Lecture 6: September 19

Size: px
Start display at page:

Download "Lecture 6: September 19"

Transcription

1 36-755: Advanced Statistical Theory I Fall 2016 Lecture 6: September 19 Lecturer: Alessandro Rinaldo Scribe: YJ Choe Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor. 6.1 Metric entropy and its uses Let (X, d) be a metric space. We gave some examples of metric spaces, including (R d, p ), the d-dimensional real space with the l p -norm, and L p ([0, 1], µ) (the L p function space on [0, 1] with measure µ) for p 1. We are interested in measuring how big these spaces are Covering numbers and metric entropy Definition 6.1 (Covering numbers) Let 0. A -covering or -net of (X, d) is any set {θ 1,..., θ N } X where N = N(), such that for any θ X, there exists i [N] such that d(θ, θ i ) The -covering number of (X, d), denoted as N(, X, d), is the size of a smallest -covering. There are several remarks: 1. For any (X, d), its -covering number is unique, but there can be several -coverings of that size. 2. Let B(θ i, d) = {θ X : d(θ, θ i ) }. Then X N(,X,d) B(θ i, d) 3. We will only consider metric spaces (X, d) that are totally bounded, i.e., N(, X, d) < for any > 0. Note that diam(x ) = sup θ,θ d(θ, θ ) < in such case. 4. In general, N(, X, d) decreases as increases and diverges to as

2 6-2 Lecture 6: September 19 Example. Let X = [ 1, 1] and d(x, y) = x y for x, y X. Then, for some C > 0. If X = [ 1, 1] p, then N(, X, d) C N(, X, d) C p Definition 6.2 (Metric entropy) The metric entropy of (X, d) is defined as log N(, X, d) Typically, for bounded subsets of R p with, or any of its equivalent norms, the metric entropy scales by ( ) 1 C p log In general, bounded subsets of R p are considered as small spaces. For non-euclidean spaces, e.g. function spaces, the metric entropy scales differently. We consider these as large spaces. Example. Let F = {f : [0, 1] R f is L-Lipschitz}. Then, log N(, F, d) L where denotes less than equal up to positive constants. The bound generalizes to L-Lipschitz functions on [0, 1] p by ( ) p L log N(, F, d) Further notions in the book can be useful depending on the area of interest Packing numbers Definition 6.3 (Packing numbers) A -packing of (X, d) is any set where M = M(), such that for all i j. {θ 1,..., θ M } X d(θ i, θ j ) > The -packing number of (X, d), denoted as M(, X, d), is the size of a largest -packing set. Again, the -packing number may be unique while the -packing set that achieves the number is not. Sometimes we would prefer using covering numbers, while sometimes we would prefer using packing numbers. Figure 6.1 shows an example of an ε-covering and an ε-packing. The following is a classic lemma on the relationship between covering and packing numbers. Lemma 6.4 For any > 0, M(2, X, d) N(, X, d) M(, X, d) Proof: Homework.

3 Lecture 6: September Figure 6.1: A comparison of an ε-covering (left) and an ε-packing (right). Figures from [GKKW06] Volumetric ratios and covering numbers Proposition 6.5 Let and be two norms on R p (e.g. 1 and 2 ). Let and B p be the corresponding unit balls. 1 Then, ( ) p 1 Vol ( ) Vol ( ) N(,, ) Vol ( 2 Bp + B ) p Vol ( ) where, for α, β > 0, α = {αx : x }, and β + B p = {βx + y : x, y B p}. Proof: First note that, by homework, Vol ( ) = p Vol ( ) for any > 0. Also, if {x 1,..., x N } is a -covering of in, then N { xi + } where { x i + B p} = {x : x xi }. Together, we get Vol ( ) NVol ( ) N p Vol ( ) Note that we assume the norm is equivalent to the L p norm, so that we have invariance of volumes. This gives us the lower bound N(,, ) Vol () Vol ( 1 ) p 1 See previous lecture note for examples of norm balls.

4 6-4 Lecture 6: September 19 To get the upper bound, let {y i,..., y M } be a maximal -packing of in. Then, this set is also a -covering of in, because otherwise we can find another point that will contradict the maximality of the -packing set. The -balls { y i + M 2 p} B are disjoint by the maximality of the -packing set. Thus, Taking volumes we get M M { y i + } ( ) 2 Vol ( ( ) ) 2 (( )) 2 Vol Note that the union simply becomes a product on the left-hand side, because the balls are disjoint. Thus, M(,, ) Vol ( 2 Bp + B ) p Vol ( ) Since the -covering number is bounded below by the -packing number, we have the upper bound as well. In our applications, we can simply take = to conclude that ( ) ( 1 p log log N(,, ) p log ) p log ( ) 3 Note once again that this result holds for any norm in R d, including the Euclidean norm Discretization Covering and packing numbers can be used to discretize a supremum over an infinite space into a maximum over a finite number of covering or packing sets. We can then give a bound on this maximum, as done in e.g. Theorem 6.7 with sub-gaussian random vectors. Definition 6.6 (Sub-Gaussian random vectors.) A random vector X R d Gaussian with parameter σ 2, denoted as X SG d (σ 2 ), if with E [X] = 0 is sub- v T X SG(σ 2 ) for all v S d 1, where S d 1 = {v R d : v = 1} is the d-dimensional unit sphere. Theorem 6.7 Let X SG d (σ 2 ), and let B d be the unit ball in (R d, 2 ). Then, [ ] [ E max θ T X = E max θ T X ] 4σ d θ B d θ B d In other words, for (0, 1), with probability 1. max θ T X 4σ d + θ B d 2σ log ( ) 1 d

5 Lecture 6: September Proof: Let N 1/2 be a 1 2 -covering of B d in 2. Then, N 1/2 5 d Next, for any θ B d, there exists z = z(θ) N 1/2 such that for some x R d such that x 1 2. Thus, θ = z + x max θ T X max z T X + max x T X θ B d z N 1/2 x 1 2 B d Now, notice that max x 1 2 B d xt X = 1 2 max θ B d θ T X. This implies that max θ T X 2 max z T X θ B d z N 1/2 This holds almost everywhere. Taking expectations, we get [ ] [ ] E max θ T X 2 E max z T X θ B d z N 1/2 2σ 2 log N1/2 where we used Lemma 6.4 for the second inequality. 2σ 2d log 5 4σ d For the second claim, we use the union bound (second inequality below). For any t > 0, ( ) ( ) P max θ T X t P 2 max z T X t θ B d z N 1/2 ( z T X t ) 2 Find t such that the expression is bounded by : z N 1/2 P { t2 } N 1/2 exp 8σ 2 } 5 d exp { t2 8σ 2 t = σ 8d log 5 + 2σ 2 log (1/) 6.2 Covariance estimation Using these techniques, we will show various bounds on estimating the covariance matrix of a random vector. First, recall the following result we covered in homework 1.

6 6-6 Lecture 6: September 19 Theorem 6.8 (Lemma 12, [Yuan10]; Lemma 1, [RWRY11]) Let (X 1,..., X d ) R d be a zero-mean random vector with covariance Σ such that X i Σii SG(σ 2 ) for i = 1,..., d. Let ˆΣ be the empirical covariance matrix. Then, for any t > 0, with probability at least 1 e t. max i,j t + log d ˆΣ ij Σ ij n Note that d can be larger than n, and that the empirical covariance matrix need not be positive definite, as long as d is a polynomial in n. We first review some basic notions in matrix algebra. For A R m n with rank(a) = r min{m, n}, the singular value decomposition (SVD) of A is given by A = UDV T where D = diag(σ 1,..., σ r ), σ 1 σ r > 0 are the singular values, and U R m r, V R n r has r orthonormal columns. Note that, for j = 1,..., r, where u j S m 1 is the jth column of U, and where v j S n 1 is the jth column of V. AA T u j = σ 2 j u j A T Av j = σ 2 j v j The largest singular value can also be characterized as the operator norm: σ max (A) = max x 0 Ax x = max x S m 1,y S n 1 x T Ay If A R n n is symmetric and positive definite, then the singular values are the square root of the eigenvalues. In the next lecture, we will give a bound on the distance between ˆΣ and Σ in the operator norm.

7 Lecture 6: September References [GKKW06] [Yuan10] [RWRY11] L. Györfi, M. Kohler, A. Krzyzak and H. Walk, A distribution-free theory of nonparametric regression, Springer Science & Business Media, M. Yuan, High dimensional inverse covariance matrix estimation via linear programming, Journal of Machine Learning Research 11, 2010, pp P. Ravikumar, M. Wainwright, G. Raskutti and B. Yu, High-dimensional covariance estimation by minimizing l 1 -penalized log-determinant divergence, Electronic Journal of Statistics 5, 2011, pp

21.2 Example 1 : Non-parametric regression in Mean Integrated Square Error Density Estimation (L 2 2 risk)

21.2 Example 1 : Non-parametric regression in Mean Integrated Square Error Density Estimation (L 2 2 risk) 10-704: Information Processing and Learning Spring 2015 Lecture 21: Examples of Lower Bounds and Assouad s Method Lecturer: Akshay Krishnamurthy Scribes: Soumya Batra Note: LaTeX template courtesy of UC

More information

10-704: Information Processing and Learning Fall Lecture 9: Sept 28

10-704: Information Processing and Learning Fall Lecture 9: Sept 28 10-704: Information Processing and Learning Fall 2016 Lecturer: Siheng Chen Lecture 9: Sept 28 Note: These notes are based on scribed notes from Spring15 offering of this course. LaTeX template courtesy

More information

Lecture 1: September 25

Lecture 1: September 25 0-725: Optimization Fall 202 Lecture : September 25 Lecturer: Geoff Gordon/Ryan Tibshirani Scribes: Subhodeep Moitra Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

10-704: Information Processing and Learning Fall Lecture 21: Nov 14. sup

10-704: Information Processing and Learning Fall Lecture 21: Nov 14. sup 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 2: Nov 4 Note: hese notes are based on scribed notes from Spring5 offering of this course LaeX template courtesy of UC

More information

Lecture 5: September 15

Lecture 5: September 15 10-725/36-725: Convex Optimization Fall 2015 Lecture 5: September 15 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Di Jin, Mengdi Wang, Bin Deng Note: LaTeX template courtesy of UC Berkeley EECS

More information

Lecture 6: September 17

Lecture 6: September 17 10-725/36-725: Convex Optimization Fall 2015 Lecturer: Ryan Tibshirani Lecture 6: September 17 Scribes: Scribes: Wenjun Wang, Satwik Kottur, Zhiding Yu Note: LaTeX template courtesy of UC Berkeley EECS

More information

Lecture 5: September 12

Lecture 5: September 12 10-725/36-725: Convex Optimization Fall 2015 Lecture 5: September 12 Lecturer: Lecturer: Ryan Tibshirani Scribes: Scribes: Barun Patra and Tyler Vuong Note: LaTeX template courtesy of UC Berkeley EECS

More information

Lecture 3: Review of Linear Algebra

Lecture 3: Review of Linear Algebra ECE 83 Fall 2 Statistical Signal Processing instructor: R Nowak, scribe: R Nowak Lecture 3: Review of Linear Algebra Very often in this course we will represent signals as vectors and operators (eg, filters,

More information

Lecture 20: November 1st

Lecture 20: November 1st 10-725: Optimization Fall 2012 Lecture 20: November 1st Lecturer: Geoff Gordon Scribes: Xiaolong Shen, Alex Beutel Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not

More information

10-704: Information Processing and Learning Fall Lecture 24: Dec 7

10-704: Information Processing and Learning Fall Lecture 24: Dec 7 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 24: Dec 7 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy of

More information

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous:

MATH 51H Section 4. October 16, Recall what it means for a function between metric spaces to be continuous: MATH 51H Section 4 October 16, 2015 1 Continuity Recall what it means for a function between metric spaces to be continuous: Definition. Let (X, d X ), (Y, d Y ) be metric spaces. A function f : X Y is

More information

Homework 1. Yuan Yao. September 18, 2011

Homework 1. Yuan Yao. September 18, 2011 Homework 1 Yuan Yao September 18, 2011 1. Singular Value Decomposition: The goal of this exercise is to refresh your memory about the singular value decomposition and matrix norms. A good reference to

More information

Lecture 4: September 12

Lecture 4: September 12 10-725/36-725: Conve Optimization Fall 2016 Lecture 4: September 12 Lecturer: Ryan Tibshirani Scribes: Jay Hennig, Yifeng Tao, Sriram Vasudevan Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Lecture 15: October 15

Lecture 15: October 15 10-725: Optimization Fall 2012 Lecturer: Barnabas Poczos Lecture 15: October 15 Scribes: Christian Kroer, Fanyi Xiao Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

Lecture 9: September 28

Lecture 9: September 28 0-725/36-725: Convex Optimization Fall 206 Lecturer: Ryan Tibshirani Lecture 9: September 28 Scribes: Yiming Wu, Ye Yuan, Zhihao Li Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These

More information

Course 212: Academic Year Section 1: Metric Spaces

Course 212: Academic Year Section 1: Metric Spaces Course 212: Academic Year 1991-2 Section 1: Metric Spaces D. R. Wilkins Contents 1 Metric Spaces 3 1.1 Distance Functions and Metric Spaces............. 3 1.2 Convergence and Continuity in Metric Spaces.........

More information

Lecture 3: Review of Linear Algebra

Lecture 3: Review of Linear Algebra ECE 83 Fall 2 Statistical Signal Processing instructor: R Nowak Lecture 3: Review of Linear Algebra Very often in this course we will represent signals as vectors and operators (eg, filters, transforms,

More information

Lecture 2: August 31

Lecture 2: August 31 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 2: August 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy

More information

Lecture 26: April 22nd

Lecture 26: April 22nd 10-725/36-725: Conve Optimization Spring 2015 Lecture 26: April 22nd Lecturer: Ryan Tibshirani Scribes: Eric Wong, Jerzy Wieczorek, Pengcheng Zhou Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

Functional Analysis Review

Functional Analysis Review Outline 9.520: Statistical Learning Theory and Applications February 8, 2010 Outline 1 2 3 4 Vector Space Outline A vector space is a set V with binary operations +: V V V and : R V V such that for all

More information

Lecture 8: Linear Algebra Background

Lecture 8: Linear Algebra Background CSE 521: Design and Analysis of Algorithms I Winter 2017 Lecture 8: Linear Algebra Background Lecturer: Shayan Oveis Gharan 2/1/2017 Scribe: Swati Padmanabhan Disclaimer: These notes have not been subjected

More information

Supplementary Material for Nonparametric Operator-Regularized Covariance Function Estimation for Functional Data

Supplementary Material for Nonparametric Operator-Regularized Covariance Function Estimation for Functional Data Supplementary Material for Nonparametric Operator-Regularized Covariance Function Estimation for Functional Data Raymond K. W. Wong Department of Statistics, Texas A&M University Xiaoke Zhang Department

More information

Throughout these notes we assume V, W are finite dimensional inner product spaces over C.

Throughout these notes we assume V, W are finite dimensional inner product spaces over C. Math 342 - Linear Algebra II Notes Throughout these notes we assume V, W are finite dimensional inner product spaces over C 1 Upper Triangular Representation Proposition: Let T L(V ) There exists an orthonormal

More information

(x, y) = d(x, y) = x y.

(x, y) = d(x, y) = x y. 1 Euclidean geometry 1.1 Euclidean space Our story begins with a geometry which will be familiar to all readers, namely the geometry of Euclidean space. In this first chapter we study the Euclidean distance

More information

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for

Bindel, Fall 2016 Matrix Computations (CS 6210) Notes for 1 Logistics Notes for 2016-08-29 General announcement: we are switching from weekly to bi-weekly homeworks (mostly because the course is much bigger than planned). If you want to do HW but are not formally

More information

Lecture 25: November 27

Lecture 25: November 27 10-725: Optimization Fall 2012 Lecture 25: November 27 Lecturer: Ryan Tibshirani Scribes: Matt Wytock, Supreeth Achar Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have

More information

Lecture 14: October 11

Lecture 14: October 11 10-725: Optimization Fall 2012 Lecture 14: October 11 Lecturer: Geoff Gordon/Ryan Tibshirani Scribes: Zitao Liu Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not

More information

EE731 Lecture Notes: Matrix Computations for Signal Processing

EE731 Lecture Notes: Matrix Computations for Signal Processing EE731 Lecture Notes: Matrix Computations for Signal Processing James P. Reilly c Department of Electrical and Computer Engineering McMaster University September 22, 2005 0 Preface This collection of ten

More information

Lecture 9: Low Rank Approximation

Lecture 9: Low Rank Approximation CSE 521: Design and Analysis of Algorithms I Fall 2018 Lecture 9: Low Rank Approximation Lecturer: Shayan Oveis Gharan February 8th Scribe: Jun Qi Disclaimer: These notes have not been subjected to the

More information

10-704: Information Processing and Learning Fall Lecture 10: Oct 3

10-704: Information Processing and Learning Fall Lecture 10: Oct 3 0-704: Information Processing and Learning Fall 206 Lecturer: Aarti Singh Lecture 0: Oct 3 Note: These notes are based on scribed notes from Spring5 offering of this course. LaTeX template courtesy of

More information

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A).

j=1 [We will show that the triangle inequality holds for each p-norm in Chapter 3 Section 6.] The 1-norm is A F = tr(a H A). Math 344 Lecture #19 3.5 Normed Linear Spaces Definition 3.5.1. A seminorm on a vector space V over F is a map : V R that for all x, y V and for all α F satisfies (i) x 0 (positivity), (ii) αx = α x (scale

More information

Lecture 6: September 12

Lecture 6: September 12 10-725: Optimization Fall 2013 Lecture 6: September 12 Lecturer: Ryan Tibshirani Scribes: Micol Marchetti-Bowick Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes have not

More information

Lecture 9: Numerical Linear Algebra Primer (February 11st)

Lecture 9: Numerical Linear Algebra Primer (February 11st) 10-725/36-725: Convex Optimization Spring 2015 Lecture 9: Numerical Linear Algebra Primer (February 11st) Lecturer: Ryan Tibshirani Scribes: Avinash Siravuru, Guofan Wu, Maosheng Liu Note: LaTeX template

More information

Lecture 4: January 26

Lecture 4: January 26 10-725/36-725: Conve Optimization Spring 2015 Lecturer: Javier Pena Lecture 4: January 26 Scribes: Vipul Singh, Shinjini Kundu, Chia-Yin Tsai Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Review of Some Concepts from Linear Algebra: Part 2

Review of Some Concepts from Linear Algebra: Part 2 Review of Some Concepts from Linear Algebra: Part 2 Department of Mathematics Boise State University January 16, 2019 Math 566 Linear Algebra Review: Part 2 January 16, 2019 1 / 22 Vector spaces A set

More information

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent.

j=1 u 1jv 1j. 1/ 2 Lemma 1. An orthogonal set of vectors must be linearly independent. Lecture Notes: Orthogonal and Symmetric Matrices Yufei Tao Department of Computer Science and Engineering Chinese University of Hong Kong taoyf@cse.cuhk.edu.hk Orthogonal Matrix Definition. Let u = [u

More information

Lecture 2: Linear Algebra Review

Lecture 2: Linear Algebra Review EE 227A: Convex Optimization and Applications January 19 Lecture 2: Linear Algebra Review Lecturer: Mert Pilanci Reading assignment: Appendix C of BV. Sections 2-6 of the web textbook 1 2.1 Vectors 2.1.1

More information

10-725/36-725: Convex Optimization Prerequisite Topics

10-725/36-725: Convex Optimization Prerequisite Topics 10-725/36-725: Convex Optimization Prerequisite Topics February 3, 2015 This is meant to be a brief, informal refresher of some topics that will form building blocks in this course. The content of the

More information

Lecture Notes 1: Vector spaces

Lecture Notes 1: Vector spaces Optimization-based data analysis Fall 2017 Lecture Notes 1: Vector spaces In this chapter we review certain basic concepts of linear algebra, highlighting their application to signal processing. 1 Vector

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Numerical Linear Algebra Background Cho-Jui Hsieh UC Davis May 15, 2018 Linear Algebra Background Vectors A vector has a direction and a magnitude

More information

Supremum of simple stochastic processes

Supremum of simple stochastic processes Subspace embeddings Daniel Hsu COMS 4772 1 Supremum of simple stochastic processes 2 Recap: JL lemma JL lemma. For any ε (0, 1/2), point set S R d of cardinality 16 ln n S = n, and k N such that k, there

More information

CS229T/STATS231: Statistical Learning Theory. Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018

CS229T/STATS231: Statistical Learning Theory. Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018 CS229T/STATS231: Statistical Learning Theory Lecturer: Tengyu Ma Lecture 11 Scribe: Jongho Kim, Jamie Kang October 29th, 2018 1 Overview This lecture mainly covers Recall the statistical theory of GANs

More information

NORMS ON SPACE OF MATRICES

NORMS ON SPACE OF MATRICES NORMS ON SPACE OF MATRICES. Operator Norms on Space of linear maps Let A be an n n real matrix and x 0 be a vector in R n. We would like to use the Picard iteration method to solve for the following system

More information

Lecture 14: October 17

Lecture 14: October 17 1-725/36-725: Convex Optimization Fall 218 Lecture 14: October 17 Lecturer: Lecturer: Ryan Tibshirani Scribes: Pengsheng Guo, Xian Zhou Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer:

More information

Section 3.9. Matrix Norm

Section 3.9. Matrix Norm 3.9. Matrix Norm 1 Section 3.9. Matrix Norm Note. We define several matrix norms, some similar to vector norms and some reflecting how multiplication by a matrix affects the norm of a vector. We use matrix

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

Characterisation of Accumulation Points. Convergence in Metric Spaces. Characterisation of Closed Sets. Characterisation of Closed Sets

Characterisation of Accumulation Points. Convergence in Metric Spaces. Characterisation of Closed Sets. Characterisation of Closed Sets Convergence in Metric Spaces Functional Analysis Lecture 3: Convergence and Continuity in Metric Spaces Bengt Ove Turesson September 4, 2016 Suppose that (X, d) is a metric space. A sequence (x n ) X is

More information

STA141C: Big Data & High Performance Statistical Computing

STA141C: Big Data & High Performance Statistical Computing STA141C: Big Data & High Performance Statistical Computing Lecture 5: Numerical Linear Algebra Cho-Jui Hsieh UC Davis April 20, 2017 Linear Algebra Background Vectors A vector has a direction and a magnitude

More information

Basic Properties of Metric and Normed Spaces

Basic Properties of Metric and Normed Spaces Basic Properties of Metric and Normed Spaces Computational and Metric Geometry Instructor: Yury Makarychev The second part of this course is about metric geometry. We will study metric spaces, low distortion

More information

Functional Analysis (2006) Homework assignment 2

Functional Analysis (2006) Homework assignment 2 Functional Analysis (26) Homework assignment 2 All students should solve the following problems: 1. Define T : C[, 1] C[, 1] by (T x)(t) = t x(s) ds. Prove that this is a bounded linear operator, and compute

More information

10-704: Information Processing and Learning Spring Lecture 8: Feb 5

10-704: Information Processing and Learning Spring Lecture 8: Feb 5 10-704: Information Processing and Learning Spring 2015 Lecture 8: Feb 5 Lecturer: Aarti Singh Scribe: Siheng Chen Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal

More information

Week 3: January 22-26, 2018

Week 3: January 22-26, 2018 EE564/CSE554: Error Correcting Codes Spring 2018 Lecturer: Viveck R. Cadambe Week 3: January 22-26, 2018 Scribe: Yu-Tse Lin Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T.

Notes on singular value decomposition for Math 54. Recall that if A is a symmetric n n matrix, then A has real eigenvalues A = P DP 1 A = P DP T. Notes on singular value decomposition for Math 54 Recall that if A is a symmetric n n matrix, then A has real eigenvalues λ 1,, λ n (possibly repeated), and R n has an orthonormal basis v 1,, v n, where

More information

EECS 598: Statistical Learning Theory, Winter 2014 Topic 11. Kernels

EECS 598: Statistical Learning Theory, Winter 2014 Topic 11. Kernels EECS 598: Statistical Learning Theory, Winter 2014 Topic 11 Kernels Lecturer: Clayton Scott Scribe: Jun Guo, Soumik Chatterjee Disclaimer: These notes have not been subjected to the usual scrutiny reserved

More information

Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A =

Matrices and Vectors. Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A = 30 MATHEMATICS REVIEW G A.1.1 Matrices and Vectors Definition of Matrix. An MxN matrix A is a two-dimensional array of numbers A = a 11 a 12... a 1N a 21 a 22... a 2N...... a M1 a M2... a MN A matrix can

More information

Basic Calculus Review

Basic Calculus Review Basic Calculus Review Lorenzo Rosasco ISML Mod. 2 - Machine Learning Vector Spaces Functionals and Operators (Matrices) Vector Space A vector space is a set V with binary operations +: V V V and : R V

More information

Exercise Solutions to Functional Analysis

Exercise Solutions to Functional Analysis Exercise Solutions to Functional Analysis Note: References refer to M. Schechter, Principles of Functional Analysis Exersize that. Let φ,..., φ n be an orthonormal set in a Hilbert space H. Show n f n

More information

Lecture 14: Newton s Method

Lecture 14: Newton s Method 10-725/36-725: Conve Optimization Fall 2016 Lecturer: Javier Pena Lecture 14: Newton s ethod Scribes: Varun Joshi, Xuan Li Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes

More information

Some Background Material

Some Background Material Chapter 1 Some Background Material In the first chapter, we present a quick review of elementary - but important - material as a way of dipping our toes in the water. This chapter also introduces important

More information

Notes taken by Graham Taylor. January 22, 2005

Notes taken by Graham Taylor. January 22, 2005 CSC4 - Linear Programming and Combinatorial Optimization Lecture : Different forms of LP. The algebraic objects behind LP. Basic Feasible Solutions Notes taken by Graham Taylor January, 5 Summary: We first

More information

Lecture 23: November 19

Lecture 23: November 19 10-725/36-725: Conve Optimization Fall 2018 Lecturer: Ryan Tibshirani Lecture 23: November 19 Scribes: Charvi Rastogi, George Stoica, Shuo Li Charvi Rastogi: 23.1-23.4.2, George Stoica: 23.4.3-23.8, Shuo

More information

Lecture 1: Review of linear algebra

Lecture 1: Review of linear algebra Lecture 1: Review of linear algebra Linear functions and linearization Inverse matrix, least-squares and least-norm solutions Subspaces, basis, and dimension Change of basis and similarity transformations

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

1 Stochastic Dynamic Programming

1 Stochastic Dynamic Programming 1 Stochastic Dynamic Programming Formally, a stochastic dynamic program has the same components as a deterministic one; the only modification is to the state transition equation. When events in the future

More information

2 Two-Point Boundary Value Problems

2 Two-Point Boundary Value Problems 2 Two-Point Boundary Value Problems Another fundamental equation, in addition to the heat eq. and the wave eq., is Poisson s equation: n j=1 2 u x 2 j The unknown is the function u = u(x 1, x 2,..., x

More information

1 Directional Derivatives and Differentiability

1 Directional Derivatives and Differentiability Wednesday, January 18, 2012 1 Directional Derivatives and Differentiability Let E R N, let f : E R and let x 0 E. Given a direction v R N, let L be the line through x 0 in the direction v, that is, L :=

More information

Functional Analysis Review

Functional Analysis Review Functional Analysis Review Lorenzo Rosasco slides courtesy of Andre Wibisono 9.520: Statistical Learning Theory and Applications September 9, 2013 1 2 3 4 Vector Space A vector space is a set V with binary

More information

EECS 275 Matrix Computation

EECS 275 Matrix Computation EECS 275 Matrix Computation Ming-Hsuan Yang Electrical Engineering and Computer Science University of California at Merced Merced, CA 95344 http://faculty.ucmerced.edu/mhyang Lecture 6 1 / 22 Overview

More information

The Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss Lemma The Johnson-Lindenstrauss Lemma Kevin (Min Seong) Park MAT477 Introduction The Johnson-Lindenstrauss Lemma was first introduced in the paper Extensions of Lipschitz mappings into a Hilbert Space by William

More information

Lecture # 3 Orthogonal Matrices and Matrix Norms. We repeat the definition an orthogonal set and orthornormal set.

Lecture # 3 Orthogonal Matrices and Matrix Norms. We repeat the definition an orthogonal set and orthornormal set. Lecture # 3 Orthogonal Matrices and Matrix Norms We repeat the definition an orthogonal set and orthornormal set. Definition A set of k vectors {u, u 2,..., u k }, where each u i R n, is said to be an

More information

Mathematical foundations - linear algebra

Mathematical foundations - linear algebra Mathematical foundations - linear algebra Andrea Passerini passerini@disi.unitn.it Machine Learning Vector space Definition (over reals) A set X is called a vector space over IR if addition and scalar

More information

Lecture 18: March 15

Lecture 18: March 15 CS71 Randomness & Computation Spring 018 Instructor: Alistair Sinclair Lecture 18: March 15 Disclaimer: These notes have not been subjected to the usual scrutiny accorded to formal publications. They may

More information

1 Vectors. Notes for Bindel, Spring 2017 Numerical Analysis (CS 4220)

1 Vectors. Notes for Bindel, Spring 2017 Numerical Analysis (CS 4220) Notes for 2017-01-30 Most of mathematics is best learned by doing. Linear algebra is no exception. You have had a previous class in which you learned the basics of linear algebra, and you will have plenty

More information

Lecture notes: Applied linear algebra Part 1. Version 2

Lecture notes: Applied linear algebra Part 1. Version 2 Lecture notes: Applied linear algebra Part 1. Version 2 Michael Karow Berlin University of Technology karow@math.tu-berlin.de October 2, 2008 1 Notation, basic notions and facts 1.1 Subspaces, range and

More information

16.1 Bounding Capacity with Covering Number

16.1 Bounding Capacity with Covering Number ECE598: Information-theoretic methods in high-dimensional statistics Spring 206 Lecture 6: Upper Bounds for Density Estimation Lecturer: Yihong Wu Scribe: Yang Zhang, Apr, 206 So far we have been mostly

More information

Lecture 8 : Eigenvalues and Eigenvectors

Lecture 8 : Eigenvalues and Eigenvectors CPS290: Algorithmic Foundations of Data Science February 24, 2017 Lecture 8 : Eigenvalues and Eigenvectors Lecturer: Kamesh Munagala Scribe: Kamesh Munagala Hermitian Matrices It is simpler to begin with

More information

Z Algorithmic Superpower Randomization October 15th, Lecture 12

Z Algorithmic Superpower Randomization October 15th, Lecture 12 15.859-Z Algorithmic Superpower Randomization October 15th, 014 Lecture 1 Lecturer: Bernhard Haeupler Scribe: Goran Žužić Today s lecture is about finding sparse solutions to linear systems. The problem

More information

Symmetric Matrices and Eigendecomposition

Symmetric Matrices and Eigendecomposition Symmetric Matrices and Eigendecomposition Robert M. Freund January, 2014 c 2014 Massachusetts Institute of Technology. All rights reserved. 1 2 1 Symmetric Matrices and Convexity of Quadratic Functions

More information

Elementary linear algebra

Elementary linear algebra Chapter 1 Elementary linear algebra 1.1 Vector spaces Vector spaces owe their importance to the fact that so many models arising in the solutions of specific problems turn out to be vector spaces. The

More information

Invertibility of symmetric random matrices

Invertibility of symmetric random matrices Invertibility of symmetric random matrices Roman Vershynin University of Michigan romanv@umich.edu February 1, 2011; last revised March 16, 2012 Abstract We study n n symmetric random matrices H, possibly

More information

Riemannian geometry of surfaces

Riemannian geometry of surfaces Riemannian geometry of surfaces In this note, we will learn how to make sense of the concepts of differential geometry on a surface M, which is not necessarily situated in R 3. This intrinsic approach

More information

Functional Analysis I

Functional Analysis I Functional Analysis I Course Notes by Stefan Richter Transcribed and Annotated by Gregory Zitelli Polar Decomposition Definition. An operator W B(H) is called a partial isometry if W x = X for all x (ker

More information

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2017 LECTURE 5

STAT 309: MATHEMATICAL COMPUTATIONS I FALL 2017 LECTURE 5 STAT 39: MATHEMATICAL COMPUTATIONS I FALL 17 LECTURE 5 1 existence of svd Theorem 1 (Existence of SVD) Every matrix has a singular value decomposition (condensed version) Proof Let A C m n and for simplicity

More information

MA651 Topology. Lecture 9. Compactness 2.

MA651 Topology. Lecture 9. Compactness 2. MA651 Topology. Lecture 9. Compactness 2. This text is based on the following books: Topology by James Dugundgji Fundamental concepts of topology by Peter O Neil Elements of Mathematics: General Topology

More information

Lecture 4: September 19

Lecture 4: September 19 CSCI1810: Computational Molecular Biology Fall 2017 Lecture 4: September 19 Lecturer: Sorin Istrail Scribe: Cyrus Cousins Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes

More information

Lecture 9: October 25, Lower bounds for minimax rates via multiple hypotheses

Lecture 9: October 25, Lower bounds for minimax rates via multiple hypotheses Information and Coding Theory Autumn 07 Lecturer: Madhur Tulsiani Lecture 9: October 5, 07 Lower bounds for minimax rates via multiple hypotheses In this lecture, we extend the ideas from the previous

More information

M17 MAT25-21 HOMEWORK 6

M17 MAT25-21 HOMEWORK 6 M17 MAT25-21 HOMEWORK 6 DUE 10:00AM WEDNESDAY SEPTEMBER 13TH 1. To Hand In Double Series. The exercises in this section will guide you to complete the proof of the following theorem: Theorem 1: Absolute

More information

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions

Iowa State University. Instructor: Alex Roitershtein Summer Homework #5. Solutions Math 50 Iowa State University Introduction to Real Analysis Department of Mathematics Instructor: Alex Roitershtein Summer 205 Homework #5 Solutions. Let α and c be real numbers, c > 0, and f is defined

More information

Real Analysis Notes. Thomas Goller

Real Analysis Notes. Thomas Goller Real Analysis Notes Thomas Goller September 4, 2011 Contents 1 Abstract Measure Spaces 2 1.1 Basic Definitions........................... 2 1.2 Measurable Functions........................ 2 1.3 Integration..............................

More information

Your first day at work MATH 806 (Fall 2015)

Your first day at work MATH 806 (Fall 2015) Your first day at work MATH 806 (Fall 2015) 1. Let X be a set (with no particular algebraic structure). A function d : X X R is called a metric on X (and then X is called a metric space) when d satisfies

More information

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 1: Preliminaries

EC 521 MATHEMATICAL METHODS FOR ECONOMICS. Lecture 1: Preliminaries EC 521 MATHEMATICAL METHODS FOR ECONOMICS Lecture 1: Preliminaries Murat YILMAZ Boğaziçi University In this lecture we provide some basic facts from both Linear Algebra and Real Analysis, which are going

More information

Lecture 17: Primal-dual interior-point methods part II

Lecture 17: Primal-dual interior-point methods part II 10-725/36-725: Convex Optimization Spring 2015 Lecture 17: Primal-dual interior-point methods part II Lecturer: Javier Pena Scribes: Pinchao Zhang, Wei Ma Note: LaTeX template courtesy of UC Berkeley EECS

More information

Lecture 11: October 2

Lecture 11: October 2 10-725: Optimization Fall 2012 Lecture 11: October 2 Lecturer: Geoff Gordon/Ryan Tibshirani Scribes: Tongbo Huang, Shoou-I Yu Note: LaTeX template courtesy of UC Berkeley EECS dept. Disclaimer: These notes

More information

Knowledge Discovery and Data Mining 1 (VO) ( )

Knowledge Discovery and Data Mining 1 (VO) ( ) Knowledge Discovery and Data Mining 1 (VO) (707.003) Review of Linear Algebra Denis Helic KTI, TU Graz Oct 9, 2014 Denis Helic (KTI, TU Graz) KDDM1 Oct 9, 2014 1 / 74 Big picture: KDDM Probability Theory

More information

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming

CSC Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming CSC2411 - Linear Programming and Combinatorial Optimization Lecture 10: Semidefinite Programming Notes taken by Mike Jamieson March 28, 2005 Summary: In this lecture, we introduce semidefinite programming

More information

Hilbert Spaces. Contents

Hilbert Spaces. Contents Hilbert Spaces Contents 1 Introducing Hilbert Spaces 1 1.1 Basic definitions........................... 1 1.2 Results about norms and inner products.............. 3 1.3 Banach and Hilbert spaces......................

More information

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS G. RAMESH Contents Introduction 1 1. Bounded Operators 1 1.3. Examples 3 2. Compact Operators 5 2.1. Properties 6 3. The Spectral Theorem 9 3.3. Self-adjoint

More information

1 Quantum states and von Neumann entropy

1 Quantum states and von Neumann entropy Lecture 9: Quantum entropy maximization CSE 599S: Entropy optimality, Winter 2016 Instructor: James R. Lee Last updated: February 15, 2016 1 Quantum states and von Neumann entropy Recall that S sym n n

More information

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy Banach Spaces These notes provide an introduction to Banach spaces, which are complete normed vector spaces. For the purposes of these notes, all vector spaces are assumed to be over the real numbers.

More information

Homework Assignment #5 Due Wednesday, March 3rd.

Homework Assignment #5 Due Wednesday, March 3rd. Homework Assignment #5 Due Wednesday, March 3rd. 1. In this problem, X will be a separable Banach space. Let B be the closed unit ball in X. We want to work out a solution to E 2.5.3 in the text. Work

More information