BIFURCATION PHENOMENA Lecture 4: Bifurcations in n-dimensional ODEs

Size: px
Start display at page:

Download "BIFURCATION PHENOMENA Lecture 4: Bifurcations in n-dimensional ODEs"

Transcription

1 BIFURCATION PHENOMENA Lecture 4: Bifurcations in n-dimensional ODEs Yuri A. Kuznetsov August, 2010

2 Contents 1. Solutions and orbits: equilibria cycles connecting orbits compact invariant manifolds strange invariant sets 2. Bifurcations of n-dimensional ODEs local equilibrium bifurcations local bifrcations of cycles bifurcations of homoclinic orbits to equilibria some other cases

3 Literature 1. L.P. Shilnikov, A.L. Shilnikov, D.V. Turaev, and L.O. Chua Methods of Qualitative Theory in Nonlinear Dynamics, Part I, World Scientific, Singapore, L.P. Shilnikov, A.L. Shilnikov, D.V. Turaev, and L.O. Chua Methods of Qualitative Theory in Nonlinear Dynamics, Part II, World Scientific, Singapore, V.I. Arnol d, V.S. Afraimovich, Yu.S. Il yashenko, and L.P. Shil nikov Bifurcation theory, In: V.I. Arnol d (ed), Dynamical Systems V. Encyclopaedia of Mathematical Sciences, Springer-Verlag, New York, Yu.A. Kuznetsov Elements of Applied Bifurcation Theory, 3rd ed. Applied Mathematical Sciences 112, Springer-Verlag, New York, Yu.A. Kuznetsov, O. De Feo, and S. Rinaldi (2001), Belyakov homoclinic bifurcations in a tritrophic food chain model, SIAM J. Appl. Math. 62,

4 1. SOLUTIONS AND ORBITS Consider a smooth system X 3 Ẋ = f(x), X R n. Orbits, phase portraits, and topological equivalence are defined as in the case n = 2 X 2 Equilibria: f(x 0 ) = 0 X 1 Definition 1 An equilibrium is called hyperbolic if R(λ) 0 for all eigenvalues of its Jacobian matrix A = f X (X 0 ). Theorem 1 (Grobman-Hartman) If equilibrium X 0 = 0 is hyperbolic, Ẋ = f(x) is locally topologically equivalent near the origin to Ẏ = AY.

5 Stable and unstable invariant manifolds of equilibria: If a hyperbolic equilibrium X 0 has n s eigenvalues with R(λ) < 0 and n u eigenvalues with R(λ) > 0, it has the n s -dimensional smooth invariant manifold W s composed of all orbits approaching X 0 as t, and the n u -dimensional smooth invariant manifold W u composed of all orbits approaching X 0 as t v 1 W u 1 W ss λ 3 λ 2 λ 1 X 0 Av j = λ j v j stable unstable W s v 2 v 3 W u 2

6 Periodic orbits (cycles) The Poincaré map ξ ξ = P(ξ) is defined on a smooth (n 1)-dimensional crossection: ξ P(ξ) 0 Σ P : Σ Σ. If C 0 coresponds to ξ = 0 then P(0) = 0 and P(ξ) = Mξ + O(2) µ 1 µ 2 µ n 1 = exp ( T0 0 (div f)(x0 (t))dt ) > 0 C 0 Definition 2 A cycle is called hyperbolic if µ = 1 for all eigenvalues (multipliers) of the matrix M = P ξ (0). Theorem 2 (Grobman-Hartman for maps) The Poincaré map ξ P(ξ) of a hyperbolic cycle is locally topologically equivalent near the origin to ξ Mξ.

7 Stable and unstable invariant manifolds of cycles: If a hyperbolic cycle C 0 has m s multipliers with µ < 1 and m u multipliers with µ > 1, it has the (m s +1)-dimensional smooth invariant manifold W s composed of all orbits approaching C 0 as t, and the (m u + 1)-dimensional smooth invariant manifold W u composed of all orbits approaching C 0 as t C 0 W u (C 0 ) W u (C 0 ) W s (C 0 ) P(ξ) Σ ξ W s (C 0 ) P(ξ) P 2 (ξ) ξ Σ C 0

8 Connecting orbits Homoclinic orbits are intersections of W u and W s of an equilibrium/cycle. Heteroclinic orbits are intersections of W u and W s of two different equilibria/cycles. Γ 0 Γ 0 W u W u 1 W u 2 X 0 X 1 X 0 W s W s 1 W s 2

9 Generically, the closure of the 2D invariant manifold near a homoclinic orbit Γ 0 to an equilibriun with real eigenvalues (saddle) in R 3 is either simple (orientable) or twisted (non-orientable): Γ 0 Γ 0 W s W s

10 Compact invariant manifolds 1. tori Example: 2D-torus T 2 with periodic or quasi-periodic orbits 2. spheres 3. Klein bottles

11 Strange (chaotic) invariant sets - have fractal structure (not a manifold); - contain infinite number of hyperbolic cycles; - demonstrate sensitive dependence of solutions on initial conditions; - can be attracting (strange attractors); - orbits can be coded by sequences of symbols (symbolic dynamics).

12 2. BIFURCATIONS OF N-DIMENSIONAL ODES Ẋ = f(x, α) Local (equilibrium) bifurcations Center manifold reduction: Let X 0 = 0 be non-hyperbolic with stable, unstable, and critical eigenvalues: I(λ) R(λ) n c n s n u Theorem 3 For all sufficiently small α, there exists a local invariant center manifold W c (α) of dimension n c that is locally attracting if n u = 0, repelling if n s = 0, and of saddle type if n s n u > 0. Moreover W c (0) is tangent to the critical eigenspace of A = f X (0,0).

13 v 3 λ 2 λ 1 v 2 λ 3 λ 1 λ 2 W c x 0 v 1 x 0 Im v 1 W c Re v 1 Remark: W c (0) is not unique; however, all W c (0) have the same Taylor expansion. Theorem 4 If ξ = g(ξ, α) is the restriction of Ẋ = f(x, α) to W c (α), then this system is locally topologically equivalent to ξ = g(ξ, α), ξ R n c, α R m, ẋ = x, x R n s, ẏ = y, y R n u.

14 Codim 1 equilibrium bifurcations: α R f(x,0) = AX B(X, X) + 1 C(X, X, X) + O(4) 6 Fold (saddle-node): λ 1 = 0 and g(ξ,0) = aξ 2 + O(3) If a 0 then the restriction of Ẋ = f(x, α) to its 1D W c (α) is locally topologically equivalent to ξ = β(α) + aξ 2. a > 0, λ 2 < 0 W c W c W c O 1 O 2 0 β < 0 β = 0 β > 0 Computational formula: a = 1 2 q, B(q, q) where Aq = AT p = 0 with p, q = q, q = 1.

15 Andronov-Hopf: λ 1,2 = ±iω (ω > 0) and ξ = g(ξ,0) is locally smoothly equivalent to ż = iωz + c 1 z z 2 + O(5), z C. If l 1 = R(c 1) ω 0 then the restriction of Ẋ = f(x, α) to its 2D W c (α) is { ρ = ρ(β(α) + l1 ρ locally topologically equivalent to 2 ), ϕ = 1. l 1 < 0, λ 3 < 0 C β β < 0 β = 0 β > 0 l 1 = 1 2ω R [ p, C(q, q, q) 2 p, B(q, A 1 B(q, q)) where Aq = iωq, A T p = iωp, p, q = q, q = 1. + p, B( q,(2iωe n A) 1 B(q, q)) ],

16 Codim 2 equilibrium bifurcations: α R 2 1. Cusp: λ 1 = 0, a = 0 (n c = 1) If c 0, then the restriction of Ẋ = f(x, α) to W c (α) is locally topologically equivalent to ξ = β 1 (α) + β 2 (α)ξ + sξ 3, where s = sign(c) = ±1. 2. Bogdanov-Takens: λ 1 = λ 2 = 0 (n c = 2) If ab 0, then the restriction of Ẋ = f(x, α) to W c (α) is locally topologically equivalent to ẋ = y, ẏ = β 1 (α) + β 2 (α)x + x 2 + sxy, where s = sign(ab) = ±1. 3. Bautin: λ 1,2 = ±iω, ω > 0 (n c = 2) If l 2 0, then the restriction of Ẋ = f(x, α) to W c (α) is locally topologically equivalent to ρ = ρ(β 1 (α) + β 2 (α)ρ 2 + sρ 4 ), ϕ = 1, where s = sign(l 2 ) = ±1.

17 4. Fold-Hopf: λ 1 = 0, λ 2,3 = ±iω, ω > 0 (n c = 3) Generically, the restriction of Ẋ = f(x, α) to W c (α) is smoothly orbitally equivalent to ξ = β 1 (α) + ξ 2 + sρ 2 + P(ξ, ρ, ϕ, α), ρ = ρ(β 2 (α) + θ(α)ξ + ξ 2 ) + Q(ξ, ρ, ϕ, α), ϕ = ω 1 (α) + θ 1 (α)ξ + R(ξ, ρ, ϕ, α), where s = ±1, θ(0) 0, ω 1 (0) > 0, P, Q, R = O( (ξ, ρ) 4 ). The bifurcation diagrams depend on O(4)-terms. Big picture is determined by the truncated normal form without the O(4)-terms. There exist invariant tori and homoclinic orbits near the fold-hopf bifurcation.

18 5. Hopf-Hopf: λ 1,2 = ±ω 1, λ 3,4 = ±iω 2, ω j > 0 (n c = 4) Generically, the restriction of Ẋ = f(x, α) to W c (α) is smoothly orbitally equivalent to ṙ 1 = r 1 (β 1 (α) + p 11 (α)r p 12(α)r s 1(α)r 4 2 ) + Φ 1(r, ϕ, α), ṙ 2 = r 2 (β 2 (α) + p 21 (α)r p 22(α)r s 2(α)r 4 1 ) + Φ 2(r, ϕ, α), ϕ 1 = ω 1 (α) + Ψ 1 (r, ϕ, α), ϕ 2 = ω 2 (α) + Ψ 2 (r, ϕ, α) where Φ j = O( r 6 ), Ψ j = O( r ). The bifurcation diagrams depend on Φ j - and Ψ j -terms. Big picture is determined by the truncated normal form without these terms. There exist invariant tori and homoclinic orbits near the Hopf- Hopf bifurcation.

19 Local bifurcations of cycles I(µ) dim W c = m c Critical cases of codim 1: m s m c R(µ) cyclic fold (saddle-node): µ 1 = 1 m u period-doubling: µ 1 = 1 Neimark-Sacker (torus): µ 1,2 = e ±iθ 0, 0 < θ 0 < π

20 Fold bifurcation of cycles: µ 1 = 1 (m c = 1) The restriction of ξ P(ξ,0) to its W c (0) is ξ ξ + bξ 2 + O(3). If b 0 then the restriction of ξ P(ξ, α) to its W c (α) is locally topologically equivalent to ξ ξ + β(α) + bξ 2. C 1 C 2 C0 β < 0 β = 0 β > 0

21 Period-doubling: µ 1 = 1 (m c = 1) The restriction of ξ P(ξ,0) to its W c (0) is locally smoothly equivalent to ξ ξ + cξ 3 + O(5). If c 0 then the restriction of ξ P(ξ, α) to its W c (α) is locally topologically equivalent to ξ (1 + β(α))ξ + cξ 3. C 0 C0 C 0 β < 0 β = 0 β > 0 C 1

22 Torus: µ 1 = 1 (m c = 1) If e ikθ 0 1 for k = 1,2,3,4, then the restriction of the Poincaré map to its W c (α) is locally smoothly equivalent to ( ) ( ρ ρ(1 + β(α) + d(α)ρ 2 ) ( ) ) R(ρ, ϕ, α) +, ϕ ϕ + θ(α) S(ρ, ϕ, α) where θ(0) = θ 0 and R = O(ρ 4 ), S = O(ρ 2 ) C 0 C 0 C 0 β > 0 β = 0 β > 0 T 2

23 Codim 1 bifurcations of homoclinic orbits to equilibria Homoclinic orbit to a hyperbolic equilibrium: central nonleading stable λ 1 µ 1 0 λ 2 µ 2 λ 3 nonleading unstable leading stable leading unstable µ 0 λ0 Definition 3 Saddle quantity σ = R(µ 1 ) + R(λ 1 ). Theorem 5 (Homoclinic Center Manifold) Generically, there exists an invariant finitely-smooth manifold W h (α) that is tangent to the central eigenspace at the homoclinic bifurcation.

24 Saddle homoclinic orbit: σ = µ 1 + λ 1 Assume that Γ 0 approaches X 0 along the leading eigenvectors. W h (0) Γ 0 Γ 0 W h (0) The Poincaré map near Γ 0 : ξ ξ = β + Aξ µ 1 λ where generically A 0, so that a unique hyperbolic cycle bifurcates from Γ 0 (stable in W h if σ < 0 and unstable in W h if σ > 0).

25 3D saddle homoclinic bifurcation with σ < 0: Assume that µ 2 < µ 1 < 0 < λ 1 (otherwise reverse time: t t). W u W u Γ 0 W u C β W s W s W s β < 0 β = 0 β > 0

26 3D saddle homoclinic bifurcation with σ > 0: Assume that µ 2 < µ 1 < 0 < λ 1 (otherwise reverse time: t t). Γ 0 W u C β W u W u A > 0 W s W s W s β < 0 β = 0 β > 0 Γ 0 W u W u W u A < 0 C β W s W s W s β < 0 β = 0 β > 0

27 Saddle-focus homoclinic orbit: σ = R(µ 1 ) + λ 1 3D saddle-focus homoclinic bifurcation with σ < 0: Assume that R(µ 2 ) = R(µ 1 ) < 0 < λ 1 (otherwise reverse time: t t). W u W u W u Γ 0 C β W s W s W s β < 0 β = 0 β > 0

28 3D saddle-focus homoclinic bifurcation with σ > 0: x x x CHAOTIC INVARIANT SET Focus-focus homoclinic orbit: σ = R(µ 1 ) + R(λ 1 ) CHAOTIC INVARIANT SET

29 Homoclinic orbit(s) to a non-hyperbolic equilibrium W ss W u W s Γ 0 Γ 0 One homoclinic orbit: a unique hyperbolic cycle W u W s Γ 1 Γ 0 Several homoclinic orbits: CHAOTIC INVARIANT SET

30 Some other cases C β C 0 C β β < 0 Homoclinic tangency of a hyperbolic cycle: CHAOS β = 0 β > 0 W ss (C 0 ) W u (C 0 ) W ss (C 0 ) W u (C 0 ) W ss (C 0 ) W u (C 0 ) C 0 C 0 C 0 (a) (b) (c) Homoclinics to nonhyperbolic cycle: torus/chaos/cycle

31 Example: Bifurcations in a food chain model The tri-trophic food chain model by Hogeweg & Hesper (1978): ( ẋ 1 = rx 1 1 x ) 1 a 1x 1 x 2, K 1 + b 1 x 1 where ẋ 2 = e 1 a 1 x 1 x b 1 x 1 a 2x 2 x b 2 x 2 d 1 x 2, ẋ 3 = e 2 a 2 x 2 x b 2 x 2 d 2 x 3, x 1 prey biomass x 2 predator biomass x 3 super predator biomass

32 À Ì Ì Ì Ì ½ Ì Ì À Ô Local bifurcations ¼º¼¾ Å ¼º¼½ ¾ ¼º¼½¾ À ¼º¼¼ ¼º ¼º ¼º ¼º ¼º½

33 Ì Ì Ì Ì Local and key global bifurcations ¼º¼½ ¼º¼½ À ¾ ¼º¼½¾ ½ ¼º¼½ ¾ ¼º¼¼ ¼º ¼º ¼º ¼º¾ ¼º½ ½

NBA Lecture 1. Simplest bifurcations in n-dimensional ODEs. Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011

NBA Lecture 1. Simplest bifurcations in n-dimensional ODEs. Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011 NBA Lecture 1 Simplest bifurcations in n-dimensional ODEs Yu.A. Kuznetsov (Utrecht University, NL) March 14, 2011 Contents 1. Solutions and orbits: equilibria cycles connecting orbits other invariant sets

More information

BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs

BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs BIFURCATION PHENOMENA Lecture 1: Qualitative theory of planar ODEs Yuri A. Kuznetsov August, 2010 Contents 1. Solutions and orbits. 2. Equilibria. 3. Periodic orbits and limit cycles. 4. Homoclinic orbits.

More information

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory Yuri A. Kuznetsov Elements of Applied Bifurcation Theory Third Edition With 251 Illustrations Springer Introduction to Dynamical Systems 1 1.1 Definition of a dynamical system 1 1.1.1 State space 1 1.1.2

More information

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory Yuri A. Kuznetsov Elements of Applied Bifurcation Theory Second Edition With 251 Illustrations Springer Preface to the Second Edition Preface to the First Edition vii ix 1 Introduction to Dynamical Systems

More information

Continuation of cycle-to-cycle connections in 3D ODEs

Continuation of cycle-to-cycle connections in 3D ODEs HET p. 1/2 Continuation of cycle-to-cycle connections in 3D ODEs Yuri A. Kuznetsov joint work with E.J. Doedel, B.W. Kooi, and G.A.K. van Voorn HET p. 2/2 Contents Previous works Truncated BVP s with projection

More information

Elements of Applied Bifurcation Theory

Elements of Applied Bifurcation Theory Yuri A. Kuznetsov Elements of Applied Bifurcation Theory Third Edition With 251 Illustrations Springer Yuri A. Kuznetsov Department of Mathematics Utrecht University Budapestlaan 6 3584 CD Utrecht The

More information

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II.

Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Mathematical Foundations of Neuroscience - Lecture 7. Bifurcations II. Filip Piękniewski Faculty of Mathematics and Computer Science, Nicolaus Copernicus University, Toruń, Poland Winter 2009/2010 Filip

More information

Lecture 5. Numerical continuation of connecting orbits of iterated maps and ODEs. Yu.A. Kuznetsov (Utrecht University, NL)

Lecture 5. Numerical continuation of connecting orbits of iterated maps and ODEs. Yu.A. Kuznetsov (Utrecht University, NL) Lecture 5 Numerical continuation of connecting orbits of iterated maps and ODEs Yu.A. Kuznetsov (Utrecht University, NL) May 26, 2009 1 Contents 1. Point-to-point connections. 2. Continuation of homoclinic

More information

Numerical Continuation and Normal Form Analysis of Limit Cycle Bifurcations without Computing Poincaré Maps

Numerical Continuation and Normal Form Analysis of Limit Cycle Bifurcations without Computing Poincaré Maps Numerical Continuation and Normal Form Analysis of Limit Cycle Bifurcations without Computing Poincaré Maps Yuri A. Kuznetsov joint work with W. Govaerts, A. Dhooge(Gent), and E. Doedel (Montreal) LCBIF

More information

Introduction to Bifurcation and Normal Form theories

Introduction to Bifurcation and Normal Form theories Introduction to Bifurcation and Normal Form theories Romain Veltz / Olivier Faugeras October 9th 2013 ENS - Master MVA / Paris 6 - Master Maths-Bio (2013-2014) Outline 1 Invariant sets Limit cycles Stable/Unstable

More information

11 Chaos in Continuous Dynamical Systems.

11 Chaos in Continuous Dynamical Systems. 11 CHAOS IN CONTINUOUS DYNAMICAL SYSTEMS. 47 11 Chaos in Continuous Dynamical Systems. Let s consider a system of differential equations given by where x(t) : R R and f : R R. ẋ = f(x), The linearization

More information

Example of a Blue Sky Catastrophe

Example of a Blue Sky Catastrophe PUB:[SXG.TEMP]TRANS2913EL.PS 16-OCT-2001 11:08:53.21 SXG Page: 99 (1) Amer. Math. Soc. Transl. (2) Vol. 200, 2000 Example of a Blue Sky Catastrophe Nikolaĭ Gavrilov and Andrey Shilnikov To the memory of

More information

Homoclinic saddle to saddle-focus transitions in 4D systems

Homoclinic saddle to saddle-focus transitions in 4D systems Faculty of Electrical Engineering, Mathematics & Computer Science Homoclinic saddle to saddle-focus transitions in 4D systems Manu Kalia M.Sc. Thesis July 2017 Assessment committee: Prof. Dr. S. A. van

More information

EE222 - Spring 16 - Lecture 2 Notes 1

EE222 - Spring 16 - Lecture 2 Notes 1 EE222 - Spring 16 - Lecture 2 Notes 1 Murat Arcak January 21 2016 1 Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Essentially Nonlinear Phenomena Continued

More information

Analysis of the Takens-Bogdanov bifurcation on m parameterized vector fields

Analysis of the Takens-Bogdanov bifurcation on m parameterized vector fields Analysis of the Takens-Bogdanov bifurcation on m parameterized vector fields Francisco Armando Carrillo Navarro, Fernando Verduzco G., Joaquín Delgado F. Programa de Doctorado en Ciencias (Matemáticas),

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: August 22, 2018, at 08 30 12 30 Johanneberg Jan Meibohm,

More information

7 Two-dimensional bifurcations

7 Two-dimensional bifurcations 7 Two-dimensional bifurcations As in one-dimensional systems: fixed points may be created, destroyed, or change stability as parameters are varied (change of topological equivalence ). In addition closed

More information

Nonlinear Autonomous Dynamical systems of two dimensions. Part A

Nonlinear Autonomous Dynamical systems of two dimensions. Part A Nonlinear Autonomous Dynamical systems of two dimensions Part A Nonlinear Autonomous Dynamical systems of two dimensions x f ( x, y), x(0) x vector field y g( xy, ), y(0) y F ( f, g) 0 0 f, g are continuous

More information

Homoclinic Orbits of Planar Maps: Asymptotics and Mel nikov Functions

Homoclinic Orbits of Planar Maps: Asymptotics and Mel nikov Functions Department of Mathematics Mathematical Sciences Homoclinic Orbits of Planar Maps: Asymptotics and Mel nikov Functions A thesis submitted for the degree of Master of Science Author: Dirk van Kekem Project

More information

On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I

On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I IOP PUBLISHING Nonlinearity 2 (28) 923 972 NONLINEARITY doi:.88/95-775/2/5/3 On dynamical properties of multidimensional diffeomorphisms from Newhouse regions: I S V Gonchenko, L P Shilnikov and D V Turaev

More information

computer session iv: Two-parameter bifurcation analysis of equilibria and limit cycles with matcont

computer session iv: Two-parameter bifurcation analysis of equilibria and limit cycles with matcont computer session iv: Two-parameter bifurcation analysis of equilibria and limit cycles with matcont Yu.A. Kuznetsov Department of Mathematics Utrecht University Budapestlaan 6 3508 TA, Utrecht May 16,

More information

Lectures on Dynamical Systems. Anatoly Neishtadt

Lectures on Dynamical Systems. Anatoly Neishtadt Lectures on Dynamical Systems Anatoly Neishtadt Lectures for Mathematics Access Grid Instruction and Collaboration (MAGIC) consortium, Loughborough University, 2007 Part 3 LECTURE 14 NORMAL FORMS Resonances

More information

UNIVERSIDADE DE SÃO PAULO

UNIVERSIDADE DE SÃO PAULO UNIVERSIDADE DE SÃO PAULO Instituto de Ciências Matemáticas e de Computação ISSN 010-577 GLOBAL DYNAMICAL ASPECTS OF A GENERALIZED SPROTT E DIFFERENTIAL SYSTEM REGILENE OLIVEIRA CLAUDIA VALLS N o 41 NOTAS

More information

BIFURCATIONS AND STRANGE ATTRACTORS IN A CLIMATE RELATED SYSTEM

BIFURCATIONS AND STRANGE ATTRACTORS IN A CLIMATE RELATED SYSTEM dx dt DIFFERENTIAL EQUATIONS AND CONTROL PROCESSES N 1, 25 Electronic Journal, reg. N P23275 at 7.3.97 http://www.neva.ru/journal e-mail: diff@osipenko.stu.neva.ru Ordinary differential equations BIFURCATIONS

More information

Towards a Global Theory of Singularly Perturbed Dynamical Systems John Guckenheimer Cornell University

Towards a Global Theory of Singularly Perturbed Dynamical Systems John Guckenheimer Cornell University Towards a Global Theory of Singularly Perturbed Dynamical Systems John Guckenheimer Cornell University Dynamical systems with multiple time scales arise naturally in many domains. Models of neural systems

More information

( Bx + f(x, y) Cy + g(x, y)

( Bx + f(x, y) Cy + g(x, y) Chapter 6 Center manifold reduction The previous chaper gave a rather detailed description of bifurcations of equilibria and fixed points in generic one-parameter families of ODEs and maps with minimal

More information

Introduction to Applied Nonlinear Dynamical Systems and Chaos

Introduction to Applied Nonlinear Dynamical Systems and Chaos Stephen Wiggins Introduction to Applied Nonlinear Dynamical Systems and Chaos Second Edition With 250 Figures 4jj Springer I Series Preface v L I Preface to the Second Edition vii Introduction 1 1 Equilibrium

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 5. Global Bifurcations, Homoclinic chaos, Melnikov s method Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Motivation 1.1 The problem 1.2 A

More information

MATH 614 Dynamical Systems and Chaos Lecture 24: Bifurcation theory in higher dimensions. The Hopf bifurcation.

MATH 614 Dynamical Systems and Chaos Lecture 24: Bifurcation theory in higher dimensions. The Hopf bifurcation. MATH 614 Dynamical Systems and Chaos Lecture 24: Bifurcation theory in higher dimensions. The Hopf bifurcation. Bifurcation theory The object of bifurcation theory is to study changes that maps undergo

More information

CONTINUATION OF CONNECTING ORBITS IN 3D-ODES: (II) CYCLE-TO-CYCLE CONNECTIONS arxiv: v1 [math.ds] 1 Apr 2008

CONTINUATION OF CONNECTING ORBITS IN 3D-ODES: (II) CYCLE-TO-CYCLE CONNECTIONS arxiv: v1 [math.ds] 1 Apr 2008 CONTINUATION OF CONNECTING ORBITS IN 3D-ODES: (II) CYCLE-TO-CYCLE CONNECTIONS arxiv:0804.0179v1 [math.ds] 1 Apr 2008 E.J. DOEDEL 1, B.W. KOOI 2, YU.A. KUZNETSOV 3, and G.A.K. van VOORN 2 1 Department of

More information

Andronov Hopf and Bautin bifurcation in a tritrophic food chain model with Holling functional response types IV and II

Andronov Hopf and Bautin bifurcation in a tritrophic food chain model with Holling functional response types IV and II Electronic Journal of Qualitative Theory of Differential Equations 018 No 78 1 7; https://doiorg/10143/ejqtde018178 wwwmathu-szegedhu/ejqtde/ Andronov Hopf and Bautin bifurcation in a tritrophic food chain

More information

APPPHYS217 Tuesday 25 May 2010

APPPHYS217 Tuesday 25 May 2010 APPPHYS7 Tuesday 5 May Our aim today is to take a brief tour of some topics in nonlinear dynamics. Some good references include: [Perko] Lawrence Perko Differential Equations and Dynamical Systems (Springer-Verlag

More information

2 Qualitative theory of non-smooth dynamical systems

2 Qualitative theory of non-smooth dynamical systems 2 Qualitative theory of non-smooth dynamical systems In this chapter, we give an overview of the basic theory of both smooth and non-smooth dynamical systems, to be expanded upon in later chapters. In

More information

Constructing a chaotic system with any number of equilibria

Constructing a chaotic system with any number of equilibria Nonlinear Dyn (2013) 71:429 436 DOI 10.1007/s11071-012-0669-7 ORIGINAL PAPER Constructing a chaotic system with any number of equilibria Xiong Wang Guanrong Chen Received: 9 June 2012 / Accepted: 29 October

More information

6.3. Nonlinear Systems of Equations

6.3. Nonlinear Systems of Equations G. NAGY ODE November,.. Nonlinear Systems of Equations Section Objective(s): Part One: Two-Dimensional Nonlinear Systems. ritical Points and Linearization. The Hartman-Grobman Theorem. Part Two: ompeting

More information

Bifurcation of Fixed Points

Bifurcation of Fixed Points Bifurcation of Fixed Points CDS140B Lecturer: Wang Sang Koon Winter, 2005 1 Introduction ẏ = g(y, λ). where y R n, λ R p. Suppose it has a fixed point at (y 0, λ 0 ), i.e., g(y 0, λ 0 ) = 0. Two Questions:

More information

Dynamics and Bifurcations in Predator-Prey Models with Refuge, Dispersal and Threshold Harvesting

Dynamics and Bifurcations in Predator-Prey Models with Refuge, Dispersal and Threshold Harvesting Dynamics and Bifurcations in Predator-Prey Models with Refuge, Dispersal and Threshold Harvesting August 2012 Overview Last Model ẋ = αx(1 x) a(1 m)xy 1+c(1 m)x H(x) ẏ = dy + b(1 m)xy 1+c(1 m)x (1) where

More information

Continuous Threshold Policy Harvesting in Predator-Prey Models

Continuous Threshold Policy Harvesting in Predator-Prey Models Continuous Threshold Policy Harvesting in Predator-Prey Models Jon Bohn and Kaitlin Speer Department of Mathematics, University of Wisconsin - Madison Department of Mathematics, Baylor University July

More information

WIDELY SEPARATED FREQUENCIES IN COUPLED OSCILLATORS WITH ENERGY-PRESERVING QUADRATIC NONLINEARITY

WIDELY SEPARATED FREQUENCIES IN COUPLED OSCILLATORS WITH ENERGY-PRESERVING QUADRATIC NONLINEARITY WIDELY SEPARATED FREQUENCIES IN COUPLED OSCILLATORS WITH ENERGY-PRESERVING QUADRATIC NONLINEARITY J.M. TUWANKOTTA Abstract. In this paper we present an analysis of a system of coupled oscillators suggested

More information

8.1 Bifurcations of Equilibria

8.1 Bifurcations of Equilibria 1 81 Bifurcations of Equilibria Bifurcation theory studies qualitative changes in solutions as a parameter varies In general one could study the bifurcation theory of ODEs PDEs integro-differential equations

More information

Mathematical Modeling I

Mathematical Modeling I Mathematical Modeling I Dr. Zachariah Sinkala Department of Mathematical Sciences Middle Tennessee State University Murfreesboro Tennessee 37132, USA November 5, 2011 1d systems To understand more complex

More information

Bifurcation Analysis and Reduced Order Modelling of a non-adiabatic tubular reactor with axial mixing

Bifurcation Analysis and Reduced Order Modelling of a non-adiabatic tubular reactor with axial mixing Bifurcation Analysis and Reduced Order Modelling of a non-adiabatic tubular reactor with axial mixing M.A Woodgate, K.J Badcock, and B.E Richards Department of Aerospace Engineering, University of Glasgow,

More information

Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting

Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting International Journal of Basic & Applied Sciences IJBAS-IJENS Vol:13 No:05 55 Dynamics of Modified Leslie-Gower Predator-Prey Model with Predator Harvesting K. Saleh Department of Mathematics, King Fahd

More information

10 Back to planar nonlinear systems

10 Back to planar nonlinear systems 10 Back to planar nonlinear sstems 10.1 Near the equilibria Recall that I started talking about the Lotka Volterra model as a motivation to stud sstems of two first order autonomous equations of the form

More information

On low speed travelling waves of the Kuramoto-Sivashinsky equation.

On low speed travelling waves of the Kuramoto-Sivashinsky equation. On low speed travelling waves of the Kuramoto-Sivashinsky equation. Jeroen S.W. Lamb Joint with Jürgen Knobloch (Ilmenau, Germany) Marco-Antonio Teixeira (Campinas, Brazil) Kevin Webster (Imperial College

More information

The fold-flip bifurcation

The fold-flip bifurcation The fold-flip bifurcation Yu.A. Kuznetsov, H.G.E. Meijer, and L. van Veen March 0, 003 Abstract The fold-flip bifurcation occurs if a map has a fixed point with multipliers + and simultaneously. In this

More information

Canards at Folded Nodes

Canards at Folded Nodes Canards at Folded Nodes John Guckenheimer and Radu Haiduc Mathematics Department, Ithaca, NY 14853 For Yulij Il yashenko with admiration and affection on the occasion of his 60th birthday March 18, 2003

More information

B5.6 Nonlinear Systems

B5.6 Nonlinear Systems B5.6 Nonlinear Systems 4. Bifurcations Alain Goriely 2018 Mathematical Institute, University of Oxford Table of contents 1. Local bifurcations for vector fields 1.1 The problem 1.2 The extended centre

More information

Alligood, K. T., Sauer, T. D. & Yorke, J. A. [1997], Chaos: An Introduction to Dynamical Systems, Springer-Verlag, New York.

Alligood, K. T., Sauer, T. D. & Yorke, J. A. [1997], Chaos: An Introduction to Dynamical Systems, Springer-Verlag, New York. Bibliography Alligood, K. T., Sauer, T. D. & Yorke, J. A. [1997], Chaos: An Introduction to Dynamical Systems, Springer-Verlag, New York. Amann, H. [1990], Ordinary Differential Equations: An Introduction

More information

Problem set 7 Math 207A, Fall 2011 Solutions

Problem set 7 Math 207A, Fall 2011 Solutions Problem set 7 Math 207A, Fall 2011 s 1. Classify the equilibrium (x, y) = (0, 0) of the system x t = x, y t = y + x 2. Is the equilibrium hyperbolic? Find an equation for the trajectories in (x, y)- phase

More information

Dynamical Systems: Ecological Modeling

Dynamical Systems: Ecological Modeling Dynamical Systems: Ecological Modeling G Söderbacka Abstract Ecological modeling is becoming increasingly more important for modern engineers. The mathematical language of dynamical systems has been applied

More information

Shilnikov bifurcations in the Hopf-zero singularity

Shilnikov bifurcations in the Hopf-zero singularity Shilnikov bifurcations in the Hopf-zero singularity Geometry and Dynamics in interaction Inma Baldomá, Oriol Castejón, Santiago Ibáñez, Tere M-Seara Observatoire de Paris, 15-17 December 2017, Paris Tere

More information

2 Lecture 2: Amplitude equations and Hopf bifurcations

2 Lecture 2: Amplitude equations and Hopf bifurcations Lecture : Amplitude equations and Hopf bifurcations This lecture completes the brief discussion of steady-state bifurcations by discussing vector fields that describe the dynamics near a bifurcation. From

More information

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations

TWO DIMENSIONAL FLOWS. Lecture 5: Limit Cycles and Bifurcations TWO DIMENSIONAL FLOWS Lecture 5: Limit Cycles and Bifurcations 5. Limit cycles A limit cycle is an isolated closed trajectory [ isolated means that neighbouring trajectories are not closed] Fig. 5.1.1

More information

The Invariant Curve in a Planar System of Difference Equations

The Invariant Curve in a Planar System of Difference Equations Advances in Dynamical Systems and Applications ISSN 0973-5321, Volume 13, Number 1, pp. 59 71 2018 http://campus.mst.edu/adsa The Invariant Curve in a Planar System of Difference Equations Senada Kalabušić,

More information

1. (i) Determine how many periodic orbits and equilibria can be born at the bifurcations of the zero equilibrium of the following system:

1. (i) Determine how many periodic orbits and equilibria can be born at the bifurcations of the zero equilibrium of the following system: 1. (i) Determine how many periodic orbits and equilibria can be born at the bifurcations of the zero equilibrium of the following system: ẋ = y x 2, ẏ = z + xy, ż = y z + x 2 xy + y 2 + z 2 x 4. (ii) Determine

More information

5.2.2 Planar Andronov-Hopf bifurcation

5.2.2 Planar Andronov-Hopf bifurcation 138 CHAPTER 5. LOCAL BIFURCATION THEORY 5.. Planar Andronov-Hopf bifurcation What happens if a planar system has an equilibrium x = x 0 at some parameter value α = α 0 with eigenvalues λ 1, = ±iω 0, ω

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: January 14, 2019, at 08 30 12 30 Johanneberg Kristian

More information

Summary of topics relevant for the final. p. 1

Summary of topics relevant for the final. p. 1 Summary of topics relevant for the final p. 1 Outline Scalar difference equations General theory of ODEs Linear ODEs Linear maps Analysis near fixed points (linearization) Bifurcations How to analyze a

More information

Nonlinear dynamics & chaos BECS

Nonlinear dynamics & chaos BECS Nonlinear dynamics & chaos BECS-114.7151 Phase portraits Focus: nonlinear systems in two dimensions General form of a vector field on the phase plane: Vector notation: Phase portraits Solution x(t) describes

More information

Part II. Dynamical Systems. Year

Part II. Dynamical Systems. Year Part II Year 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2017 34 Paper 1, Section II 30A Consider the dynamical system where β > 1 is a constant. ẋ = x + x 3 + βxy 2, ẏ = y + βx 2

More information

2.10 Saddles, Nodes, Foci and Centers

2.10 Saddles, Nodes, Foci and Centers 2.10 Saddles, Nodes, Foci and Centers In Section 1.5, a linear system (1 where x R 2 was said to have a saddle, node, focus or center at the origin if its phase portrait was linearly equivalent to one

More information

Long food chains are in general chaotic

Long food chains are in general chaotic OIKOS 109: 135/144, 2005 Long food chains are in general chaotic Thilo Gross, Wolfgang Ebenhöh and Ulrike Feudel Gross, T., Ebenhöh, W. and Feudel, U. 2005. Long food chains are in general chaotic. / Oikos

More information

Stability and Hopf Bifurcation for a Discrete Disease Spreading Model in Complex Networks

Stability and Hopf Bifurcation for a Discrete Disease Spreading Model in Complex Networks International Journal of Difference Equations ISSN 0973-5321, Volume 4, Number 1, pp. 155 163 (2009) http://campus.mst.edu/ijde Stability and Hopf Bifurcation for a Discrete Disease Spreading Model in

More information

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics

Chapter 23. Predicting Chaos The Shift Map and Symbolic Dynamics Chapter 23 Predicting Chaos We have discussed methods for diagnosing chaos, but what about predicting the existence of chaos in a dynamical system. This is a much harder problem, and it seems that the

More information

DYNAMICAL SYSTEMS. I Clark: Robinson. Stability, Symbolic Dynamics, and Chaos. CRC Press Boca Raton Ann Arbor London Tokyo

DYNAMICAL SYSTEMS. I Clark: Robinson. Stability, Symbolic Dynamics, and Chaos. CRC Press Boca Raton Ann Arbor London Tokyo DYNAMICAL SYSTEMS Stability, Symbolic Dynamics, and Chaos I Clark: Robinson CRC Press Boca Raton Ann Arbor London Tokyo Contents Chapter I. Introduction 1 1.1 Population Growth Models, One Population 2

More information

Connecting Orbits with Bifurcating End Points

Connecting Orbits with Bifurcating End Points Connecting Orbits with Bifurcating End Points Thorsten Hüls Fakultät für Mathematik Universität Bielefeld Postfach 100131, 33501 Bielefeld Germany huels@mathematik.uni-bielefeld.de June 24, 2004 Abstract

More information

= F ( x; µ) (1) where x is a 2-dimensional vector, µ is a parameter, and F :

= F ( x; µ) (1) where x is a 2-dimensional vector, µ is a parameter, and F : 1 Bifurcations Richard Bertram Department of Mathematics and Programs in Neuroscience and Molecular Biophysics Florida State University Tallahassee, Florida 32306 A bifurcation is a qualitative change

More information

A short introduction with a view toward examples. Short presentation for the students of: Dynamical Systems and Complexity Summer School Volos, 2017

A short introduction with a view toward examples. Short presentation for the students of: Dynamical Systems and Complexity Summer School Volos, 2017 A short introduction with a view toward examples Center of Research and Applications of Nonlinear (CRANS) Department of Mathematics University of Patras Greece sanastassiou@gmail.com Short presentation

More information

Breakdown of Symmetry in Reversible Systems

Breakdown of Symmetry in Reversible Systems ISSN 1560-3547, Regular and Chaotic Dynamics, 2012, Vol. 17, Nos. 3 4, pp. 318 336. c Pleiades Publishing, Ltd., 2012. Breakdown of Symmetry in Reversible Systems Lev M. Lerman 1* and Dimitry Turaev 2**

More information

Invariant manifolds in dissipative dynamical systems

Invariant manifolds in dissipative dynamical systems Invariant manifolds in dissipative dynamical systems Ferdinand Verhulst Mathematisch Instituut University of Utrecht PO Box 80.010, 3508 TA Utrecht The Netherlands Abstract Invariant manifolds like tori,

More information

Dynamics at infinity and a Hopf bifurcation arising in a quadratic system with coexisting attractors

Dynamics at infinity and a Hopf bifurcation arising in a quadratic system with coexisting attractors Pramana J. Phys. 8) 9: https://doi.org/.7/s43-7-55-x Indian Academy of Sciences Dynamics at infinity and a Hopf bifurcation arising in a quadratic system with coexisting attractors ZHEN WANG,,,IRENEMOROZ

More information

Stability of Dynamical systems

Stability of Dynamical systems Stability of Dynamical systems Stability Isolated equilibria Classification of Isolated Equilibria Attractor and Repeller Almost linear systems Jacobian Matrix Stability Consider an autonomous system u

More information

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD

CHALMERS, GÖTEBORGS UNIVERSITET. EXAM for DYNAMICAL SYSTEMS. COURSE CODES: TIF 155, FIM770GU, PhD CHALMERS, GÖTEBORGS UNIVERSITET EXAM for DYNAMICAL SYSTEMS COURSE CODES: TIF 155, FIM770GU, PhD Time: Place: Teachers: Allowed material: Not allowed: January 08, 2018, at 08 30 12 30 Johanneberg Kristian

More information

Dynamical Systems in Neuroscience: Elementary Bifurcations

Dynamical Systems in Neuroscience: Elementary Bifurcations Dynamical Systems in Neuroscience: Elementary Bifurcations Foris Kuang May 2017 1 Contents 1 Introduction 3 2 Definitions 3 3 Hodgkin-Huxley Model 3 4 Morris-Lecar Model 4 5 Stability 5 5.1 Linear ODE..............................................

More information

Recent new examples of hidden attractors

Recent new examples of hidden attractors Eur. Phys. J. Special Topics 224, 1469 1476 (2015) EDP Sciences, Springer-Verlag 2015 DOI: 10.1140/epjst/e2015-02472-1 THE EUROPEAN PHYSICAL JOURNAL SPECIAL TOPICS Review Recent new examples of hidden

More information

arxiv:math/ v1 [math.ds] 28 Apr 2003

arxiv:math/ v1 [math.ds] 28 Apr 2003 ICM 2002 Vol. III 1 3 arxiv:math/0304457v1 [math.ds] 28 Apr 2003 Bifurcations and Strange Attractors Leonid Shilnikov Abstract We reviews the theory of strange attractors and their bifurcations. All known

More information

On the Takens-Bogdanov Bifurcation in the Chua s Equation

On the Takens-Bogdanov Bifurcation in the Chua s Equation 1722 PAPER Special Section on Nonlinear Theory and Its Applications On the Takens-Bogdanov Bifurcation in the Chua s Equation Antonio ALGABA, Emilio FREIRE, Estanislao GAMERO, and Alejandro J. RODRÍGUEZ-LUIS,

More information

The Existence of Chaos in the Lorenz System

The Existence of Chaos in the Lorenz System The Existence of Chaos in the Lorenz System Sheldon E. Newhouse Mathematics Department Michigan State University E. Lansing, MI 48864 joint with M. Berz, K. Makino, A. Wittig Physics, MSU Y. Zou, Math,

More information

WHAT IS A CHAOTIC ATTRACTOR?

WHAT IS A CHAOTIC ATTRACTOR? WHAT IS A CHAOTIC ATTRACTOR? CLARK ROBINSON Abstract. Devaney gave a mathematical definition of the term chaos, which had earlier been introduced by Yorke. We discuss issues involved in choosing the properties

More information

Invariant manifolds of the Bonhoeffer-van der Pol oscillator

Invariant manifolds of the Bonhoeffer-van der Pol oscillator Invariant manifolds of the Bonhoeffer-van der Pol oscillator R. Benítez 1, V. J. Bolós 2 1 Dpto. Matemáticas, Centro Universitario de Plasencia, Universidad de Extremadura. Avda. Virgen del Puerto 2. 10600,

More information

Example Chaotic Maps (that you can analyze)

Example Chaotic Maps (that you can analyze) Example Chaotic Maps (that you can analyze) Reading for this lecture: NDAC, Sections.5-.7. Lecture 7: Natural Computation & Self-Organization, Physics 256A (Winter 24); Jim Crutchfield Monday, January

More information

BLUE SKY CATASTROPHE IN SINGULARLY-PERTURBED SYSTEMS

BLUE SKY CATASTROPHE IN SINGULARLY-PERTURBED SYSTEMS BLUE SKY CATASTROPHE IN SINGULARLY-PERTURBED SYSTEMS ANDREY SHILNIKOV, LEONID SHILNIKOV, AND DMITRY TURAEV Abstract. We show that the blue sky catastrophe, which creates a stable periodic orbit whose length

More information

arxiv: v2 [math.ds] 19 Apr 2016

arxiv: v2 [math.ds] 19 Apr 2016 Variety of strange pseudohyperbolic attractors in three-dimensional generalized Hénon maps arxiv:1510.02252v2 [math.ds] 19 Apr 2016 A.S. Gonchenko, S.V. Gonchenko Lobachevsky State University of Nizhny

More information

An Undergraduate s Guide to the Hartman-Grobman and Poincaré-Bendixon Theorems

An Undergraduate s Guide to the Hartman-Grobman and Poincaré-Bendixon Theorems An Undergraduate s Guide to the Hartman-Grobman and Poincaré-Bendixon Theorems Scott Zimmerman MATH181HM: Dynamical Systems Spring 2008 1 Introduction The Hartman-Grobman and Poincaré-Bendixon Theorems

More information

DIFFERENTIAL EQUATIONS, DYNAMICAL SYSTEMS, AND AN INTRODUCTION TO CHAOS

DIFFERENTIAL EQUATIONS, DYNAMICAL SYSTEMS, AND AN INTRODUCTION TO CHAOS DIFFERENTIAL EQUATIONS, DYNAMICAL SYSTEMS, AND AN INTRODUCTION TO CHAOS Morris W. Hirsch University of California, Berkeley Stephen Smale University of California, Berkeley Robert L. Devaney Boston University

More information

Chapter 2 Hopf Bifurcation and Normal Form Computation

Chapter 2 Hopf Bifurcation and Normal Form Computation Chapter 2 Hopf Bifurcation and Normal Form Computation In this chapter, we discuss the computation of normal forms. First we present a general approach which combines center manifold theory with computation

More information

HOPF BIFURCATION AND HETEROCLINIC CYCLES IN A CLASS OF D 2 EQUIVARIANT SYSTEMS

HOPF BIFURCATION AND HETEROCLINIC CYCLES IN A CLASS OF D 2 EQUIVARIANT SYSTEMS HOPF BIFURCATION AND HETEROCLINIC CYCLES IN A CLASS OF D 2 EQUIVARIANT SYSTEMS ADRIAN C. MURZA Communicated by Vasile Brînzănescu In this paper, we analyze a generic dynamical system with D 2 constructed

More information

April 13, We now extend the structure of the horseshoe to more general kinds of invariant. x (v) λ n v.

April 13, We now extend the structure of the horseshoe to more general kinds of invariant. x (v) λ n v. April 3, 005 - Hyperbolic Sets We now extend the structure of the horseshoe to more general kinds of invariant sets. Let r, and let f D r (M) where M is a Riemannian manifold. A compact f invariant set

More information

CHUA S CIRCUIT AND THE QUALITATIVE THEORY OF DYNAMICAL SYSTEMS

CHUA S CIRCUIT AND THE QUALITATIVE THEORY OF DYNAMICAL SYSTEMS Tutorials and Reviews International Journal of Bifurcation and Chaos, Vol. 7, No. 9 (1997) 1911 1916 Visions of Nonlinear Science: Festschrift dedicated to Leon O. Chua c World Scientific Publishing Company

More information

Lecture 6. Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of:

Lecture 6. Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of: Lecture 6 Chaos Lorenz equations and Malkus' waterwheel Some properties of the Lorenz Eq.'s Lorenz Map Towards definitions of: Chaos, Attractors and strange attractors Transient chaos Lorenz Equations

More information

DIFFERENTIAL GEOMETRY APPLIED TO DYNAMICAL SYSTEMS

DIFFERENTIAL GEOMETRY APPLIED TO DYNAMICAL SYSTEMS WORLD SCIENTIFIC SERIES ON NONLINEAR SCIENCE Series Editor: Leon O. Chua Series A Vol. 66 DIFFERENTIAL GEOMETRY APPLIED TO DYNAMICAL SYSTEMS Jean-Marc Ginoux Université du Sud, France World Scientific

More information

BIFURCATION DIAGRAM OF A CUBIC THREE-PARAMETER AUTONOMOUS SYSTEM

BIFURCATION DIAGRAM OF A CUBIC THREE-PARAMETER AUTONOMOUS SYSTEM Electronic Journal of Differential Equations, Vol. 2005(2005), No. 8, pp. 1 16. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) BIFURCATION

More information

CHAPTER 6 HOPF-BIFURCATION IN A TWO DIMENSIONAL NONLINEAR DIFFERENTIAL EQUATION

CHAPTER 6 HOPF-BIFURCATION IN A TWO DIMENSIONAL NONLINEAR DIFFERENTIAL EQUATION CHAPTER 6 HOPF-BIFURCATION IN A TWO DIMENSIONAL NONLINEAR DIFFERENTIAL EQUATION [Discussion on this chapter is based on our paper entitled Hopf-Bifurcation Ina Two Dimensional Nonlinear Differential Equation,

More information

ON DYNAMIC PROPERTIES OF DIFFEOMORPHISMS WITH HOMOCLINIC TANGENCY. S. V. Gonchenko, D. V. Turaev, and L. P. Shil nikov UDC ;

ON DYNAMIC PROPERTIES OF DIFFEOMORPHISMS WITH HOMOCLINIC TANGENCY. S. V. Gonchenko, D. V. Turaev, and L. P. Shil nikov UDC ; Journal of Mathematical Sciences, Vol. 126, No. 4, 2005 ON DYNAMIC PROPERTIES OF DIFFEOMORPHISMS WITH HOMOCLINIC TANGENCY S. V. Gonchenko, D. V. Turaev, and L. P. Shil nikov UDC 517.933; 517.987.5 Abstract.

More information

Low-frequency climate variability: a dynamical systems a approach

Low-frequency climate variability: a dynamical systems a approach Low-frequency climate variability: a dynamical systems a approach Henk Broer Rijksuniversiteit Groningen http://www.math.rug.nl/ broer 19 October 2006 Page 1 of 40 1. Variability at low-frequencies Making

More information

Torus Maps from Weak Coupling of Strong Resonances

Torus Maps from Weak Coupling of Strong Resonances Torus Maps from Weak Coupling of Strong Resonances John Guckenheimer Alexander I. Khibnik October 5, 1999 Abstract This paper investigates a family of diffeomorphisms of the two dimensional torus derived

More information

Homoclinic bifurcations in Chua s circuit

Homoclinic bifurcations in Chua s circuit Physica A 262 (1999) 144 152 Homoclinic bifurcations in Chua s circuit Sandra Kahan, Anibal C. Sicardi-Schino Instituto de Fsica, Universidad de la Republica, C.C. 30, C.P. 11 000, Montevideo, Uruguay

More information

BIFURCATIONS AND CHAOS IN A PERIODICALLY FORCED PROTOTYPE ADAPTIVE CONTROL SYSTEM 1

BIFURCATIONS AND CHAOS IN A PERIODICALLY FORCED PROTOTYPE ADAPTIVE CONTROL SYSTEM 1 KYBERNETIKA VOLUME 3 0 (1994), NUMBER 2, PAG ES 121-128 BIFURCATIONS AND CHAOS IN A PERIODICALLY FORCED PROTOTYPE ADAPTIVE CONTROL SYSTEM 1 YURI A. KUZNETSOV AND CARLO PICCARDI An adaptive control system

More information

Simplest Chaotic Flows with Involutional Symmetries

Simplest Chaotic Flows with Involutional Symmetries International Journal of Bifurcation and Chaos, Vol. 24, No. 1 (2014) 1450009 (9 pages) c World Scientific Publishing Company DOI: 10.1142/S0218127414500096 Simplest Chaotic Flows with Involutional Symmetries

More information