ON JUSTIFICATION OF GIBBS DISTRIBUTION

Size: px
Start display at page:

Download "ON JUSTIFICATION OF GIBBS DISTRIBUTION"

Transcription

1 Department of Mechanics and Mathematics Moscow State University, Vorob ievy Gory , Moscow, Russia ON JUSTIFICATION OF GIBBS DISTRIBUTION Received January 10, 2001 DOI: /RD2002v007n01ABEH The paper develop a new approach to the justification of Gibbs canonical distribution for Hamiltonian systems with finite number of degrees of freedom. It uses the condition of nonintegrability of the ensemble of weak interacting Hamiltonian systems. Gibbs distribution. system with the density We consider the probability distribution in the phase space of Hamiltonian ρ = ce H kτ, (1) where H is a Hamiltonian, τ is an absolute temperature, k is the Boltzmann constant, c is a normalized factor. It plays the key role in the equilibrium statistical mechanics. Gibbs show in [1] that the averaging with respect to probability measure with density (1.1) give rise to the fundamental relations of equilibrium thermodynamics. To deduce the canonical Gibbs distribution one usually consider the ensemble of Hamiltonian systems with Hamiltonian function of the following form = 0 (P, Q) + ε 1(P, Q), (2) where 0 = n H 0 (p (s), q (s) ), s=1 p (s) = (p (s) 1,..., p(s) m ), q (s) = (q (s) 1,..., q(s) m ). (3) Thus at ε = 0 the system with Hamiltonian (1.2) is decomposed on n identical systems with m degrees of freedom and Hamiltonian H 0. The canonical variables P, Q are the momenta p (1),..., p (n) and coordinates q (1),..., q (n) of separate subsystems. The perturbing function 1 is the energy of interaction of n subsystems; it usually depends on their coordinates Q. Small parameter ε is the characteristic of intensity of subsystems interaction. We consider the case, when the Hamiltonian is sufficiently smooth with respect to variables P, Q. However, in application we often see cases with singular interaction. The classical example is the Boltzmann-Gibbs gas, the assembly of rigid balls in cube that elastically collide with each other (see [1, 2, 3]). The traditional approach to the deduction of Giibs distribution suggested by Fowler and Darwin ([4], the rigorous exposition see in [5, 6]) essentially uses the ergodic hypothesis: for all small ε > 0 the Hamiltonian system with Hamiltonian (1.2) is ergodic on fixed energy manifolds = const. With some additional conditions some systems with Hamiltonian H 0 are distributed in accordance with formula (1.1) as ε 0 and n. Mathematics Subject Classification 37H10, 70F45 REGULAR AND CHAOTIC DYNAMICS, V. 7, 1,

2 But the proof of ergodic hypothesis for specific Hamiltonian systems is usually pretty difficult problem. Moreover the ergodic hypothesis often contradicts with results of KAM theory. In particular if the Hamiltonian system with Hamiltonian H 0 is completely integrable and the energy surfaces H 0 = = const are compact, then the ergodic property is not present with certainty. In view of this remark we can set the following interesting problem: prove that in analytical (or even in infinitely differentiable) case if the energy surfaces H 0 = const are compact, then the Hamiltonian system with Hamiltonian (1.2) never satisfy ergodic hypothesis. We can try to modify the Fowler Darwin method assuming that ε 0 and n depend on ε in such way that n(ε) as ε 0. We can assume that for some functions ε n(ε) the system with Hamiltonian (1.2) is ergodic on the surfaces = const as a result of huge number of its degrees of freedom. This somewhat weakened version of ergodic hypothesis is closely related to the unsolved problem of estimation of small parameter in KAM theory, when the last Kolmogorov torus disappears. The weaker conjecture on transitivity of system with Hamiltonian (1.2) on energy surfaces = const for large values of n and small ε is not proved yet. If this problem has the positive answer, then we can assert the presence of diffusion in Hamiltonian systems with many degrees of freedom (see [7 9]). Probability density as an integral of Hamiltonian equations. A different approach to the deduction of canonical Gibbs distribution was proposed in the paper [10]. This approach is based on the fact that the stationary density of probability distribution is the integral of Hamiltonian differential equations uniquely defined in the whole phase space. In this case the number of interacting subsystem n 2 is fixed. More exactly in [10] we consider the case, when the subsystems have one degree of freedom: m = 1. Under some natural condition we can proceed to the angle action variables in each subsystem, and using the well-known Poincaré method we can obtain the constructive condition of nonexistence of new integrals (see [11, 12]). The results of paper [10] can be easily converted to the more general case, when H 0 is a Hamiltonian of completely integrable system. We are going to find out the sufficient conditions (constructive if possible) of nonintegrability of systems (1.2) (1.3). We study the conditions of existence of an integral (P, Q, ε) of the canonical differential equations P = Q, Q = (4) P with a Hamiltonian of the form (1.2) (1.3). We emphasize that the integral depends on the parameter ε. Poincaré considered the analytical case; in particular we can construct the integral as a power series with respect to ε. We suppose that is a function of class C 2 with respect to all the variables P, Q and ε. Hence we can suppose = 0(P, Q) + ε 1(P, Q) + o(ε), (5) where 0 and 1 are functions of class C 2 and C 1 with respect to P and Q correspondingly. Probably we can weaken the requirements to the class of smoothness of integral, and the following arguments still will be correct. But this is a separate problem and we are not going to discuss it here. Non-perturbed problem. Suppose ε = 0. Then we have a system of n independent subsystems. It is strongly nonergodic: at ε = 0 system of differential equations (2.1) has n independent first integrals H s = H 0 (p (s), q (s) ), 1 s n. (6) It is clear that the function 0 from expansion (2.2) is a first integral of this unjointed system. Let s show that under the specific conditions the function 0 depends only on H 1,..., H n. In particular these conditions will imply that any separate subsystem with m degrees of freedom does not nave 2 REGULAR AND CHAOTIC DYNAMICS, V. 7, 1, 2002

3 ON JUSTIFICATION OF GIBBS DISTRIBUTION first integrals independent on the integral of energy. The ideas of our arguments follows Poincaré method [11]. Let M be a phase space of Hamiltonian system with Hamiltonian function (3.1). Certainly for all s these spaces are identical. A phase space of new system is the direct product = M... M, dim = 2nm. Let h s be a value of total energy of system with number s, and (hs ) = {p (s), q (s) : H s (p (s), q (s) ) = h s } is the a energy surface. If the value of h s is uncritical, then is a smooth 2m 1-dimensional manifold. At fixed values of h = (h 1,..., h n ) and ε = 0 unjoined Hamiltonian system (2.1) is reduced to the direct product of dynamical systems defined on S(h) = (h 1 )... (h n ). The ergodic property of system with Hamiltonian H s on (h s ) does not necessarily imply the constancy of integral 0 on the invariant set S(h). Consider the following simple example Example. Suppose the following dynamical system ẋ i = ω i, ẏ j = ω j ; i, j = 1,..., k (7) with constant incommensurable systems ω = (ω 1,..., ω k ) is defined on direct product of k-dimensional tori T k {x mod 2π} T k {y mod 2π}. According to the Weyl theorem, each separate subsystem is ergodic on T k. But equations (3.2) have single-valued nonconstant integrals sin(x i y i ) (1 i k). Remark. However, if Hamiltonian systems are weakly mixing (mixing) systems on (h s ), then their direct product also has weakly mixing (mixing) property on S(h). In particular in these cases the function 0 is constant on any connected component of manifold S(h). Let T 1 be a nondegenerate periodic trajectory of system with number s with energy h s, T s its period, and ω s = 2π/T s its frequency. According to Floquet Lyapunov theorem, in a neighborhood of this trajectory on (h s ) we can express the coordinates ϕ s mod 2π, z (s) 1,..., z(s) 2m 2, so that in the new variables the motion equation obtain the following form: ϕ s = ω s + f s (ϕ s, z (s) ), ż (s) = Ω s z (s) + g s (ϕ s, z (s) ). (8) Here f s = O( z (s) ), g s = o( z (s) ), and constant square matrix Ω s of order 2m 2 is nondegenerate. Assuming in (3.3) z (s) = 0 we obtain the equation of periodic trajectory: ϕ s = ω s (1 s n). (9) According to the assumption on non degeneracy of periodic trajectory T 1, nondegenerate periodic trajectories with similar period are situated on close energy surfaces (h s ); periods and frequencies continuously depend on energy h s. It is clear that the direct product T 1... T 1 = T n is n dimensional invariant torus of canonical system of differential equations (2.1) at ε = 0 situated on S(h). In the neighborhood of this torus the equation of motion have form (3.3). Hence, such torus is reducible and nondegenerate (see, for example, [12]). On the torus the equation are reduced to a conditionally-periodic form (3.4). As usually, we call an invariant torus nonresonance if the frequencies ω 1,..., ω n are independent on the ring of integers. In the further analysis the following condition is essential A) For almost all admissible values of h R n nonresonance tori are everywhere dense on the manifold S(h). REGULAR AND CHAOTIC DYNAMICS, V. 7, 1,

4 Example. Let separate subsystems describe the inertial motion on the manifold of negative curvature. Energy h is non-negative. All periodic trajectories with positive energy are hyperbolical; hence they are not degenerate. Periodic trajectories are the motions on closed geodetics on with different speed. If l is a length of closed geodetic, then the period is equal to l. Hence the frequency 2h ω is defined by the formula 2h 2π. l Since the lengths of n geodetics l 1,..., l n are fixed, then for almost all positive values of energy h 1,..., h n the frequencies ω 1,..., ω n are incommensurable. It is possible to show (and this is a separate problem) that in a considered situation condition A is fulfilled. Proposition 1. If condition A is fulfilled, then for all h R n the function any connected component of S(h). 0 is constant on Proof. Since 0 is an integral of system of equations (2.1) at ε = 0, then (according to the Kronecker theorem) 0 is constant on any nonresonance torus T n. Since this torus is reducible and nondegenerate, then d 0 = 0 in points T (see [12], ch. IV). According to condition A, for almost all values of h R n nonresonance tori are everywhere dense on S(h). Hence, d 0 = 0 on such manifolds S(h). Therefore 0 is constant on their connected components. For other values of h the conclusion of proposition 1 follows by continuity. Remark. The proof shows that in condition A instead of for almost all admissible values of h R n we can say for everywhere dense set of values of h R n. However, such weakening of condition A practically does not give anything new. In further analysis we will use the proposition on everywhere density of the set of maximum resonance tori (when all frequencies are rationally expressed through one frequency). This condition together with condition A produces an alternation of resonance and nonresonance invariant tori and replaces the condition of nondegeneracy of non-perturbed completely integrable system in the Poincaré theory. Energy surfaces. Let us consider a case, when function the H 0 : M R has a finite number of critical values a 1 < a 2 <... < a r, and a 1 = min H 0. Such situation is common in applications. When the total energy h 0 passes through the critical value, the continuous dependence of energy surface (h0 ) on h 0 is lost. In that moment its topology generally changes. Fig. 1 In fig. 1 we present the plot of Hamiltonian H 0 with three critical values. The points a 1 and a 3 are stationary values of H 0, and the critical point a 2 is not a stationary value. The presence of 4 REGULAR AND CHAOTIC DYNAMICS, V. 7, 1, 2002

5 ON JUSTIFICATION OF GIBBS DISTRIBUTION the nonstationary critical points is the characteristic property of potentials describing gravitational or Coulomb interaction. Let s denote as K i1 i 2... i n an open parallelepiped in R n = {h 1,..., h n }. This parallelepiped is a direct product of the intervals a i1 < h 1 < a i1 +1,..., a in < h n < a in+1. (10) If number i s + 1 is larger than r, then we replace a is+1 with a symbol. In fig. 2 these domains are shown for n = 2 and r = 3. Each point h K i, i = (i 1,..., i n ) corresponds to a smooth regular manifold, which may consist of several connected parts. The quantity of connected components of S(h) does not depend on a point h K i ; we denote this number by symbol κ i. Fig. 2 Let us introduce in the phase space open areas i defined by the inequalities similar to (4.1): a i1 < H 1 (p (1), q (1) ) < a i1 +1,..., a in < H n (p (n), q (n) ) < a in+1. It is clear that the closure of these domains in the whole covers all. Also each i has exactly κ i connected components. i there exists the continuously dif- Proposition 2. For any connected component of domain ferentiable function f i : K i R, such that the following equality is fulfilled in this domain 0 = f i (H 1, H 2,..., H n ). (11) Remark. Actually function f i belongs to the class of smoothness C 2. However it is not essential for the further analysis. Proof. It is clear that the domain i is foliated to the regular surfaces S. The function 0 is constant on these surfaces (more exactly on their connected components) (the proposition 1). Hence, on any connected component i the function 0 has natural representation (4.2). By definition in any point i functions H 1,..., H n are independent. Therefore we can introduce locally new coordinates so that H 1,..., H n will appear as n of new variables. The transition to such coordinates is carried out with certainty with the help of continuously differentiable reversible transformation. In new variables the function 0 is continuously differentiable and depends only on n variables H 1,..., H n. The proposition is proved. REGULAR AND CHAOTIC DYNAMICS, V. 7, 1,

6 Resonances. Let us consider again an invariant torus T of non-perturbed system. The equations of motion on the torus are reduced to form (3.4). This torus we call completely resonance if there exist n 1 linearly independent integer vectors such that u = (u 1,..., u n ), v = (v 1,..., v n ),..., w = (w 1,..., w n ), (u, ω) = u 1 ω u n ω n = 0, (u, ω) = 0,..., (w, ω) = 0. (12) In other words all frequencies ω s are rationally expressed through one of them. This is equivalent to the proposition that all solutions of differential equations (3.4) on the torus T n are periodic with the same period. Let Φ be a restriction of perturbing function : M R on the invariant torus T n. It is clear that Φ is 2π periodic function of (ϕ 1,..., ϕ n ) = ϕ. We associate it with multiple Fourier series Φ = ϕ k exp i(k, ϕ). (13) k n A nonresonance torus we call the Poincaré torus if the factors of Fourier decomposition (5.2) with numbers u, v,..., w are nonzero. Since the Poincaré tori consist of the separate closed trajectories, they have no rigidity property and collapse after the addition of perturbation. We can not exclude the possibility that the family of degenerate periodic trajectories, components of the Poincaré torus, at perturbation give rise to the finite number of nondegenerate periodic trajectories with close transition. Let us introduce finally the Poincaré set P R n. It is a set of points from R n = {h 1,..., h n }, which are the images of the Poincaré tori under the energy mapping R n : a point with coordinates (P, Q) = (p (1),..., p (n), q (n),..., q (n) ) passes to a point with coordinates h 1 = H 1 (p (1), q (1) ),..., h n = H n (p (n), q (n) ). Remark. In the Poincaré theory [11, 12] the usually supposition is that the non-perturbed system with the Hamiltonian 0 is completely integrable and nondegenerate. Therefore the set of its first integrals is a set of action variables numerating the invariant tori. The Poincaré set (introduced in [12]) is defined here as a set of points in space of action variables corresponding to the completely resonance tori collapsing after the addition of perturbation. In our case functions H 1,..., H n are the set of integrals of the non-perturbed problem and the Poincaré set is a set of points in space of values of these integrals. Proposition 3. In points of the Poincaré set P functions 0 = n s=1 and 0 = f(h 1,..., H n ) are dependent. Proof. Let { } be a Poisson bracket connected with symplectic structure on. Since function is the first integral of initial system (2.1), then {, } = 0 for all values of ε. Since { 0, 0} = 0, then {, } lim ε 0 ε = 0. (14) Using decomposition (1.2) and (2.2) we receive from (5.3) the equality { 0, 1} = { 0, 1}. (15) 6 REGULAR AND CHAOTIC DYNAMICS, V. 7, 1, 2002

7 ON JUSTIFICATION OF GIBBS DISTRIBUTION Well known that { 0, 1} is a derivative of 1 by virtue of the initial system of differential equations with Hamiltonian 0. The Poisson bracket { 0, 1} has similar sense. Besides by formula (4.2) we obtain n f { 0, 1} = {H s, 1}. (16) H s s=1 Now let us restrict equality (5.4) on the invariant torus T n. It is clear that { 0, 1} is equal to the derivative of restriction of function 1 on T n by virtue of system of differential equations (3.4). Let Ψ : T n R be a restriction of 1 on T n and Ψ = ψ k exp i(k, ϕ) (17) k n its Fourier series. In points ϕ Z n the left part of (5.4) becomes i(k, ω)ψ k exp i(k, ϕ). (18) k n In view of formulas (5.2) and (5.5) the right part of relation (5.4) in points of the invariant torus is equal to ( f i k H 1 ω f ) k 1 H n ω n ϕ k exp i(k, ϕ). (19) n k n Comparing (5.7) and (5.8) we obtain a chain of equalities (k, ω)ψ k = (ξk 1 ω ξ n k n ω n )ψ k, k Z n. (20) Now let T n be the Poincaré torus. Setting k equal to u, v,..., w we obtain that ω as a vector of n dimensional space is orthogonal to the hyperplane Π generated by linearly independent vectors u, v,..., w. Since (u, ω) =... = (w, ω) = 0, and ϕ u 0,..., ϕ w 0, then we obtain from (5.9) n 1 linear relations: u 1 (ξ 1 ω 1 ) u n (ξ n ω n ) = 0, w 1 (ξ 1 ω 1 ) w n (ξ n ω n ) = 0. Hence the vector with components ξ 1 ω 1,..., ξ n ω n is orthogonal to the hyperplane Π and consequently it is collinear to the vector ω = (ω 1,..., ω n ). Hence ξ 1 =... = ξ n. f f Thus in points of the Poincaré set the derivatives,..., are equal to each other. It H 1 H n means obviously the dependence of functions 0 and 0. Remark. Since functions Φ and Ψ are assumed to be only once continuously differentiable, then the Fourier series (5.2), (5.6)-(5.8) may diverge. In this case relations (5.9) can be deduced in another way. For this purpose we multiply the derivative with respect to time Φ = φ ϕ φ ϕ n ω n on exp i(k, ϕ), apply the operation of averaging over T n 1 (2π) n ( ) ϕ 1... dϕ n, T n and integrate by parts. In result we obtain the left part of relation (5.9) up to the factor i. The right part of (5.9) is obtained similarly. Let us introduce the additional condition B) The Poincaré set P is everywhere dense in any parallelepiped K i. The proposition 3 imply the following corollary REGULAR AND CHAOTIC DYNAMICS, V. 7, 1,

8 Corollary. If conditions A and B are fulfilled, then the functions 0 and 0 are everywhere dependent. Hence we immediately obtain the following representation on any parallelepiped K i : 0 = F i ( 0), (21) where F i is some continuously differentiable function. Indeed, introducing the new variables H 1,..., H n 1, write down formula (4.2) in the another form: 0 = H s instead of H 1,..., H n we can 0 = f i (H 1,..., H n 1, 0 H 1... H n 1 ). Since functions 0 and 0 are dependent, then the right part of this equality actually does not depend on H 1,..., H n 1. Deduction of Gibbs distribution. Now let ε tend to zero. At the limit we obtain the n unjoined subsystems moving independently: the change of the initial data p (l), q (l) for l s does not affect the dynamics of subsystem with number s. In order to be consistent we shall also assume at ε = 0 that the subsystem with number s being in some fixed state (p (s), q (s) ) M is a random event. The following natural condition plays the main role in the process of deduction of Gibbs distribution C) These random events are independent. If ρ s (p (s), q (s) ), 1 s n is a density of probability distribution of the subsystem with number s, and ρ(p, Q, ε) = ρ 0 (P, Q) + O(ε) is a density of probability distribution in the initial system with Hamiltonian (1.2), then using condition C and the rules of multiplication of probabilities of independent events we obtain as ε 0 the following equality: ρ 0 = ρ 1... ρ n. (22) Equality (6.1) is also called the Gibbs hypothesis on the preservation of thermodynamic equilibrium of subsystems at vanishing interaction ([1], see also [13]). The sense of this term will be explained below. Our main result is the following theorem Theorem. Suppose conditions A, B and C are fulfilled. Then for all 1 s n. In particular, according to (6.1), ρ s = c s e Hs kτ, c s = const > 0 (23) ρ 0 = c 0 e Hs kτ, c 0 = c 1... c n. From (6.1) we see that all separate subsystems have the same distribution. We compute the factors c s using the normalizing condition ρ s d n p d n q = 1. M Proof of theorem. First note that ρ s is a function of Hamiltonian H s only, and it is continuously differentiable in all open intervals (a 1, a 2 ), (a 2, a 3 ),..., (a r, ). (24) 8 REGULAR AND CHAOTIC DYNAMICS, V. 7, 1, 2002

9 ON JUSTIFICATION OF GIBBS DISTRIBUTION More exactly the number of such functions is equal to the number of the connected components of level surface (h s ), when the energy h s changes in each of intervals (6.3). Some of these functions may coincide. Indeed, for almost all h s a 1 the Hamiltonian system with Hamiltonian H s has everywhere dense set of nondegenerate periodic trajectories on energy surfaces (h s ). Otherwise condition A is not fulfilled because of the identity of separate subsystems. Then, according to Poincaré [11], the points of nondegenerate periodic trajectories are stationary for the restriction of any first integral on (h s ). The continuity imply that the first integrals of Hamiltonian system with Hamiltonian function H s are constant on the connected components of (h s ). At last we should note that ρ s is the first integral and use the (simplified) arguments of section 4. Now let us consider again equation (6.1) true on any parallelepiped K i : ρ 0 (H H n ) = ρ 1 (H 1 )... ρ n (H n ). (25) This functional equation is easily solved. We differentiate (6.4) sequentially with respect to H 1,..., H n and divide the result on the product ρ 1... ρ n. In result we obtain the following chain of equations ρ 1 ρ 1 =... = ρ n ρ n = β. Here β is some constant independent on the number s. Hence ρ s = c s e βhs, c s = const. (26) The dimension of constant β is equal to the inverse energy dimension. Usually one suppose that β = (kτ) 1, where τ is the absolute temperature, and k is the Boltzmann constant. We should note that formula (6.5) may depend on the choice of multiindex i = (i 1,..., i n ). More precisely, any connected component of the set i has its own set of the factors β and c s in (6.5). However, we can easily show that the constant β has an universal character. Indeed, suppose the constants β in formula (6.5) are equal to the values β 1,..., β n on some connected component of domain i with some index i. Then, according to (6.1), in this domain ρ 0 = c 0 e β sh s. (27) If some β s are not equal to each other, then functions (6.6) and 0 = (H s ) are independent. But this statement contradicts to the corollary of proposition 3. This argument has the evident physical meaning: at thermodynamic equilibrium all components of system have identical temperature. The last remaining possibility is that constants c s in formula (6.5) are different on the different intervals of values of energy (6.3). But in reality this possibility is not realized because of the continuity property of functions ρ s : M R. The theorem is completely proved. In conclusion of the work we shall make one important remark. The Gibbs theory presented in [1] does not imply that the densities of probability distributions ρ 1,..., ρ n should be continuous functions on M. We can consider more general situation and assume, for example, that functions ρ s are continuously differentiable only on those domains of phase space M, in which energy is contained between its neighboring critical values a r < H s < a r+1 (r = 1,..., p; a p+1 = ). (28) Naturalness of such assumption is already evident if we consider the example of mathematical pendulum: the separatrices on phase cylinder separate the domains with essentially different type of motion (fluctuations and rotations). REGULAR AND CHAOTIC DYNAMICS, V. 7, 1,

10 Applying the developed above method we again obtain formula (6.2), but the constants c s have different values in different domains (6.7). Moreover, these constants may be different for different connected components of domains (6.7). It is quite possible that such generalized discontinuous Gibbs distribution could be useful for the study of concrete thermodynamic systems. Let us assume, for example, that the phase space M has only two domains M + and M of form (6.7). In domains M ± we have the following densities of distributions c ± e H kτ. We calculate the constants c + and c using the normalizing condition c + H e kτ d n p d n q + c H e kτ d n p d n q = 1. M + M If the difference = c + c is given, then factors c ± are uniquely defined by this equality: c + M c M e H kτ d n p d n q = 1 + M e H kτ d n p d n q = 1 M + H e kτ d n p d n q, H e kτ d n p d n q. Since c ± > 0, then the right parts of these equalities are positive. It happens with certainty if the jump satisfies the following inequality < [ M e H kτ d n p d n q ] 1. Could we obtain the probability distribution with piecewise smooth function of distribution using the Fowler Darwin method? The paper is prepared with the financial support of RFBR( ) and INTAS. References [1] J. W. Gibbs. Elementary principles in statistical mechanics, developed with especial reference to the rational foundations of thermodynamics. N. Y [2] L. Boltzmann. Vorlesungen über Gastheorie. Leipzig: Ambrosius Barth [3] D. Szász. Half Ball systems and the Lorentz Gas. Springer Verlag [4] R. H. Fowler, E. A. Guddenheim. Statistical Thermodynamics. Cambridge: Univ. Press [5] A. Ya. Hincin. Mathematical justification of statistical mechanics. M.-L.: Gostechizdat [6] F. A. Beresin. Lectures on statistical physics. M.: MGU publ [7] V. I. Arnold. On instability of dynamical systems with many degrees of freedom. Dokl. of USSR Acad. of Sciences. V P [8] A. J. Lichtenberg, M. A. Liebermann. Regular and Stochastic Motion. Springer Verlag [9] V. V. Kozlov, N. G. Moschevitin. On diffusion in Hamiltonian systems. Moscow Univ. Bull. Math. and mech. series P [10] V. V. Kozlov. Canonical Gibbs distribution and thermodynamics of mechanical systems with a finite number of degrees of freedom. Regular and Chaotic Dynamics. V P [11] H. Poincaré. Les méthode nouvelles de la mécanique celeste. V Paris: Gauthier Villars. 1892, 1893, [12] V. V. Kozlov. Symmetries, Topology, and Resonances in Hamiltonian Mechanics. Springer Verlag [13] A. Sommerfeld. Thermodinamik und Statistik. Wissbaden REGULAR AND CHAOTIC DYNAMICS, V. 7, 1, 2002

Theory of Adiabatic Invariants A SOCRATES Lecture Course at the Physics Department, University of Marburg, Germany, February 2004

Theory of Adiabatic Invariants A SOCRATES Lecture Course at the Physics Department, University of Marburg, Germany, February 2004 Preprint CAMTP/03-8 August 2003 Theory of Adiabatic Invariants A SOCRATES Lecture Course at the Physics Department, University of Marburg, Germany, February 2004 Marko Robnik CAMTP - Center for Applied

More information

Some Collision solutions of the rectilinear periodically forced Kepler problem

Some Collision solutions of the rectilinear periodically forced Kepler problem Advanced Nonlinear Studies 1 (2001), xxx xxx Some Collision solutions of the rectilinear periodically forced Kepler problem Lei Zhao Johann Bernoulli Institute for Mathematics and Computer Science University

More information

Hamiltonian Dynamics

Hamiltonian Dynamics Hamiltonian Dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS Feb. 10, 2009 Joris Vankerschaver (CDS) Hamiltonian Dynamics Feb. 10, 2009 1 / 31 Outline 1. Introductory concepts; 2. Poisson brackets;

More information

Physics 106b: Lecture 7 25 January, 2018

Physics 106b: Lecture 7 25 January, 2018 Physics 106b: Lecture 7 25 January, 2018 Hamiltonian Chaos: Introduction Integrable Systems We start with systems that do not exhibit chaos, but instead have simple periodic motion (like the SHO) with

More information

= 0. = q i., q i = E

= 0. = q i., q i = E Summary of the Above Newton s second law: d 2 r dt 2 = Φ( r) Complicated vector arithmetic & coordinate system dependence Lagrangian Formalism: L q i d dt ( L q i ) = 0 n second-order differential equations

More information

In Arnold s Mathematical Methods of Classical Mechanics (1), it

In Arnold s Mathematical Methods of Classical Mechanics (1), it Near strongly resonant periodic orbits in a Hamiltonian system Vassili Gelfreich* Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom Communicated by John N. Mather, Princeton

More information

ABSOLUTE CONTINUITY OF FOLIATIONS

ABSOLUTE CONTINUITY OF FOLIATIONS ABSOLUTE CONTINUITY OF FOLIATIONS C. PUGH, M. VIANA, A. WILKINSON 1. Introduction In what follows, U is an open neighborhood in a compact Riemannian manifold M, and F is a local foliation of U. By this

More information

Chapter 2 Ensemble Theory in Statistical Physics: Free Energy Potential

Chapter 2 Ensemble Theory in Statistical Physics: Free Energy Potential Chapter Ensemble Theory in Statistical Physics: Free Energy Potential Abstract In this chapter, we discuss the basic formalism of statistical physics Also, we consider in detail the concept of the free

More information

Aubry Mather Theory from a Topological Viewpoint

Aubry Mather Theory from a Topological Viewpoint Aubry Mather Theory from a Topological Viewpoint III. Applications to Hamiltonian instability Marian Gidea,2 Northeastern Illinois University, Chicago 2 Institute for Advanced Study, Princeton WORKSHOP

More information

25.1 Ergodicity and Metric Transitivity

25.1 Ergodicity and Metric Transitivity Chapter 25 Ergodicity This lecture explains what it means for a process to be ergodic or metrically transitive, gives a few characterizes of these properties (especially for AMS processes), and deduces

More information

GEOMETRIC QUANTIZATION

GEOMETRIC QUANTIZATION GEOMETRIC QUANTIZATION 1. The basic idea The setting of the Hamiltonian version of classical (Newtonian) mechanics is the phase space (position and momentum), which is a symplectic manifold. The typical

More information

An introduction to Birkhoff normal form

An introduction to Birkhoff normal form An introduction to Birkhoff normal form Dario Bambusi Dipartimento di Matematica, Universitá di Milano via Saldini 50, 0133 Milano (Italy) 19.11.14 1 Introduction The aim of this note is to present an

More information

THE POINCARÉ RECURRENCE PROBLEM OF INVISCID INCOMPRESSIBLE FLUIDS

THE POINCARÉ RECURRENCE PROBLEM OF INVISCID INCOMPRESSIBLE FLUIDS ASIAN J. MATH. c 2009 International Press Vol. 13, No. 1, pp. 007 014, March 2009 002 THE POINCARÉ RECURRENCE PROBLEM OF INVISCID INCOMPRESSIBLE FLUIDS Y. CHARLES LI Abstract. Nadirashvili presented a

More information

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 21, 2003, 211 226 SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS Massimo Grosi Filomena Pacella S.

More information

Perturbation theory, KAM theory and Celestial Mechanics 7. KAM theory

Perturbation theory, KAM theory and Celestial Mechanics 7. KAM theory Perturbation theory, KAM theory and Celestial Mechanics 7. KAM theory Alessandra Celletti Department of Mathematics University of Roma Tor Vergata Sevilla, 25-27 January 2016 Outline 1. Introduction 2.

More information

Lecture 11 : Overview

Lecture 11 : Overview Lecture 11 : Overview Error in Assignment 3 : In Eq. 1, Hamiltonian should be H = p2 r 2m + p2 ϕ 2mr + (p z ea z ) 2 2 2m + eφ (1) Error in lecture 10, slide 7, Eq. (21). Should be S(q, α, t) m Q = β =

More information

AMADEU DELSHAMS AND RAFAEL RAMíREZ-ROS

AMADEU DELSHAMS AND RAFAEL RAMíREZ-ROS POINCARÉ-MELNIKOV-ARNOLD METHOD FOR TWIST MAPS AMADEU DELSHAMS AND RAFAEL RAMíREZ-ROS 1. Introduction A general theory for perturbations of an integrable planar map with a separatrix to a hyperbolic fixed

More information

Scalar curvature and the Thurston norm

Scalar curvature and the Thurston norm Scalar curvature and the Thurston norm P. B. Kronheimer 1 andt.s.mrowka 2 Harvard University, CAMBRIDGE MA 02138 Massachusetts Institute of Technology, CAMBRIDGE MA 02139 1. Introduction Let Y be a closed,

More information

Hamiltonian Systems of Negative Curvature are Hyperbolic

Hamiltonian Systems of Negative Curvature are Hyperbolic Hamiltonian Systems of Negative Curvature are Hyperbolic A. A. Agrachev N. N. Chtcherbakova Abstract The curvature and the reduced curvature are basic differential invariants of the pair: Hamiltonian system,

More information

Integrable geodesic flows on the suspensions of toric automorphisms

Integrable geodesic flows on the suspensions of toric automorphisms Integrable geodesic flows on the suspensions of toric automorphisms Alexey V. BOLSINOV and Iskander A. TAIMANOV 1 Introduction and main results In this paper we resume our study of integrable geodesic

More information

ON THE ARROW OF TIME. Y. Charles Li. Hong Yang

ON THE ARROW OF TIME. Y. Charles Li. Hong Yang DISCRETE AND CONTINUOUS doi:10.3934/dcdss.2014.7.1287 DYNAMICAL SYSTEMS SERIES S Volume 7, Number 6, December 2014 pp. 1287 1303 ON THE ARROW OF TIME Y. Charles Li Department of Mathematics University

More information

LONG TIME BEHAVIOUR OF PERIODIC STOCHASTIC FLOWS.

LONG TIME BEHAVIOUR OF PERIODIC STOCHASTIC FLOWS. LONG TIME BEHAVIOUR OF PERIODIC STOCHASTIC FLOWS. D. DOLGOPYAT, V. KALOSHIN AND L. KORALOV Abstract. We consider the evolution of a set carried by a space periodic incompressible stochastic flow in a Euclidean

More information

AVERAGING AND RECONSTRUCTION IN HAMILTONIAN SYSTEMS

AVERAGING AND RECONSTRUCTION IN HAMILTONIAN SYSTEMS AVERAGING AND RECONSTRUCTION IN HAMILTONIAN SYSTEMS Kenneth R. Meyer 1 Jesús F. Palacián 2 Patricia Yanguas 2 1 Department of Mathematical Sciences University of Cincinnati, Cincinnati, Ohio (USA) 2 Departamento

More information

Hamiltonian aspects of fluid dynamics

Hamiltonian aspects of fluid dynamics Hamiltonian aspects of fluid dynamics CDS 140b Joris Vankerschaver jv@caltech.edu CDS 01/29/08, 01/31/08 Joris Vankerschaver (CDS) Hamiltonian aspects of fluid dynamics 01/29/08, 01/31/08 1 / 34 Outline

More information

arxiv: v1 [math.ds] 19 Dec 2012

arxiv: v1 [math.ds] 19 Dec 2012 arxiv:1212.4559v1 [math.ds] 19 Dec 2012 KAM theorems and open problems for infinite dimensional Hamiltonian with short range Xiaoping YUAN December 20, 2012 Abstract. Introduce several KAM theorems for

More information

On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma. Ben Schweizer 1

On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma. Ben Schweizer 1 On Friedrichs inequality, Helmholtz decomposition, vector potentials, and the div-curl lemma Ben Schweizer 1 January 16, 2017 Abstract: We study connections between four different types of results that

More information

27. Topological classification of complex linear foliations

27. Topological classification of complex linear foliations 27. Topological classification of complex linear foliations 545 H. Find the expression of the corresponding element [Γ ε ] H 1 (L ε, Z) through [Γ 1 ε], [Γ 2 ε], [δ ε ]. Problem 26.24. Prove that for any

More information

ON SUMS AND PRODUCTS OF PERIODIC FUNCTIONS

ON SUMS AND PRODUCTS OF PERIODIC FUNCTIONS RESEARCH Real Analysis Exchange Vol. 34(2), 2008/2009, pp. 1 12 A. R. Mirotin, Department of Mathematics, Skoryna Gomel State University, Gomel, 246019, Belarus. email: amirotin@yandex.ru E. A. Mirotin,

More information

Symplectic maps. James D. Meiss. March 4, 2008

Symplectic maps. James D. Meiss. March 4, 2008 Symplectic maps James D. Meiss March 4, 2008 First used mathematically by Hermann Weyl, the term symplectic arises from a Greek word that means twining or plaiting together. This is apt, as symplectic

More information

PHY411 Lecture notes Part 5

PHY411 Lecture notes Part 5 PHY411 Lecture notes Part 5 Alice Quillen January 27, 2016 Contents 0.1 Introduction.................................... 1 1 Symbolic Dynamics 2 1.1 The Shift map.................................. 3 1.2

More information

Rings With Topologies Induced by Spaces of Functions

Rings With Topologies Induced by Spaces of Functions Rings With Topologies Induced by Spaces of Functions Răzvan Gelca April 7, 2006 Abstract: By considering topologies on Noetherian rings that carry the properties of those induced by spaces of functions,

More information

Discontinuous order preserving circle maps versus circle homeomorphisms

Discontinuous order preserving circle maps versus circle homeomorphisms Discontinuous order preserving circle maps versus circle homeomorphisms V. S. Kozyakin Institute for Information Transmission Problems Russian Academy of Sciences Bolshoj Karetny lane, 19, 101447 Moscow,

More information

Lectures on Dynamical Systems. Anatoly Neishtadt

Lectures on Dynamical Systems. Anatoly Neishtadt Lectures on Dynamical Systems Anatoly Neishtadt Lectures for Mathematics Access Grid Instruction and Collaboration (MAGIC) consortium, Loughborough University, 2007 Part 3 LECTURE 14 NORMAL FORMS Resonances

More information

New ideas in the non-equilibrium statistical physics and the micro approach to transportation flows

New ideas in the non-equilibrium statistical physics and the micro approach to transportation flows New ideas in the non-equilibrium statistical physics and the micro approach to transportation flows Plenary talk on the conference Stochastic and Analytic Methods in Mathematical Physics, Yerevan, Armenia,

More information

We denote the space of distributions on Ω by D ( Ω) 2.

We denote the space of distributions on Ω by D ( Ω) 2. Sep. 1 0, 008 Distributions Distributions are generalized functions. Some familiarity with the theory of distributions helps understanding of various function spaces which play important roles in the study

More information

NEKHOROSHEV AND KAM STABILITIES IN GENERALIZED HAMILTONIAN SYSTEMS

NEKHOROSHEV AND KAM STABILITIES IN GENERALIZED HAMILTONIAN SYSTEMS NEKHOROSHEV AND KAM STABILITIES IN GENERALIZED HAMILTONIAN SYSTEMS YONG LI AND YINGFEI YI Abstract. We present some Nekhoroshev stability results for nearly integrable, generalized Hamiltonian systems

More information

ON NEARLY SEMIFREE CIRCLE ACTIONS

ON NEARLY SEMIFREE CIRCLE ACTIONS ON NEARLY SEMIFREE CIRCLE ACTIONS DUSA MCDUFF AND SUSAN TOLMAN Abstract. Recall that an effective circle action is semifree if the stabilizer subgroup of each point is connected. We show that if (M, ω)

More information

Deviation Measures and Normals of Convex Bodies

Deviation Measures and Normals of Convex Bodies Beiträge zur Algebra und Geometrie Contributions to Algebra Geometry Volume 45 (2004), No. 1, 155-167. Deviation Measures Normals of Convex Bodies Dedicated to Professor August Florian on the occasion

More information

MAPPING CLASS ACTIONS ON MODULI SPACES. Int. J. Pure Appl. Math 9 (2003),

MAPPING CLASS ACTIONS ON MODULI SPACES. Int. J. Pure Appl. Math 9 (2003), MAPPING CLASS ACTIONS ON MODULI SPACES RICHARD J. BROWN Abstract. It is known that the mapping class group of a compact surface S, MCG(S), acts ergodically with respect to symplectic measure on each symplectic

More information

THE FORM SUM AND THE FRIEDRICHS EXTENSION OF SCHRÖDINGER-TYPE OPERATORS ON RIEMANNIAN MANIFOLDS

THE FORM SUM AND THE FRIEDRICHS EXTENSION OF SCHRÖDINGER-TYPE OPERATORS ON RIEMANNIAN MANIFOLDS THE FORM SUM AND THE FRIEDRICHS EXTENSION OF SCHRÖDINGER-TYPE OPERATORS ON RIEMANNIAN MANIFOLDS OGNJEN MILATOVIC Abstract. We consider H V = M +V, where (M, g) is a Riemannian manifold (not necessarily

More information

Black Holes and Thermodynamics I: Classical Black Holes

Black Holes and Thermodynamics I: Classical Black Holes Black Holes and Thermodynamics I: Classical Black Holes Robert M. Wald General references: R.M. Wald General Relativity University of Chicago Press (Chicago, 1984); R.M. Wald Living Rev. Rel. 4, 6 (2001).

More information

On the smoothness of the conjugacy between circle maps with a break

On the smoothness of the conjugacy between circle maps with a break On the smoothness of the conjugacy between circle maps with a break Konstantin Khanin and Saša Kocić 2 Department of Mathematics, University of Toronto, Toronto, ON, Canada M5S 2E4 2 Department of Mathematics,

More information

A FRANKS LEMMA FOR CONVEX PLANAR BILLIARDS

A FRANKS LEMMA FOR CONVEX PLANAR BILLIARDS A FRANKS LEMMA FOR CONVEX PLANAR BILLIARDS DANIEL VISSCHER Abstract Let γ be an orbit of the billiard flow on a convex planar billiard table; then the perpendicular part of the derivative of the billiard

More information

Lecture 5: Oscillatory motions for the RPE3BP

Lecture 5: Oscillatory motions for the RPE3BP Lecture 5: Oscillatory motions for the RPE3BP Marcel Guardia Universitat Politècnica de Catalunya February 10, 2017 M. Guardia (UPC) Lecture 5 February 10, 2017 1 / 25 Outline Oscillatory motions for the

More information

Coexistence of Zero and Nonzero Lyapunov Exponents

Coexistence of Zero and Nonzero Lyapunov Exponents Coexistence of Zero and Nonzero Lyapunov Exponents Jianyu Chen Pennsylvania State University July 13, 2011 Outline Notions and Background Hyperbolicity Coexistence Construction of M 5 Construction of the

More information

TOPOLOGICAL ENTROPY FOR DIFFERENTIABLE MAPS OF INTERVALS

TOPOLOGICAL ENTROPY FOR DIFFERENTIABLE MAPS OF INTERVALS Chung, Y-.M. Osaka J. Math. 38 (200), 2 TOPOLOGICAL ENTROPY FOR DIFFERENTIABLE MAPS OF INTERVALS YONG MOO CHUNG (Received February 9, 998) Let Á be a compact interval of the real line. For a continuous

More information

Fourier series, Weyl equidistribution. 1. Dirichlet s pigeon-hole principle, approximation theorem

Fourier series, Weyl equidistribution. 1. Dirichlet s pigeon-hole principle, approximation theorem (October 4, 25) Fourier series, Weyl equidistribution Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/mfms/notes 25-6/8 Fourier-Weyl.pdf]

More information

Some SDEs with distributional drift Part I : General calculus. Flandoli, Franco; Russo, Francesco; Wolf, Jochen

Some SDEs with distributional drift Part I : General calculus. Flandoli, Franco; Russo, Francesco; Wolf, Jochen Title Author(s) Some SDEs with distributional drift Part I : General calculus Flandoli, Franco; Russo, Francesco; Wolf, Jochen Citation Osaka Journal of Mathematics. 4() P.493-P.54 Issue Date 3-6 Text

More information

There is a more global concept that is related to this circle of ideas that we discuss somewhat informally. Namely, a region R R n with a (smooth)

There is a more global concept that is related to this circle of ideas that we discuss somewhat informally. Namely, a region R R n with a (smooth) 82 Introduction Liapunov Functions Besides the Liapunov spectral theorem, there is another basic method of proving stability that is a generalization of the energy method we have seen in the introductory

More information

ON COLISSIONS IN NONHOLONOMIC SYSTEMS

ON COLISSIONS IN NONHOLONOMIC SYSTEMS ON COLISSIONS IN NONHOLONOMIC SYSTEMS DMITRY TRESCHEV AND OLEG ZUBELEVICH DEPT. OF THEORETICAL MECHANICS, MECHANICS AND MATHEMATICS FACULTY, M. V. LOMONOSOV MOSCOW STATE UNIVERSITY RUSSIA, 119899, MOSCOW,

More information

Khinchin s approach to statistical mechanics

Khinchin s approach to statistical mechanics Chapter 7 Khinchin s approach to statistical mechanics 7.1 Introduction In his Mathematical Foundations of Statistical Mechanics Khinchin presents an ergodic theorem which is valid also for systems that

More information

BACKGROUND IN SYMPLECTIC GEOMETRY

BACKGROUND IN SYMPLECTIC GEOMETRY BACKGROUND IN SYMPLECTIC GEOMETRY NILAY KUMAR Today I want to introduce some of the symplectic structure underlying classical mechanics. The key idea is actually quite old and in its various formulations

More information

Entropy production for a class of inverse SRB measures

Entropy production for a class of inverse SRB measures Entropy production for a class of inverse SRB measures Eugen Mihailescu and Mariusz Urbański Keywords: Inverse SRB measures, folded repellers, Anosov endomorphisms, entropy production. Abstract We study

More information

A strong form of Arnold diffusion for two and a half degrees of freedom

A strong form of Arnold diffusion for two and a half degrees of freedom A strong form of Arnold diffusion for two and a half degrees of freedom arxiv:1212.1150v1 [math.ds] 5 Dec 2012 V. Kaloshin, K. Zhang February 7, 2014 Abstract In the present paper we prove a strong form

More information

ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS. Tian Ma. Shouhong Wang

ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS. Tian Ma. Shouhong Wang DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Volume 11, Number 1, July 004 pp. 189 04 ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS Tian Ma Department of

More information

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM

ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM ON WEAKLY NONLINEAR BACKWARD PARABOLIC PROBLEM OLEG ZUBELEVICH DEPARTMENT OF MATHEMATICS THE BUDGET AND TREASURY ACADEMY OF THE MINISTRY OF FINANCE OF THE RUSSIAN FEDERATION 7, ZLATOUSTINSKY MALIY PER.,

More information

Problem: A class of dynamical systems characterized by a fast divergence of the orbits. A paradigmatic example: the Arnold cat.

Problem: A class of dynamical systems characterized by a fast divergence of the orbits. A paradigmatic example: the Arnold cat. À È Ê ÇÄÁ Ë ËÌ ÅË Problem: A class of dynamical systems characterized by a fast divergence of the orbits A paradigmatic example: the Arnold cat. The closure of a homoclinic orbit. The shadowing lemma.

More information

Projective Schemes with Degenerate General Hyperplane Section II

Projective Schemes with Degenerate General Hyperplane Section II Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 44 (2003), No. 1, 111-126. Projective Schemes with Degenerate General Hyperplane Section II E. Ballico N. Chiarli S. Greco

More information

Unbounded energy growth in Hamiltonian systems with a slowly varying parameter

Unbounded energy growth in Hamiltonian systems with a slowly varying parameter Unbounded energy growth in Hamiltonian systems with a slowly varying parameter Vassili Gelfreich 1 Dmitry Turaev 2 1 Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom Fax:

More information

MATHER THEORY, WEAK KAM, AND VISCOSITY SOLUTIONS OF HAMILTON-JACOBI PDE S

MATHER THEORY, WEAK KAM, AND VISCOSITY SOLUTIONS OF HAMILTON-JACOBI PDE S MATHER THEORY, WEAK KAM, AND VISCOSITY SOLUTIONS OF HAMILTON-JACOBI PDE S VADIM YU. KALOSHIN 1. Motivation Consider a C 2 smooth Hamiltonian H : T n R n R, where T n is the standard n-dimensional torus

More information

8.1 Bifurcations of Equilibria

8.1 Bifurcations of Equilibria 1 81 Bifurcations of Equilibria Bifurcation theory studies qualitative changes in solutions as a parameter varies In general one could study the bifurcation theory of ODEs PDEs integro-differential equations

More information

Chaos, Quantum Mechanics and Number Theory

Chaos, Quantum Mechanics and Number Theory Chaos, Quantum Mechanics and Number Theory Peter Sarnak Mahler Lectures 2011 Hamiltonian Mechanics (x, ξ) generalized coordinates: x space coordinate, ξ phase coordinate. H(x, ξ), Hamiltonian Hamilton

More information

A RECURRENCE THEOREM ON THE SOLUTIONS TO THE 2D EULER EQUATION

A RECURRENCE THEOREM ON THE SOLUTIONS TO THE 2D EULER EQUATION ASIAN J. MATH. c 2009 International Press Vol. 13, No. 1, pp. 001 006, March 2009 001 A RECURRENCE THEOREM ON THE SOLUTIONS TO THE 2D EULER EQUATION Y. CHARLES LI Abstract. In this article, I will prove

More information

TYPICAL RECURRENCE FOR THE EHRENFEST WIND-TREE MODEL

TYPICAL RECURRENCE FOR THE EHRENFEST WIND-TREE MODEL TYPICAL RECURRENCE FOR THE EHRENFEST WIND-TREE MODEL SERGE TROUBETZKOY Abstract. We show that the typical wind-tree model, in the sense of Baire, is recurrent and has a dense set of periodic orbits. The

More information

Multiperiodic dynamics overview and some recent results

Multiperiodic dynamics overview and some recent results Multiperiodic dynamics overview and some recent results Henk Broer Rijksuniversiteit Groningen Instituut voor Wiskunde en Informatica POBox 800 9700 AV Groningen email: broer@math.rug.nl URL: http://www.math.rug.nl/~broer

More information

WHAT IS A CHAOTIC ATTRACTOR?

WHAT IS A CHAOTIC ATTRACTOR? WHAT IS A CHAOTIC ATTRACTOR? CLARK ROBINSON Abstract. Devaney gave a mathematical definition of the term chaos, which had earlier been introduced by Yorke. We discuss issues involved in choosing the properties

More information

CONSIDERATION OF COMPACT MINIMAL SURFACES IN 4-DIMENSIONAL FLAT TORI IN TERMS OF DEGENERATE GAUSS MAP

CONSIDERATION OF COMPACT MINIMAL SURFACES IN 4-DIMENSIONAL FLAT TORI IN TERMS OF DEGENERATE GAUSS MAP CONSIDERATION OF COMPACT MINIMAL SURFACES IN 4-DIMENSIONAL FLAT TORI IN TERMS OF DEGENERATE GAUSS MAP TOSHIHIRO SHODA Abstract. In this paper, we study a compact minimal surface in a 4-dimensional flat

More information

Abundance of stable ergodicity

Abundance of stable ergodicity Abundance of stable ergodicity Christian Bonatti, Carlos atheus, arcelo Viana, Amie Wilkinson December 7, 2002 Abstract We consider the set PH ω () of volume preserving partially hyperbolic diffeomorphisms

More information

A Cantor set of tori with monodromy near a focus focus singularity

A Cantor set of tori with monodromy near a focus focus singularity INSTITUTE OF PHYSICS PUBLISHING Nonlinearity 17 (2004) 1 10 NONLINEARITY PII: S0951-7715(04)65776-8 A Cantor set of tori with monodromy near a focus focus singularity Bob Rink Mathematics Institute, Utrecht

More information

HYPERBOLIC DYNAMICAL SYSTEMS AND THE NONCOMMUTATIVE INTEGRATION THEORY OF CONNES ABSTRACT

HYPERBOLIC DYNAMICAL SYSTEMS AND THE NONCOMMUTATIVE INTEGRATION THEORY OF CONNES ABSTRACT HYPERBOLIC DYNAMICAL SYSTEMS AND THE NONCOMMUTATIVE INTEGRATION THEORY OF CONNES Jan Segert ABSTRACT We examine hyperbolic differentiable dynamical systems in the context of Connes noncommutative integration

More information

A VERY BRIEF REVIEW OF MEASURE THEORY

A VERY BRIEF REVIEW OF MEASURE THEORY A VERY BRIEF REVIEW OF MEASURE THEORY A brief philosophical discussion. Measure theory, as much as any branch of mathematics, is an area where it is important to be acquainted with the basic notions and

More information

Hamiltonian systems with linear potential and elastic constraints

Hamiltonian systems with linear potential and elastic constraints F U N D A M E N T A MATHEMATICAE 157 (1998) Hamiltonian systems with linear potential and elastic constraints by Maciej P. W o j t k o w s k i (Tucson, Ariz.) Abstract. We consider a class of Hamiltonian

More information

THE MAPPING CLASS GROUP ACTS REDUCIBLY ON SU(n)-CHARACTER VARIETIES

THE MAPPING CLASS GROUP ACTS REDUCIBLY ON SU(n)-CHARACTER VARIETIES THE MAPPING CLASS GROUP ACTS REDUCIBLY ON SU(n)-CHARACTER VARIETIES WILLIAM M. GOLDMAN Abstract. When G is a connected compact Lie group, and π is a closed surface group, then Hom(π, G)/G contains an open

More information

A Gauss-Bonnet theorem for constructible sheaves on reductive groups

A Gauss-Bonnet theorem for constructible sheaves on reductive groups A Gauss-Bonnet theorem for constructible sheaves on reductive groups V. Kiritchenko 1 Introduction In this paper, we prove an analog of the Gauss-Bonnet formula for constructible sheaves on reductive groups.

More information

dy i dt = F x i en supposant que la function F peut se développer suivant les puissances d un paramètre très petit µ de la manière suivante: y i

dy i dt = F x i en supposant que la function F peut se développer suivant les puissances d un paramètre très petit µ de la manière suivante: y i ÁÊËÌ ÁÆÌ Ê ÄË According to Poincaré, the general problem of dynamics is formulated as follows ([87], Vol. I, 13). Nous sommes donc conduit à nous proposer le problème suivant: Étudier les équations canoniques

More information

SPLITTING OF SEPARATRICES FOR (FAST) QUASIPERIODIC FORCING. splitting, which now seems to be the main cause of the stochastic behavior in

SPLITTING OF SEPARATRICES FOR (FAST) QUASIPERIODIC FORCING. splitting, which now seems to be the main cause of the stochastic behavior in SPLITTING OF SEPARATRICES FOR (FAST) QUASIPERIODIC FORCING A. DELSHAMS, V. GELFREICH, A. JORBA AND T.M. SEARA At the end of the last century, H. Poincare [7] discovered the phenomenon of separatrices splitting,

More information

REMARKS ON THE TIME-OPTIMAL CONTROL OF A CLASS OF HAMILTONIAN SYSTEMS. Eduardo D. Sontag. SYCON - Rutgers Center for Systems and Control

REMARKS ON THE TIME-OPTIMAL CONTROL OF A CLASS OF HAMILTONIAN SYSTEMS. Eduardo D. Sontag. SYCON - Rutgers Center for Systems and Control REMARKS ON THE TIME-OPTIMAL CONTROL OF A CLASS OF HAMILTONIAN SYSTEMS Eduardo D. Sontag SYCON - Rutgers Center for Systems and Control Department of Mathematics, Rutgers University, New Brunswick, NJ 08903

More information

THE LONGITUDINAL KAM-COCYCLE OF A MAGNETIC FLOW

THE LONGITUDINAL KAM-COCYCLE OF A MAGNETIC FLOW THE LONGITUDINAL KAM-COCYCLE OF A MAGNETIC FLOW GABRIEL P. PATERNAIN Abstract. Let M be a closed oriented surface of negative Gaussian curvature and let Ω be a non-exact 2-form. Let λ be a small positive

More information

LYAPUNOV STABILITY OF CLOSED SETS IN IMPULSIVE SEMIDYNAMICAL SYSTEMS

LYAPUNOV STABILITY OF CLOSED SETS IN IMPULSIVE SEMIDYNAMICAL SYSTEMS Electronic Journal of Differential Equations, Vol. 2010(2010, No. 78, pp. 1 18. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu LYAPUNOV STABILITY

More information

St. Petersburg Math. J. 13 (2001),.1 Vol. 13 (2002), No. 4

St. Petersburg Math. J. 13 (2001),.1 Vol. 13 (2002), No. 4 St Petersburg Math J 13 (21), 1 Vol 13 (22), No 4 BROCKETT S PROBLEM IN THE THEORY OF STABILITY OF LINEAR DIFFERENTIAL EQUATIONS G A Leonov Abstract Algorithms for nonstationary linear stabilization are

More information

SYMBOLIC DYNAMICS FOR HYPERBOLIC SYSTEMS. 1. Introduction (30min) We want to find simple models for uniformly hyperbolic systems, such as for:

SYMBOLIC DYNAMICS FOR HYPERBOLIC SYSTEMS. 1. Introduction (30min) We want to find simple models for uniformly hyperbolic systems, such as for: SYMBOLIC DYNAMICS FOR HYPERBOLIC SYSTEMS YURI LIMA 1. Introduction (30min) We want to find simple models for uniformly hyperbolic systems, such as for: [ ] 2 1 Hyperbolic toral automorphisms, e.g. f A

More information

Transcendental cases in stability problem. Hamiltonian systems

Transcendental cases in stability problem. Hamiltonian systems of Hamiltonian systems Boris S. Bardin Moscow Aviation Institute (Technical University) Faculty of Applied Mathematics and Physics Department of Theoretical Mechanics Hamiltonian Dynamics and Celestial

More information

Information Theory and Predictability Lecture 6: Maximum Entropy Techniques

Information Theory and Predictability Lecture 6: Maximum Entropy Techniques Information Theory and Predictability Lecture 6: Maximum Entropy Techniques 1 Philosophy Often with random variables of high dimensional systems it is difficult to deduce the appropriate probability distribution

More information

M3-4-5 A16 Notes for Geometric Mechanics: Oct Nov 2011

M3-4-5 A16 Notes for Geometric Mechanics: Oct Nov 2011 M3-4-5 A16 Notes for Geometric Mechanics: Oct Nov 2011 Text for the course: Professor Darryl D Holm 25 October 2011 Imperial College London d.holm@ic.ac.uk http://www.ma.ic.ac.uk/~dholm/ Geometric Mechanics

More information

PERIODIC SOLUTIONS OF THE PLANETARY N BODY PROBLEM

PERIODIC SOLUTIONS OF THE PLANETARY N BODY PROBLEM 1 PERIODIC SOLUTIONS OF THE PLANETARY N BODY PROBLEM L. CHIERCHIA Department of Mathematics, Roma Tre University, Rome, I-146, Italy E-mail: luigi@mat.uniroma3.it The closure of periodic orbits in the

More information

b i (µ, x, s) ei ϕ(x) µ s (dx) ds (2) i=1

b i (µ, x, s) ei ϕ(x) µ s (dx) ds (2) i=1 NONLINEAR EVOLTION EQATIONS FOR MEASRES ON INFINITE DIMENSIONAL SPACES V.I. Bogachev 1, G. Da Prato 2, M. Röckner 3, S.V. Shaposhnikov 1 The goal of this work is to prove the existence of a solution to

More information

THEOREM OF OSELEDETS. We recall some basic facts and terminology relative to linear cocycles and the multiplicative ergodic theorem of Oseledets [1].

THEOREM OF OSELEDETS. We recall some basic facts and terminology relative to linear cocycles and the multiplicative ergodic theorem of Oseledets [1]. THEOREM OF OSELEDETS We recall some basic facts and terminology relative to linear cocycles and the multiplicative ergodic theorem of Oseledets []. 0.. Cocycles over maps. Let µ be a probability measure

More information

ON THE UNIQUENESS PROPERTY FOR PRODUCTS OF SYMMETRIC INVARIANT PROBABILITY MEASURES

ON THE UNIQUENESS PROPERTY FOR PRODUCTS OF SYMMETRIC INVARIANT PROBABILITY MEASURES Georgian Mathematical Journal Volume 9 (2002), Number 1, 75 82 ON THE UNIQUENESS PROPERTY FOR PRODUCTS OF SYMMETRIC INVARIANT PROBABILITY MEASURES A. KHARAZISHVILI Abstract. Two symmetric invariant probability

More information

Chap. 3. Controlled Systems, Controllability

Chap. 3. Controlled Systems, Controllability Chap. 3. Controlled Systems, Controllability 1. Controllability of Linear Systems 1.1. Kalman s Criterion Consider the linear system ẋ = Ax + Bu where x R n : state vector and u R m : input vector. A :

More information

ON THE REGULARITY OF SAMPLE PATHS OF SUB-ELLIPTIC DIFFUSIONS ON MANIFOLDS

ON THE REGULARITY OF SAMPLE PATHS OF SUB-ELLIPTIC DIFFUSIONS ON MANIFOLDS Bendikov, A. and Saloff-Coste, L. Osaka J. Math. 4 (5), 677 7 ON THE REGULARITY OF SAMPLE PATHS OF SUB-ELLIPTIC DIFFUSIONS ON MANIFOLDS ALEXANDER BENDIKOV and LAURENT SALOFF-COSTE (Received March 4, 4)

More information

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD

INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD INSTANTON MODULI AND COMPACTIFICATION MATTHEW MAHOWALD () Instanton (definition) (2) ADHM construction (3) Compactification. Instantons.. Notation. Throughout this talk, we will use the following notation:

More information

Complicated behavior of dynamical systems. Mathematical methods and computer experiments.

Complicated behavior of dynamical systems. Mathematical methods and computer experiments. Complicated behavior of dynamical systems. Mathematical methods and computer experiments. Kuznetsov N.V. 1, Leonov G.A. 1, and Seledzhi S.M. 1 St.Petersburg State University Universitetsky pr. 28 198504

More information

MACROSCOPIC VARIABLES, THERMAL EQUILIBRIUM. Contents AND BOLTZMANN ENTROPY. 1 Macroscopic Variables 3. 2 Local quantities and Hydrodynamics fields 4

MACROSCOPIC VARIABLES, THERMAL EQUILIBRIUM. Contents AND BOLTZMANN ENTROPY. 1 Macroscopic Variables 3. 2 Local quantities and Hydrodynamics fields 4 MACROSCOPIC VARIABLES, THERMAL EQUILIBRIUM AND BOLTZMANN ENTROPY Contents 1 Macroscopic Variables 3 2 Local quantities and Hydrodynamics fields 4 3 Coarse-graining 6 4 Thermal equilibrium 9 5 Two systems

More information

On the fixed points set of differential systems reversibilities arxiv: v1 [math.ds] 6 Oct 2015

On the fixed points set of differential systems reversibilities arxiv: v1 [math.ds] 6 Oct 2015 On the fixed points set of differential systems reversibilities arxiv:1510.01464v1 [math.ds] 6 Oct 2015 Marco Sabatini October 5, 2015 Abstract We extend a result proved in [7] for mirror symmetries of

More information

HOMOCLINIC CHAOS IN GENERALIZED HENON-HEILES SYSTEM

HOMOCLINIC CHAOS IN GENERALIZED HENON-HEILES SYSTEM Vol. 88 (1995) ACTA PHYSICA POLONICA A No. 6 HOMOCLINIC CHAOS IN GENERALIZED HENON-HEILES SYSTEM S. KASPERCZUK Institute of Physics, Pedagogical University Pl. Słowiański 6, 65-069 Zielona Góra, Poland

More information

Towards stability results for planetary problems with more than three bodies

Towards stability results for planetary problems with more than three bodies Towards stability results for planetary problems with more than three bodies Ugo Locatelli [a] and Marco Sansottera [b] [a] Math. Dep. of Università degli Studi di Roma Tor Vergata [b] Math. Dep. of Università

More information

Persistent Chaos in High-Dimensional Neural Networks

Persistent Chaos in High-Dimensional Neural Networks Persistent Chaos in High-Dimensional Neural Networks D. J. Albers with J. C. Sprott and James P. Crutchfield February 20, 2005 1 Outline: Introduction and motivation Mathematical versus computational dynamics

More information

MOTION CLOSE TO THE HOPF BIFURCATION OF THE VERTICAL FAMILY OF PERIODIC ORBITS OF L 4

MOTION CLOSE TO THE HOPF BIFURCATION OF THE VERTICAL FAMILY OF PERIODIC ORBITS OF L 4 MOTION CLOSE TO THE HOPF BIFURCATION OF THE VERTICAL FAMILY OF PERIODIC ORBITS OF L 4 Mercè Ollé (1) Joan R. Pacha (2) Jordi Villanueva (3) 31st October 23 Departament de Matemàtica Aplicada I, Universitat

More information

2 Statement of the problem and assumptions

2 Statement of the problem and assumptions Mathematical Notes, 25, vol. 78, no. 4, pp. 466 48. Existence Theorem for Optimal Control Problems on an Infinite Time Interval A.V. Dmitruk and N.V. Kuz kina We consider an optimal control problem on

More information

THE CLASSIFICATION OF TILING SPACE FLOWS

THE CLASSIFICATION OF TILING SPACE FLOWS UNIVERSITATIS IAGELLONICAE ACTA MATHEMATICA, FASCICULUS XLI 2003 THE CLASSIFICATION OF TILING SPACE FLOWS by Alex Clark Abstract. We consider the conjugacy of the natural flows on one-dimensional tiling

More information