Learning Decision Trees

Size: px
Start display at page:

Download "Learning Decision Trees"

Transcription

1 Outline Learning Decision Trees 1. Decision trees 2. Learning decision trees 3. Various problems and their solutions Antoine Cornuéjols AgroParisTech INRA MIA The learning task Task Learning a classification function Protocole Supervised learning using greedy iterative approximation Performance measure Decision trees Prediction error rate Inputs Vectorial Hypothesis space Decision trees 3 4

2 The structure of decision trees Data sets The internal nodes test attribute values A branch for each possible value of the tested attribute Leaves correspond to classes (labels) A training data set Cough Fever Weight Pain Diagnostic Marie no yes normal throat cold Fred no yes normal abdomen appendicitis Julie yes yes skinny no flu Elvis yes no overweight chest coronary thrombosis pain? abdomen throat chest nothing appendicitis! flu! yes fever? no Sore Throat! Coronary! thrombosis! no nothing! cough? yes fever? yes no How to learn a decision tree? cold! flu! 5 A Real Decision Tree Expressiveness of decision trees Decision Tree Trained on 1000 Patients: (tree) fetal_presentation = 1: (tree) previous_csection = 0: (tree) primiparous = 0: (tree) primiparous = 1: (tree) fetal_distress = 0: (tree) birth_weight < 3349: (tree) birth_weight >= 3349: (tree) fetal_distress = 1: 3421 (tree) previous_csection = 1: 5535 (tree) fetal_presentation = 2: 329 (tree) fetal_presentation = 3: 822 (tree) Any boolean function can be represented by a decision tree Reminder: with 6 boolean attributes, there exists approximately boolean functions Some functions can require very large decision trees E.g. The parity function and the majority function may require exponentially large trees Other functions can be represented with one node Limited to propositional logic. No relational representation A tree corresponds to a disjunction of rules DT = (if feather = no then label = not bird) or (if feather = yes & color = brown then label = not bird) or (if feather = yes & color = B&W then label = bird) or (if feather = yes & color = yellow then label = bird) 8

3 Arbre de décision : exemple Exemple : arbre de décision Détection du spam Étude sur la différence d appréciation des risques d intoxication des deux côtés de l Atlantique. (ANR Holyrisk ( )) On cherche à distinguer deux classes de textes AgroParisTech 1A MI9 Arbres de décision and Co. 9 (7 / 12 / 2018) «Une introduction à l apprentissage automatique» (A. Cornuéjols) 10 Which tree to select from H? L espace de recherche Color Wings Feathers Sonar Concept x23 yellow yes yes no bird x24 B&W yes yes no bird x25 brown yes no yes Not bird There exist four trees consistant with the data set DT1 DT2 bird yes yes Not bird feather? no Sonar? Not bird no bird DT3 Color? DT4 feathers? brown yellow yes no B&W Not bird bird Color? Not bird bird brown yellow B&W Not bird bird bird Toutes les séquences possibles de tous les tests (éventuellement répétés) Arbre de recherche GIGANTESQUE Nombre de Catalan (n nœuds d au plus deux descendants) n = 10 => C n = arbres binaires n = 20 => 6.56 x 10 9 arbres binaires ( ) 1 2n n 1 n AgroParisTech 1A MI9 Arbres de décision and Co. 12

4 The search space Number of trees = Catalan s number Huge search space! How to explore it? n attributes of branching factor = 2 Learning decision trees A greedy iterative topdown strategy Illustration [Quinlan, 1986] Principle Attributs Pif Temp Humid Vent Valeurs possibles soleil,couvert,pluie chaud,bon,frais normale,haute vrai,fau 1. Select the best attribute 2. Grow the tree according to the choice 3. Now there are subsets of the data set at the leaves 4. Return to 1 until stopping criterion N Pif Temp Humid Vent Golf 1 soleil chaud haute faux NePasJouer 2 soleil chaud haute vrai NePasJouer 3 couvert chaud haute faux Jouer 4 pluie bon haute faux Jouer 5 pluie frais normale faux Jouer 6 pluie frais normale vrai NePasJouer 7 couvert frais normale vrai Jouer 8 soleil bon haute faux NePasJouer 9 soleil frais normale faux Jouer 10 pluie bon normale faux Jouer 11 soleil bon normale vrai Jouer 12 couvert bon haute vrai Jouer 13 couvert chaud normale faux Jouer 14 pluie bon haute vrai NePasJouer la classe 15

5 Illustration [Quinlan, 1986] Illustration [Quinlan, 1986] If we select Temp?... J3,J13 J1,J2 J3,J4,J5,J7,J9,J10,J11,J12,J13 J1,J2, J6,J8,J14 Temp? chaud bon frais J4,J10,J11,J13 J8,J14 N Pif Temp Humid Vent Golf 1 soleil chaud haute faux NePasJouer 2 soleil chaud haute vrai NePasJouer 3 couvert chaud haute faux Jouer 4 pluie bon haute faux Jouer 5 pluie frais normale faux Jouer 6 pluie frais normale vrai NePasJouer 7 couvert frais normale vrai Jouer 8 soleil bon haute faux NePasJouer 9 soleil frais normale faux Jouer 10 pluie bon normale faux Jouer 11 soleil bon normale vrai Jouer 12 couvert bon haute vrai Jouer 13 couvert chaud normale faux Jouer 14 pluie bon haute vrai NePasJouer J5,J7,J9 J6 J7,J11,J1 2 J2,J6,J14 J3,J13,J7,J1 2 J3,J4,J5,J7,J9,J10,J11,J12,J13 J1,J2, J6,J8,J14 vrai Vent? faux J3,J4,J5,J7,J9,J10,J11,J12,J 13 J1,J2, J6,J8,J14 Pif? couver t plui e J4,J5,J1 0 J6,J14 solei l J3,J4,J5,J9,10,J13 J1,J8 J9,J11 J1,J8,J 2 Impurity measure: the Gini criterion Impurity measure: the entropy criterion Ideally: The measure should be zero if the subpopulations are homogeneous (only one class) The measure should be maximal if the classes are maximally mixed in the subpopulations Index Gini [Breiman et al.,84] Boltzmann entropy used by Shannon In 1949 Shannon proposed an entropy measure valid for discrete probability. It expresses the quantity of information, that is the number of bits required to specify the distribution The information entropy is: I = p i log 2(pi) i=1..k where p i is the probability of class C i.

6 Tree outputs and objective functions Trees can be trained for classification, regression, or clustering Change the object function information gain for classification: measure of distribution purity Impurity measure: the entropy criterion Information entropy of S (with C classes) : C I(S) = p(c i ) log p(c i ) i =1 class p(c i ): probability of the class c i class S class data class class classification tree S 1 S 2 Zero if only one class Increasing as the classes are more equi likely Equals log 2 (k) when the k classes are equiprobables Unit: bit of information The entropy criterion for 2 classes Entropy gain for one attribute 1,00 0,90 For C=2 : I(S) = p x log 2 (p ) p x log 2 (p ) p = p/ (pn) and p = n/ (pn) d où I(S) = p log ( p ) n log( n ) (pn) (pn) (pn) (pn) log(1p) I(S) and I(S) = P log P (1P) Gain(S, A) = I(S) S v I(S S v ) v valeurs( A) 0,80 0,70 0,60 S v : size of the subpopulation in the branch v of A 0,50 0,40 0,30 0,20 0,10 0,00 0 0,10 0,20 0,30 0,40 0,50 0,60 0,70 0,80 0,90 1,00 P P=p/(pn)=n/(np)=0.5 equiprobable Measures to what extent the knowledge of the value of attribute A Brings information about the class of an example

7 Entropy of the initial data set Illustration I(p,n) = 9/14 log 2 (9/14) 5/14 log 2 (5/14) I(S) N objects np=n Attribute A Illustration Entropy of the subtrees associated to test Pif? p 1 = 4 n 1 = 0 : I(p 1,n 1 ) = 0 p 2 = 2 n 2 = 3 : I(p 2,n 2 ) = p 3 = 3 n 3 = 2 : I(p 3,n 3 ) = Entropy of the subtrees associated to test Temp? p 1 = 2 n 1 = 2 : I(p 1,n 1 ) = 1 p 2 = 4 n 2 = 2 : I(p 2,n 2 ) = p 3 = 3 n 3 = 1 : I(p 3,n 3 ) = N1 objects n1p1=n1 val1 val2 val3 N2 objects n2p2=n2 E(N,A)= N1/N x I(p1,n1) N2/N xi(p2,n2) N3/N x I(p3,n3) The entropy gain for attribute A is: N3 objects n3p3=n3 GAIN(A)= I(S)E(N,A) N1N2N3=N Illustration Illustration For the initial data set I(S) = 9/14 log 2 (9/14) 5/14 log 2 (5/14) Entropy associated with the attribute Pif? Final tree: Pif E(Pif) = 4/14 I(p 1,n 1 ) 5/14 I(p 2,n 2 ) 5/14 I(p 3,n 3 ) couvert soleil pluie Gain(Pif) = = bits Gain(Temp) = bits jouer! Humid normal haute non Vent oui Gain(Humid) = bits jouer! ne pas jouer! jouer! ne pas jouer! Gain(Vent) = bits Choice of the attribute Pif for the first test

8 Discretizing continuous attributes Some problems And their solutions 6 C 8 C 14 C 18 C 20 C 28 C 32 C No No No Yes Yes Yes No Here, two candidate thresholds: 16 C and 30 C Temp. Play golf The attribute Temp >16 C is the most informative, it is chosen 29 Problem: Entropy gain unduly favors the attributes with high branching factors Two solutions: Binarize all attributes Different branching factors But the resulting tree lose interpretability Introduce a normalizing factor to correct the bias Missing values Given example x, c(x) with missing values for attribute A How can we compute gain(s,a)? 1. Take the most frequent value for A in S 2. Take the most frequent value for A in the node 3. Distribute the example into fictive examples with the possible values of A weighted by their respective frequencies Gain _ norm(s, A) = nb valeurs de A i =1 Gain(S, A) S i S log S i S E.g. if 6 examples in this node take the value A=a 1 and 4 examples the value A=a 2 A(x) = a 1 with prob=0.6 and A(x) = a 2 with prob=0.4 When predicting, give the label corresponding to the most likely leave

9 Le problème de la généralisation Overfitting Aton appris un bon arbre de décision? Ensemble d apprentissage. Ensemble test. Courbe d apprentissage Méthodes d évaluation de la généralisation Sur un ensemble test Validation croisée Leaveoneout Tom Mitchell, McGraw Hill, 1997 Surapprentissage Pre and post pruning Types de bruits Erreurs de description Erreurs de classification clashes valeurs manquantes Effet Arbre trop développé : «touffus», trop profond 36

10 Oblique trees Oblique trees x1 < 0.70 x2 x2 < 0.88 x2 < 0.30 x1 < 0.17 x1 c2 c1 x2 < 0.62 c2 c2 c1 c1 1.1x1 x2 < 0.2 c2 c1 Conclusions Good if Vectorial input space The target concept corresponds to recursive boxes with borders parallel to the axes Conclusions Very simple Computational complexity of learning in O(A2. m) A attributes m examples «Introduction to Machine Learning» (A. Cornuéjols) 39 «Introduction to Machine Learning» (A. Cornuéjols) 40

11 Limites des méthodes classiques de régression Y comme fonction linéaire d une variable à valeur réelle Y = 0 1 X " Arbres de régression Régression multiple : Y fonction linéaire d un ensemble de variables indépendantes Y = 0 1 X " Régression non linéaire Y = 0 1 X 2 XX > " Immensité de l espace de recherche si on cherche à prendre en compte toutes les combinaisons des attributs 42 Régression linéaire vs. arbres de régression Arbre de régression vs. régression linéaire Modèle global défini sur l ensemble de l espace de description Partition de l espace avec des modèles locaux Régression linéaire Arbre de régression 43 44

12 Particularités des arbres de régression Induction des arbres de régression Les attributs et la classe sont à valeur continue On associe à chaque région R i de X une valeur constante c i. On cherche en général à minimiser l erreur quadratique : Choix de l attribut et du point de division minimisant la somme des écarts quadratique à la moyenne dans chacune des régions de l espace créées MSE = m K I(R k )(y i c k ) 2 i=1 k=1 Arrêt lorsque Plus assez de points par région Différence des moyennes entre régions sous un seuil fixé AgroParisTech 1A MI9 Arbres de décision and Co. 45 AgroParisTech 1A MI9 Arbres de décision and Co. 46 Regression trees (model trees) Arbres de régression : exemple y S S 1 S 2 data x regression tree Realvalued output y Object function: maximize measure of fit of model e.g. linear model y = axb, Or just constant model Tiré de [AnneEmmanuelle BADEL*, Olivier MICHEL* et Alfred HERO, «Arbres de régression modélisation non paramétrique et analyse des séries temporelles», 1996] AgroParisTech 1A MI9 Arbres de décision and Co. 48

13 Arbres de régression : exemple Quand utiliser des arbres de régression La régression classique ne marche pas L interprétabilité du modèle est importante Le problème se prête bien à une division selon les axes Tiré de [AnneEmmanuelle BADEL*, Olivier MICHEL* et Alfred HERO, «Arbres de régression modélisation non paramétrique et analyse des séries temporelles», 1996] AgroParisTech 1A MI9 Arbres de décision and Co. 49 AgroParisTech 1A MI9 Arbres de décision and Co. 50

Decision Tree Learning

Decision Tree Learning 0. Decision Tree Learning Based on Machine Learning, T. Mitchell, McGRAW Hill, 1997, ch. 3 Acknowledgement: The present slides are an adaptation of slides drawn by T. Mitchell PLAN 1. Concept learning:

More information

Decision-Tree Learning. Chapter 3: Decision Tree Learning. Classification Learning. Decision Tree for PlayTennis

Decision-Tree Learning. Chapter 3: Decision Tree Learning. Classification Learning. Decision Tree for PlayTennis Decision-Tree Learning Chapter 3: Decision Tree Learning CS 536: Machine Learning Littman (Wu, TA) [read Chapter 3] [some of Chapter 2 might help ] [recommended exercises 3.1, 3.2] Decision tree representation

More information

Outline. Training Examples for EnjoySport. 2 lecture slides for textbook Machine Learning, c Tom M. Mitchell, McGraw Hill, 1997

Outline. Training Examples for EnjoySport. 2 lecture slides for textbook Machine Learning, c Tom M. Mitchell, McGraw Hill, 1997 Outline Training Examples for EnjoySport Learning from examples General-to-specific ordering over hypotheses [read Chapter 2] [suggested exercises 2.2, 2.3, 2.4, 2.6] Version spaces and candidate elimination

More information

Chapter 3: Decision Tree Learning

Chapter 3: Decision Tree Learning Chapter 3: Decision Tree Learning CS 536: Machine Learning Littman (Wu, TA) Administration Books? New web page: http://www.cs.rutgers.edu/~mlittman/courses/ml03/ schedule lecture notes assignment info.

More information

Notes on Machine Learning for and

Notes on Machine Learning for and Notes on Machine Learning for 16.410 and 16.413 (Notes adapted from Tom Mitchell and Andrew Moore.) Learning = improving with experience Improve over task T (e.g, Classification, control tasks) with respect

More information

Learning Decision Trees

Learning Decision Trees Learning Decision Trees Machine Learning Fall 2018 Some slides from Tom Mitchell, Dan Roth and others 1 Key issues in machine learning Modeling How to formulate your problem as a machine learning problem?

More information

the tree till a class assignment is reached

the tree till a class assignment is reached Decision Trees Decision Tree for Playing Tennis Prediction is done by sending the example down Prediction is done by sending the example down the tree till a class assignment is reached Definitions Internal

More information

Lecture 3: Decision Trees

Lecture 3: Decision Trees Lecture 3: Decision Trees Cognitive Systems II - Machine Learning SS 2005 Part I: Basic Approaches of Concept Learning ID3, Information Gain, Overfitting, Pruning Lecture 3: Decision Trees p. Decision

More information

Decision Trees.

Decision Trees. . Machine Learning Decision Trees Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg riedmiller@informatik.uni-freiburg.de

More information

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Berlin Chen Department of Computer Science & Information Engineering National Taiwan Normal University References: 1. Machine Learning, Chapter 3 2. Data Mining: Concepts, Models,

More information

Apprentissage automatique et fouille de données (part 2)

Apprentissage automatique et fouille de données (part 2) Apprentissage automatique et fouille de données (part 2) Telecom Saint-Etienne Elisa Fromont (basé sur les cours d Hendrik Blockeel et de Tom Mitchell) 1 Induction of decision trees : outline (adapted

More information

Lecture 3: Decision Trees

Lecture 3: Decision Trees Lecture 3: Decision Trees Cognitive Systems - Machine Learning Part I: Basic Approaches of Concept Learning ID3, Information Gain, Overfitting, Pruning last change November 26, 2014 Ute Schmid (CogSys,

More information

Decision Trees.

Decision Trees. . Machine Learning Decision Trees Prof. Dr. Martin Riedmiller AG Maschinelles Lernen und Natürlichsprachliche Systeme Institut für Informatik Technische Fakultät Albert-Ludwigs-Universität Freiburg riedmiller@informatik.uni-freiburg.de

More information

Classification: Decision Trees

Classification: Decision Trees Classification: Decision Trees Outline Top-Down Decision Tree Construction Choosing the Splitting Attribute Information Gain and Gain Ratio 2 DECISION TREE An internal node is a test on an attribute. A

More information

Machine Learning & Data Mining

Machine Learning & Data Mining Group M L D Machine Learning M & Data Mining Chapter 7 Decision Trees Xin-Shun Xu @ SDU School of Computer Science and Technology, Shandong University Top 10 Algorithm in DM #1: C4.5 #2: K-Means #3: SVM

More information

Decision Tree Learning and Inductive Inference

Decision Tree Learning and Inductive Inference Decision Tree Learning and Inductive Inference 1 Widely used method for inductive inference Inductive Inference Hypothesis: Any hypothesis found to approximate the target function well over a sufficiently

More information

Learning Classification Trees. Sargur Srihari

Learning Classification Trees. Sargur Srihari Learning Classification Trees Sargur srihari@cedar.buffalo.edu 1 Topics in CART CART as an adaptive basis function model Classification and Regression Tree Basics Growing a Tree 2 A Classification Tree

More information

EECS 349:Machine Learning Bryan Pardo

EECS 349:Machine Learning Bryan Pardo EECS 349:Machine Learning Bryan Pardo Topic 2: Decision Trees (Includes content provided by: Russel & Norvig, D. Downie, P. Domingos) 1 General Learning Task There is a set of possible examples Each example

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Decision Trees Instructor: Yang Liu 1 Supervised Classifier X 1 X 2. X M Ref class label 2 1 Three variables: Attribute 1: Hair = {blond, dark} Attribute 2: Height = {tall, short}

More information

Decision Trees. Nicholas Ruozzi University of Texas at Dallas. Based on the slides of Vibhav Gogate and David Sontag

Decision Trees. Nicholas Ruozzi University of Texas at Dallas. Based on the slides of Vibhav Gogate and David Sontag Decision Trees Nicholas Ruozzi University of Texas at Dallas Based on the slides of Vibhav Gogate and David Sontag Supervised Learning Input: labelled training data i.e., data plus desired output Assumption:

More information

Question of the Day. Machine Learning 2D1431. Decision Tree for PlayTennis. Outline. Lecture 4: Decision Tree Learning

Question of the Day. Machine Learning 2D1431. Decision Tree for PlayTennis. Outline. Lecture 4: Decision Tree Learning Question of the Day Machine Learning 2D1431 How can you make the following equation true by drawing only one straight line? 5 + 5 + 5 = 550 Lecture 4: Decision Tree Learning Outline Decision Tree for PlayTennis

More information

Machine Learning 3. week

Machine Learning 3. week Machine Learning 3. week Entropy Decision Trees ID3 C4.5 Classification and Regression Trees (CART) 1 What is Decision Tree As a short description, decision tree is a data classification procedure which

More information

CS145: INTRODUCTION TO DATA MINING

CS145: INTRODUCTION TO DATA MINING CS145: INTRODUCTION TO DATA MINING 4: Vector Data: Decision Tree Instructor: Yizhou Sun yzsun@cs.ucla.edu October 10, 2017 Methods to Learn Vector Data Set Data Sequence Data Text Data Classification Clustering

More information

Classification and Prediction

Classification and Prediction Classification Classification and Prediction Classification: predict categorical class labels Build a model for a set of classes/concepts Classify loan applications (approve/decline) Prediction: model

More information

Decision Trees Entropy, Information Gain, Gain Ratio

Decision Trees Entropy, Information Gain, Gain Ratio Changelog: 14 Oct, 30 Oct Decision Trees Entropy, Information Gain, Gain Ratio Lecture 3: Part 2 Outline Entropy Information gain Gain ratio Marina Santini Acknowledgements Slides borrowed and adapted

More information

Apprentissage automatique Méthodes à noyaux - motivation

Apprentissage automatique Méthodes à noyaux - motivation Apprentissage automatique Méthodes à noyaux - motivation MODÉLISATION NON-LINÉAIRE prédicteur non-linéaire On a vu plusieurs algorithmes qui produisent des modèles linéaires (régression ou classification)

More information

Decision Tree Learning Mitchell, Chapter 3. CptS 570 Machine Learning School of EECS Washington State University

Decision Tree Learning Mitchell, Chapter 3. CptS 570 Machine Learning School of EECS Washington State University Decision Tree Learning Mitchell, Chapter 3 CptS 570 Machine Learning School of EECS Washington State University Outline Decision tree representation ID3 learning algorithm Entropy and information gain

More information

Decision trees. Special Course in Computer and Information Science II. Adam Gyenge Helsinki University of Technology

Decision trees. Special Course in Computer and Information Science II. Adam Gyenge Helsinki University of Technology Decision trees Special Course in Computer and Information Science II Adam Gyenge Helsinki University of Technology 6.2.2008 Introduction Outline: Definition of decision trees ID3 Pruning methods Bibliography:

More information

Decision Trees. Data Science: Jordan Boyd-Graber University of Maryland MARCH 11, Data Science: Jordan Boyd-Graber UMD Decision Trees 1 / 1

Decision Trees. Data Science: Jordan Boyd-Graber University of Maryland MARCH 11, Data Science: Jordan Boyd-Graber UMD Decision Trees 1 / 1 Decision Trees Data Science: Jordan Boyd-Graber University of Maryland MARCH 11, 2018 Data Science: Jordan Boyd-Graber UMD Decision Trees 1 / 1 Roadmap Classification: machines labeling data for us Last

More information

CS6375: Machine Learning Gautam Kunapuli. Decision Trees

CS6375: Machine Learning Gautam Kunapuli. Decision Trees Gautam Kunapuli Example: Restaurant Recommendation Example: Develop a model to recommend restaurants to users depending on their past dining experiences. Here, the features are cost (x ) and the user s

More information

Outils de Recherche Opérationnelle en Génie MTH Astuce de modélisation en Programmation Linéaire

Outils de Recherche Opérationnelle en Génie MTH Astuce de modélisation en Programmation Linéaire Outils de Recherche Opérationnelle en Génie MTH 8414 Astuce de modélisation en Programmation Linéaire Résumé Les problèmes ne se présentent pas toujours sous une forme qui soit naturellement linéaire.

More information

Learning Decision Trees

Learning Decision Trees Learning Decision Trees Machine Learning Spring 2018 1 This lecture: Learning Decision Trees 1. Representation: What are decision trees? 2. Algorithm: Learning decision trees The ID3 algorithm: A greedy

More information

Induction of Decision Trees

Induction of Decision Trees Induction of Decision Trees Peter Waiganjo Wagacha This notes are for ICS320 Foundations of Learning and Adaptive Systems Institute of Computer Science University of Nairobi PO Box 30197, 00200 Nairobi.

More information

M chi h n i e n L e L arni n n i g Decision Trees Mac a h c i h n i e n e L e L a e r a ni n ng

M chi h n i e n L e L arni n n i g Decision Trees Mac a h c i h n i e n e L e L a e r a ni n ng 1 Decision Trees 2 Instances Describable by Attribute-Value Pairs Target Function Is Discrete Valued Disjunctive Hypothesis May Be Required Possibly Noisy Training Data Examples Equipment or medical diagnosis

More information

Machine Learning 2nd Edi7on

Machine Learning 2nd Edi7on Lecture Slides for INTRODUCTION TO Machine Learning 2nd Edi7on CHAPTER 9: Decision Trees ETHEM ALPAYDIN The MIT Press, 2010 Edited and expanded for CS 4641 by Chris Simpkins alpaydin@boun.edu.tr h1p://www.cmpe.boun.edu.tr/~ethem/i2ml2e

More information

CSCI 5622 Machine Learning

CSCI 5622 Machine Learning CSCI 5622 Machine Learning DATE READ DUE Mon, Aug 31 1, 2 & 3 Wed, Sept 2 3 & 5 Wed, Sept 9 TBA Prelim Proposal www.rodneynielsen.com/teaching/csci5622f09/ Instructor: Rodney Nielsen Assistant Professor

More information

Dan Roth 461C, 3401 Walnut

Dan Roth   461C, 3401 Walnut CIS 519/419 Applied Machine Learning www.seas.upenn.edu/~cis519 Dan Roth danroth@seas.upenn.edu http://www.cis.upenn.edu/~danroth/ 461C, 3401 Walnut Slides were created by Dan Roth (for CIS519/419 at Penn

More information

Introduction to ML. Two examples of Learners: Naïve Bayesian Classifiers Decision Trees

Introduction to ML. Two examples of Learners: Naïve Bayesian Classifiers Decision Trees Introduction to ML Two examples of Learners: Naïve Bayesian Classifiers Decision Trees Why Bayesian learning? Probabilistic learning: Calculate explicit probabilities for hypothesis, among the most practical

More information

Supervised Learning! Algorithm Implementations! Inferring Rudimentary Rules and Decision Trees!

Supervised Learning! Algorithm Implementations! Inferring Rudimentary Rules and Decision Trees! Supervised Learning! Algorithm Implementations! Inferring Rudimentary Rules and Decision Trees! Summary! Input Knowledge representation! Preparing data for learning! Input: Concept, Instances, Attributes"

More information

Tutorial 6. By:Aashmeet Kalra

Tutorial 6. By:Aashmeet Kalra Tutorial 6 By:Aashmeet Kalra AGENDA Candidate Elimination Algorithm Example Demo of Candidate Elimination Algorithm Decision Trees Example Demo of Decision Trees Concept and Concept Learning A Concept

More information

Introduction. Decision Tree Learning. Outline. Decision Tree 9/7/2017. Decision Tree Definition

Introduction. Decision Tree Learning. Outline. Decision Tree 9/7/2017. Decision Tree Definition Introduction Decision Tree Learning Practical methods for inductive inference Approximating discrete-valued functions Robust to noisy data and capable of learning disjunctive expression ID3 earch a completely

More information

Machine Learning 2010

Machine Learning 2010 Machine Learning 2010 Decision Trees Email: mrichter@ucalgary.ca -- 1 - Part 1 General -- 2 - Representation with Decision Trees (1) Examples are attribute-value vectors Representation of concepts by labeled

More information

http://xkcd.com/1570/ Strategy: Top Down Recursive divide-and-conquer fashion First: Select attribute for root node Create branch for each possible attribute value Then: Split

More information

Decision Tree Learning

Decision Tree Learning Topics Decision Tree Learning Sattiraju Prabhakar CS898O: DTL Wichita State University What are decision trees? How do we use them? New Learning Task ID3 Algorithm Weka Demo C4.5 Algorithm Weka Demo Implementation

More information

Apprentissage automatique Machine à vecteurs de support - motivation

Apprentissage automatique Machine à vecteurs de support - motivation Apprentissage automatique Machine à vecteurs de support - motivation RÉGRESSION À NOYAU régression à noyau Algorithme de régression à noyau entraînement : prédiction : a = (K + λi N ) 1 t. y(x) =k(x) T

More information

Decision Trees. Each internal node : an attribute Branch: Outcome of the test Leaf node or terminal node: class label.

Decision Trees. Each internal node : an attribute Branch: Outcome of the test Leaf node or terminal node: class label. Decision Trees Supervised approach Used for Classification (Categorical values) or regression (continuous values). The learning of decision trees is from class-labeled training tuples. Flowchart like structure.

More information

Administration. Chapter 3: Decision Tree Learning (part 2) Measuring Entropy. Entropy Function

Administration. Chapter 3: Decision Tree Learning (part 2) Measuring Entropy. Entropy Function Administration Chapter 3: Decision Tree Learning (part 2) Book on reserve in the math library. Questions? CS 536: Machine Learning Littman (Wu, TA) Measuring Entropy Entropy Function S is a sample of training

More information

Decision Tree Learning Lecture 2

Decision Tree Learning Lecture 2 Machine Learning Coms-4771 Decision Tree Learning Lecture 2 January 28, 2008 Two Types of Supervised Learning Problems (recap) Feature (input) space X, label (output) space Y. Unknown distribution D over

More information

Decision Tree Analysis for Classification Problems. Entscheidungsunterstützungssysteme SS 18

Decision Tree Analysis for Classification Problems. Entscheidungsunterstützungssysteme SS 18 Decision Tree Analysis for Classification Problems Entscheidungsunterstützungssysteme SS 18 Supervised segmentation An intuitive way of thinking about extracting patterns from data in a supervised manner

More information

Chapter 3: Decision Tree Learning (part 2)

Chapter 3: Decision Tree Learning (part 2) Chapter 3: Decision Tree Learning (part 2) CS 536: Machine Learning Littman (Wu, TA) Administration Books? Two on reserve in the math library. icml-03: instructional Conference on Machine Learning mailing

More information

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 8, 2018

Data Mining. CS57300 Purdue University. Bruno Ribeiro. February 8, 2018 Data Mining CS57300 Purdue University Bruno Ribeiro February 8, 2018 Decision trees Why Trees? interpretable/intuitive, popular in medical applications because they mimic the way a doctor thinks model

More information

Machine Learning and Data Mining. Decision Trees. Prof. Alexander Ihler

Machine Learning and Data Mining. Decision Trees. Prof. Alexander Ihler + Machine Learning and Data Mining Decision Trees Prof. Alexander Ihler Decision trees Func-onal form f(x;µ): nested if-then-else statements Discrete features: fully expressive (any func-on) Structure:

More information

Decision Trees / NLP Introduction

Decision Trees / NLP Introduction Decision Trees / NLP Introduction Dr. Kevin Koidl School of Computer Science and Statistic Trinity College Dublin ADAPT Research Centre The ADAPT Centre is funded under the SFI Research Centres Programme

More information

ML techniques. symbolic techniques different types of representation value attribute representation representation of the first order

ML techniques. symbolic techniques different types of representation value attribute representation representation of the first order MACHINE LEARNING Definition 1: Learning is constructing or modifying representations of what is being experienced [Michalski 1986], p. 10 Definition 2: Learning denotes changes in the system That are adaptive

More information

Introduction Association Rule Mining Decision Trees Summary. SMLO12: Data Mining. Statistical Machine Learning Overview.

Introduction Association Rule Mining Decision Trees Summary. SMLO12: Data Mining. Statistical Machine Learning Overview. SMLO12: Data Mining Statistical Machine Learning Overview Douglas Aberdeen Canberra Node, RSISE Building Australian National University 4th November 2004 Outline 1 Introduction 2 Association Rule Mining

More information

Lecture 7: DecisionTrees

Lecture 7: DecisionTrees Lecture 7: DecisionTrees What are decision trees? Brief interlude on information theory Decision tree construction Overfitting avoidance Regression trees COMP-652, Lecture 7 - September 28, 2009 1 Recall:

More information

Decision Tree Learning

Decision Tree Learning Topics Decision Tree Learning Sattiraju Prabhakar CS898O: DTL Wichita State University What are decision trees? How do we use them? New Learning Task ID3 Algorithm Weka Demo C4.5 Algorithm Weka Demo Implementation

More information

Classification and regression trees

Classification and regression trees Classification and regression trees Pierre Geurts p.geurts@ulg.ac.be Last update: 23/09/2015 1 Outline Supervised learning Decision tree representation Decision tree learning Extensions Regression trees

More information

Induction on Decision Trees

Induction on Decision Trees Séance «IDT» de l'ue «apprentissage automatique» Bruno Bouzy bruno.bouzy@parisdescartes.fr www.mi.parisdescartes.fr/~bouzy Outline Induction task ID3 Entropy (disorder) minimization Noise Unknown attribute

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Intelligent Data Analysis. Decision Trees

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Intelligent Data Analysis. Decision Trees Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Intelligent Data Analysis Decision Trees Paul Prasse, Niels Landwehr, Tobias Scheffer Decision Trees One of many applications:

More information

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Goals for the lecture you should understand the following concepts the decision tree representation the standard top-down approach to learning a tree Occam s razor entropy and information

More information

Data classification (II)

Data classification (II) Lecture 4: Data classification (II) Data Mining - Lecture 4 (2016) 1 Outline Decision trees Choice of the splitting attribute ID3 C4.5 Classification rules Covering algorithms Naïve Bayes Classification

More information

CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING. Santiago Ontañón

CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING. Santiago Ontañón CS 380: ARTIFICIAL INTELLIGENCE MACHINE LEARNING Santiago Ontañón so367@drexel.edu Summary so far: Rational Agents Problem Solving Systematic Search: Uninformed Informed Local Search Adversarial Search

More information

Data Mining Classification: Basic Concepts and Techniques. Lecture Notes for Chapter 3. Introduction to Data Mining, 2nd Edition

Data Mining Classification: Basic Concepts and Techniques. Lecture Notes for Chapter 3. Introduction to Data Mining, 2nd Edition Data Mining Classification: Basic Concepts and Techniques Lecture Notes for Chapter 3 by Tan, Steinbach, Karpatne, Kumar 1 Classification: Definition Given a collection of records (training set ) Each

More information

Random variables. Florence Perronnin. Univ. Grenoble Alpes, LIG, Inria. September 28, 2018

Random variables. Florence Perronnin. Univ. Grenoble Alpes, LIG, Inria. September 28, 2018 Random variables Florence Perronnin Univ. Grenoble Alpes, LIG, Inria September 28, 2018 Florence Perronnin (UGA) Random variables September 28, 2018 1 / 42 Variables aléatoires Outline 1 Variables aléatoires

More information

Decision Trees. CS57300 Data Mining Fall Instructor: Bruno Ribeiro

Decision Trees. CS57300 Data Mining Fall Instructor: Bruno Ribeiro Decision Trees CS57300 Data Mining Fall 2016 Instructor: Bruno Ribeiro Goal } Classification without Models Well, partially without a model } Today: Decision Trees 2015 Bruno Ribeiro 2 3 Why Trees? } interpretable/intuitive,

More information

Classification and Regression Trees

Classification and Regression Trees Classification and Regression Trees Ryan P Adams So far, we have primarily examined linear classifiers and regressors, and considered several different ways to train them When we ve found the linearity

More information

Classification: Decision Trees

Classification: Decision Trees Classification: Decision Trees These slides were assembled by Byron Boots, with grateful acknowledgement to Eric Eaton and the many others who made their course materials freely available online. Feel

More information

Decision Tree Learning

Decision Tree Learning Decision Tree Learning Goals for the lecture you should understand the following concepts the decision tree representation the standard top-down approach to learning a tree Occam s razor entropy and information

More information

Empirical Risk Minimization, Model Selection, and Model Assessment

Empirical Risk Minimization, Model Selection, and Model Assessment Empirical Risk Minimization, Model Selection, and Model Assessment CS6780 Advanced Machine Learning Spring 2015 Thorsten Joachims Cornell University Reading: Murphy 5.7-5.7.2.4, 6.5-6.5.3.1 Dietterich,

More information

brainlinksystem.com $25+ / hr AI Decision Tree Learning Part I Outline Learning 11/9/2010 Carnegie Mellon

brainlinksystem.com $25+ / hr AI Decision Tree Learning Part I Outline Learning 11/9/2010 Carnegie Mellon I Decision Tree Learning Part I brainlinksystem.com $25+ / hr Illah Nourbakhsh s version Chapter 8, Russell and Norvig Thanks to all past instructors Carnegie Mellon Outline Learning and philosophy Induction

More information

CHAPTER-17. Decision Tree Induction

CHAPTER-17. Decision Tree Induction CHAPTER-17 Decision Tree Induction 17.1 Introduction 17.2 Attribute selection measure 17.3 Tree Pruning 17.4 Extracting Classification Rules from Decision Trees 17.5 Bayesian Classification 17.6 Bayes

More information

Lecture 24: Other (Non-linear) Classifiers: Decision Tree Learning, Boosting, and Support Vector Classification Instructor: Prof. Ganesh Ramakrishnan

Lecture 24: Other (Non-linear) Classifiers: Decision Tree Learning, Boosting, and Support Vector Classification Instructor: Prof. Ganesh Ramakrishnan Lecture 24: Other (Non-linear) Classifiers: Decision Tree Learning, Boosting, and Support Vector Classification Instructor: Prof Ganesh Ramakrishnan October 20, 2016 1 / 25 Decision Trees: Cascade of step

More information

Decision Trees. Lewis Fishgold. (Material in these slides adapted from Ray Mooney's slides on Decision Trees)

Decision Trees. Lewis Fishgold. (Material in these slides adapted from Ray Mooney's slides on Decision Trees) Decision Trees Lewis Fishgold (Material in these slides adapted from Ray Mooney's slides on Decision Trees) Classification using Decision Trees Nodes test features, there is one branch for each value of

More information

Holdout and Cross-Validation Methods Overfitting Avoidance

Holdout and Cross-Validation Methods Overfitting Avoidance Holdout and Cross-Validation Methods Overfitting Avoidance Decision Trees Reduce error pruning Cost-complexity pruning Neural Networks Early stopping Adjusting Regularizers via Cross-Validation Nearest

More information

Machine Learning 2nd Edition

Machine Learning 2nd Edition ETHEM ALPAYDIN, modified by Leonardo Bobadilla and some parts from http://wwwcstauacil/~apartzin/machinelearning/ and wwwcsprincetonedu/courses/archive/fall01/cs302 /notes/11/emppt The MIT Press, 2010

More information

Decision Tree And Random Forest

Decision Tree And Random Forest Decision Tree And Random Forest Dr. Ammar Mohammed Associate Professor of Computer Science ISSR, Cairo University PhD of CS ( Uni. Koblenz-Landau, Germany) Spring 2019 Contact: mailto: Ammar@cu.edu.eg

More information

Decision Trees Part 1. Rao Vemuri University of California, Davis

Decision Trees Part 1. Rao Vemuri University of California, Davis Decision Trees Part 1 Rao Vemuri University of California, Davis Overview What is a Decision Tree Sample Decision Trees How to Construct a Decision Tree Problems with Decision Trees Classification Vs Regression

More information

Knowledge Discovery and Data Mining

Knowledge Discovery and Data Mining Knowledge Discovery and Data Mining Lecture 06 - Regression & Decision Trees Tom Kelsey School of Computer Science University of St Andrews http://tom.home.cs.st-andrews.ac.uk twk@st-andrews.ac.uk Tom

More information

Apprentissage automatique Classification linéaire - fonction discriminante

Apprentissage automatique Classification linéaire - fonction discriminante Apprentissage automatique Classification linéaire - fonction discriminante TYPES D APPRENTISSAGE apprentissage supervisé, classification, régression L apprentissage supervisé est lorsqu on a une cible

More information

Decision Tree. Decision Tree Learning. c4.5. Example

Decision Tree. Decision Tree Learning. c4.5. Example Decision ree Decision ree Learning s of systems that learn decision trees: c4., CLS, IDR, ASSISA, ID, CAR, ID. Suitable problems: Instances are described by attribute-value couples he target function has

More information

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Decision Trees. Tobias Scheffer

Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen. Decision Trees. Tobias Scheffer Universität Potsdam Institut für Informatik Lehrstuhl Maschinelles Lernen Decision Trees Tobias Scheffer Decision Trees One of many applications: credit risk Employed longer than 3 months Positive credit

More information

DECISION TREE LEARNING. [read Chapter 3] [recommended exercises 3.1, 3.4]

DECISION TREE LEARNING. [read Chapter 3] [recommended exercises 3.1, 3.4] 1 DECISION TREE LEARNING [read Chapter 3] [recommended exercises 3.1, 3.4] Decision tree representation ID3 learning algorithm Entropy, Information gain Overfitting Decision Tree 2 Representation: Tree-structured

More information

Supervised Learning via Decision Trees

Supervised Learning via Decision Trees Supervised Learning via Decision Trees Lecture 4 1 Outline 1. Learning via feature splits 2. ID3 Information gain 3. Extensions Continuous features Gain ratio Ensemble learning 2 Sequence of decisions

More information

Decision Trees. None Some Full > No Yes. No Yes. No Yes. No Yes. No Yes. No Yes. No Yes. Patrons? WaitEstimate? Hungry? Alternate?

Decision Trees. None Some Full > No Yes. No Yes. No Yes. No Yes. No Yes. No Yes. No Yes. Patrons? WaitEstimate? Hungry? Alternate? Decision rees Decision trees is one of the simplest methods for supervised learning. It can be applied to both regression & classification. Example: A decision tree for deciding whether to wait for a place

More information

Informal Definition: Telling things apart

Informal Definition: Telling things apart 9. Decision Trees Informal Definition: Telling things apart 2 Nominal data No numeric feature vector Just a list or properties: Banana: longish, yellow Apple: round, medium sized, different colors like

More information

Classification Using Decision Trees

Classification Using Decision Trees Classification Using Decision Trees 1. Introduction Data mining term is mainly used for the specific set of six activities namely Classification, Estimation, Prediction, Affinity grouping or Association

More information

Decision Trees. Tirgul 5

Decision Trees. Tirgul 5 Decision Trees Tirgul 5 Using Decision Trees It could be difficult to decide which pet is right for you. We ll find a nice algorithm to help us decide what to choose without having to think about it. 2

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University August 30, 2017 Today: Decision trees Overfitting The Big Picture Coming soon Probabilistic learning MLE,

More information

Concept Learning through General-to-Specific Ordering

Concept Learning through General-to-Specific Ordering 0. Concept Learning through General-to-Specific Ordering Based on Machine Learning, T. Mitchell, McGRAW Hill, 1997, ch. 2 Acknowledgement: The present slides are an adaptation of slides drawn by T. Mitchell

More information

Introduction to Machine Learning CMU-10701

Introduction to Machine Learning CMU-10701 Introduction to Machine Learning CMU-10701 23. Decision Trees Barnabás Póczos Contents Decision Trees: Definition + Motivation Algorithm for Learning Decision Trees Entropy, Mutual Information, Information

More information

Learning from Observations

Learning from Observations RN, Chapter 18 18.3 Learning from Observations Learning Decision Trees Framework Classification Learning Bias Def'n: Decision Trees Algorithm for Learning Decision Trees Entropy, Inductive Bias (Occam's

More information

Decision Trees. Gavin Brown

Decision Trees. Gavin Brown Decision Trees Gavin Brown Every Learning Method has Limitations Linear model? KNN? SVM? Explain your decisions Sometimes we need interpretable results from our techniques. How do you explain the above

More information

2018 CS420, Machine Learning, Lecture 5. Tree Models. Weinan Zhang Shanghai Jiao Tong University

2018 CS420, Machine Learning, Lecture 5. Tree Models. Weinan Zhang Shanghai Jiao Tong University 2018 CS420, Machine Learning, Lecture 5 Tree Models Weinan Zhang Shanghai Jiao Tong University http://wnzhang.net http://wnzhang.net/teaching/cs420/index.html ML Task: Function Approximation Problem setting

More information

Introduction to machine learning. Concept learning. Design of a learning system. Designing a learning system

Introduction to machine learning. Concept learning. Design of a learning system. Designing a learning system Introduction to machine learning Concept learning Maria Simi, 2011/2012 Machine Learning, Tom Mitchell Mc Graw-Hill International Editions, 1997 (Cap 1, 2). Introduction to machine learning When appropriate

More information

Lecture 7 Decision Tree Classifier

Lecture 7 Decision Tree Classifier Machine Learning Dr.Ammar Mohammed Lecture 7 Decision Tree Classifier Decision Tree A decision tree is a simple classifier in the form of a hierarchical tree structure, which performs supervised classification

More information

Einführung in Web- und Data-Science

Einführung in Web- und Data-Science Einführung in Web- und Data-Science Prof. Dr. Ralf Möller Universität zu Lübeck Institut für Informationssysteme Tanya Braun (Übungen) Inductive Learning Chapter 18/19 Chapters 3 and 4 Material adopted

More information

Machine Learning

Machine Learning Machine Learning 10-601 Tom M. Mitchell Machine Learning Department Carnegie Mellon University January 14, 2015 Today: The Big Picture Overfitting Review: probability Readings: Decision trees, overfiting

More information

Learning Decision Trees

Learning Decision Trees Learning Decision Trees CS194-10 Fall 2011 Lecture 8 CS194-10 Fall 2011 Lecture 8 1 Outline Decision tree models Tree construction Tree pruning Continuous input features CS194-10 Fall 2011 Lecture 8 2

More information

Information Theory & Decision Trees

Information Theory & Decision Trees Information Theory & Decision Trees Jihoon ang Sogang University Email: yangjh@sogang.ac.kr Decision tree classifiers Decision tree representation for modeling dependencies among input variables using

More information