Bifurcations in Switching Converters: From Theory to Design

Size: px
Start display at page:

Download "Bifurcations in Switching Converters: From Theory to Design"

Transcription

1 Presented at Tokushima University, August 2008 Bifurcations in Switching Converters: From Theory to Design C. K. Michael Tse Department of Electronic and Information Engineering The Hong H Kong Polytechnic University, Hong Kong 1

2 About this talk To give an overview of bifurcations in DC/DC converters Two types of bifurcation found previously Fast-scale bifurcation (period-doubling): inner loop instability Slow-scale bifurcation (Hopf): outer loop instability Would they happen in practice? Are these phenomena interested only by CAS theorists? Can these studies be made relevant to the engineers? Case study of interacting fast and slow-scale bifurcation Can the two bifurcations happen simultaneously? Design-oriented analysis: We will show the operating boundaries in parameter space of various regions including stable, slow-scale unstable, fast-scale unstable and slow-fast-mixed unstable regions. August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 2

3 Overview Starting 1990s, bifurcations and chaos have been rigorously studied for power converters. Large amount of literature: Period-doubling Hopf bifurcation Saddle node bifurcation Border collision Most studies assume theoretical operating conditions: Ideal control methods Ideal switching processes Simplified system models August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 3

4 Quick glimpse at converters Buck converter (step-down converter) V in 0V V o August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 4

5 Nature of operation Time varying Different systems at different times Time varying nonlinear Nonlinear Time durations are related nonlinearly with the output voltage Circuit elements values depend on time durations averaging Time invariant nonlinear linearization Usual treatment Averaging linearization Time invariant linear (small signal model) August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 5

6 Converter systems Feedback loops are always needed for regulatory control voltage-mode control current-mode control L L D V in D C R v o V in i L C R v o V ref comp V ref clock R S Q Z f Z f August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 6

7 Chaos and bifurcations The voltage-mode controlled buck converter Pulse-width modulation control Period-doubling was found! Border collision was also found! V in D L C R v o border period-doubling collision V ref comp i L Z f k August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 7

8 Chaos and bifurcations The current-mode controlled boost converter Peak-current trip point control Period-doubling was found! Border collision was also found! I ref i L D < 0.5 L D V in i L C R v o I ref i L D > 0.5 I ref clock R S Q August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 8

9 Bifurcation diagrams With the help of computers, we can study the phenomenon in more detail. Bifurcation diagrams (panaromic view of stability status) sampled i L T/CR = normal period-1 operation bifurcation point I ref We can plot bifurcation diagrams for different sets of parameters Sampled values versus parameter sampled i L T/CR = I ref August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 9

10 Identifying border collision Abrupt changes in bifurcation diagram indicate border collision boost converter under current-mode control August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 10

11 Experimental bifurcation diagrams It is also possible to obtain bifurcation diagrams experimentally. bifurcation diagram i L (nt) I ref August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 11

12 Questions Phenomena observed in computer simulations Phenomena observed in laboratories, from well controlled experimental circuits that imitate the analytical models Fabricated verification! DO THEY REALLY OCCUR IN PRACTICE? August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 12

13 Answers Some do. Some don t! Engineers reactions: On period-doubling in current-mode controlled boost converter Yes, only if you have a poor design. Study is useful only if it can guide design. On period-doubling in voltage-mode controlled buck converter Nonsense! Low-pass filter loop won t allow it! Why fabricate an impractical circuit and claim findings? August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 13

14 What actually can happen Hopf bifurcation generating lowfrequency instability or slowscale instability is possible. V in converter V o Voltage feedback loop of voltage-mode controlled converters voltage loop slow Period-doubling fast-scale bifurcation at switching frequency is only possible if the involving loop is very fast. Fast current loop of currentmode controlled converters V in converter current loop fast slow voltage loop V o August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 14

15 Design-oriented bifurcation analysis Study the system in its practical form with practical parameters L L V in D C R v o V in D C R v o V ref Z f comp V ref Z f Simplified comp discrete time controlx August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 15

16 Case study Current-mode controlled DC/DC converter inner current loop (fast) outer voltage loop (slow) Current waveform August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 16

17 Fast-scale and slow-scale bifurcations Fast-scale bifurcation (period-doubling) i L i L T t T t Slow-scale bifurcation (Hopf) i L i L T t T t August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 17

18 Main parameters Affecting fast-scale bifurcation (inner loop instability problem) Rising slope of inductor current m 1 = E/L Compensation slope m c Affecting slow-scale bifurcation (outer loop instability problem) Voltage feedback gain g Feedback time constant τ f August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 18

19 Previous studies The two kinds of bifurcation were studied and reported separately. Fast-scale bifurcation focuses on the period-doubling phenomenon, assuming that the outer loop is very slow and essentially provides a constant reference current for the inner loop. Slow-scale bifurcation focuses on the Hopf bifurcation as the feedback gain and bandwidth are altered, assuming that the inner is stable. Both are practical phenomena. August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 19

20 Quick glimpse Cycle-by-cycle simulation of the system with the exact piecewise switched model. Circuit components are as follows: August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 20

21 Quick glimpse at changing g and τ f stable saturation fast-scale unstable coexisting fast- and slowscale unstable slow-scale unstable slow-scale unstable August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 21

22 Quick glimpse at changing m 1 and τ f August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 22

23 Quick glimpse at changing m c August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 23

24 What is happening? The current loop is interacting with the outer voltage loop. August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 24

25 What is happening? The current loop is interacting with the outer voltage loop. inner current loop (fast) outer voltage loop (slow) August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 25

26 Question of practical importance Under what parameter ranges the system will bifurcation into fast-scale unstable region? slow-scale unstable region? interacting fast-scale slow-scale unstable region? August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 26

27 Design-oriented charts Operating boundaries under varying E and D Operating boundaries under varying L/E August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 27

28 Design-oriented charts Operating boundaries under varying feedback gain and time constant August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 28

29 Design-oriented charts Operating boundaries under varying m c and τ a August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 29

30 Analysis Details to appear in IEEE Trans. CAS-I (Chen, Tse, Lindenmüller, Qiu & Schwarz). Summary: Derive the discrete-time iterative map that describes the dynamics of the entire system: Derive the Jacobian: Examine the eigenvalues. August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 30

31 Analysis All the eigenvalues inside the unit circle indicates stable operation. Slow-scale bifurcation occurs when a pair of complex eigenvalues move out of the unit circle while other eigenvalues stay inside the unit circle. Fast-scale bifurcation occurs when a negative real eigenvalue moves out of the unit circle while all other eigenvalues stay inside the unit circle. Interacting fast and slow-scale bifurcation occurs when a negative real eigenvalue and a pair of complex eigenvalues move out of the unit circle at the same time. Complex border collision bifurcation involving saturated operation occurs when some eigenvalues leap out of the unit circle. August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 31

32 Tracking eigenvalue movements E August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 32

33 Tracking eigenvalue movements g August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 33

34 Tracking eigenvalue movements August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 34

35 Analytical charts The eigenvalue loci and the stability boundaries can be compared along a selected cross-section of a particular chart. August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 35

36 Design guidelines Under certain parameter ranges, current-mode controlled boost converters can be fast-scale and slow-scale unstable simultaneously. In general the main parameters affecting fast-scale bifurcations are the rising slope of the inductance current, and the slope of compensation ramp, whereas those affecting slow-scale bifurcations are the voltage feedback gain g and time constant. The results show that the slow-scale bifurcation can be eliminated by decreasing the feedback gain and/or bandwidth, and the readiness of fastscale bifurcation can be reduced by increasing the slope of the compensation ramp or decreasing the rising slope of the inductor current while keeping the input voltage constant. August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 36

37 Conclusion Rich bifurcations exist in power electronics. But power electronics is a practical discipline, and study of bifurcation would be (more) valuable if it can help design better power electronics. Practical systems, practical models, and practical parameters should be used. Much previous work should be reformulated/repackaged to generate practically meaningful results. August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 37

38 A drunk man, knowing that his key was dropped in the pub, insisted to search for it under the lamp pole. When asked why, he said,...because it s brighter here. August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 38

39 August Tokushima Univ. Michael Tse: Department of EIE, HK PolyU 39

40 Thank you. 40

Conference Paper Controlling Nonlinear Behavior in Current Mode Controlled Boost Converter Based on the Monodromy Matrix

Conference Paper Controlling Nonlinear Behavior in Current Mode Controlled Boost Converter Based on the Monodromy Matrix Conference Papers in Engineering Volume 23, Article ID 8342, 7 pages http://dx.doi.org/./23/8342 Conference Paper Controlling Nonlinear Behavior in Current Mode Controlled Boost Converter Based on the

More information

Fast-Slow Scale Bifurcation in Higher Order Open Loop Current-Mode Controlled DC-DC Converters

Fast-Slow Scale Bifurcation in Higher Order Open Loop Current-Mode Controlled DC-DC Converters Fast-Slow Scale Bifurcation in Higher Order Open oop urrent-mode ontrolled D-D onverters I. Daho*, D. Giaouris*, S. Banerjee**, B. Zahawi*, and V. Pickert* * School of Electrical, Electronic and omputer

More information

Complex Behavior in Switching Power Converters

Complex Behavior in Switching Power Converters Complex Behavior in Switching Power Converters CHI K. TSE, SENIOR MEMBER, IEEE, AND MARIO DI BERNARDO, MEMBER, IEEE Invited Paper Power electronics circuits are rich in nonlinear dynamics. Their operation

More information

SWITCHED dynamical systems are useful in a variety of engineering

SWITCHED dynamical systems are useful in a variety of engineering 1184 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 51, NO. 6, JUNE 2004 Bifurcation Analysis of Switched Dynamical Systems With Periodically Moving Borders Yue Ma, Hiroshi Kawakami,

More information

Hopf Bifurcation and Chaos in a Free-Running Current-Controlled Ćuk Switching Regulator

Hopf Bifurcation and Chaos in a Free-Running Current-Controlled Ćuk Switching Regulator 448 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: FUNDAMENTAL THEORY AND APPLICATIONS, VOL. 47, NO. 4, APRIL 2000 Hopf Bifurcation and Chaos in a Free-Running Current-Controlled Ćuk Switching Regulator

More information

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS 1 Complex Interaction Between Tori and Onset of Three-Frequency Quasi-Periodicity in a Current Mode Controlled Boost Converter Damian Giaouris,

More information

I R TECHNICAL RESEARCH REPORT. Feedback Stabilization of PWM DC-DC Converters. by C.-C. Fang, E.H. Abed T.R

I R TECHNICAL RESEARCH REPORT. Feedback Stabilization of PWM DC-DC Converters. by C.-C. Fang, E.H. Abed T.R TECHNICAL RESEARCH REPORT Feedback Stabilization of PWM DC-DC Converters by C.-C. Fang, E.H. Abed T.R. 98-51 I R INSTITUTE FOR SYSTEMS RESEARCH ISR develops, applies and teaches advanced methodologies

More information

Bifurcations and Chaos in a Pulse Width Modulation Controlled Buck Converter

Bifurcations and Chaos in a Pulse Width Modulation Controlled Buck Converter Bifurcations and Chaos in a Pulse Width Modulation Controlled Buck Converter Łukasz Kocewiak, Claus Leth Bak, Stig Munk-Nielsen Institute of Energy Technology, Aalborg University, Pontoppidanstræde 101,

More information

THE NONLINEAR behavior of the buck converter is a

THE NONLINEAR behavior of the buck converter is a ontrol of switching circuits using complete-cycle solution matrices Damian Giaouris, Member, IEEE, bdulmajed Elbkosh, Soumitro Banerjee, Senior Member, IEEE, Bashar Zahawi Senior Member, IEEE, and Volker

More information

Study of Chaos and Dynamics of DC-DC Converters BY SAI RAKSHIT VINNAKOTA ANUROOP KAKKIRALA VIVEK PRAYAKARAO

Study of Chaos and Dynamics of DC-DC Converters BY SAI RAKSHIT VINNAKOTA ANUROOP KAKKIRALA VIVEK PRAYAKARAO Study of Chaos and Dynamics of DC-DC Converters BY SAI RAKSHIT VINNAKOTA ANUROOP KAKKIRALA VIVEK PRAYAKARAO What are DC-DC Converters?? A DC-to-DC converter is an electronic circuit which converts a source

More information

Maria Carmela Di Piazza. Gianpaolo Vitale. Photovoltaic Sources. Modeling and Emulation. ^ Springer

Maria Carmela Di Piazza. Gianpaolo Vitale. Photovoltaic Sources. Modeling and Emulation. ^ Springer Maria Carmela Di Piazza Gianpaolo Vitale Photovoltaic Sources Modeling and Emulation ^ Springer Part I 1 From the Nuclear Fusion to the Radiated Energy on the Earth... 3 1.1 Inside the Universe 3 1.2 The

More information

Ieee Transactions On Circuits And Systems I: Fundamental Theory And Applications, 2003, v. 50 n. 5, p

Ieee Transactions On Circuits And Systems I: Fundamental Theory And Applications, 2003, v. 50 n. 5, p Title Modeling, analysis, and experimentation of chaos in a switched reluctance drive system Author(s) Chau, KT; Chen, JH Citation Ieee Transactions On Circuits And Systems I: Fundamental Theory And Applications,

More information

THE single-stage isolated power-factor-correction (PFC)

THE single-stage isolated power-factor-correction (PFC) 204 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 53, NO. 1, JANUARY 2006 Fast-Scale Instability of Single-Stage Power-Factor-Correction Power Supplies Xiaoqun Wu, Chi K. Tse, Fellow,

More information

Modeling and Stability Analysis of Closed Loop Current-Mode Controlled Ćuk Converter using Takagi-Sugeno Fuzzy Approach

Modeling and Stability Analysis of Closed Loop Current-Mode Controlled Ćuk Converter using Takagi-Sugeno Fuzzy Approach 1 Modeling and Stability Analysis of Closed Loop Current-Mode Controlled Ću Converter using Taagi-Sugeno Fuzzy Approach Kamyar Mehran, Member IEEE, Damian Giaouris, Member IEEE, and Bashar Zahawi, Senior

More information

On the Dynamics of a n-d Piecewise Linear Map

On the Dynamics of a n-d Piecewise Linear Map EJTP 4, No. 14 2007 1 8 Electronic Journal of Theoretical Physics On the Dynamics of a n-d Piecewise Linear Map Zeraoulia Elhadj Department of Mathematics, University of Tébéssa, 12000, Algeria. Received

More information

Section 5 Dynamics and Control of DC-DC Converters

Section 5 Dynamics and Control of DC-DC Converters Section 5 Dynamics and ontrol of D-D onverters 5.2. Recap on State-Space Theory x Ax Bu () (2) yxdu u v d ; y v x2 sx () s Ax() s Bu() s ignoring x (0) (3) ( si A) X( s) Bu( s) (4) X s si A BU s () ( )

More information

Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency

Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency Chapter 3. Steady-State Equivalent Circuit Modeling, Losses, and Efficiency 3.1. The dc transformer model 3.2. Inclusion of inductor copper loss 3.3. Construction of equivalent circuit model 3.4. How to

More information

A simple electronic circuit to demonstrate bifurcation and chaos

A simple electronic circuit to demonstrate bifurcation and chaos A simple electronic circuit to demonstrate bifurcation and chaos P R Hobson and A N Lansbury Brunel University, Middlesex Chaos has generated much interest recently, and many of the important features

More information

An Analysis of Nondifferentiable Models of and DPCM Systems From the Perspective of Noninvertible Map Theory

An Analysis of Nondifferentiable Models of and DPCM Systems From the Perspective of Noninvertible Map Theory An Analysis of Nondifferentiable Models of and DPCM Systems From the Perspective of Noninvertible Map Theory INA TARALOVA-ROUX AND ORLA FEELY Department of Electronic and Electrical Engineering University

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 2.4 Cuk converter example L 1 C 1 L 2 Cuk converter, with ideal switch i 1 i v 1 2 1 2 C 2 v 2 Cuk

More information

Stability Analysis of a Feedback-Controlled Resonant DC DC Converter

Stability Analysis of a Feedback-Controlled Resonant DC DC Converter IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, VOL. 50, NO. 1, FEBRUARY 2003 141 Stability Analysis of a Feedback-Controlled Resonant DC DC Converter Octavian Dranga, Balázs Buti, and István Nagy, Fellow,

More information

Limit Cycles in High-Resolution Quantized Feedback Systems

Limit Cycles in High-Resolution Quantized Feedback Systems Limit Cycles in High-Resolution Quantized Feedback Systems Li Hong Idris Lim School of Engineering University of Glasgow Glasgow, United Kingdom LiHonIdris.Lim@glasgow.ac.uk Ai Poh Loh Department of Electrical

More information

Mathematical analysis of a third-order memristor-based Chua oscillators

Mathematical analysis of a third-order memristor-based Chua oscillators Mathematical analysis of a third-order memristor-based Chua oscillators Vanessa Botta, Cristiane Néspoli, Marcelo Messias Depto de Matemática, Estatística e Computação, Faculdade de Ciências e Tecnologia,

More information

Modeling and Stability Analysis of Closed Loop Current-Mode Controlled Ćuk Converter using Takagi-Sugeno Fuzzy Approach

Modeling and Stability Analysis of Closed Loop Current-Mode Controlled Ćuk Converter using Takagi-Sugeno Fuzzy Approach Modeling and Stability Analysis of Closed Loop Current-Mode Controlled Ću Converter using Taagi-Sugeno Fuzzy Approach Kamyar Mehran Damian Giaouris Bashar Zahawi School of Electrical, Electronic and Computer

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction 1.1 What is Phase-Locked Loop? The phase-locked loop (PLL) is an electronic system which has numerous important applications. It consists of three elements forming a feedback loop:

More information

NONSMOOTH phenomena play an important role in many

NONSMOOTH phenomena play an important role in many 200 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 57, NO. 1, JANUARY 2010 Stability Analysis and Control of Nonlinear Phenomena in Boost Converters Using Model-Based Takagi Sugeno Fuzzy

More information

AN ELECTRIC circuit containing a switch controlled by

AN ELECTRIC circuit containing a switch controlled by 878 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 46, NO. 7, JULY 1999 Bifurcation of Switched Nonlinear Dynamical Systems Takuji Kousaka, Member, IEEE, Tetsushi

More information

NYQUIST STABILITY FOR HYSTERESIS SWITCHING MODE CONTROLLERS

NYQUIST STABILITY FOR HYSTERESIS SWITCHING MODE CONTROLLERS U.P.B. Sci. Bull., Series C, Vol. 78, Iss. 1, 2016 ISSN 2286-3540 NYQUIST STABILITY FOR HYSTERESIS SWITCHING MODE CONTROLLERS Dan OLARU 1 The stability analysis of the non-linear circuits is a challenging

More information

Theoretical and Experimental Investigation of the Fast- and Slow-Scale Instabilities of a DC DC Converter

Theoretical and Experimental Investigation of the Fast- and Slow-Scale Instabilities of a DC DC Converter IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 16, NO. 2, MARCH 2001 201 Theoretical and Experimental Investigation of the Fast- and Slow-Scale Instabilities of a DC DC Converter Sudip K. Mazumder, Ali H.

More information

ANALYSIS AND SYNTHESIS OF DISTURBANCE OBSERVER AS AN ADD-ON ROBUST CONTROLLER

ANALYSIS AND SYNTHESIS OF DISTURBANCE OBSERVER AS AN ADD-ON ROBUST CONTROLLER ANALYSIS AND SYNTHESIS OF DISTURBANCE OBSERVER AS AN ADD-ON ROBUST CONTROLLER Hyungbo Shim (School of Electrical Engineering, Seoul National University, Korea) in collaboration with Juhoon Back, Nam Hoon

More information

Chaotifying 2-D piecewise linear maps via a piecewise linear controller function

Chaotifying 2-D piecewise linear maps via a piecewise linear controller function Chaotifying 2-D piecewise linear maps via a piecewise linear controller function Zeraoulia Elhadj 1,J.C.Sprott 2 1 Department of Mathematics, University of Tébéssa, (12000), Algeria. E-mail: zeraoulia@mail.univ-tebessa.dz

More information

Analysis, Design and Control of DC-DC Converters

Analysis, Design and Control of DC-DC Converters TUM Jan 216 Analysis, Design and Control of DC-DC Converters Damian Giaouris BEng, BSc, PG Cert, MSc, PhD Senior Lecturer in Control of Electrical Systems Electrical Power Research Group School of Electrical

More information

Limitations of Bifurcation Diagrams in Boost Converter Steady-State Response Identification

Limitations of Bifurcation Diagrams in Boost Converter Steady-State Response Identification Limitations of Bifurcation Diagrams in Boost Converter Steady-State Response Identification Željko Stojanović Zagreb University of Applied Sciences Department of Electrical Engineering Konavoska 2, 10000

More information

Tools for Investigation of Dynamics of DC-DC Converters within Matlab/Simulink

Tools for Investigation of Dynamics of DC-DC Converters within Matlab/Simulink Tools for Inestigation of Dynamics of DD onerters within Matlab/Simulink Riga Technical Uniersity, Riga, Latia Email: pikulin03@inbox.l Dmitry Pikulin Abstract: In this paper the study of complex phenomenon

More information

Conduction Modes of a Peak Limiting Current Mode Controlled Buck Converter

Conduction Modes of a Peak Limiting Current Mode Controlled Buck Converter Conduction Modes of a Peak Limiting Current Mode Controlled Buck Converter Predrag Pejović and Marija Glišić Abstract In this paper, analysis of a buck converter operated applying a peak limiting current

More information

A SYSTEMATIC APPROACH TO GENERATING n-scroll ATTRACTORS

A SYSTEMATIC APPROACH TO GENERATING n-scroll ATTRACTORS International Journal of Bifurcation and Chaos, Vol. 12, No. 12 (22) 297 2915 c World Scientific Publishing Company A SYSTEMATIC APPROACH TO ENERATIN n-scroll ATTRACTORS UO-QUN ZHON, KIM-FUN MAN and UANRON

More information

Dynamical systems tutorial. Gregor Schöner, INI, RUB

Dynamical systems tutorial. Gregor Schöner, INI, RUB Dynamical systems tutorial Gregor Schöner, INI, RUB Dynamical systems: Tutorial the word dynamics time-varying measures range of a quantity forces causing/accounting for movement => dynamical systems dynamical

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder . W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder Part II" Converter Dynamics and Control! 7.!AC equivalent circuit modeling! 8.!Converter transfer

More information

as Hopf Bifurcations in Time-Delay Systems with Band-limited Feedback

as Hopf Bifurcations in Time-Delay Systems with Band-limited Feedback as Hopf Bifurcations in Time-Delay Systems with Band-limited Feedback Lucas Illing and Daniel J. Gauthier Department of Physics Center for Nonlinear and Complex Systems Duke University, North Carolina

More information

Lecture 47 Switch Mode Converter Transfer Functions: Tvd(s) and Tvg(s) A. Guesstimating Roots of Complex Polynomials( this section is optional)

Lecture 47 Switch Mode Converter Transfer Functions: Tvd(s) and Tvg(s) A. Guesstimating Roots of Complex Polynomials( this section is optional) Lecture 47 Switch Mode Converter Transfer Functions: T vd (s) and T vg (s) A. Guesstimating Roots of Complex Polynomials( this section is optional). Quick Insight n=. n th order case. Cuk example 4. Forth

More information

Controlling Chaos in a State-Dependent Nonlinear System

Controlling Chaos in a State-Dependent Nonlinear System Electronic version of an article published as International Journal of Bifurcation and Chaos Vol. 12, No. 5, 2002, 1111-1119, DOI: 10.1142/S0218127402004942 World Scientific Publishing Company, https://www.worldscientific.com/worldscinet/ijbc

More information

INVESTIGATION OF NONLINEAR DYNAMICS IN THE BOOST CONVERTER: EFFECT OF CAPACITANCE VARIATIONS

INVESTIGATION OF NONLINEAR DYNAMICS IN THE BOOST CONVERTER: EFFECT OF CAPACITANCE VARIATIONS INVESTIGATION OF NONLINEAR DYNAMICS IN THE BOOST CONVERTER: EFFECT OF CAPACITANCE VARIATIONS T. D. Dongale Computational Electronics and Nanoscience Research Laboratory, School of Nanoscience and Biotechnology,

More information

Section 4. Nonlinear Circuits

Section 4. Nonlinear Circuits Section 4 Nonlinear Circuits 1 ) Voltage Comparators V P < V N : V o = V ol V P > V N : V o = V oh One bit A/D converter, Practical gain : 10 3 10 6 V OH and V OL should be far apart enough Response Time:

More information

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V.

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V. When you have completed this exercise, you will be able to operate a zener-clamped op amp comparator circuit using dc and ac voltages. You will verify your results with an oscilloscope. U1 is zero based

More information

Chaos: A Nonlinear Phenomenon in AC-DC Power-Factor- Corrected Boost Convertor

Chaos: A Nonlinear Phenomenon in AC-DC Power-Factor- Corrected Boost Convertor Int. J. Com. Dig. Sys. 2, No. 3, 167-172 (2013) 167 International Journal of Computing and Digital Systems http://dx.doi.org/10.12785/ijcds/020308 Chaos: A Nonlinear Phenomenon in AC-DC Power-Factor- Corrected

More information

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder

R. W. Erickson. Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder R. W. Erickson Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder 1.. Averaged switch modeling with the simple approximation i 1 (t) i (t) i (t) v g (t) v 1 (t)

More information

Period-doubling bifurcation in two-stage power factor correction converters using the method of incremental harmonic balance and Floquet theory

Period-doubling bifurcation in two-stage power factor correction converters using the method of incremental harmonic balance and Floquet theory Perioddoubling bifurcation in twostage power factor correction converters using the method of incremental harmonic balance and Floquet theory Wang FaQiang( ), Zhang Hao( ), and Ma XiKui( ) State Key Laboratory

More information

Complex non-linear phenomena and stability analysis of interconnected power converters used in distributed power systems

Complex non-linear phenomena and stability analysis of interconnected power converters used in distributed power systems IET Power Electronics Research Article Complex non-linear phenomena and stability analysis of interconnected power converters used in distributed power systems ISSN 1755-4535 Received on 4th May 2015 Revised

More information

Chapter 10 Feedback. PART C: Stability and Compensation

Chapter 10 Feedback. PART C: Stability and Compensation 1 Chapter 10 Feedback PART C: Stability and Compensation Example: Non-inverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits

More information

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term

A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term ETASR - Engineering, Technology & Applied Science Research Vol., o.,, 9-5 9 A Novel Three Dimension Autonomous Chaotic System with a Quadratic Exponential Nonlinear Term Fei Yu College of Information Science

More information

Part II Converter Dynamics and Control

Part II Converter Dynamics and Control Part II Converter Dynamics and Control 7. AC equivalent circuit modeling 8. Converter transfer functions 9. Controller design 10. Ac and dc equivalent circuit modeling of the discontinuous conduction mode

More information

SECONDARY BIFURCATIONS AND HIGH PERIODIC ORBITS IN VOLTAGE CONTROLLED BUCK CONVERTER

SECONDARY BIFURCATIONS AND HIGH PERIODIC ORBITS IN VOLTAGE CONTROLLED BUCK CONVERTER International Journal of Bifurcation and Chaos, Vol. 7, No. 12 (1997) 2755 2771 c World Scientific Publishing Company SECONDARY BIFURCATIONS AND HIGH PERIODIC ORBITS IN VOLTAGE CONTROLLED BUCK CONVERTER

More information

Multi-Scroll Chaotic Attractors in SC-CNN via Hyperbolic Tangent Function

Multi-Scroll Chaotic Attractors in SC-CNN via Hyperbolic Tangent Function electronics Article Multi-Scroll Chaotic Attractors in SC-CNN via Hyperbolic Tangent Function Enis Günay, * and Kenan Altun ID Department of Electrical and Electronics Engineering, Erciyes University,

More information

Centralized Supplementary Controller to Stabilize an Islanded AC Microgrid

Centralized Supplementary Controller to Stabilize an Islanded AC Microgrid Centralized Supplementary Controller to Stabilize an Islanded AC Microgrid ESNRajuP Research Scholar, Electrical Engineering IIT Indore Indore, India Email:pesnraju88@gmail.com Trapti Jain Assistant Professor,

More information

ADAPTIVE FEEDBACK LINEARIZING CONTROL OF CHUA S CIRCUIT

ADAPTIVE FEEDBACK LINEARIZING CONTROL OF CHUA S CIRCUIT International Journal of Bifurcation and Chaos, Vol. 12, No. 7 (2002) 1599 1604 c World Scientific Publishing Company ADAPTIVE FEEDBACK LINEARIZING CONTROL OF CHUA S CIRCUIT KEVIN BARONE and SAHJENDRA

More information

ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012

ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012 ET4119 Electronic Power Conversion 2011/2012 Solutions 27 January 2012 1. In the single-phase rectifier shown below in Fig 1a., s = 1mH and I d = 10A. The input voltage v s has the pulse waveform shown

More information

LARGE numbers of converters in power electronics belong

LARGE numbers of converters in power electronics belong 168 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I: REGULAR PAPERS, VOL. 52, NO. 1, JANUARY 2005 Stability Analysis of Nonlinear Power Electronic Systems Utilizing Periodicity and Introducing Auxiliary State

More information

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode

Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode Chapter 11 AC and DC Equivalent Circuit Modeling of the Discontinuous Conduction Mode Introduction 11.1. DCM Averaged Switch Model 11.2. Small-Signal AC Modeling of the DCM Switch Network 11.3. High-Frequency

More information

I R TECHNICAL RESEARCH REPORT. Analysis and Control of Period Doubling Bifurcation in Buck Converters Using Harmonic Balance. by C.-C. Fang, E.H.

I R TECHNICAL RESEARCH REPORT. Analysis and Control of Period Doubling Bifurcation in Buck Converters Using Harmonic Balance. by C.-C. Fang, E.H. TECHNICAL RESEARCH REPORT Analysis and Control of Period Doubling Bifurcation in Buck Converters Using Harmonic Balance by C.-C. Fang, E.H. Abed T.R. 98-50 I R INSTITUTE FOR SYSTEMS RESEARCH ISR develops,

More information

The output voltage is given by,

The output voltage is given by, 71 The output voltage is given by, = (3.1) The inductor and capacitor values of the Boost converter are derived by having the same assumption as that of the Buck converter. Now the critical value of the

More information

24.2: Self-Biased, High-Bandwidth, Low-Jitter 1-to-4096 Multiplier Clock Generator PLL

24.2: Self-Biased, High-Bandwidth, Low-Jitter 1-to-4096 Multiplier Clock Generator PLL 24.2: Self-Biased, High-Bandwidth, Low-Jitter 1-to-4096 Multiplier Clock Generator PLL John G. Maneatis 1, Jaeha Kim 1, Iain McClatchie 1, Jay Maxey 2, Manjusha Shankaradas 2 True Circuits, Los Altos,

More information

Krauskopf, B., Erzgraber, H., & Lenstra, D. (2006). Dynamics of semiconductor lasers with filtered optical feedback.

Krauskopf, B., Erzgraber, H., & Lenstra, D. (2006). Dynamics of semiconductor lasers with filtered optical feedback. Krauskopf, B, Erzgraber, H, & Lenstra, D (26) Dynamics of semiconductor lasers with filtered optical feedback Early version, also known as pre-print Link to publication record in Explore Bristol Research

More information

LECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d)

LECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d) 1 ECTURE 8 Fundamental Models of Pulse-Width Modulated DC-DC Converters: f(d) I. Quasi-Static Approximation A. inear Models/ Small Signals/ Quasistatic I V C dt Amp-Sec/Farad V I dt Volt-Sec/Henry 1. Switched

More information

Modeling and Stability Analysis of DC-DC Buck Converter via Takagi-Sugeno Fuzzy Approach

Modeling and Stability Analysis of DC-DC Buck Converter via Takagi-Sugeno Fuzzy Approach 1 Modeling and Stability Analysis of DC-DC Buc Converter via Taagi-Sugeno Fuzzy Approach Kamyar Mehran, Member IEEE, Damian Giaouris, Member IEEE, and Bashar Zahawi, Senior Member IEEE School of Electrical,

More information

Piecewise Smooth Dynamical Systems Modeling Based on Putzer and Fibonacci-Horner Theorems: DC-DC Converters Case

Piecewise Smooth Dynamical Systems Modeling Based on Putzer and Fibonacci-Horner Theorems: DC-DC Converters Case International Journal of Automation and Computing 13(3), June 2016, 246-258 DOI: 10.1007/s11633-016-1007-1 Piecewise Smooth Dynamical Systems Modeling Based on Putzer and Fibonacci-Horner Theorems: DC-DC

More information

Definition of Stability

Definition of Stability Definition of Stability Transfer function of a linear time-invariant (LTI) system Fs () = b 2 1 0+ b1s+ b2s + + b m m m 1s - - + bms a0 + a1s+ a2s2 + + an-1sn- 1+ ansn Characteristic equation and poles

More information

Period-Doubling Analysis and Chaos Detection Using Commercial Harmonic Balance Simulators

Period-Doubling Analysis and Chaos Detection Using Commercial Harmonic Balance Simulators 574 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 48, NO. 4, APRIL 2000 Period-Doubling Analysis and Chaos Detection Using Commercial Harmonic Balance Simulators Juan-Mari Collantes, Member,

More information

Generalized Analysis for ZCS

Generalized Analysis for ZCS Generalized Analysis for ZCS The QRC cells (ZCS and ZS) analysis, including the switching waveforms, can be generalized, and then applies to each converter. nstead of analyzing each QRC cell (L-type ZCS,

More information

Dynamical Systems in Neuroscience: Elementary Bifurcations

Dynamical Systems in Neuroscience: Elementary Bifurcations Dynamical Systems in Neuroscience: Elementary Bifurcations Foris Kuang May 2017 1 Contents 1 Introduction 3 2 Definitions 3 3 Hodgkin-Huxley Model 3 4 Morris-Lecar Model 4 5 Stability 5 5.1 Linear ODE..............................................

More information

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier I & Step Response

Advanced Analog Integrated Circuits. Operational Transconductance Amplifier I & Step Response Advanced Analog Integrated Circuits Operational Transconductance Amplifier I & Step Response Bernhard E. Boser University of California, Berkeley boser@eecs.berkeley.edu Copyright 2016 by Bernhard Boser

More information

CONTROLLING IN BETWEEN THE LORENZ AND THE CHEN SYSTEMS

CONTROLLING IN BETWEEN THE LORENZ AND THE CHEN SYSTEMS International Journal of Bifurcation and Chaos, Vol. 12, No. 6 (22) 1417 1422 c World Scientific Publishing Company CONTROLLING IN BETWEEN THE LORENZ AND THE CHEN SYSTEMS JINHU LÜ Institute of Systems

More information

Nonlinear dynamics & chaos BECS

Nonlinear dynamics & chaos BECS Nonlinear dynamics & chaos BECS-114.7151 Phase portraits Focus: nonlinear systems in two dimensions General form of a vector field on the phase plane: Vector notation: Phase portraits Solution x(t) describes

More information

Hopf bifurcation and chaos in synchronous reluctance motor drives

Hopf bifurcation and chaos in synchronous reluctance motor drives Title Hopf bifurcation and chaos in synchronous reluctance motor drives Author(s) Gao, Y; Chau, KT Citation Ieee Transactions On Energy Conversion, 2004, v. 19 n. 2, p. 296-302 Issued Date 2004 URL http://hdl.handle.net/10722/42966

More information

ECE1750, Spring Week 11 Power Electronics

ECE1750, Spring Week 11 Power Electronics ECE1750, Spring 2017 Week 11 Power Electronics Control 1 Power Electronic Circuits Control In most power electronic applications we need to control some variable, such as the put voltage of a dc-dc converter,

More information

CONVENTIONAL stability analyses of switching power

CONVENTIONAL stability analyses of switching power IEEE TRANSACTIONS ON POWER ELECTRONICS, VOL. 23, NO. 3, MAY 2008 1449 Multiple Lyapunov Function Based Reaching Condition for Orbital Existence of Switching Power Converters Sudip K. Mazumder, Senior Member,

More information

A unified double-loop multi-scale control strategy for NMP integrating-unstable systems

A unified double-loop multi-scale control strategy for NMP integrating-unstable systems Home Search Collections Journals About Contact us My IOPscience A unified double-loop multi-scale control strategy for NMP integrating-unstable systems This content has been downloaded from IOPscience.

More information

The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System

The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System 1 The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System M. M. Alomari and B. S. Rodanski University of Technology, Sydney (UTS) P.O. Box 123, Broadway NSW 2007, Australia

More information

COMPLEX DYNAMICS IN HYSTERETIC NONLINEAR OSCILLATOR CIRCUIT

COMPLEX DYNAMICS IN HYSTERETIC NONLINEAR OSCILLATOR CIRCUIT THE PUBLISHING HOUSE PROCEEDINGS OF THE ROMANIAN ACADEM, Series A, OF THE ROMANIAN ACADEM Volume 8, Number 4/7, pp. 7 77 COMPLEX DNAMICS IN HSTERETIC NONLINEAR OSCILLATOR CIRCUIT Carmen GRIGORAS,, Victor

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #36 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Friday, April 4, 2003 3. Cascade Control Next we turn to an

More information

20.2 Design Example: Countdown Timer

20.2 Design Example: Countdown Timer EECS 16A Designing Information Devices and Systems I Fall 018 Lecture Notes Note 0 0.1 Design Procedure Now that we ve analyzed many circuits, we are ready to focus on designing interesting circuits to

More information

ROBUST STABLE NONLINEAR CONTROL AND DESIGN OF A CSTR IN A LARGE OPERATING RANGE. Johannes Gerhard, Martin Mönnigmann, Wolfgang Marquardt

ROBUST STABLE NONLINEAR CONTROL AND DESIGN OF A CSTR IN A LARGE OPERATING RANGE. Johannes Gerhard, Martin Mönnigmann, Wolfgang Marquardt ROBUST STABLE NONLINEAR CONTROL AND DESIGN OF A CSTR IN A LARGE OPERATING RANGE Johannes Gerhard, Martin Mönnigmann, Wolfgang Marquardt Lehrstuhl für Prozesstechnik, RWTH Aachen Turmstr. 46, D-5264 Aachen,

More information

First-order transient

First-order transient EIE209 Basic Electronics First-order transient Contents Inductor and capacitor Simple RC and RL circuits Transient solutions Constitutive relation An electrical element is defined by its relationship between

More information

Subharmonics and chaos in switched reluctance motor drives

Subharmonics and chaos in switched reluctance motor drives Title Subharmonics and chaos in switched reluctance motor drives Author(s) Chen, JH; Chau, KT; Chan, CC; Jiang, Q Citation Ieee Transactions On Energy Conversion, 2002, v. 17 n. 1, p. 73-78 Issued Date

More information

Chapter 3 AUTOMATIC VOLTAGE CONTROL

Chapter 3 AUTOMATIC VOLTAGE CONTROL Chapter 3 AUTOMATIC VOLTAGE CONTROL . INTRODUCTION TO EXCITATION SYSTEM The basic function of an excitation system is to provide direct current to the field winding of the synchronous generator. The excitation

More information

AN019. A Better Approach of Dealing with Ripple Noise of LDO. Introduction. The influence of inductor effect over LDO

AN019. A Better Approach of Dealing with Ripple Noise of LDO. Introduction. The influence of inductor effect over LDO Better pproach of Dealing with ipple Noise of Introduction It has been a trend that cellular phones, audio systems, cordless phones and portable appliances have a requirement for low noise power supplies.

More information

Andrea Zanchettin Automatic Control AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Linear systems (frequency domain)

Andrea Zanchettin Automatic Control AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Linear systems (frequency domain) 1 AUTOMATIC CONTROL Andrea M. Zanchettin, PhD Spring Semester, 2018 Linear systems (frequency domain) 2 Motivations Consider an LTI system Thanks to the Lagrange s formula we can compute the motion of

More information

Dynamic circuits: Frequency domain analysis

Dynamic circuits: Frequency domain analysis Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution

More information

Nonlinear Op-amp Circuits

Nonlinear Op-amp Circuits deba21pratim@gmail.com Electronic Systems Group Department of Electrical Engineering IIT Bombay May 3, 2013 Overview of op-amp operating regions Linear Region Occurs when the op-amp output is stable i.e.

More information

EE 422G - Signals and Systems Laboratory

EE 422G - Signals and Systems Laboratory EE 4G - Signals and Systems Laboratory Lab 9 PID Control Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 April, 04 Objectives: Identify the

More information

Transient Response of a Second-Order System

Transient Response of a Second-Order System Transient Response of a Second-Order System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a well-behaved closed-loop

More information

Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber

Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber J.C. Ji, N. Zhang Faculty of Engineering, University of Technology, Sydney PO Box, Broadway,

More information

EE 508 Lecture 24. Sensitivity Functions - Predistortion and Calibration

EE 508 Lecture 24. Sensitivity Functions - Predistortion and Calibration EE 508 Lecture 24 Sensitivity Functions - Predistortion and Calibration Review from last time Sensitivity Comparisons Consider 5 second-order lowpass filters (all can realize same T(s) within a gain factor)

More information

6.3. Transformer isolation

6.3. Transformer isolation 6.3. Transformer isolation Objectives: Isolation of input and output ground connections, to meet safety requirements eduction of transformer size by incorporating high frequency isolation transformer inside

More information

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore

Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore Switched Mode Power Conversion Prof. L. Umanand Department of Electronics Systems Engineering Indian Institute of Science, Bangalore Lecture - 19 Modeling DC-DC convertors Good day to all of you. Today,

More information

Inducing Chaos in the p/n Junction

Inducing Chaos in the p/n Junction Inducing Chaos in the p/n Junction Renato Mariz de Moraes, Marshal Miller, Alex Glasser, Anand Banerjee, Ed Ott, Tom Antonsen, and Steven M. Anlage CSR, Department of Physics MURI Review 14 November, 2003

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 5. Global Bifurcations, Homoclinic chaos, Melnikov s method Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Motivation 1.1 The problem 1.2 A

More information

COEXISTENCE OF REGULAR AND CHAOTIC BEHAVIOR IN THE TIME-DELAYED FEEDBACK CONTROLLED TWO-CELL DC/DC CONVERTER

COEXISTENCE OF REGULAR AND CHAOTIC BEHAVIOR IN THE TIME-DELAYED FEEDBACK CONTROLLED TWO-CELL DC/DC CONVERTER 9 6th International Multi-Conference on Systems, Signals and Devices COEXISTENCE OF REGULAR AND CHAOTIC BEHAVIOR IN THE TIME-DELAYED FEEDBACK CONTROLLED TWO-CELL DC/DC CONVERTER K. Kaoubaa, M. Feki, A.

More information

Chapter 8 VOLTAGE STABILITY

Chapter 8 VOLTAGE STABILITY Chapter 8 VOTAGE STABIITY The small signal and transient angle stability was discussed in Chapter 6 and 7. Another stability issue which is important, other than angle stability, is voltage stability.

More information

Qualitative Analysis of Tumor-Immune ODE System

Qualitative Analysis of Tumor-Immune ODE System of Tumor-Immune ODE System L.G. de Pillis and A.E. Radunskaya August 15, 2002 This work was supported in part by a grant from the W.M. Keck Foundation 0-0 QUALITATIVE ANALYSIS Overview 1. Simplified System

More information

Fast Sketching of Nyquist Plot in Control Systems

Fast Sketching of Nyquist Plot in Control Systems Journal of cience & Technology Vol ( No( 006 JT Fast ketching of Nyquist lot in Control ystems Muhammad A Eissa Abstract The sketching rules of Nyquist plots were laid-out a long time ago, but have never

More information