data Science February 24, 2017 Lecture 8 : Eigenvalues and Eigenvectors Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Hermitian Matrices It is simpler to begin with

More information

Oscillatory integrals

Oscillatory integrals Chapter Oscillatory integrals. Fourier transform on S The Fourier transform is a fundamental tool in microlocal analysis and its application to the theory of PDEs and inverse problems. In this first section

More information

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell

Eigenvalues and eigenfunctions of the Laplacian. Andrew Hassell Eigenvalues and eigenfunctions of the Laplacian Andrew Hassell 1 2 The setting In this talk I will consider the Laplace operator,, on various geometric spaces M. Here, M will be either a bounded Euclidean

More information

MATH 220 solution to homework 4

MATH 220 solution to homework 4 MATH 22 solution to homework 4 Problem. Define v(t, x) = u(t, x + bt), then v t (t, x) a(x + u bt) 2 (t, x) =, t >, x R, x2 v(, x) = f(x). It suffices to show that v(t, x) F = max y R f(y). We consider

More information

18.175: Lecture 15 Characteristic functions and central limit theorem

18.175: Lecture 15 Characteristic functions and central limit theorem 18.175: Lecture 15 Characteristic functions and central limit theorem Scott Sheffield MIT Outline Characteristic functions Outline Characteristic functions Characteristic functions Let X be a random variable.

More information

Chapter One. The Calderón-Zygmund Theory I: Ellipticity

Chapter One. The Calderón-Zygmund Theory I: Ellipticity Chapter One The Calderón-Zygmund Theory I: Ellipticity Our story begins with a classical situation: convolution with homogeneous, Calderón- Zygmund ( kernels on R n. Let S n 1 R n denote the unit sphere

More information

Hilbert Spaces. Contents

Hilbert Spaces. Contents Hilbert Spaces Contents 1 Introducing Hilbert Spaces 1 1.1 Basic definitions........................... 1 1.2 Results about norms and inner products.............. 3 1.3 Banach and Hilbert spaces......................

More information

Here we used the multiindex notation:

Here we used the multiindex notation: Mathematics Department Stanford University Math 51H Distributions Distributions first arose in solving partial differential equations by duality arguments; a later related benefit was that one could always

More information

MATH 220: MIDTERM OCTOBER 29, 2015

MATH 220: MIDTERM OCTOBER 29, 2015 MATH 22: MIDTERM OCTOBER 29, 25 This is a closed book, closed notes, no electronic devices exam. There are 5 problems. Solve Problems -3 and one of Problems 4 and 5. Write your solutions to problems and

More information

Singular Integrals. 1 Calderon-Zygmund decomposition

Singular Integrals. 1 Calderon-Zygmund decomposition Singular Integrals Analysis III Calderon-Zygmund decomposition Let f be an integrable function f dx 0, f = g + b with g Cα almost everywhere, with b

More information

Lecture 4: Fourier Transforms.

Lecture 4: Fourier Transforms. 1 Definition. Lecture 4: Fourier Transforms. We now come to Fourier transforms, which we give in the form of a definition. First we define the spaces L 1 () and L 2 (). Definition 1.1 The space L 1 ()

More information

MATH 220: THE FOURIER TRANSFORM TEMPERED DISTRIBUTIONS. Beforehand we constructed distributions by taking the set Cc

MATH 220: THE FOURIER TRANSFORM TEMPERED DISTRIBUTIONS. Beforehand we constructed distributions by taking the set Cc MATH 220: THE FOURIER TRANSFORM TEMPERED DISTRIBUTIONS Beforehand we constructed distributions by taking the set Cc ( ) as the set of very nice functions, and defined distributions as continuous linear

More information

TOOLS FROM HARMONIC ANALYSIS

TOOLS FROM HARMONIC ANALYSIS TOOLS FROM HARMONIC ANALYSIS BRADLY STADIE Abstract. The Fourier transform can be thought of as a map that decomposes a function into oscillatory functions. In this paper, we will apply this decomposition

More information

Polynomial Approximation: The Fourier System

Polynomial Approximation: The Fourier System Polynomial Approximation: The Fourier System Charles B. I. Chilaka CASA Seminar 17th October, 2007 Outline 1 Introduction and problem formulation 2 The continuous Fourier expansion 3 The discrete Fourier

More information

II. FOURIER TRANSFORM ON L 1 (R)

II. FOURIER TRANSFORM ON L 1 (R) II. FOURIER TRANSFORM ON L 1 (R) In this chapter we will discuss the Fourier transform of Lebesgue integrable functions defined on R. To fix the notation, we denote L 1 (R) = {f : R C f(t) dt < }. The

More information

FRAMES AND TIME-FREQUENCY ANALYSIS

FRAMES AND TIME-FREQUENCY ANALYSIS FRAMES AND TIME-FREQUENCY ANALYSIS LECTURE 5: MODULATION SPACES AND APPLICATIONS Christopher Heil Georgia Tech heil@math.gatech.edu http://www.math.gatech.edu/ heil READING For background on Banach spaces,

More information

Lecture 12: Detailed balance and Eigenfunction methods

Lecture 12: Detailed balance and Eigenfunction methods Miranda Holmes-Cerfon Applied Stochastic Analysis, Spring 2015 Lecture 12: Detailed balance and Eigenfunction methods Readings Recommended: Pavliotis [2014] 4.5-4.7 (eigenfunction methods and reversibility),

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information

An introduction to some aspects of functional analysis

An introduction to some aspects of functional analysis An introduction to some aspects of functional analysis Stephen Semmes Rice University Abstract These informal notes deal with some very basic objects in functional analysis, including norms and seminorms

More information

ON MARKOV AND KOLMOGOROV MATRICES AND THEIR RELATIONSHIP WITH ANALYTIC OPERATORS. N. Katilova (Received February 2004)

ON MARKOV AND KOLMOGOROV MATRICES AND THEIR RELATIONSHIP WITH ANALYTIC OPERATORS. N. Katilova (Received February 2004) NEW ZEALAND JOURNAL OF MATHEMATICS Volume 34 (2005), 43 60 ON MARKOV AND KOLMOGOROV MATRICES AND THEIR RELATIONSHIP WITH ANALYTIC OPERATORS N. Katilova (Received February 2004) Abstract. In this article,

More information

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS SPRING 006 PRELIMINARY EXAMINATION SOLUTIONS 1A. Let G be the subgroup of the free abelian group Z 4 consisting of all integer vectors (x, y, z, w) such that x + 3y + 5z + 7w = 0. (a) Determine a linearly

More information

Fourier Series. 1. Review of Linear Algebra

Fourier Series. 1. Review of Linear Algebra Fourier Series In this section we give a short introduction to Fourier Analysis. If you are interested in Fourier analysis and would like to know more detail, I highly recommend the following book: Fourier

More information

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms (February 24, 2017) 08a. Operators on Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2016-17/08a-ops

More information

u t = u p (t)q(x) = p(t) q(x) p (t) p(t) for some λ. = λ = q(x) q(x)

u t = u p (t)q(x) = p(t) q(x) p (t) p(t) for some λ. = λ = q(x) q(x) . Separation of variables / Fourier series The following notes were authored initially by Jason Murphy, and subsequently edited and expanded by Mihaela Ifrim, Daniel Tataru, and myself. We turn to the

More information

CHAPTER VIII HILBERT SPACES

CHAPTER VIII HILBERT SPACES CHAPTER VIII HILBERT SPACES DEFINITION Let X and Y be two complex vector spaces. A map T : X Y is called a conjugate-linear transformation if it is a reallinear transformation from X into Y, and if T (λx)

More information

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous: MATH 51H Section 4 October 16, 2015 1 Continuity Recall what it means for a function between metric spaces to be continuous: Definition. Let (X, d X ), (Y, d Y ) be metric spaces. A function f : X Y is

More information

Math 172 Problem Set 8 Solutions

Math 172 Problem Set 8 Solutions Math 72 Problem Set 8 Solutions Problem. (i We have (Fχ [ a,a] (ξ = χ [ a,a] e ixξ dx = a a e ixξ dx = iξ (e iax e iax = 2 sin aξ. ξ (ii We have (Fχ [, e ax (ξ = e ax e ixξ dx = e x(a+iξ dx = a + iξ where

More information

. A NOTE ON THE RESTRICTION THEOREM AND GEOMETRY OF HYPERSURFACES

. A NOTE ON THE RESTRICTION THEOREM AND GEOMETRY OF HYPERSURFACES . A NOTE ON THE RESTRICTION THEOREM AND GEOMETRY OF HYPERSURFACES FABIO NICOLA Abstract. A necessary condition is established for the optimal (L p, L 2 ) restriction theorem to hold on a hypersurface S,

More information

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial

More information

YAO LIU. f(x t) + f(x + t)

YAO LIU. f(x t) + f(x + t) DUNKL WAVE EQUATION & REPRESENTATION THEORY OF SL() YAO LIU The classical wave equation u tt = u in n + 1 dimensions, and its various modifications, have been studied for centuries, and one of the most

More information

1 Distributions (due January 22, 2009)

1 Distributions (due January 22, 2009) Distributions (due January 22, 29). The distribution derivative of the locally integrable function ln( x ) is the principal value distribution /x. We know that, φ = lim φ(x) dx. x ɛ x Show that x, φ =

More information

Average theorem, Restriction theorem and Strichartz estimates

Average theorem, Restriction theorem and Strichartz estimates Average theorem, Restriction theorem and trichartz estimates 2 August 27 Abstract We provide the details of the proof of the average theorem and the restriction theorem. Emphasis has been placed on the

More information

Lecture 15, 16: Diagonalization

Lecture 15, 16: Diagonalization Lecture 15, 16: Diagonalization Motivation: Eigenvalues and Eigenvectors are easy to compute for diagonal matrices. Hence, we would like (if possible) to convert matrix A into a diagonal matrix. Suppose

More information

RANDOM PROPERTIES BENOIT PAUSADER

RANDOM PROPERTIES BENOIT PAUSADER RANDOM PROPERTIES BENOIT PAUSADER. Quasilinear problems In general, one consider the following trichotomy for nonlinear PDEs: A semilinear problem is a problem where the highest-order terms appears linearly

More information

1. Pseudo-Eisenstein series

1. Pseudo-Eisenstein series (January 4, 202) Spectral Theory for SL 2 (Z)\SL 2 (R)/SO 2 (R) Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ Pseudo-Eisenstein series Fourier-Laplace-Mellin transforms Recollection

More information

MATH3383. Quantum Mechanics. Appendix D: Hermite Equation; Orthogonal Polynomials

MATH3383. Quantum Mechanics. Appendix D: Hermite Equation; Orthogonal Polynomials MATH3383. Quantum Mechanics. Appendix D: Hermite Equation; Orthogonal Polynomials. Hermite Equation In the study of the eigenvalue problem of the Hamiltonian for the quantum harmonic oscillator we have

More information

The Calderon-Vaillancourt Theorem

The Calderon-Vaillancourt Theorem The Calderon-Vaillancourt Theorem What follows is a completely self contained proof of the Calderon-Vaillancourt Theorem on the L 2 boundedness of pseudo-differential operators. 1 The result Definition

More information

Problem 1A. Find the volume of the solid given by x 2 + z 2 1, y 2 + z 2 1. (Hint: 1. Solution: The volume is 1. Problem 2A.

Problem 1A. Find the volume of the solid given by x 2 + z 2 1, y 2 + z 2 1. (Hint: 1. Solution: The volume is 1. Problem 2A. Problem 1A Find the volume of the solid given by x 2 + z 2 1, y 2 + z 2 1 (Hint: 1 1 (something)dz) Solution: The volume is 1 1 4xydz where x = y = 1 z 2 This integral has value 16/3 Problem 2A Let f(x)

More information

arxiv:math/ v2 [math.ap] 3 Oct 2006

arxiv:math/ v2 [math.ap] 3 Oct 2006 THE TAYLOR SERIES OF THE GAUSSIAN KERNEL arxiv:math/0606035v2 [math.ap] 3 Oct 2006 L. ESCAURIAZA From some people one can learn more than mathematics Abstract. We describe a formula for the Taylor series

More information

Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space

Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space Elements of Positive Definite Kernel and Reproducing Kernel Hilbert Space Statistical Inference with Reproducing Kernel Hilbert Space Kenji Fukumizu Institute of Statistical Mathematics, ROIS Department

More information

Regularity for Poisson Equation

Regularity for Poisson Equation Regularity for Poisson Equation OcMountain Daylight Time. 4, 20 Intuitively, the solution u to the Poisson equation u= f () should have better regularity than the right hand side f. In particular one expects

More information

Hendrik De Bie. Hong Kong, March 2011

Hendrik De Bie. Hong Kong, March 2011 A Ghent University (joint work with B. Ørsted, P. Somberg and V. Soucek) Hong Kong, March 2011 A Classical FT New realizations of sl 2 in harmonic analysis A Outline Classical FT New realizations of sl

More information

Final A. Problem Points Score Total 100. Math115A Nadja Hempel 03/23/2017

Final A. Problem Points Score Total 100. Math115A Nadja Hempel 03/23/2017 Final A Math115A Nadja Hempel 03/23/2017 nadja@math.ucla.edu Name: UID: Problem Points Score 1 10 2 20 3 5 4 5 5 9 6 5 7 7 8 13 9 16 10 10 Total 100 1 2 Exercise 1. (10pt) Let T : V V be a linear transformation.

More information

We have to prove now that (3.38) defines an orthonormal wavelet. It belongs to W 0 by Lemma and (3.55) with j = 1. We can write any f W 1 as

We have to prove now that (3.38) defines an orthonormal wavelet. It belongs to W 0 by Lemma and (3.55) with j = 1. We can write any f W 1 as 88 CHAPTER 3. WAVELETS AND APPLICATIONS We have to prove now that (3.38) defines an orthonormal wavelet. It belongs to W 0 by Lemma 3..7 and (3.55) with j =. We can write any f W as (3.58) f(ξ) = p(2ξ)ν(2ξ)

More information

MAT 449 : Problem Set 7

MAT 449 : Problem Set 7 MAT 449 : Problem Set 7 Due Thursday, November 8 Let be a topological group and (π, V ) be a unitary representation of. A matrix coefficient of π is a function C of the form x π(x)(v), w, with v, w V.

More information

1 Fourier Integrals of finite measures.

1 Fourier Integrals of finite measures. 18.103 Fall 2013 1 Fourier Integrals of finite measures. Denote the space of finite, positive, measures on by M + () = {µ : µ is a positive measure on ; µ() < } Proposition 1 For µ M + (), we define the

More information

Linear Algebra using Dirac Notation: Pt. 2

Linear Algebra using Dirac Notation: Pt. 2 Linear Algebra using Dirac Notation: Pt. 2 PHYS 476Q - Southern Illinois University February 6, 2018 PHYS 476Q - Southern Illinois University Linear Algebra using Dirac Notation: Pt. 2 February 6, 2018

More information

DIFFERENTIATING THE ABSOLUTELY CONTINUOUS INVARIANT MEASURE OF AN INTERVAL MAP f WITH RESPECT TO f. by David Ruelle*.

DIFFERENTIATING THE ABSOLUTELY CONTINUOUS INVARIANT MEASURE OF AN INTERVAL MAP f WITH RESPECT TO f. by David Ruelle*. DIFFERENTIATING THE ABSOLUTELY CONTINUOUS INVARIANT MEASURE OF AN INTERVAL MAP f WITH RESPECT TO f. by David Ruelle*. Abstract. Let the map f : [, 1] [, 1] have a.c.i.m. ρ (absolutely continuous f-invariant

More information

Indeed, the family is still orthogonal if we consider a complex valued inner product ( or an inner product on complex vector space)

Indeed, the family is still orthogonal if we consider a complex valued inner product ( or an inner product on complex vector space) Fourier series of complex valued functions Suppose now f is a piecewise continuous complex valued function on [, π], that is f(x) = u(x)+iv(x) such that both u and v are real valued piecewise continuous

More information

Errata Applied Analysis

Errata Applied Analysis Errata Applied Analysis p. 9: line 2 from the bottom: 2 instead of 2. p. 10: Last sentence should read: The lim sup of a sequence whose terms are bounded from above is finite or, and the lim inf of a sequence

More information

2. The Schrödinger equation for one-particle problems. 5. Atoms and the periodic table of chemical elements

2. The Schrödinger equation for one-particle problems. 5. Atoms and the periodic table of chemical elements 1 Historical introduction The Schrödinger equation for one-particle problems 3 Mathematical tools for quantum chemistry 4 The postulates of quantum mechanics 5 Atoms and the periodic table of chemical

More information

LECTURE 7. k=1 (, v k)u k. Moreover r

LECTURE 7. k=1 (, v k)u k. Moreover r LECTURE 7 Finite rank operators Definition. T is said to be of rank r (r < ) if dim T(H) = r. The class of operators of rank r is denoted by K r and K := r K r. Theorem 1. T K r iff T K r. Proof. Let T

More information

Definition: An n x n matrix, "A", is said to be diagonalizable if there exists a nonsingular matrix "X" and a diagonal matrix "D" such that X 1 A X

Definition: An n x n matrix, A, is said to be diagonalizable if there exists a nonsingular matrix X and a diagonal matrix D such that X 1 A X DIGONLIZTION Definition: n n x n matrix, "", is said to be diagonalizable if there exists a nonsingular matrix "X" and a diagonal matrix "D" such that X X D. Theorem: n n x n matrix, "", is diagonalizable

More information

Dangerous and Illegal Operations in Calculus Do we avoid differentiating discontinuous functions because it s impossible, unwise, or simply out of

Dangerous and Illegal Operations in Calculus Do we avoid differentiating discontinuous functions because it s impossible, unwise, or simply out of Dangerous and Illegal Operations in Calculus Do we avoid differentiating discontinuous functions because it s impossible, unwise, or simply out of ignorance and fear? Despite the risks, many natural phenomena

More information

The heat equation for the Hermite operator on the Heisenberg group

The heat equation for the Hermite operator on the Heisenberg group Hokkaido Mathematical Journal Vol. 34 (2005) p. 393 404 The heat equation for the Hermite operator on the Heisenberg group M. W. Wong (Received August 5, 2003) Abstract. We give a formula for the one-parameter

More information

λ n = L φ n = π L eınπx/l, for n Z

λ n = L φ n = π L eınπx/l, for n Z Chapter 32 The Fourier Transform 32. Derivation from a Fourier Series Consider the eigenvalue problem y + λy =, y( L = y(l, y ( L = y (L. The eigenvalues and eigenfunctions are ( nπ λ n = L 2 for n Z +

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

ALGEBRAIC GROUPS. Disclaimer: There are millions of errors in these notes!

ALGEBRAIC GROUPS. Disclaimer: There are millions of errors in these notes! ALGEBRAIC GROUPS Disclaimer: There are millions of errors in these notes! 1. Some algebraic geometry The subject of algebraic groups depends on the interaction between algebraic geometry and group theory.

More information

Kernel Density Estimation

Kernel Density Estimation EECS 598: Statistical Learning Theory, Winter 2014 Topic 19 Kernel Density Estimation Lecturer: Clayton Scott Scribe: Yun Wei, Yanzhen Deng Disclaimer: These notes have not been subjected to the usual

More information

THEORY OF DISTRIBUTIONS

THEORY OF DISTRIBUTIONS THEORY OF DISTRIBUTIONS THE SEQUENTIAL APPROACH by PIOTR ANTOSIK Special Research Centre of the Polish Academy of Sciences in Katowice JAN MIKUSltfSKI Special Research Centre of the Polish Academy of Sciences

More information

JASSON VINDAS AND RICARDO ESTRADA

JASSON VINDAS AND RICARDO ESTRADA A QUICK DISTRIBUTIONAL WAY TO THE PRIME NUMBER THEOREM JASSON VINDAS AND RICARDO ESTRADA Abstract. We use distribution theory (generalized functions) to show the prime number theorem. No tauberian results

More information

The Diffusion Equation with Piecewise Smooth Initial Conditions ABSTRACT INTRODUCTION

The Diffusion Equation with Piecewise Smooth Initial Conditions ABSTRACT INTRODUCTION Malaysian Journal of Mathematical Sciences 5(1): 101-110 (011) The Diffusion Equation with Piecewise Smooth Initial Conditions Ravshan Ashurov and Almaz Butaev Institute of Advanced Technology (ITMA),Universiti

More information

TOPICS IN FOURIER ANALYSIS-III. Contents

TOPICS IN FOURIER ANALYSIS-III. Contents TOPICS IN FOUIE ANALYSIS-III M.T. NAI Contents 1. Fourier transform: Basic properties 2 2. On surjectivity 7 3. Inversion theorem 9 4. Proof of inversion theorem 10 5. The Banach algebra L 1 ( 12 6. Fourier-Plancheral

More information

The L p -dissipativity of first order partial differential operators

The L p -dissipativity of first order partial differential operators The L p -dissipativity of first order partial differential operators A. Cialdea V. Maz ya n Memory of Vladimir. Smirnov Abstract. We find necessary and sufficient conditions for the L p -dissipativity

More information

1 Assignment 1: Nonlinear dynamics (due September

1 Assignment 1: Nonlinear dynamics (due September Assignment : Nonlinear dynamics (due September 4, 28). Consider the ordinary differential equation du/dt = cos(u). Sketch the equilibria and indicate by arrows the increase or decrease of the solutions.

More information

Linear Algebra and Dirac Notation, Pt. 2

Linear Algebra and Dirac Notation, Pt. 2 Linear Algebra and Dirac Notation, Pt. 2 PHYS 500 - Southern Illinois University February 1, 2017 PHYS 500 - Southern Illinois University Linear Algebra and Dirac Notation, Pt. 2 February 1, 2017 1 / 14

More information

MATH 173: Problem Set 5 Solutions

MATH 173: Problem Set 5 Solutions MATH 173: Problem Set 5 Solutions Problem 1. Let f L 1 and a. Te wole problem is a matter of cange of variables wit integrals. i Ff a ξ = e ix ξ f a xdx = e ix ξ fx adx = e ia+y ξ fydy = e ia ξ = e ia

More information

The Simple Harmonic Oscillator

The Simple Harmonic Oscillator The Simple Harmonic Oscillator Asaf Pe er 1 November 4, 215 This part of the course is based on Refs [1] [3] 1 Introduction We return now to the study of a 1-d stationary problem: that of the simple harmonic

More information

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018

Numerical Analysis Preliminary Exam 10 am to 1 pm, August 20, 2018 Numerical Analysis Preliminary Exam 1 am to 1 pm, August 2, 218 Instructions. You have three hours to complete this exam. Submit solutions to four (and no more) of the following six problems. Please start

More information

UNIVERSITY OF MANITOBA

UNIVERSITY OF MANITOBA Question Points Score INSTRUCTIONS TO STUDENTS: This is a 6 hour examination. No extra time will be given. No texts, notes, or other aids are permitted. There are no calculators, cellphones or electronic

More information

1. General Vector Spaces

1. General Vector Spaces 1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule

More information

Dunkl operators and Clifford algebras II

Dunkl operators and Clifford algebras II Translation operator for the Clifford Research Group Department of Mathematical Analysis Ghent University Hong Kong, March, 2011 Translation operator for the Hermite polynomials Translation operator for

More information