Discrete Structures: Sample Questions, Exam 2, SOLUTIONS

Size: px
Start display at page:

Download "Discrete Structures: Sample Questions, Exam 2, SOLUTIONS"

Transcription

1 Discrete Structures: Sample Questions, Exam 2, SOLUTIONS (This is longer than the actual test.) 1. Show that any postage of 8 cents or more can be achieved by using only -cent and 5-cent stamps. We proceed by induction. There are basis steps. This corresponds to the fact that the smaller stamp is for cents. Basis case n = 8: 8 = 5 + one 5-cent stamp plus one -cent stamp. Basis case n = 9: 9 = + + three -cent stamps. Basis case n = 10: 10 = two 5-cent stamps. Inductive case. We will add -cent stamps to prove the result. If we can make n cents out of - and 5-cent stamps, then we can add another -cent stamp to the total to make n + cents. This shows P (n) P (n + ). It remains to note that we can reach any integer n 8 by starting at one of the base cases and adding nonnegative multiple of. Starting at 8, we get 8, 11, 14, 17, 20,...; starting at 9, we get 9, 12, 15, 18, 21,...; starting at 10, we get 10, 1, 16, 19, 22,.... This covers all the integers 8. (It s possible to make a more rigorous argument by considering n mod for n 8.) 2. Consider the function f(x) = 5x + 4, where f : R R. Find the inverse function. If y = 5x + 4, solve for x y = 5x + 4, y 4 = 5x, 1 (y 4) = 5 x, (y 4) = x. 1 5

2 . Let a n be the sequence recursively defined by a 1 = 2, a 2 =, a n = a n 1 a n 2 for n. Compute the first five terms a 1,..., a 5. a 1 = 2, a 2 =, a = a 1 a 2 = 6, a 4 = a a 2 = 18, a 5 = a 4 a = List all the strings over X = {a, b, c} of length 2 or less. λ, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc. 5. Short answer. No partial credit. (a) A relation R on X = {1, 2, } has matrix digraph.. Draw its 1 2 (b) Write the relation in part (a) as a subset of X X. R = {(1, 1), (1, ), (2, 2), (2, )}. (c) Compute the matrix of the relation R R. The matrix of a composition of two relations is computed using the product of their matrices in the opposite order. In this case, the two matrices are the same, and the product is =. Typically we would then have to replace all nonzero numbers by 1, but in this case, all the nonzero entries are 1, and so this is not necessary. (d) Consider Y = {1, 2,, 4, 5, 6} and the equivalence relation on Y given by xry if and only if x y is a multiple of. Write down the elements of the equivalence class [1]. [1] = {1, 4}, since 1R1 and 4R1, but 1 is not related to 2,,5,6.

3 (e) Write down the digraph of the equivalence relation from part (d) (f) Write down the matrix of the equivalence relation from part (d) (g) On the set Z + of positive integers, consider the partial order mrn if m divides n. Write down an incomparable pair of elements of Z +. 2,. 2 doesn t divide and doesn t divide 2. (h) For the partial order from part (g), find an element k of Z + so that n(krn). Write down k divides n for all n Z +. 2 (i) For a i = i, compute a i. i=0 2 a i = a 0 + a 1 + a 2 = = = 1. i=0 (j) On X = {1, 2,, 4}, let the relation R be given by xry if x > y, and let the relation S be given by xsy if x divides y. List the elements, as ordered pairs, of the relation R S. R = {(2, 1), (, 1), (, 2), (4, 1), (4, 2), (4, )}, while S = {(1, 1), (1, 2), (1, ), (1, 4), (2, 2), (2, 4), (, ), (4, 4)}. So R S =

4 and there are no elements in R S. (k) List the elements of R S as ordered pairs, where R, S are from part (o). R S = {(1, 1), (1, 2), (1, ), (1, 4), (2, 1), (2, 2), (2, 4), (, 1), (, 2), (, ), (4, 1), (4, 2), (4, ), (4, 4)}. 6. Write an algorithm which returns the index of the last occurrence of the smallest element in the sequence s 1,..., s n. So if the sequence is , the output would be 4. last occurrence(s, n){ smallest = s 1 last = 1 for i = 2 to n if (s i smallest){ smallest = s i last = i } return last }

5 7. True/False. Circle T or F. No explanation needed. (a) T F Let f : R R be given by f(x) = x 5. Then f is one-to-one. T. If y = x 5, then x = 1 (y + 5). So for each y, there is only one x so that y = x 5. (b) T F f from (a) is onto. T. See (a) above. (c) T F For f from (a), f 1 (x) = x + 5. F. f 1 (x) = 1 (x + 5), as we compute in (a) above. (d) T F Consider A = {0, 1, 2, }. The function g : A A defined by g(x) = 2x mod 4 is a bijection. F. Compute g(0) = 0, g(1) = 2, g(2) = 0, and g() = 2. This shows g is not onto (since 1 and are not in the range), and also g is not one-to-one, since g(0) = g(2). (e) T F For A as in (d), the function h : A A defined by h(x) = x mod 4 is a bijection. T. Compute h(0) = 0, h(1) =, h(2) = 2, h() = 1. This is clearly one-to-one and onto, and thus is a bijection. (f) T F If V = {1, 2, } and W = {a, b, c, d}, then there exists a one-to-one function f : V W. T. For example, define f by f(1) = a, f(2) = b, f() = c. (g) T F For V, W as in (f), there exists an onto function g : V W. F. If f : V W, then the range {f(1), f(2), f()} can have at most elements. This cannot cover all of W, whose cardinality is 4. (h) T F There is a relation on the set {α, β, γ} which is both an equivalence relation and a partial order. T. The equality relation given by arb if a = b is both an equivalence relation and a partial order. To show this, check it s reflexive, symmetric, and transitive (these are just the standard properties of equality). To show it s also a partial order, we need to show it s also antisymmetric. In other words, we need to show a b((a = b b = a) a = b). This is obviously true.

6 (i) T F On Z +, consider the relation R defined by mrn if there is an integer k so that m = 2 k n. Then R is an equivalence relation. T. It s reflexive, since m = 2 0 m and so mrm for all m. It s symmetric since if mrn, then m = 2 k n and so n = 2 k m, which means that nrm. It s transitive since if mrn and nrp, then m = 2 k n and n = 2 l p, which implies m = 2 k (2 l p) = 2 k+l p and so mrp. (j) T F R from part (i) is a partial order. F. R is not antisymmetric, since for example 1R2 and 2R1, but 1 2. (k) T F The relation from problem 5(a) is reflexive. F. R. (l) T F The relation from problem 5(a) is symmetric. F. For example, 1R but R1. (m) T F The relation from problem 5(a) is antisymmetric. T. There is no pair of 1 s across the diagonal. (n) T F The relation from problem 5(a) is transitive. T. Compute the square of the matrix to be again. Since all of the 1 s in the square are also 1 s in the original matrix, the relation is transitive. (o) T F ( If R is a relation ) from {1, 2} to {a, b, c} with matrix, and S is a relation from {a, b, c} to {1, 2} with matrix 1 1, then the relation R S has ma- 0 1 ( ) 0 1 trix. 1 1 F. The matrix of R S is determined by the matrix product in the opposite order. So compute 0 0 ( ) 1 1 = is the matrix of R S. (p) T F Let X, Y be finite sets, and let R be a relation from X to Y. Then R = R 1. (Here recall R is the cardinality of R as a subset of X Y.) T. If R 1 is defined by {(y, x) : (x, y) R}, and so clearly (x, y) (y, x) is a one-to-one correspondence from R to R 1. Therefore, the cardinalities must be the same. (q) T F 5! = 720. F. 5! = = 120.

Discrete Structures: Sample Questions, Exam 2, SOLUTIONS

Discrete Structures: Sample Questions, Exam 2, SOLUTIONS Discrete Structures: Sample Questions, Exam, SOLUTIONS This is longer than the actual test.) 1. List all the strings over X = {a, b, c} of length or less. λ, a, b, c, aa, ab, ac, ba, bb, bc, ca, cb, cc..

More information

Relations, Functions, Binary Relations (Chapter 1, Sections 1.2, 1.3)

Relations, Functions, Binary Relations (Chapter 1, Sections 1.2, 1.3) Relations, Functions, Binary Relations (Chapter 1, Sections 1.2, 1.3) CmSc 365 Theory of Computation 1. Relations Definition: Let A and B be two sets. A relation R from A to B is any set of ordered pairs

More information

CIS 375 Intro to Discrete Mathematics Exam 3 (Section M001: Green) 6 December Points Possible

CIS 375 Intro to Discrete Mathematics Exam 3 (Section M001: Green) 6 December Points Possible Name: CIS 375 Intro to Discrete Mathematics Exam 3 (Section M001: Green) 6 December 2016 Question Points Possible Points Received 1 12 2 14 3 14 4 12 5 16 6 16 7 16 Total 100 Instructions: 1. This exam

More information

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination II (Fall 2007)

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination II (Fall 2007) Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination II (Fall 2007) Problem 1: Specify two different predicates P (x) and

More information

Review Problems for Midterm Exam II MTH 299 Spring n(n + 1) 2. = 1. So assume there is some k 1 for which

Review Problems for Midterm Exam II MTH 299 Spring n(n + 1) 2. = 1. So assume there is some k 1 for which Review Problems for Midterm Exam II MTH 99 Spring 014 1. Use induction to prove that for all n N. 1 + 3 + + + n(n + 1) = n(n + 1)(n + ) Solution: This statement is obviously true for n = 1 since 1()(3)

More information

CIS 375 Intro to Discrete Mathematics Exam 3 (Section M004: Blue) 6 December Points Possible

CIS 375 Intro to Discrete Mathematics Exam 3 (Section M004: Blue) 6 December Points Possible Name: CIS 375 Intro to Discrete Mathematics Exam 3 (Section M004: Blue) 6 December 2016 Question Points Possible Points Received 1 12 2 14 3 14 4 12 5 16 6 16 7 16 Total 100 Instructions: 1. This exam

More information

Definition: A binary relation R from a set A to a set B is a subset R A B. Example:

Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Chapter 9 1 Binary Relations Definition: A binary relation R from a set A to a set B is a subset R A B. Example: Let A = {0,1,2} and B = {a,b} {(0, a), (0, b), (1,a), (2, b)} is a relation from A to B.

More information

Problem 1: Suppose A, B, C and D are finite sets such that A B = C D and C = D. Prove or disprove: A = B.

Problem 1: Suppose A, B, C and D are finite sets such that A B = C D and C = D. Prove or disprove: A = B. Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination III (Spring 2007) Problem 1: Suppose A, B, C and D are finite sets

More information

Practice Exam 1 CIS/CSE 607, Spring 2009

Practice Exam 1 CIS/CSE 607, Spring 2009 Practice Exam 1 CIS/CSE 607, Spring 2009 Problem 1) Let R be a reflexive binary relation on a set A. Prove that R is transitive if, and only if, R = R R. Problem 2) Give an example of a transitive binary

More information

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination I (Spring 2008)

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination I (Spring 2008) Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination I (Spring 2008) Problem 1: Suppose A, B, C and D are arbitrary sets.

More information

Math 230 Final Exam, Spring 2008

Math 230 Final Exam, Spring 2008 c IIT Dept. Applied Mathematics, May 15, 2008 1 PRINT Last name: Signature: First name: Student ID: Math 230 Final Exam, Spring 2008 Conditions. 2 hours. No book, notes, calculator, cell phones, etc. Part

More information

MAD 3105 PRACTICE TEST 2 SOLUTIONS

MAD 3105 PRACTICE TEST 2 SOLUTIONS MAD 3105 PRACTICE TEST 2 SOLUTIONS 1. Let R be the relation defined below. Determine which properties, reflexive, irreflexive, symmetric, antisymmetric, transitive, the relation satisfies. Prove each answer.

More information

Section Summary. Relations and Functions Properties of Relations. Combining Relations

Section Summary. Relations and Functions Properties of Relations. Combining Relations Chapter 9 Chapter Summary Relations and Their Properties n-ary Relations and Their Applications (not currently included in overheads) Representing Relations Closures of Relations (not currently included

More information

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion

CHAPTER 1. Relations. 1. Relations and Their Properties. Discussion CHAPTER 1 Relations 1. Relations and Their Properties 1.1. Definition of a Relation. Definition 1.1.1. A binary relation from a set A to a set B is a subset R A B. If (a, b) R we say a is Related to b

More information

UNIVERSITY OF VICTORIA DECEMBER EXAMINATIONS MATH 122: Logic and Foundations

UNIVERSITY OF VICTORIA DECEMBER EXAMINATIONS MATH 122: Logic and Foundations UNIVERSITY OF VICTORIA DECEMBER EXAMINATIONS 2013 MATH 122: Logic and Foundations Instructor and section (check one): K. Mynhardt [A01] CRN 12132 G. MacGillivray [A02] CRN 12133 NAME: V00#: Duration: 3

More information

Math 230 Final Exam, Spring 2009

Math 230 Final Exam, Spring 2009 IIT Dept. Applied Mathematics, May 13, 2009 1 PRINT Last name: Signature: First name: Student ID: Math 230 Final Exam, Spring 2009 Conditions. 2 hours. No book, notes, calculator, cell phones, etc. Part

More information

MATH FINAL EXAM REVIEW HINTS

MATH FINAL EXAM REVIEW HINTS MATH 109 - FINAL EXAM REVIEW HINTS Answer: Answer: 1. Cardinality (1) Let a < b be two real numbers and define f : (0, 1) (a, b) by f(t) = (1 t)a + tb. (a) Prove that f is a bijection. (b) Prove that any

More information

CSC Discrete Math I, Spring Relations

CSC Discrete Math I, Spring Relations CSC 125 - Discrete Math I, Spring 2017 Relations Binary Relations Definition: A binary relation R from a set A to a set B is a subset of A B Note that a relation is more general than a function Example:

More information

Discrete Structures: Solutions to Sample Questions, Exam 2

Discrete Structures: Solutions to Sample Questions, Exam 2 Discrete Structures: Solutions to Sample Questions, Exam 2 1. Let A = B = {a, b, c}. Consider the relation g = {(a, b), (b, c), (c, c)}. Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one,

More information

(a) We need to prove that is reflexive, symmetric and transitive. 2b + a = 3a + 3b (2a + b) = 3a + 3b 3k = 3(a + b k)

(a) We need to prove that is reflexive, symmetric and transitive. 2b + a = 3a + 3b (2a + b) = 3a + 3b 3k = 3(a + b k) MATH 111 Optional Exam 3 lutions 1. (0 pts) We define a relation on Z as follows: a b if a + b is divisible by 3. (a) (1 pts) Prove that is an equivalence relation. (b) (8 pts) Determine all equivalence

More information

Week 4-5: Binary Relations

Week 4-5: Binary Relations 1 Binary Relations Week 4-5: Binary Relations The concept of relation is common in daily life and seems intuitively clear. For instance, let X be the set of all living human females and Y the set of all

More information

CSE 20 DISCRETE MATH. Fall

CSE 20 DISCRETE MATH. Fall CSE 20 DISCRETE MATH Fall 2017 http://cseweb.ucsd.edu/classes/fa17/cse20-ab/ Today's learning goals Define and compute the cardinality of a set. Use functions to compare the sizes of sets. Classify sets

More information

Relations. Relations of Sets N-ary Relations Relational Databases Binary Relation Properties Equivalence Relations. Reading (Epp s textbook)

Relations. Relations of Sets N-ary Relations Relational Databases Binary Relation Properties Equivalence Relations. Reading (Epp s textbook) Relations Relations of Sets N-ary Relations Relational Databases Binary Relation Properties Equivalence Relations Reading (Epp s textbook) 8.-8.3. Cartesian Products The symbol (a, b) denotes the ordered

More information

Exam 2. Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one, since for c A, g(b) = g(c) = c. g is not onto, since a / g(a).

Exam 2. Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one, since for c A, g(b) = g(c) = c. g is not onto, since a / g(a). Discrete Structures: Exam 2 Solutions to Sample Questions, 1. Let A = B = {a, b, c}. Consider the relation g = {(a, b), (b, c), (c, c)}. Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one,

More information

Exam in Discrete Mathematics

Exam in Discrete Mathematics Exam in Discrete Mathematics First Year at the Faculty of Engineering and Science and the Technical Faculty of IT and Design June 4th, 018, 9.00-1.00 This exam consists of 11 numbered pages with 14 problems.

More information

COMP 182 Algorithmic Thinking. Relations. Luay Nakhleh Computer Science Rice University

COMP 182 Algorithmic Thinking. Relations. Luay Nakhleh Computer Science Rice University COMP 182 Algorithmic Thinking Relations Luay Nakhleh Computer Science Rice University Chapter 9, Section 1-6 Reading Material When we defined the Sorting Problem, we stated that to sort the list, the elements

More information

a 2 = ab a 2 b 2 = ab b 2 (a + b)(a b) = b(a b) a + b = b

a 2 = ab a 2 b 2 = ab b 2 (a + b)(a b) = b(a b) a + b = b Discrete Structures CS2800 Fall 204 Final Solutions. Briefly and clearly identify the errors in each of the following proofs: (a) Proof that is the largest natural number: Let n be the largest natural

More information

Math 2534 Solution to Test 3A Spring 2010

Math 2534 Solution to Test 3A Spring 2010 Math 2534 Solution to Test 3A Spring 2010 Problem 1: (10pts) Prove that R is a transitive relation on Z when given that mrpiff m pmod d (ie. d ( m p) ) Solution: The relation R is transitive, if arb and

More information

MATH 201 Solutions: TEST 3-A (in class)

MATH 201 Solutions: TEST 3-A (in class) MATH 201 Solutions: TEST 3-A (in class) (revised) God created infinity, and man, unable to understand infinity, had to invent finite sets. - Gian Carlo Rota Part I [5 pts each] 1. Let X be a set. Define

More information

Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one, since for c A, g(b) = g(c) = c. g is not onto, since a / g(a).

Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one, since for c A, g(b) = g(c) = c. g is not onto, since a / g(a). Discrete Structures: Exam 2 Solutions to Sample Questions, 1. Let A = B = {a, b, c}. Consider the relation g = {(a, b), (b, c), (c, c)}. Is g one-to-one? Is g onto? Why? Solution: g is not one-to-one,

More information

Discussion Summary 10/16/2018

Discussion Summary 10/16/2018 Discussion Summary 10/16/018 1 Quiz 4 1.1 Q1 Let r R and r > 1. Prove the following by induction for every n N, assuming that 0 N as in the book. r 1 + r + r 3 + + r n = rn+1 r r 1 Proof. Let S n = Σ n

More information

What are relations? f: A B

What are relations? f: A B What are relations? Ch 9.1 What are relations? Notation Informally, a relation is a set of pairs of objects (or in general, set of n-tuples) that are related to each other by some rule. We will focus first

More information

Week 4-5: Binary Relations

Week 4-5: Binary Relations 1 Binary Relations Week 4-5: Binary Relations The concept of relation is common in daily life and seems intuitively clear. For instance, let X be the set of all living human females and Y the set of all

More information

Selected problems from past exams

Selected problems from past exams Discrete Structures CS2800 Prelim 1 s Selected problems from past exams 1. True/false. For each of the following statements, indicate whether the statement is true or false. Give a one or two sentence

More information

1 Take-home exam and final exam study guide

1 Take-home exam and final exam study guide Math 215 - Introduction to Advanced Mathematics Fall 2013 1 Take-home exam and final exam study guide 1.1 Problems The following are some problems, some of which will appear on the final exam. 1.1.1 Number

More information

BASIC MATHEMATICAL TECHNIQUES

BASIC MATHEMATICAL TECHNIQUES CHAPTER 1 ASIC MATHEMATICAL TECHNIQUES 1.1 Introduction To understand automata theory, one must have a strong foundation about discrete mathematics. Discrete mathematics is a branch of mathematics dealing

More information

Discrete Structures May 13, (40 points) Define each of the following terms:

Discrete Structures May 13, (40 points) Define each of the following terms: Discrete Structures May 13, 2014 Prof Feighn Final Exam 1. (40 points) Define each of the following terms: (a) (binary) relation: A binary relation from a set X to a set Y is a subset of X Y. (b) function:

More information

MATH 3300 Test 1. Name: Student Id:

MATH 3300 Test 1. Name: Student Id: Name: Student Id: There are nine problems (check that you have 9 pages). Solutions are expected to be short. In the case of proofs, one or two short paragraphs should be the average length. Write your

More information

Solutions to Assignment 3

Solutions to Assignment 3 Solutions to Assignment 3 Question 1. [Exercises 3.1 # 2] Let R = {0 e b c} with addition multiplication defined by the following tables. Assume associativity distributivity show that R is a ring with

More information

EXAM 3 MAT 423 Modern Algebra I Fall c d a + c (b + d) d c ad + bc ac bd

EXAM 3 MAT 423 Modern Algebra I Fall c d a + c (b + d) d c ad + bc ac bd EXAM 3 MAT 23 Modern Algebra I Fall 201 Name: Section: I All answers must include either supporting work or an explanation of your reasoning. MPORTANT: These elements are considered main part of the answer

More information

0 Sets and Induction. Sets

0 Sets and Induction. Sets 0 Sets and Induction Sets A set is an unordered collection of objects, called elements or members of the set. A set is said to contain its elements. We write a A to denote that a is an element of the set

More information

Chapter 9: Relations Relations

Chapter 9: Relations Relations Chapter 9: Relations 9.1 - Relations Definition 1 (Relation). Let A and B be sets. A binary relation from A to B is a subset R A B, i.e., R is a set of ordered pairs where the first element from each pair

More information

Name (please print) Mathematics Final Examination December 14, 2005 I. (4)

Name (please print) Mathematics Final Examination December 14, 2005 I. (4) Mathematics 513-00 Final Examination December 14, 005 I Use a direct argument to prove the following implication: The product of two odd integers is odd Let m and n be two odd integers Since they are odd,

More information

Selected Solutions to Even Problems, Part 3

Selected Solutions to Even Problems, Part 3 Selected Solutions to Even Problems, Part 3 March 14, 005 Page 77 6. If one selects 101 integers from among {1,,..., 00}, then at least two of these numbers must be consecutive, and therefore coprime (which

More information

MATH 13 SAMPLE FINAL EXAM SOLUTIONS

MATH 13 SAMPLE FINAL EXAM SOLUTIONS MATH 13 SAMPLE FINAL EXAM SOLUTIONS WINTER 2014 Problem 1 (15 points). For each statement below, circle T or F according to whether the statement is true or false. You do NOT need to justify your answers.

More information

Math 300 Introduction to Mathematical Reasoning Autumn 2017 Axioms for the Real Numbers

Math 300 Introduction to Mathematical Reasoning Autumn 2017 Axioms for the Real Numbers Math 300 Introduction to Mathematical Reasoning Autumn 2017 Axioms for the Real Numbers PRIMITIVE TERMS To avoid circularity, we cannot give every term a rigorous mathematical definition; we have to accept

More information

3. R = = on Z. R, S, A, T.

3. R = = on Z. R, S, A, T. 6 Relations Let R be a relation on a set A, i.e., a subset of AxA. Notation: xry iff (x, y) R AxA. Recall: A relation need not be a function. Example: The relation R 1 = {(x, y) RxR x 2 + y 2 = 1} is not

More information

is equal to = 3 2 x, if x < 0 f (0) = lim h = 0. Therefore f exists and is continuous at 0.

is equal to = 3 2 x, if x < 0 f (0) = lim h = 0. Therefore f exists and is continuous at 0. Madhava Mathematics Competition January 6, 2013 Solutions and scheme of marking Part I N.B. Each question in Part I carries 2 marks. p(k + 1) 1. If p(x) is a non-constant polynomial, then lim k p(k) (a)

More information

Mathematical Structures Combinations and Permutations

Mathematical Structures Combinations and Permutations Definitions: Suppose S is a (finite) set and n, k 0 are integers The set C(S, k) of k - combinations consists of all subsets of S that have exactly k elements The set P (S, k) of k - permutations consists

More information

Lecture Notes 1 Basic Concepts of Mathematics MATH 352

Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Lecture Notes 1 Basic Concepts of Mathematics MATH 352 Ivan Avramidi New Mexico Institute of Mining and Technology Socorro, NM 87801 June 3, 2004 Author: Ivan Avramidi; File: absmath.tex; Date: June 11,

More information

Vector Spaces ปร ภ ม เวกเตอร

Vector Spaces ปร ภ ม เวกเตอร Vector Spaces ปร ภ ม เวกเตอร 5.1 Real Vector Spaces ปร ภ ม เวกเตอร ของจ านวนจร ง Vector Space Axioms (1/2) Let V be an arbitrary nonempty set of objects on which two operations are defined, addition and

More information

Economics 204 Summer/Fall 2017 Lecture 1 Monday July 17, 2017

Economics 204 Summer/Fall 2017 Lecture 1 Monday July 17, 2017 Economics 04 Summer/Fall 07 Lecture Monday July 7, 07 Section.. Methods of Proof We begin by looking at the notion of proof. What is a proof? Proof has a formal definition in mathematical logic, and a

More information

Differential Topology Solution Set #2

Differential Topology Solution Set #2 Differential Topology Solution Set #2 Select Solutions 1. Show that X compact implies that any smooth map f : X Y is proper. Recall that a space is called compact if, for every cover {U } by open sets

More information

Problem # Max points possible Actual score Total 120

Problem # Max points possible Actual score Total 120 FINAL EXAMINATION - MATH 2121, FALL 2017. Name: ID#: Email: Lecture & Tutorial: Problem # Max points possible Actual score 1 15 2 15 3 10 4 15 5 15 6 15 7 10 8 10 9 15 Total 120 You have 180 minutes to

More information

MAT 243 Test 2 SOLUTIONS, FORM A

MAT 243 Test 2 SOLUTIONS, FORM A MAT Test SOLUTIONS, FORM A 1. [10 points] Give a recursive definition for the set of all ordered pairs of integers (x, y) such that x < y. Solution: Let S be the set described above. Note that if (x, y)

More information

A Universal Turing Machine

A Universal Turing Machine A Universal Turing Machine A limitation of Turing Machines: Turing Machines are hardwired they execute only one program Real Computers are re-programmable Solution: Universal Turing Machine Attributes:

More information

CSE 311: Foundations of Computing I Autumn 2014 Practice Final: Section X. Closed book, closed notes, no cell phones, no calculators.

CSE 311: Foundations of Computing I Autumn 2014 Practice Final: Section X. Closed book, closed notes, no cell phones, no calculators. CSE 311: Foundations of Computing I Autumn 014 Practice Final: Section X YY ZZ Name: UW ID: Instructions: Closed book, closed notes, no cell phones, no calculators. You have 110 minutes to complete the

More information

Section 4.4 Functions. CS 130 Discrete Structures

Section 4.4 Functions. CS 130 Discrete Structures Section 4.4 Functions CS 130 Discrete Structures Function Definitions Let S and T be sets. A function f from S to T, f: S T, is a subset of S x T where each member of S appears exactly once as the first

More information

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4 Do the following exercises from the text: Chapter (Section 3):, 1, 17(a)-(b), 3 Prove that 1 3 + 3 + + n 3 n (n + 1) for all n N Proof The proof is by induction on n For n N, let S(n) be the statement

More information

MATH 215 Sets (S) Definition 1 A set is a collection of objects. The objects in a set X are called elements of X.

MATH 215 Sets (S) Definition 1 A set is a collection of objects. The objects in a set X are called elements of X. MATH 215 Sets (S) Definition 1 A set is a collection of objects. The objects in a set X are called elements of X. Notation 2 A set can be described using set-builder notation. That is, a set can be described

More information

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is

Final Exam Review. 2. Let A = {, { }}. What is the cardinality of A? Is 1. Describe the elements of the set (Z Q) R N. Is this set countable or uncountable? Solution: The set is equal to {(x, y) x Z, y N} = Z N. Since the Cartesian product of two denumerable sets is denumerable,

More information

Chapter 1. Sets and Numbers

Chapter 1. Sets and Numbers Chapter 1. Sets and Numbers 1. Sets A set is considered to be a collection of objects (elements). If A is a set and x is an element of the set A, we say x is a member of A or x belongs to A, and we write

More information

Packet #5: Binary Relations. Applied Discrete Mathematics

Packet #5: Binary Relations. Applied Discrete Mathematics Packet #5: Binary Relations Applied Discrete Mathematics Table of Contents Binary Relations Summary Page 1 Binary Relations Examples Page 2 Properties of Relations Page 3 Examples Pages 4-5 Representations

More information

Lecture 6: Finite Fields

Lecture 6: Finite Fields CCS Discrete Math I Professor: Padraic Bartlett Lecture 6: Finite Fields Week 6 UCSB 2014 It ain t what they call you, it s what you answer to. W. C. Fields 1 Fields In the next two weeks, we re going

More information

Midterm Exam. There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of your work! Best 5

Midterm Exam. There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of your work! Best 5 Department of Mathematical Sciences Instructor: Daiva Pucinskaite Modern Algebra June 22, 2017 Midterm Exam There are 6 problems. Your 5 best answers count. Please pay attention to the presentation of

More information

6.042/18.062J Mathematics for Computer Science March 9, 2005 Srini Devadas and Eric Lehman. Quiz 1. Ishan Christos Grant

6.042/18.062J Mathematics for Computer Science March 9, 2005 Srini Devadas and Eric Lehman. Quiz 1. Ishan Christos Grant 6.042/18.062J Mathematics for Computer Science March 9, 2005 Srini Devadas and Eric Lehman Quiz 1 YOUR NAME: Circle the name of your recitation instructor: Ishan Christos Grant You may use one 8.5 11 sheet

More information

Math.3336: Discrete Mathematics. Chapter 9 Relations

Math.3336: Discrete Mathematics. Chapter 9 Relations Math.3336: Discrete Mathematics Chapter 9 Relations Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall 2018

More information

Writing Assignment 2 Student Sample Questions

Writing Assignment 2 Student Sample Questions Writing Assignment 2 Student Sample Questions 1. Let P and Q be statements. Then the statement (P = Q) ( P Q) is a tautology. 2. The statement If the sun rises from the west, then I ll get out of the bed.

More information

EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) 1. RELATIONS

EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) 1. RELATIONS EQUIVALENCE RELATIONS (NOTES FOR STUDENTS) LIOR SILBERMAN Version 1.0 compiled September 9, 2015. 1.1. List of examples. 1. RELATIONS Equality of real numbers: for some x,y R we have x = y. For other pairs

More information

MTH202- Discrete Mathematics Latest Solved subjective from Midterm Papers. MIDTERM EXAMINATION Spring 2011 MTH202- Discrete Mathematics

MTH202- Discrete Mathematics Latest Solved subjective from Midterm Papers. MIDTERM EXAMINATION Spring 2011 MTH202- Discrete Mathematics MTH0- Discrete Mathematics Latest Solved subjective from Midterm Papers May 18,011 Lectures 1- Moaaz Siddiq Latest subjectives MIDTERM EXAMINATION Spring 011 MTH0- Discrete Mathematics Question no 1: marks

More information

MATH 61-02: PRACTICE PROBLEMS FOR FINAL EXAM

MATH 61-02: PRACTICE PROBLEMS FOR FINAL EXAM MATH 61-02: PRACTICE PROBLEMS FOR FINAL EXAM (FP1) The exclusive or operation, denoted by and sometimes known as XOR, is defined so that P Q is true iff P is true or Q is true, but not both. Prove (through

More information

CONSTRUCTING MULTIPLICATIVE GROUPS MODULO N WITH IDENTITY DIFFERENT FROM ONE

CONSTRUCTING MULTIPLICATIVE GROUPS MODULO N WITH IDENTITY DIFFERENT FROM ONE CONSTRUCTING MULTIPLICATIVE GROUPS MODULO N WITH IDENTITY DIFFERENT FROM ONE By: AlaEddin Douba 35697 Advisor: Dr. Ayman Badawi MTH 490: Senior Project INTRODUCTION The numbering system consists of different

More information

RED. Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam

RED. Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam RED Name: Instructor: Pace Nielsen Math 290 Section 1: Winter 2014 Final Exam Note that the first 10 questions are true-false. Mark A for true, B for false. Questions 11 through 20 are multiple choice

More information

Binary Relation Review Questions

Binary Relation Review Questions CSE 191 Discrete Structures Fall 2016 Recursive sets Binary Relation Review Questions 1. For each of the relations below, answer the following three questions: Is the relation reflexive? Is the relation

More information

MATH 433 Applied Algebra Lecture 14: Functions. Relations.

MATH 433 Applied Algebra Lecture 14: Functions. Relations. MATH 433 Applied Algebra Lecture 14: Functions. Relations. Cartesian product Definition. The Cartesian product X Y of two sets X and Y is the set of all ordered pairs (x,y) such that x X and y Y. The Cartesian

More information

NOTE: You have 2 hours, please plan your time. Problems are not ordered by difficulty.

NOTE: You have 2 hours, please plan your time. Problems are not ordered by difficulty. EXAM 2 solutions (COT3100, Sitharam, Spring 2017) NAME:last first: UF-ID Section NOTE: You have 2 hours, please plan your time. Problems are not ordered by difficulty. (1) Are the following functions one-to-one

More information

Cartesian Products and Relations

Cartesian Products and Relations Cartesian Products and Relations Definition (Cartesian product) If A and B are sets, the Cartesian product of A and B is the set A B = {(a, b) : (a A) and (b B)}. The following points are worth special

More information

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 27

Discrete Mathematics for CS Spring 2007 Luca Trevisan Lecture 27 CS 70 Discrete Mathematics for CS Spring 007 Luca Trevisan Lecture 7 Infinity and Countability Consider a function f that maps elements of a set A (called the domain of f ) to elements of set B (called

More information

Name: MATH 3195 :: Fall 2011 :: Exam 2. No document, no calculator, 1h00. Explanations and justifications are expected for full credit.

Name: MATH 3195 :: Fall 2011 :: Exam 2. No document, no calculator, 1h00. Explanations and justifications are expected for full credit. Name: MATH 3195 :: Fall 2011 :: Exam 2 No document, no calculator, 1h00. Explanations and justifications are expected for full credit. 1. ( 4 pts) Say which matrix is in row echelon form and which is not.

More information

Date: October 24, 2008, Friday Time: 10:40-12:30. Math 123 Abstract Mathematics I Midterm Exam I Solutions TOTAL

Date: October 24, 2008, Friday Time: 10:40-12:30. Math 123 Abstract Mathematics I Midterm Exam I Solutions TOTAL Date: October 24, 2008, Friday Time: 10:40-12:30 Ali Sinan Sertöz Math 123 Abstract Mathematics I Midterm Exam I Solutions 1 2 3 4 5 TOTAL 20 20 20 20 20 100 Please do not write anything inside the above

More information

Practice Midterm 1 UCLA: Math 61, Winter 2018

Practice Midterm 1 UCLA: Math 61, Winter 2018 Practice Midterm 1 UCLA: Math 61, Winter 018 Instructor: Jens Eberhardt Date: 0 February 017 This exam has 4 questions, for a total of 34 points. Please print your working and answers neatly. Write your

More information

Module 2: Language of Mathematics

Module 2: Language of Mathematics Module 2: Language of Mathematics Theme 1: Sets A set is a collection of objects. We describe a set by listing all of its elements (if this set is finite and not too big) or by specifying a property that

More information

RED. Fall 2016 Student Submitted Sample Questions

RED. Fall 2016 Student Submitted Sample Questions RED Fall 2016 Student Submitted Sample Questions Name: Last Update: November 22, 2016 The questions are divided into three sections: True-false, Multiple Choice, and Written Answer. I will add questions

More information

Just the Factors, Ma am HAROLD B. REITER.

Just the Factors, Ma am HAROLD B. REITER. Just the Factors, Ma am HAROLD B REITER UNIVERSITY OF NORTH CAROLINA CHARLOTTE http://wwwmathunccedu/~hbreiter The purpose of this note is to find and study a method for determining and counting all the

More information

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS

ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS ADVANCED CALCULUS - MTH433 LECTURE 4 - FINITE AND INFINITE SETS 1. Cardinal number of a set The cardinal number (or simply cardinal) of a set is a generalization of the concept of the number of elements

More information

Math1a Set 1 Solutions

Math1a Set 1 Solutions Math1a Set 1 Solutions October 15, 2018 Problem 1. (a) For all x, y, z Z we have (i) x x since x x = 0 is a multiple of 7. (ii) If x y then there is a k Z such that x y = 7k. So, y x = (x y) = 7k is also

More information

The number of ways to choose r elements (without replacement) from an n-element set is. = r r!(n r)!.

The number of ways to choose r elements (without replacement) from an n-element set is. = r r!(n r)!. The first exam will be on Friday, September 23, 2011. The syllabus will be sections 0.1 through 0.4 and 0.6 in Nagpaul and Jain, and the corresponding parts of the number theory handout found on the class

More information

Econ Lecture 2. Outline

Econ Lecture 2. Outline Econ 204 2010 Lecture 2 Outline 1. Cardinality (cont.) 2. Algebraic Structures: Fields and Vector Spaces 3. Axioms for R 4. Sup, Inf, and the Supremum Property 5. Intermediate Value Theorem 1 Cardinality

More information

CS103 Handout 08 Spring 2012 April 20, 2012 Problem Set 3

CS103 Handout 08 Spring 2012 April 20, 2012 Problem Set 3 CS103 Handout 08 Spring 2012 April 20, 2012 Problem Set 3 This third problem set explores graphs, relations, functions, cardinalities, and the pigeonhole principle. This should be a great way to get a

More information

Lecture 4: Products of Matrices

Lecture 4: Products of Matrices Lecture 4: Products of Matrices Winfried Just, Ohio University January 22 24, 2018 Matrix multiplication has a few surprises up its sleeve Let A = [a ij ] m n, B = [b ij ] m n be two matrices. The sum

More information

CIS 375 Intro to Discrete Mathematics Exam 2 (Section M001: Yellow) 10 November Points Possible

CIS 375 Intro to Discrete Mathematics Exam 2 (Section M001: Yellow) 10 November Points Possible Name: CIS 375 Intro to Discrete Mathematics Exam 2 (Section M001: Yellow) 10 November 2016 Question Points Possible Points Received 1 20 2 12 3 14 4 10 5 8 6 12 7 12 8 12 Total 100 Instructions: 1. This

More information

Math 300: Final Exam Practice Solutions

Math 300: Final Exam Practice Solutions Math 300: Final Exam Practice Solutions 1 Let A be the set of all real numbers which are zeros of polynomials with integer coefficients: A := {α R there exists p(x) = a n x n + + a 1 x + a 0 with all a

More information

Spring, 2012 CIS 515. Fundamentals of Linear Algebra and Optimization Jean Gallier

Spring, 2012 CIS 515. Fundamentals of Linear Algebra and Optimization Jean Gallier Spring 0 CIS 55 Fundamentals of Linear Algebra and Optimization Jean Gallier Homework 5 & 6 + Project 3 & 4 Note: Problems B and B6 are for extra credit April 7 0; Due May 7 0 Problem B (0 pts) Let A be

More information

GENERALIZED DIFFERENCE POSETS AND ORTHOALGEBRAS. 0. Introduction

GENERALIZED DIFFERENCE POSETS AND ORTHOALGEBRAS. 0. Introduction Acta Math. Univ. Comenianae Vol. LXV, 2(1996), pp. 247 279 247 GENERALIZED DIFFERENCE POSETS AND ORTHOALGEBRAS J. HEDLÍKOVÁ and S. PULMANNOVÁ Abstract. A difference on a poset (P, ) is a partial binary

More information

Discrete Mathematics. W. Ethan Duckworth. Fall 2017, Loyola University Maryland

Discrete Mathematics. W. Ethan Duckworth. Fall 2017, Loyola University Maryland Discrete Mathematics W. Ethan Duckworth Fall 2017, Loyola University Maryland Contents 1 Introduction 4 1.1 Statements......................................... 4 1.2 Constructing Direct Proofs................................

More information

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions.

Review for Exam Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. Review for Exam. Find all a for which the following linear system has no solutions, one solution, and infinitely many solutions. x + y z = 2 x + 2y + z = 3 x + y + (a 2 5)z = a 2 The augmented matrix for

More information

Fundamentals of Pure Mathematics - Problem Sheet

Fundamentals of Pure Mathematics - Problem Sheet Fundamentals of Pure Mathematics - Problem Sheet ( ) = Straightforward but illustrates a basic idea (*) = Harder Note: R, Z denote the real numbers, integers, etc. assumed to be real numbers. In questions

More information

Gordon solutions. n=1 1. p n

Gordon solutions. n=1 1. p n Gordon solutions 1. A positive integer is called a palindrome if its base-10 expansion is unchanged when it is reversed. For example, 121 and 7447 are palindromes. Show that if we denote by p n the nth

More information

Proof by Induction. Andreas Klappenecker

Proof by Induction. Andreas Klappenecker Proof by Induction Andreas Klappenecker 1 Motivation Induction is an axiom which allows us to prove that certain properties are true for all positive integers (or for all nonnegative integers, or all integers

More information

2.1 Sets. Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R.

2.1 Sets. Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R. 2. Basic Structures 2.1 Sets Definition 1 A set is an unordered collection of objects. Important sets: N, Z, Z +, Q, R. Definition 2 Objects in a set are called elements or members of the set. A set is

More information