Linearity in Calibration:

Size: px
Start display at page:

Download "Linearity in Calibration:"

Transcription

1 Linearity in Calibration: The Durbin-Watson Statistic A discussion of how DW can be a useful tool when different statistical approaches show different sensitivities to particular departures from the ideal. Howard Mark and Jerome Workman, Jr. As we left off in our last column, we had proposed a definition of linearity. Now let's start by delving into the ins and outs of the Durbin-Watson statistic (1-6) and looking at how to use it to test for nonlinearity. In fact, we've talked about the Durbin-Watson statistic previously in our columns, although a long time ago and under a different name. Quite a while ago we published a column titled "Alternative Ways to Calculate Standard Deviation" (7). One of the alternative ways described was the calculation by Successive Differences. As we shall see, that calculation is very closely related to the Durbin-Watson statistic. More recently we described this statistic (more directly named) in a sidebar to an article in the American Pharmaceutical Review (8). To relate the Durbin-Watson statistic to our current concerns, we go back to the basics of statistical analysis and remind ourselves how statisticians think about statistics. Here we get into the deep thickets of statistical theory, and meaning and philosophy. We will try to keep it as simple as possible, though. How DB Works Let us start with two of the formulas for standard deviation presented in our earlier column (7). One of the formulas is the "ordinary" formula for standard deviation: errors have the characteristics that statisticians consider "good" statistical properties: random, independent (uncorrelated), constant variance, and in this case, a Normal distribution, and for errors, a mean (μ) of zero, as well. For a set of data that meets all these criteria, we can expect the two computations to produce the same answer (within the limits of what sometimes loosely is called "statistical variability"). So under conditions where we expect the same answer from both computations, we expect the ratio of the computations to equal 1 (unity). Basically, this is a general description of how statisticians think about problems: First, compare the results of two computations of what is nominally the same quantity when all conditions meet the specified assumptions. Then if the comparison fails, this constitutes evidence that something about the data is not conforming to the expected characteristic (that is, is not random, is correlated, is heteroscedastic, is not Normal, and so forth). The Durbin-Watson statistic is that type of computation, stripped to its barest essentials. Dividing equation 2 by equation 1 above, canceling similar terms, noting that the mean error is zero and ignoring the constant factor (2) we arrive at: The other formula is the formula for calculating standard deviation by Successive Differences: Now we ask ourselves the question: "If we calculate the standard deviation for a set of data (or errors) from these two formulas, will they give us the same answer?" And the answer to that question is that they will, if (that's a very big "if") the data and the Because of the way it is calculated, particularly the way the constant factor is ignored, the expected value of DW is 2, when the data do in fact meet all the specified criteria: random, independent errors, and so forth. Nonlinearity will cause the computed value of DW to be statistically significantly less than 2. (Homework assignment for the reader: what characteristic will make DW be statistically significantly greater than 2?) Figures 1 and 2 illustrate graphically what happens when you inspect the residuals from a calibration. When you plot linear data, the data are spread out 34 Spectroscopy 20(3) March

2 evenly around the calibration line as shown in Figure 1a. dependent almost entirely upon the systematic variation due to the curvature, and for nonlinear data this is much larger than the random noise contribution. Therefore the denominator variance of the residuals is much larger than the numerator variance when nonlinearity is present, and the Durbin-Watson statistic reflects this by assuming a value less than 2. When plotting the residuals, the line representing the calibration line is brought into coincidence with the x axis, so that the residuals are spread out evenly around the x axis, as shown in Figure 1b. For nonlinear data, shown in Figure 2a, a plot of the residuals shows that although the calibration line still coincides with the x axis, the data do not follow that line. Therefore, although the residuals still have equal positive and negative values, they are no longer spread out evenly around the zero line because the actual function is no longer a straight line. Instead, the residuals are spread out evenly around some hypothetical curved line (shown) representing the actual (nonlinear) function describing the data. In both the linear and nonlinear cases the total variation of the residuals is the sum of the random error, plus the departure from linearity. When the data is linear, the variance due to the departure from nonlinearity effectively is zero. For a nonlinear set of data, because the X-difference between adjacent data points is small, the nonlinearity of the function makes minimal contribution to the total difference between adjacent residuals; most of that difference contributing to the successive differences in the numerator of the DW calculation is due to the random noise of the data. The denominator term, on the other hand, is Good Statistics vs. Good Data The problem we all have is that we want answers to be in clear, unambiguous terms: yes/no, black/white, is/isn't linear, while statistics deals in probabilities. It is certainly true that there is no single statistic not SEE, not R 2, not DW, nor any other that is going to answer the question of whether a given set of data, or residuals, has a linear relation. If we wanted to be really ornery, we could even argue that "linearity" is, as with most mathematical concepts, an idealization of a property that never exists in real data. But that is not productive, and doesn't address the real-world issues that confront us. What are some of these real-world issues? Well, you might want to check out the paper "Graphs in Statistical Analysis" by F.J. Anscombe (9). We'll describe his results again, but it really is worth getting hold of and reading the original paper anyway; it's quite an eye-opener. What Anscombe presents are four sets of synthetic data, representing four simple (single X-variable) regression situations. One of the data sets represents a reasonably well-behaved set of 35 Spectroscopy 20(3) March

3 data: uniform distribution of data along the x axis; errors are random, independent and Normally distributed; and in all respects has all the properties that statisticians consider "good." The other three sets show very gross departures of varying kinds (including one that is severely nonlinear), from this well-behaved data set. So what's the big deal about that? By design, all four sets of data have identical values of all the common regression statistics: coefficients, SEE, R 2, and so forth. The intent is, of course, to show that no set of statistics can diagnose unambiguously all possible problems in all situations. It is immediately clear, when you look at the graphs of the four data sets on the other hand, which is the "good" one, which have the problems, and what the problems are. Any statistician worth his salt will tell you that if you are doing calibration work, you should examine the residual plots, and any others that might be informative. But the FDA/ICH guidelines do not promote that approach even though they are mentioned. To the contrary, they emphasize calculating and submitting the numerical results from the line-fitting process. Under ordinary circumstances, that really is not too bad, as long as you understand what you are doing, which usually means going back to basic statistical theory. This theory states that if data meet certain criteria, criteria that (always) include the fact that the errors that are random and independent, and (usually) Normally distributed, then certain calculations can be done and probabilistic statements made about the results of those calculations. If you make the calculation and the value turns out to be one of low probability, then that is taken as evidence that your data fail to meet one or more of the criteria that they are assumed to meet. Note that the calculation alone does not tell you which criterion is not met; the criterion that it does not meet might or might not be the one you are concerned with. The converse, however, is, strictly speaking, not true. If your calculated result turns out to be a high-probability value, it does not "prove" that the data meet the criteria. That is what Anscombe's paper is demonstrating, because there is a (natural) tendency to forget that point, and assume that a "good" statistic means "good" data. Applying DW So where does that leave us? Does it mean that statistics are useless, or that FDA is clueless? No, but it means that all these things have to be done with an eye to knowing what can go wrong. We strongly suspect that FDA has taken the position it has because it has found that, even though numerical statistics are not perfect, they provide an objective measure of calibration performance, and they have found through hard experience that the subjective interpretation of graphs is fraught even more with problems than is the use of admittedly imperfect statistics. For similar reasons, the statement, "If the Durbin- Watson test demonstrates a correlation, then the relationship between the two assays is not linear," is not exactly correct, either. Under some circumstances, a linear correlation also can give rise to a statistically significant value of DW. In fact, for any statistic, it always is possible to construct a data set that gives a high-probability value for the statistic, yet the data clearly and obviously fail to meet the pertinent criteria (again, Anscombe is a good example of this for a few common statistics). So what should we do? Well, different statistics show different sensitivities to particular departures from the ideal, and this is where DW comes in. The key to calculating the Durbin-Watson statistic is that prior to performing the calculation, the data must be put into a suitable order. The Durbin-Watson statistic then is sensitive to serial correlations of the ordered data. While the serial correlation often is thought of in connection with time series, that is only one of its applications. Draper and Smith (1) discuss the application of DW to the analysis of residuals from a calibration; their discussion is based upon the fundamental work of Durbin et al., in the references listed at the beginning of this column. While we cannot reproduce their entire discussion here, at the heart of it is the fact that there are many kinds of serial correlation, including linear, quadratic, and higher order. As Draper and Smith show, the linear correlation between the residuals from the calibration data and the predicted values from that calibration model is zero. Therefore, if the sample data are ordered according to the analyte values predicted from the calibration model, a statistically-significant value of the Durbin-Watson statistic for the residuals in indicative of high-order serial correlation, that is, nonlinearity. Draper and Smith point out that you need a minimum of 15 samples in order to get meaningful results from the calculation of the Durbin-Watson statistic (1). Because the Anscombe data set contains only 11 readings, statistically meaningful statements cannot be made. Nevertheless, it is interesting to see the results of the Durbin-Watson statistic applied to the nonlinear set of Anscombe data; the value of the statistic is For comparison, the Durbin-Watson statistic for the data set representing normal "good" data is Spectroscopy 20(3) March

4 Is DW perfect? Not at all. The way it is calculated, the highest-probability value (the "expected" value) for DW is, as we saw above, 2. Yet it is possible to construct a data set that has a DW value of 2, and clearly and obviously is not linear, as well as being nonrandom. That data set is as follows: 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, 0,... But for ordinary data, we would not expect such a sequence to happen. This is the reason most statistics work as general indicators of data performance: the special cases that cause them to fail are themselves low-probability occurrences. In this case the problem is not whether the data are nonlinear the problem is that they are nonrandom. This is a perfect example of the data failing to meet a criterion other than the one you are concerned with. Therefore the Durbin-Watson test fails, as would any statistical test fail for such data; they are simply not amenable to meaningful statistical calculations. Nevertheless, a "blind" computation of the Durbin-Watson statistic would give an apparently satisfactory value. But this is a warning that other characteristics of the data can cause it to appear to meet the criteria. And you have to know what can occur. But the mechanics of calculating DW for testing linearity is relatively simple, once you've gone through all the above: sort the data set according to the values predicted from the calibration model, then perform the calculation specified in equation 3. Note that, while the sorting is done using the predicted values from the model, the DW calculations are done using the residuals. But anyone doing calibration work should read Draper and Smith anyway it's the "bible" of regression analysis (see reference 1). The discussions of DW appear on pages 69 and of Draper and Smith, third edition (the second edition contains a similar but somewhat less extensive discussion). They also include an algorithm and tables of critical values for deciding whether the correlation is statistically significant. You might also want to check out page 64 for the proof that the linear correlation between residuals and predicted values from the calibration is zero. DW vs. R 2 So DW and R 2 test different things. As a specific test for nonlinearity, what is the relative utility of DW versus R 2 for that purpose? Basically, the answer is that when done according to the way Draper and Smith (and we) described, DW then is sensitive specifically to nonlinearity in the predictions. So, for example, in the case of the Anscombe data, all the other statistics (including R 2 ) might be considered satisfactory, and because they are the same for all four sets of data then all four sets would be considered satisfactory. But if you do the DW test on the data showing nonlinearity, it will flag it as having a low value of the statistic. Anscombe did not provide enough samples' worth of synthetic data in his sets, however, for the calculated statistics to be statistically meaningful. We also note that as a practical matter, meaningful calculation of the Durbin-Watson Statistic requires many samples' worth of data. We noted above that for fewer than 15 samples critical values for this statistic are not listed in the tables. The reason for requiring so many samples is that essentially we are comparing two variances (or, at least, two measures of the same variance). Because variances are distributed as x 2, for small numbers of samples this statistic has a very wide range of values indeed, so that comparisons virtually become meaningless because almost anything will fall within the confidence interval, giving this test low statistical power. On the other hand, characterizing R 2 as a general measure of how good the fit is doesn't make us flinch, either; it is one of the standard statistics for doing that evaluation. Quite the contrary, when we saw R 2 being specified as the way to test linearity, we wondered why it was chosen by FDA and ICH, because it is so nonspecific. We still don't know why, except for the obvious guess that they weren't aware of DW. We are in favor of keeping the other statistics as measures of the general "goodness of fit" of the model to the data, but in the specific context of trying to assess linearity, still we have to promote DW over R 2 as being more suited for that special purpose. (We eventually will discuss in our next few columns an even better method for assessing linearity.) Sensitive, But Not Perfect As for testing other characteristics of a univariate calibration, there also are ways to test for statistical significance of the slope, to see whether unity slope adequately describes the relationship between test results and analyte concentration. These are described in the book Principles and Practice of Spectroscopic Calibration (10). The statistics described there are called the "Data Significance t" (DST) test and the "Slope Significance t" (SST) test. Unless the DST is significant statistically, though, the SST is meaningless. In principle, there also is a test for the intercept. But because the expected value for the intercept depends upon the slope, it gets a bit hairy. It also makes the confidence interval so large that the test is nigh-on useless few statisticians recommend it. 37 Spectroscopy 20(3) March

5 But let's add this coda to the discussion of DW: The fact that DW specifically is sensitive to nonlinearity does not mean that it is perfect. There might be cases of nonlinearity that will not be detected (especially if it's a marginal amount), linear data occasionally will be flagged as nonlinear (α percent of the time, in the long run), and other types of defects in the data can show up by giving a statistically significant value to DW. But all this is true for any and all statistics. The existence of at least one data set that is known to fool the calculation is a warning that the Durbin-Watson statistic, while a (large) step in the right direction, is not the ultimate answer. Some further comments here: there does seem to be some confusion between the usage of the statistics recommended by the guidelines, which are excellent for their intended purpose of testing the general "goodness of fit" of a model, and the specific testing of a particular model characteristic, such as linearity. A good deal of this confusion probably is due to the fact that the guidelines recommend those general statistics for the specific task of testing linearity. As Anscombe shows, however, and as we referred to previously, those generalized statistics are not up to the task. In our next column we will discuss other methods of testing for linearity that have appeared in the literature. We then will turn our attention to a new test that has been devised. In fact, it turns out that while DW has much in its favor, it is not the final or best answer. The new method is much more direct and specific even than DW. It is the correct way to test for linearity. We will discuss it all in due course, in a future installment of "." References 1. N. Draper and H. Smith, Applied Regression Analysis (third edition) (John Wiley & Sons, New York,1998). 2. J. Durbin and G.S. Watson, Biometrika 37, (1950). 3. J. Durbin and G.S. Watson, Biometrika 38, (1951). 4. J. Durbin, Biometrika 56, 1-15 (1969). 5. J. Durbin, Econometrica 38, (1970). 6. J. Durbin and G.S. Watson, Biometrika 58, 1-19 (1971). 7. H. Mark and J. Workman, Spectroscopy 2(11), (1987). 8. G. Ritchie and E. Ciurczak, Amer. Pharm. Rev.3(3), (2000). 9. F.J. Anscombe, Amer. Stat.27, (1973). 10. H. Mark, Principles and Practice of Spectroscopic Calibration (John Wiley & Sons, New York, 1991). Jerome Workman Jr. serves on the Editorial Advisory Board of Spectroscopy and is director of research, technology, and applications development for the Molecular Spectroscopy & Microanalysis division of Thermo Electron Corp. He can be reached by at: jerry.workman@thermo.com Jerome Workman Jr Howard Mark 38 Spectroscopy 20(3) March

Howard Mark and Jerome Workman Jr.

Howard Mark and Jerome Workman Jr. Linearity in Calibration: How to Test for Non-linearity Previous methods for linearity testing discussed in this series contain certain shortcomings. In this installment, the authors describe a method

More information

Regression, part II. I. What does it all mean? A) Notice that so far all we ve done is math.

Regression, part II. I. What does it all mean? A) Notice that so far all we ve done is math. Regression, part II I. What does it all mean? A) Notice that so far all we ve done is math. 1) One can calculate the Least Squares Regression Line for anything, regardless of any assumptions. 2) But, if

More information

Howard Mark and Jerome Workman Jr.

Howard Mark and Jerome Workman Jr. Derivatives in Spectroscopy Part IV Calibrating with Derivatives Howard Mark and Jerome Workman Jr. 44 Spectroscopy 19(1) January 2004 Our previous three columns (1 3) contained discussion of the theoretical

More information

Finite Mathematics : A Business Approach

Finite Mathematics : A Business Approach Finite Mathematics : A Business Approach Dr. Brian Travers and Prof. James Lampes Second Edition Cover Art by Stephanie Oxenford Additional Editing by John Gambino Contents What You Should Already Know

More information

Of small numbers with big influence The Sum Of Squares

Of small numbers with big influence The Sum Of Squares Of small numbers with big influence The Sum Of Squares Dr. Peter Paul Heym Sum Of Squares Often, the small things make the biggest difference in life. Sometimes these things we do not recognise at first

More information

MITOCW ocw f99-lec09_300k

MITOCW ocw f99-lec09_300k MITOCW ocw-18.06-f99-lec09_300k OK, this is linear algebra lecture nine. And this is a key lecture, this is where we get these ideas of linear independence, when a bunch of vectors are independent -- or

More information

Special Theory Of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay

Special Theory Of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay Special Theory Of Relativity Prof. Shiva Prasad Department of Physics Indian Institute of Technology, Bombay Lecture - 6 Length Contraction and Time Dilation (Refer Slide Time: 00:29) In our last lecture,

More information

Uncertainty, Error, and Precision in Quantitative Measurements an Introduction 4.4 cm Experimental error

Uncertainty, Error, and Precision in Quantitative Measurements an Introduction 4.4 cm Experimental error Uncertainty, Error, and Precision in Quantitative Measurements an Introduction Much of the work in any chemistry laboratory involves the measurement of numerical quantities. A quantitative measurement

More information

Module 03 Lecture 14 Inferential Statistics ANOVA and TOI

Module 03 Lecture 14 Inferential Statistics ANOVA and TOI Introduction of Data Analytics Prof. Nandan Sudarsanam and Prof. B Ravindran Department of Management Studies and Department of Computer Science and Engineering Indian Institute of Technology, Madras Module

More information

Regression Analysis: Basic Concepts

Regression Analysis: Basic Concepts The simple linear model Regression Analysis: Basic Concepts Allin Cottrell Represents the dependent variable, y i, as a linear function of one independent variable, x i, subject to a random disturbance

More information

Slope Fields: Graphing Solutions Without the Solutions

Slope Fields: Graphing Solutions Without the Solutions 8 Slope Fields: Graphing Solutions Without the Solutions Up to now, our efforts have been directed mainly towards finding formulas or equations describing solutions to given differential equations. Then,

More information

ECON 497: Lecture 4 Page 1 of 1

ECON 497: Lecture 4 Page 1 of 1 ECON 497: Lecture 4 Page 1 of 1 Metropolitan State University ECON 497: Research and Forecasting Lecture Notes 4 The Classical Model: Assumptions and Violations Studenmund Chapter 4 Ordinary least squares

More information

Lecture 10: F -Tests, ANOVA and R 2

Lecture 10: F -Tests, ANOVA and R 2 Lecture 10: F -Tests, ANOVA and R 2 1 ANOVA We saw that we could test the null hypothesis that β 1 0 using the statistic ( β 1 0)/ŝe. (Although I also mentioned that confidence intervals are generally

More information

University of Massachusetts Boston - Chemistry Department Physical Chemistry Laboratory Introduction to Maximum Probable Error

University of Massachusetts Boston - Chemistry Department Physical Chemistry Laboratory Introduction to Maximum Probable Error University of Massachusetts Boston - Chemistry Department Physical Chemistry Laboratory Introduction to Maximum Probable Error Statistical methods describe random or indeterminate errors in experimental

More information

Violating the normal distribution assumption. So what do you do if the data are not normal and you still need to perform a test?

Violating the normal distribution assumption. So what do you do if the data are not normal and you still need to perform a test? Violating the normal distribution assumption So what do you do if the data are not normal and you still need to perform a test? Remember, if your n is reasonably large, don t bother doing anything. Your

More information

Linear Regression. Linear Regression. Linear Regression. Did You Mean Association Or Correlation?

Linear Regression. Linear Regression. Linear Regression. Did You Mean Association Or Correlation? Did You Mean Association Or Correlation? AP Statistics Chapter 8 Be careful not to use the word correlation when you really mean association. Often times people will incorrectly use the word correlation

More information

MITOCW ocw f99-lec30_300k

MITOCW ocw f99-lec30_300k MITOCW ocw-18.06-f99-lec30_300k OK, this is the lecture on linear transformations. Actually, linear algebra courses used to begin with this lecture, so you could say I'm beginning this course again by

More information

Lesson 2: Put a Label on That Number!

Lesson 2: Put a Label on That Number! Lesson 2: Put a Label on That Number! What would you do if your mother approached you, and, in an earnest tone, said, Honey. Yes, you replied. One million. Excuse me? One million, she affirmed. One million

More information

MITOCW watch?v=fxlzy2l1-4w

MITOCW watch?v=fxlzy2l1-4w MITOCW watch?v=fxlzy2l1-4w PROFESSOR: We spoke about the hydrogen atom. And in the hydrogen atom, we drew the spectrum, so the table, the data of spectrum of a quantum system. So this is a question that

More information

MITOCW ocw f99-lec05_300k

MITOCW ocw f99-lec05_300k MITOCW ocw-18.06-f99-lec05_300k This is lecture five in linear algebra. And, it will complete this chapter of the book. So the last section of this chapter is two point seven that talks about permutations,

More information

Chapter 3. Introduction to Linear Correlation and Regression Part 3

Chapter 3. Introduction to Linear Correlation and Regression Part 3 Tuesday, December 12, 2000 Ch3 Intro Correlation Pt 3 Page: 1 Richard Lowry, 1999-2000 All rights reserved. Chapter 3. Introduction to Linear Correlation and Regression Part 3 Regression The appearance

More information

Notes 11: OLS Theorems ECO 231W - Undergraduate Econometrics

Notes 11: OLS Theorems ECO 231W - Undergraduate Econometrics Notes 11: OLS Theorems ECO 231W - Undergraduate Econometrics Prof. Carolina Caetano For a while we talked about the regression method. Then we talked about the linear model. There were many details, but

More information

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8", how accurate is our result?

Take the measurement of a person's height as an example. Assuming that her height has been determined to be 5' 8, how accurate is our result? Error Analysis Introduction The knowledge we have of the physical world is obtained by doing experiments and making measurements. It is important to understand how to express such data and how to analyze

More information

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur

Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Introduction to Machine Learning Prof. Sudeshna Sarkar Department of Computer Science and Engineering Indian Institute of Technology, Kharagpur Module 2 Lecture 05 Linear Regression Good morning, welcome

More information

MITOCW MITRES18_006F10_26_0602_300k-mp4

MITOCW MITRES18_006F10_26_0602_300k-mp4 MITOCW MITRES18_006F10_26_0602_300k-mp4 FEMALE VOICE: The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational

More information

Note that we are looking at the true mean, μ, not y. The problem for us is that we need to find the endpoints of our interval (a, b).

Note that we are looking at the true mean, μ, not y. The problem for us is that we need to find the endpoints of our interval (a, b). Confidence Intervals 1) What are confidence intervals? Simply, an interval for which we have a certain confidence. For example, we are 90% certain that an interval contains the true value of something

More information

MITOCW ocw f99-lec01_300k

MITOCW ocw f99-lec01_300k MITOCW ocw-18.06-f99-lec01_300k Hi. This is the first lecture in MIT's course 18.06, linear algebra, and I'm Gilbert Strang. The text for the course is this book, Introduction to Linear Algebra. And the

More information

The SuperBall Lab. Objective. Instructions

The SuperBall Lab. Objective. Instructions 1 The SuperBall Lab Objective This goal of this tutorial lab is to introduce data analysis techniques by examining energy loss in super ball collisions. Instructions This laboratory does not have to be

More information

Note: Please use the actual date you accessed this material in your citation.

Note: Please use the actual date you accessed this material in your citation. MIT OpenCourseWare http://ocw.mit.edu 18.06 Linear Algebra, Spring 2005 Please use the following citation format: Gilbert Strang, 18.06 Linear Algebra, Spring 2005. (Massachusetts Institute of Technology:

More information

Introductory Quantum Chemistry Prof. K. L. Sebastian Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore

Introductory Quantum Chemistry Prof. K. L. Sebastian Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore Introductory Quantum Chemistry Prof. K. L. Sebastian Department of Inorganic and Physical Chemistry Indian Institute of Science, Bangalore Lecture - 4 Postulates Part 1 (Refer Slide Time: 00:59) So, I

More information

MITOCW R11. Double Pendulum System

MITOCW R11. Double Pendulum System MITOCW R11. Double Pendulum System The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for

More information

Chapter 2: simple regression model

Chapter 2: simple regression model Chapter 2: simple regression model Goal: understand how to estimate and more importantly interpret the simple regression Reading: chapter 2 of the textbook Advice: this chapter is foundation of econometrics.

More information

, (1) e i = ˆσ 1 h ii. c 2016, Jeffrey S. Simonoff 1

, (1) e i = ˆσ 1 h ii. c 2016, Jeffrey S. Simonoff 1 Regression diagnostics As is true of all statistical methodologies, linear regression analysis can be a very effective way to model data, as along as the assumptions being made are true. For the regression

More information

MITOCW ocw lec8

MITOCW ocw lec8 MITOCW ocw-5.112-lec8 The following content is provided by MIT OpenCourseWare under a Creative Commons license. Additional information about our license and MIT OpenCourseWare in general is available at

More information

MITOCW MITRES_18-007_Part3_lec5_300k.mp4

MITOCW MITRES_18-007_Part3_lec5_300k.mp4 MITOCW MITRES_18-007_Part3_lec5_300k.mp4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources

More information

Fitting a Straight Line to Data

Fitting a Straight Line to Data Fitting a Straight Line to Data Thanks for your patience. Finally we ll take a shot at real data! The data set in question is baryonic Tully-Fisher data from http://astroweb.cwru.edu/sparc/btfr Lelli2016a.mrt,

More information

THE SIMPLE PROOF OF GOLDBACH'S CONJECTURE. by Miles Mathis

THE SIMPLE PROOF OF GOLDBACH'S CONJECTURE. by Miles Mathis THE SIMPLE PROOF OF GOLDBACH'S CONJECTURE by Miles Mathis miles@mileswmathis.com Abstract Here I solve Goldbach's Conjecture by the simplest method possible. I do this by first calculating probabilites

More information

But, there is always a certain amount of mystery that hangs around it. People scratch their heads and can't figure

But, there is always a certain amount of mystery that hangs around it. People scratch their heads and can't figure MITOCW 18-03_L19 Today, and for the next two weeks, we are going to be studying what, for many engineers and a few scientists is the most popular method of solving any differential equation of the kind

More information

In the previous chapter, we learned how to use the method of least-squares

In the previous chapter, we learned how to use the method of least-squares 03-Kahane-45364.qxd 11/9/2007 4:40 PM Page 37 3 Model Performance and Evaluation In the previous chapter, we learned how to use the method of least-squares to find a line that best fits a scatter of points.

More information

MITOCW ocw f99-lec16_300k

MITOCW ocw f99-lec16_300k MITOCW ocw-18.06-f99-lec16_300k OK. Here's lecture sixteen and if you remember I ended up the last lecture with this formula for what I called a projection matrix. And maybe I could just recap for a minute

More information

MITOCW watch?v=7q32wnm4dew

MITOCW watch?v=7q32wnm4dew MITOCW watch?v=7q32wnm4dew BARTON ZWIEBACH: Hydrogen atom is the beginning of our analysis. It still won't solve differential equations, but we will now two particles, a proton, whose coordinates are going

More information

MITOCW ocw f99-lec17_300k

MITOCW ocw f99-lec17_300k MITOCW ocw-18.06-f99-lec17_300k OK, here's the last lecture in the chapter on orthogonality. So we met orthogonal vectors, two vectors, we met orthogonal subspaces, like the row space and null space. Now

More information

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi

Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Communication Engineering Prof. Surendra Prasad Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 41 Pulse Code Modulation (PCM) So, if you remember we have been talking

More information

Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras

Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras Biostatistics and Design of Experiments Prof. Mukesh Doble Department of Biotechnology Indian Institute of Technology, Madras Lecture - 39 Regression Analysis Hello and welcome to the course on Biostatistics

More information

Design and Optimization of Energy Systems Prof. C. Balaji Department of Mechanical Engineering Indian Institute of Technology, Madras

Design and Optimization of Energy Systems Prof. C. Balaji Department of Mechanical Engineering Indian Institute of Technology, Madras Design and Optimization of Energy Systems Prof. C. Balaji Department of Mechanical Engineering Indian Institute of Technology, Madras Lecture - 09 Newton-Raphson Method Contd We will continue with our

More information

The Inductive Proof Template

The Inductive Proof Template CS103 Handout 24 Winter 2016 February 5, 2016 Guide to Inductive Proofs Induction gives a new way to prove results about natural numbers and discrete structures like games, puzzles, and graphs. All of

More information

1.4 Techniques of Integration

1.4 Techniques of Integration .4 Techniques of Integration Recall the following strategy for evaluating definite integrals, which arose from the Fundamental Theorem of Calculus (see Section.3). To calculate b a f(x) dx. Find a function

More information

8.3.2 The finite size scaling method

8.3.2 The finite size scaling method 232 Chapter 8: Analysing Monte Carlo data In general we don t know this value, which makes it difficult to perform the fit. It is possible to guess T c and then vary the guess to make the line in Figure

More information

appstats27.notebook April 06, 2017

appstats27.notebook April 06, 2017 Chapter 27 Objective Students will conduct inference on regression and analyze data to write a conclusion. Inferences for Regression An Example: Body Fat and Waist Size pg 634 Our chapter example revolves

More information

Introduction to Algebra: The First Week

Introduction to Algebra: The First Week Introduction to Algebra: The First Week Background: According to the thermostat on the wall, the temperature in the classroom right now is 72 degrees Fahrenheit. I want to write to my friend in Europe,

More information

Physics 509: Error Propagation, and the Meaning of Error Bars. Scott Oser Lecture #10

Physics 509: Error Propagation, and the Meaning of Error Bars. Scott Oser Lecture #10 Physics 509: Error Propagation, and the Meaning of Error Bars Scott Oser Lecture #10 1 What is an error bar? Someone hands you a plot like this. What do the error bars indicate? Answer: you can never be

More information

Real Analysis Prof. S.H. Kulkarni Department of Mathematics Indian Institute of Technology, Madras. Lecture - 13 Conditional Convergence

Real Analysis Prof. S.H. Kulkarni Department of Mathematics Indian Institute of Technology, Madras. Lecture - 13 Conditional Convergence Real Analysis Prof. S.H. Kulkarni Department of Mathematics Indian Institute of Technology, Madras Lecture - 13 Conditional Convergence Now, there are a few things that are remaining in the discussion

More information

Discrete Structures Proofwriting Checklist

Discrete Structures Proofwriting Checklist CS103 Winter 2019 Discrete Structures Proofwriting Checklist Cynthia Lee Keith Schwarz Now that we re transitioning to writing proofs about discrete structures like binary relations, functions, and graphs,

More information

Measurements and Data Analysis

Measurements and Data Analysis Measurements and Data Analysis 1 Introduction The central point in experimental physical science is the measurement of physical quantities. Experience has shown that all measurements, no matter how carefully

More information

22: Applications of Differential Calculus

22: Applications of Differential Calculus 22: Applications of Differential Calculus A: Time Rate of Change The most common use of calculus (the one that motivated our discussions of the previous chapter) are those that involve change in some quantity

More information

MITOCW ocw f07-lec37_300k

MITOCW ocw f07-lec37_300k MITOCW ocw-18-01-f07-lec37_300k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

MITOCW ocw f07-lec39_300k

MITOCW ocw f07-lec39_300k MITOCW ocw-18-01-f07-lec39_300k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

Chapter 14. One-Way Analysis of Variance for Independent Samples Part 2

Chapter 14. One-Way Analysis of Variance for Independent Samples Part 2 Tuesday, December 12, 2000 One-Way ANOVA: Independent Samples: II Page: 1 Richard Lowry, 1999-2000 All rights reserved. Chapter 14. One-Way Analysis of Variance for Independent Samples Part 2 For the items

More information

Instructor (Brad Osgood)

Instructor (Brad Osgood) TheFourierTransformAndItsApplications-Lecture26 Instructor (Brad Osgood): Relax, but no, no, no, the TV is on. It's time to hit the road. Time to rock and roll. We're going to now turn to our last topic

More information

Chapter 8. Linear Regression. Copyright 2010 Pearson Education, Inc.

Chapter 8. Linear Regression. Copyright 2010 Pearson Education, Inc. Chapter 8 Linear Regression Copyright 2010 Pearson Education, Inc. Fat Versus Protein: An Example The following is a scatterplot of total fat versus protein for 30 items on the Burger King menu: Copyright

More information

t-test for b Copyright 2000 Tom Malloy. All rights reserved. Regression

t-test for b Copyright 2000 Tom Malloy. All rights reserved. Regression t-test for b Copyright 2000 Tom Malloy. All rights reserved. Regression Recall, back some time ago, we used a descriptive statistic which allowed us to draw the best fit line through a scatter plot. We

More information

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13

BRIDGE CIRCUITS EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 10/2/13 EXPERIMENT 5: DC AND AC BRIDGE CIRCUITS 0//3 This experiment demonstrates the use of the Wheatstone Bridge for precise resistance measurements and the use of error propagation to determine the uncertainty

More information

Stat 5421 Lecture Notes Fuzzy P-Values and Confidence Intervals Charles J. Geyer March 12, Discreteness versus Hypothesis Tests

Stat 5421 Lecture Notes Fuzzy P-Values and Confidence Intervals Charles J. Geyer March 12, Discreteness versus Hypothesis Tests Stat 5421 Lecture Notes Fuzzy P-Values and Confidence Intervals Charles J. Geyer March 12, 2016 1 Discreteness versus Hypothesis Tests You cannot do an exact level α test for any α when the data are discrete.

More information

MITOCW watch?v=y6ma-zn4olk

MITOCW watch?v=y6ma-zn4olk MITOCW watch?v=y6ma-zn4olk PROFESSOR: We have to ask what happens here? This series for h of u doesn't seem to stop. You go a 0, a 2, a 4. Well, it could go on forever. And what would happen if it goes

More information

MITOCW 18. Quiz Review From Optional Problem Set 8

MITOCW 18. Quiz Review From Optional Problem Set 8 MITOCW 18. Quiz Review From Optional Problem Set 8 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational

More information

Volume vs. Diameter. Teacher Lab Discussion. Overview. Picture, Data Table, and Graph

Volume vs. Diameter. Teacher Lab Discussion. Overview. Picture, Data Table, and Graph 5 6 7 Middle olume Length/olume vs. Diameter, Investigation page 1 of olume vs. Diameter Teacher Lab Discussion Overview Figure 1 In this experiment we investigate the relationship between the diameter

More information

MITOCW ocw f99-lec23_300k

MITOCW ocw f99-lec23_300k MITOCW ocw-18.06-f99-lec23_300k -- and lift-off on differential equations. So, this section is about how to solve a system of first order, first derivative, constant coefficient linear equations. And if

More information

Data collection and processing (DCP)

Data collection and processing (DCP) This document is intended as a guideline for success in IB internal assessment. Three criteria are assessed based on lab work submitted in a report or other format. They are: DESIGN, DATA COLLECTION AND

More information

Correlation. We don't consider one variable independent and the other dependent. Does x go up as y goes up? Does x go down as y goes up?

Correlation. We don't consider one variable independent and the other dependent. Does x go up as y goes up? Does x go down as y goes up? Comment: notes are adapted from BIOL 214/312. I. Correlation. Correlation A) Correlation is used when we want to examine the relationship of two continuous variables. We are not interested in prediction.

More information

MITOCW 6. Standing Waves Part I

MITOCW 6. Standing Waves Part I MITOCW 6. Standing Waves Part I The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

LECTURE 15: SIMPLE LINEAR REGRESSION I

LECTURE 15: SIMPLE LINEAR REGRESSION I David Youngberg BSAD 20 Montgomery College LECTURE 5: SIMPLE LINEAR REGRESSION I I. From Correlation to Regression a. Recall last class when we discussed two basic types of correlation (positive and negative).

More information

The Model Building Process Part I: Checking Model Assumptions Best Practice (Version 1.1)

The Model Building Process Part I: Checking Model Assumptions Best Practice (Version 1.1) The Model Building Process Part I: Checking Model Assumptions Best Practice (Version 1.1) Authored by: Sarah Burke, PhD Version 1: 31 July 2017 Version 1.1: 24 October 2017 The goal of the STAT T&E COE

More information

CH 59 SQUARE ROOTS. Every positive number has two square roots. Ch 59 Square Roots. Introduction

CH 59 SQUARE ROOTS. Every positive number has two square roots. Ch 59 Square Roots. Introduction 59 CH 59 SQUARE ROOTS Introduction W e saw square roots when we studied the Pythagorean Theorem. They may have been hidden, but when the end of a right-triangle problem resulted in an equation like c =

More information

Descriptive Statistics (And a little bit on rounding and significant digits)

Descriptive Statistics (And a little bit on rounding and significant digits) Descriptive Statistics (And a little bit on rounding and significant digits) Now that we know what our data look like, we d like to be able to describe it numerically. In other words, how can we represent

More information

MITOCW watch?v=rf5sefhttwo

MITOCW watch?v=rf5sefhttwo MITOCW watch?v=rf5sefhttwo The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources for free. To

More information

MITOCW MITRES_18-007_Part1_lec3_300k.mp4

MITOCW MITRES_18-007_Part1_lec3_300k.mp4 MITOCW MITRES_18-007_Part1_lec3_300k.mp4 The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high-quality educational resources

More information

(Refer Slide Time: 00:10)

(Refer Slide Time: 00:10) Chemical Reaction Engineering 1 (Homogeneous Reactors) Professor R. Krishnaiah Department of Chemical Engineering Indian Institute of Technology Madras Lecture No 10 Design of Batch Reactors Part 1 (Refer

More information

MITOCW watch?v=0usje5vtiks

MITOCW watch?v=0usje5vtiks MITOCW watch?v=0usje5vtiks PROFESSOR: Mach-Zehnder-- interferometers. And we have a beam splitter. And the beam coming in, it splits into 2. A mirror-- another mirror. The beams are recombined into another

More information

Chapter 5: Preferences

Chapter 5: Preferences Chapter 5: Preferences 5.1: Introduction In chapters 3 and 4 we considered a particular type of preferences in which all the indifference curves are parallel to each other and in which each indifference

More information

Physics 2020 Laboratory Manual

Physics 2020 Laboratory Manual Physics 00 Laboratory Manual Department of Physics University of Colorado at Boulder Spring, 000 This manual is available for FREE online at: http://www.colorado.edu/physics/phys00/ This manual supercedes

More information

Section 4.6 Negative Exponents

Section 4.6 Negative Exponents Section 4.6 Negative Exponents INTRODUCTION In order to understand negative exponents the main topic of this section we need to make sure we understand the meaning of the reciprocal of a number. Reciprocals

More information

Regression, Part I. - In correlation, it would be irrelevant if we changed the axes on our graph.

Regression, Part I. - In correlation, it would be irrelevant if we changed the axes on our graph. Regression, Part I I. Difference from correlation. II. Basic idea: A) Correlation describes the relationship between two variables, where neither is independent or a predictor. - In correlation, it would

More information

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2:

Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: Math101, Sections 2 and 3, Spring 2008 Review Sheet for Exam #2: 03 17 08 3 All about lines 3.1 The Rectangular Coordinate System Know how to plot points in the rectangular coordinate system. Know the

More information

9 Correlation and Regression

9 Correlation and Regression 9 Correlation and Regression SW, Chapter 12. Suppose we select n = 10 persons from the population of college seniors who plan to take the MCAT exam. Each takes the test, is coached, and then retakes the

More information

Circuit Theory Prof. S.C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi

Circuit Theory Prof. S.C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Circuit Theory Prof. S.C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 43 RC and RL Driving Point Synthesis People will also have to be told I will tell,

More information

Response Surface Methodology IV

Response Surface Methodology IV LECTURE 8 Response Surface Methodology IV 1. Bias and Variance If y x is the response of the system at the point x, or in short hand, y x = f (x), then we can write η x = E(y x ). This is the true, and

More information

PROFESSOR: WELCOME BACK TO THE LAST LECTURE OF THE SEMESTER. PLANNING TO DO TODAY WAS FINISH THE BOOK. FINISH SECTION 6.5

PROFESSOR: WELCOME BACK TO THE LAST LECTURE OF THE SEMESTER. PLANNING TO DO TODAY WAS FINISH THE BOOK. FINISH SECTION 6.5 1 MATH 16A LECTURE. DECEMBER 9, 2008. PROFESSOR: WELCOME BACK TO THE LAST LECTURE OF THE SEMESTER. I HOPE YOU ALL WILL MISS IT AS MUCH AS I DO. SO WHAT I WAS PLANNING TO DO TODAY WAS FINISH THE BOOK. FINISH

More information

Statistics for Managers using Microsoft Excel 6 th Edition

Statistics for Managers using Microsoft Excel 6 th Edition Statistics for Managers using Microsoft Excel 6 th Edition Chapter 13 Simple Linear Regression 13-1 Learning Objectives In this chapter, you learn: How to use regression analysis to predict the value of

More information

MITOCW MITRES18_005S10_DerivOfSinXCosX_300k_512kb-mp4

MITOCW MITRES18_005S10_DerivOfSinXCosX_300k_512kb-mp4 MITOCW MITRES18_005S10_DerivOfSinXCosX_300k_512kb-mp4 PROFESSOR: OK, this lecture is about the slopes, the derivatives, of two of the great functions of mathematics: sine x and cosine x. Why do I say great

More information

STEP 1: Ask Do I know the SLOPE of the line? (Notice how it s needed for both!) YES! NO! But, I have two NO! But, my line is

STEP 1: Ask Do I know the SLOPE of the line? (Notice how it s needed for both!) YES! NO! But, I have two NO! But, my line is EQUATIONS OF LINES 1. Writing Equations of Lines There are many ways to define a line, but for today, let s think of a LINE as a collection of points such that the slope between any two of those points

More information

Note that we are looking at the true mean, μ, not y. The problem for us is that we need to find the endpoints of our interval (a, b).

Note that we are looking at the true mean, μ, not y. The problem for us is that we need to find the endpoints of our interval (a, b). Confidence Intervals 1) What are confidence intervals? Simply, an interval for which we have a certain confidence. For example, we are 90% certain that an interval contains the true value of something

More information

An introduction to plotting data

An introduction to plotting data An introduction to plotting data Eric D. Black California Institute of Technology v2.0 1 Introduction Plotting data is one of the essential skills every scientist must have. We use it on a near-daily basis

More information

Simple Linear Regression. Material from Devore s book (Ed 8), and Cengagebrain.com

Simple Linear Regression. Material from Devore s book (Ed 8), and Cengagebrain.com 12 Simple Linear Regression Material from Devore s book (Ed 8), and Cengagebrain.com The Simple Linear Regression Model The simplest deterministic mathematical relationship between two variables x and

More information

Chapter 16. Simple Linear Regression and dcorrelation

Chapter 16. Simple Linear Regression and dcorrelation Chapter 16 Simple Linear Regression and dcorrelation 16.1 Regression Analysis Our problem objective is to analyze the relationship between interval variables; regression analysis is the first tool we will

More information

The Derivative of a Function

The Derivative of a Function The Derivative of a Function James K Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University March 1, 2017 Outline A Basic Evolutionary Model The Next Generation

More information

Chapter 14: Finding the Equilibrium Solution and Exploring the Nature of the Equilibration Process

Chapter 14: Finding the Equilibrium Solution and Exploring the Nature of the Equilibration Process Chapter 14: Finding the Equilibrium Solution and Exploring the Nature of the Equilibration Process Taking Stock: In the last chapter, we learned that equilibrium problems have an interesting dimension

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

MITOCW watch?v=t6tqhnxy5wg

MITOCW watch?v=t6tqhnxy5wg MITOCW watch?v=t6tqhnxy5wg PROFESSOR: So what are we trying to do? We're going to try to write a matter wave. We have a particle with energy e and momentum p. e is equal to h bar omega. So you can get

More information

Physics 509: Bootstrap and Robust Parameter Estimation

Physics 509: Bootstrap and Robust Parameter Estimation Physics 509: Bootstrap and Robust Parameter Estimation Scott Oser Lecture #20 Physics 509 1 Nonparametric parameter estimation Question: what error estimate should you assign to the slope and intercept

More information

Quadratic Equations Part I

Quadratic Equations Part I Quadratic Equations Part I Before proceeding with this section we should note that the topic of solving quadratic equations will be covered in two sections. This is done for the benefit of those viewing

More information