Enhance & Explore: an Adaptive Algorithm to Maximize the Utility of Wireless Networks

Size: px
Start display at page:

Download "Enhance & Explore: an Adaptive Algorithm to Maximize the Utility of Wireless Networks"

Transcription

1 Enhance & Explore: an Adaptive Algorithm to Maximize the Utility of Wireless Networks Julien Herzen joint work with Adel Aziz, Ruben Merz, Seva Shneer and Patrick Thiran September 5th, /20

2 Context Inefficient situations in wireless LANs Example, performance anomaly: 1 Mb/s 11 Mb/s GW UDP TCP Throughput [Kb/s] Flow at 1Mb/s Flow at 11Mb/s Time [s] Throughput [Kb/s] Flow at 1Mb/s Flow at 11Mb/s Time [s] Intuition: Send a little less packets at 1 Mb/s, so that the flow at 11 Mb/s can send many more 2/20

3 Approach 1 Mb/s 11 Mb/s GW Formalization: Capture the efficiency and the fairness of the network using a utility function U = u i (x i ), i x i : throughput of flow i Examples U max = i x i U prop = i logx i 3/20

4 Network Stack Backward compatibility runs on top of IEEE Congestion control throttle each flow One limiter per IP source in the network queue 1 ρ i 1 IP queue 2 queue 3... ρ i 2 ρ i 3... Round Robin MAC i j k queue F ρ i F GW 4/20

5 How to throttle the flows? Find the rate allocation ρ that maximizes the utility U Problem: We do not know the feasible rate region! hard to predict or measure optimum U = logx i rate of flow 2? rate of flow 1 U = µ 2 U U = µ 1 5/20

6 Decide at the gateway The gateway knows The throughput achieved by the flows: x The current utility of the network: U(x) = u i (x i ) If x = ρ, then ρ belongs to the rate region Measure and Decide loop Measure each flow Decide Broadcast decision i j x i x j x k k? i j ρ i ρ j ρ k k GW GW 6/20

7 Model At time slot n: Measured throughput: x[n] R F + Rate allocation vector: ρ[n] R F + Last stable rate allocation: r[n] R F + rate of flow 2 Utility function: U(x) = i u i(x i ) rate of flow 1 L(µ) Level set: L(µ[n]) = {x[n] : U(x[n]) = µ[n],x[n] R F +} 7/20

8 Step 1 - Start from IEEE allocation U = logx i ρ[0] x[0] Current level set: L(U(x[0])) Remember allocation r[0] x[0] rate of flow 2 optimum x[0] = ρ[0] rate of flow 1 L(µ[0]) 8/20

9 Step 2 - Enhance phase Time step n: If x[n 1] = ρ[n 1]: U = logx i Else: Obtain a new target utility µ[n] by a full size gradient ascent Obtain a new target utility µ[n] by halving the size of the gradient ascent Go to Explore phase (next slide) rate of flow 2 optimum attempt rate of flow 1 L(µ[n]) L(µ[n 1]) 9/20

10 Step 3 - Explore phase If x[n 1] = ρ[n 1]: Remember r[n] = ρ[n 1] U = logx i Else: Go to Enhance phase Keep target utility: µ[n] = µ[n 1] Pick ρ[n] randomly in L(µ[n]) rate of flow 2 optimum attempt Repeat explore phase at most N times, then move to Enhance phase (and reduce the size of the gradient ascent) rate of flow 1 L(µ[n]) 10/20

11 Step 3 - Explore phase If x[n 1] = ρ[n 1]: Else: Remember r[n] = ρ[n 1] Go to Enhance phase U = logx i optimum Keep target utility: µ[n] = µ[n 1] Pick ρ[n] randomly in L(µ[n]) rate of flow 2 Repeat explore phase at most N times, then move to Enhance phase (and reduce the size of the gradient ascent) rate of flow 1 attempt L(µ[n 1]) L(µ[n]) 11/20

12 Step 3 - Explore phase If x[n 1] = ρ[n 1]: Else: Remember r[n] = ρ[n 1] Go to Enhance phase U = logx i optimum Keep target utility: µ[n] = µ[n 1] Pick ρ[n] randomly in L(µ[n]) rate of flow 2 attempt Repeat explore phase at most N times, then move to Enhance phase (and reduce the size of the gradient ascent) rate of flow 1 L(µ[n]) 12/20

13 Step 3 - Explore phase If x[n 1] = ρ[n 1]: Remember r[n] = ρ[n 1] Go to Enhance phase Else: rate of flow 2 optimum attempt L(µ[n]) Keep target utility: µ[n] = µ[n 1] Pick ρ[n] randomly in L(µ[n]) Repeat explore phase at most N times, then move to Enhance phase (and reduce the size of the gradient ascent) rate of flow 1 truncated Gaussian PDF for picking ρ 1 : attempt 0 u 1 1 (µ[n]) 13/20

14 Optimality result Assumptions Fixed rate region Λ[n] = Λ Coordinate-convex rate region Much weaker than convexity! Theorem The Enhance & Explore algorithm guarantees that, for any initial rate allocation r[0], the utility of the last stable rate allocation r[n] converges to the maximal utility for n. 14/20

15 Practical implementation Based on Click [1] with MultiflowDispatcher [2] Creation of 4 new Click elements MFQueue MFLeakyBucket IP queue 1 queue 2 queue 3... ρ i 1 ρ i 2 ρ i 3... Round Robin MAC EEadapter queue F ρ i F EEscheduler Evaluation with Asus routers ns-3 GW [1] Kohler et al., Transactions on Computer Systems, 2000 [2] Schiöberg et al., SyClick, /20

16 Experimental results Deployment map: Without E&E: With E&E (U prop ): Throughput [Kb/s] Throughput [Mb/s] UDP traffic 200 Flow at 1Mb/s Flow at 11Mb/s Time [s] Flow at 1Mb/s Flow at 11Mb/s Time [s] Throughput [Kb/s] Throughput [Mb/s] TCP traffic 200 Flow at 1Mb/s Flow at 11Mb/s Time [s] Flow at 1Mb/s Flow at 11Mb/s Time [s] 16/20

17 Experimental results Deployment map: 2 Without E&E: Throughput [Mb/s] Flow at 2Mb/s Flow at 5.5Mb/s Flow at 11Mb/s Time [s] With E&E (U prop ): Throughput [Mb/s] Flow at 2Mb/s Flow at 5.5Mb/s Flow at 11Mb/s Time [s] 17/20

18 Simulation results ns-3 simulator Re-use of the same Click elements More controlled environment Possible estimation of the rate region Computation of optima 1 Mb/s 11 Mb/s GW 18/20

19 Simulation results Adaptivity to time-varying traffic Cyclic validation of last stable allocation r[n] 19/20

20 Conclusion Problem Inefficient situations in WLANs Capture efficiency and fairness using a utilility function The feasible rate region is unknown! Solution Successive decisions and measurements by the GW Optimal for a fixed rate region When rate region changes, keeps adapting More details in [1], with an extension to multi-hop networks Future work: Include downlink traffic Study and improve speed of convergence Analyze other distributions for the Explore phase [1] Aziz et al., Mobicom /20

Congestion Control In The Internet Part 1: Theory. JY Le Boudec 2018

Congestion Control In The Internet Part 1: Theory. JY Le Boudec 2018 Congestion Control In The Internet Part 1: Theory JY Le Boudec 2018 1 Contents 1. What is the problem; congestion collapse 2. Efficiency versus Fairness 3. Definitions of fairness 4. Additive Increase

More information

Information in Aloha Networks

Information in Aloha Networks Achieving Proportional Fairness using Local Information in Aloha Networks Koushik Kar, Saswati Sarkar, Leandros Tassiulas Abstract We address the problem of attaining proportionally fair rates using Aloha

More information

Rate adaptation, Congestion Control and Fairness: A Tutorial. JEAN-YVES LE BOUDEC Ecole Polytechnique Fédérale de Lausanne (EPFL)

Rate adaptation, Congestion Control and Fairness: A Tutorial. JEAN-YVES LE BOUDEC Ecole Polytechnique Fédérale de Lausanne (EPFL) Rate adaptation, Congestion Control and Fairness: A Tutorial JEAN-YVES LE BOUDEC Ecole Polytechnique Fédérale de Lausanne (EPFL) December 2000 2 Contents 31 Congestion Control for Best Effort: Theory 1

More information

Fairness and Optimal Stochastic Control for Heterogeneous Networks

Fairness and Optimal Stochastic Control for Heterogeneous Networks λ 91 λ 93 Fairness and Optimal Stochastic Control for Heterogeneous Networks sensor network wired network wireless 9 8 7 6 5 λ 48 λ 42 4 3 0 1 2 λ n R n U n Michael J. Neely (USC) Eytan Modiano (MIT) Chih-Ping

More information

A Mathematical Model of the Skype VoIP Congestion Control Algorithm

A Mathematical Model of the Skype VoIP Congestion Control Algorithm A Mathematical Model of the Skype VoIP Congestion Control Algorithm Luca De Cicco, S. Mascolo, V. Palmisano Dipartimento di Elettrotecnica ed Elettronica, Politecnico di Bari 47th IEEE Conference on Decision

More information

Distributed Approaches for Proportional and Max-Min Fairness in Random Access Ad Hoc Networks

Distributed Approaches for Proportional and Max-Min Fairness in Random Access Ad Hoc Networks Distributed Approaches for Proportional and Max-Min Fairness in Random Access Ad Hoc Networks Xin Wang, Koushik Kar Department of Electrical, Computer and Systems Engineering, Rensselaer Polytechnic Institute,

More information

Min Congestion Control for High- Speed Heterogeneous Networks. JetMax: Scalable Max-Min

Min Congestion Control for High- Speed Heterogeneous Networks. JetMax: Scalable Max-Min JetMax: Scalable Max-Min Min Congestion Control for High- Speed Heterogeneous Networks Yueping Zhang Joint work with Derek Leonard and Dmitri Loguinov Internet Research Lab Department of Computer Science

More information

A Quantitative View: Delay, Throughput, Loss

A Quantitative View: Delay, Throughput, Loss A Quantitative View: Delay, Throughput, Loss Antonio Carzaniga Faculty of Informatics University of Lugano September 27, 2017 Outline Quantitative analysis of data transfer concepts for network applications

More information

End-to-End and Mac-Layer Fair Rate Assignment in Interference Limited Wireless Access Networks

End-to-End and Mac-Layer Fair Rate Assignment in Interference Limited Wireless Access Networks End-to-End and Mac-Layer Fair Rate Assignment in Interference Limited Wireless Access Networks Mustafa Arisoylu, Tara Javidi and Rene L. Cruz University of California San Diego Electrical and Computer

More information

distributed approaches For Proportional and max-min fairness in random access ad-hoc networks

distributed approaches For Proportional and max-min fairness in random access ad-hoc networks distributed approaches For Proportional and max-min fairness in random access ad-hoc networks Xin Wang, Koushik Kar Rensselaer Polytechnic Institute OUTline Introduction Motivation and System model Proportional

More information

NICTA Short Course. Network Analysis. Vijay Sivaraman. Day 1 Queueing Systems and Markov Chains. Network Analysis, 2008s2 1-1

NICTA Short Course. Network Analysis. Vijay Sivaraman. Day 1 Queueing Systems and Markov Chains. Network Analysis, 2008s2 1-1 NICTA Short Course Network Analysis Vijay Sivaraman Day 1 Queueing Systems and Markov Chains Network Analysis, 2008s2 1-1 Outline Why a short course on mathematical analysis? Limited current course offering

More information

Continuous-Model Communication Complexity with Application in Distributed Resource Allocation in Wireless Ad hoc Networks

Continuous-Model Communication Complexity with Application in Distributed Resource Allocation in Wireless Ad hoc Networks Continuous-Model Communication Complexity with Application in Distributed Resource Allocation in Wireless Ad hoc Networks Husheng Li 1 and Huaiyu Dai 2 1 Department of Electrical Engineering and Computer

More information

Wireless Internet Exercises

Wireless Internet Exercises Wireless Internet Exercises Prof. Alessandro Redondi 2018-05-28 1 WLAN 1.1 Exercise 1 A Wi-Fi network has the following features: Physical layer transmission rate: 54 Mbps MAC layer header: 28 bytes MAC

More information

Competitive Management of Non-Preemptive Queues with Multiple Values

Competitive Management of Non-Preemptive Queues with Multiple Values Competitive Management of Non-Preemptive Queues with Multiple Values Nir Andelman and Yishay Mansour School of Computer Science, Tel-Aviv University, Tel-Aviv, Israel Abstract. We consider the online problem

More information

PIQI-RCP: Design and Analysis of Rate-Based Explicit Congestion Control

PIQI-RCP: Design and Analysis of Rate-Based Explicit Congestion Control PIQI-RCP: Design and Analysis of Rate-Based Explicit Congestion Control Saurabh Jain Joint work with Dr. Dmitri Loguinov June 21, 2007 1 Agenda Introduction Analysis of RCP QI-RCP PIQI-RCP Comparison Wrap

More information

THE Internet is increasingly being used in the conduct of

THE Internet is increasingly being used in the conduct of 94 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 14, NO. 1, FEBRUARY 2006 Global Stability Conditions for Rate Control With Arbitrary Communication Delays Priya Ranjan, Member, IEEE, Richard J. La, Member,

More information

Imperfect Randomized Algorithms for the Optimal Control of Wireless Networks

Imperfect Randomized Algorithms for the Optimal Control of Wireless Networks Imperfect Randomized Algorithms for the Optimal Control of Wireless Networks Atilla ryilmaz lectrical and Computer ngineering Ohio State University Columbus, OH 430 mail: eryilmaz@ece.osu.edu Asuman Ozdaglar,

More information

Channel Allocation Using Pricing in Satellite Networks

Channel Allocation Using Pricing in Satellite Networks Channel Allocation Using Pricing in Satellite Networks Jun Sun and Eytan Modiano Laboratory for Information and Decision Systems Massachusetts Institute of Technology {junsun, modiano}@mitedu Abstract

More information

Analytic Performance Evaluation of the RED Algorithm

Analytic Performance Evaluation of the RED Algorithm Prof. Dr. P. Tran-Gia Analytic Performance Evaluation of the RED Algorithm Stefan Köhler, Michael Menth, Norbert Vicari TCP Model RED Model TCP over RED Results TCP > Reliable transmission > Closed loop

More information

TRANSMISSION STRATEGIES FOR SINGLE-DESTINATION WIRELESS NETWORKS

TRANSMISSION STRATEGIES FOR SINGLE-DESTINATION WIRELESS NETWORKS The 20 Military Communications Conference - Track - Waveforms and Signal Processing TRANSMISSION STRATEGIES FOR SINGLE-DESTINATION WIRELESS NETWORKS Gam D. Nguyen, Jeffrey E. Wieselthier 2, Sastry Kompella,

More information

Node-Based Distributed Optimal Control of Wireless Networks

Node-Based Distributed Optimal Control of Wireless Networks Node-Based Distributed Optimal Control of Wireless Networks Yufang Xi and Edmund M. Yeh Department of Electrical Engineering Yale University New Haven CT 06520 USA Email: {yufang.xi edmund.yeh}@yale.edu

More information

Routing. Topics: 6.976/ESD.937 1

Routing. Topics: 6.976/ESD.937 1 Routing Topics: Definition Architecture for routing data plane algorithm Current routing algorithm control plane algorithm Optimal routing algorithm known algorithms and implementation issues new solution

More information

Analysis of Rate-distortion Functions and Congestion Control in Scalable Internet Video Streaming

Analysis of Rate-distortion Functions and Congestion Control in Scalable Internet Video Streaming Analysis of Rate-distortion Functions and Congestion Control in Scalable Internet Video Streaming Min Dai Electrical Engineering, Texas A&M University Dmitri Loguinov Computer Science, Texas A&M University

More information

Optimal Association of Stations and APs in an IEEE WLAN

Optimal Association of Stations and APs in an IEEE WLAN Optimal Association of Stations and APs in an IEEE 802. WLAN Anurag Kumar and Vinod Kumar Abstract We propose a maximum utility based formulation for the problem of optimal association of wireless stations

More information

Rate Control in Communication Networks

Rate Control in Communication Networks From Models to Algorithms Department of Computer Science & Engineering The Chinese University of Hong Kong February 29, 2008 Outline Preliminaries 1 Preliminaries Convex Optimization TCP Congestion Control

More information

Node-based Distributed Optimal Control of Wireless Networks

Node-based Distributed Optimal Control of Wireless Networks Node-based Distributed Optimal Control of Wireless Networks CISS March 2006 Edmund M. Yeh Department of Electrical Engineering Yale University Joint work with Yufang Xi Main Results Unified framework for

More information

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu

Logistic Regression Review Fall 2012 Recitation. September 25, 2012 TA: Selen Uguroglu Logistic Regression Review 10-601 Fall 2012 Recitation September 25, 2012 TA: Selen Uguroglu!1 Outline Decision Theory Logistic regression Goal Loss function Inference Gradient Descent!2 Training Data

More information

WiFi MAC Models David Malone

WiFi MAC Models David Malone WiFi MAC Models David Malone November 26, MACSI Hamilton Institute, NUIM, Ireland Talk outline Introducing the 82.11 CSMA/CA MAC. Finite load 82.11 model and its predictions. Issues with standard 82.11,

More information

cs/ee/ids 143 Communication Networks

cs/ee/ids 143 Communication Networks cs/ee/ids 143 Communication Networks Chapter 4 Transport Text: Walrand & Parakh, 2010 Steven Low CMS, EE, Caltech Agenda Internetworking n Routing across LANs, layer2-layer3 n DHCP n NAT Transport layer

More information

Efficient Interference Management Policies for Femtocell Networks

Efficient Interference Management Policies for Femtocell Networks 1 Efficient Interference Management Policies for Femtocell Networks Kartik Ahua, Yuanzhang Xiao and Mihaela van der Schaar Department of Electrical Engineering, UCLA, Los Angeles, CA, 90095 Email: ahuak@ucla.edu,

More information

Scheduling Multicast Traffic with Deadlines in Wireless Networks

Scheduling Multicast Traffic with Deadlines in Wireless Networks Scheduling Multicast Traffic with Deadlines in Wireless Networks yu Seob im, Chih-ping Li, and Eytan Modiano Laboratory for Information and Decision Systems Massachusetts Institute of Technology Abstract

More information

On the Fundamental Limits of Multi-user Scheduling under Short-term Fairness Constraints

On the Fundamental Limits of Multi-user Scheduling under Short-term Fairness Constraints 1 On the Fundamental Limits of Multi-user Scheduling under Short-term Fairness Constraints arxiv:1901.07719v1 [cs.it] 23 Jan 2019 Shahram Shahsavari, Farhad Shirani and Elza Erkip Dept. of Electrical and

More information

Congestion Control. Phenomenon: when too much traffic enters into system, performance degrades excessive traffic can cause congestion

Congestion Control. Phenomenon: when too much traffic enters into system, performance degrades excessive traffic can cause congestion Congestion Control Phenomenon: when too much traffic enters into system, performance degrades excessive traffic can cause congestion Problem: regulate traffic influx such that congestion does not occur

More information

An Optimal Index Policy for the Multi-Armed Bandit Problem with Re-Initializing Bandits

An Optimal Index Policy for the Multi-Armed Bandit Problem with Re-Initializing Bandits An Optimal Index Policy for the Multi-Armed Bandit Problem with Re-Initializing Bandits Peter Jacko YEQT III November 20, 2009 Basque Center for Applied Mathematics (BCAM), Bilbao, Spain Example: Congestion

More information

Fractal Analysis of Intraflow Unidirectional Delay over W-LAN and W-WAN WAN Environments

Fractal Analysis of Intraflow Unidirectional Delay over W-LAN and W-WAN WAN Environments Fractal Analysis of Intraflow Unidirectional Delay over W-LAN and W-WAN WAN Environments Dimitrios Pezaros with Manolis Sifalakis and Laurent Mathy Computing Department Lancaster University [dp@comp.lancs.ac.uk]

More information

Energy Harvesting Multiple Access Channel with Peak Temperature Constraints

Energy Harvesting Multiple Access Channel with Peak Temperature Constraints Energy Harvesting Multiple Access Channel with Peak Temperature Constraints Abdulrahman Baknina, Omur Ozel 2, and Sennur Ulukus Department of Electrical and Computer Engineering, University of Maryland,

More information

Communications and Signal Processing Spring 2017 MSE Exam

Communications and Signal Processing Spring 2017 MSE Exam Communications and Signal Processing Spring 2017 MSE Exam Please obtain your Test ID from the following table. You must write your Test ID and name on each of the pages of this exam. A page with missing

More information

NOMA: Principles and Recent Results

NOMA: Principles and Recent Results NOMA: Principles and Recent Results Jinho Choi School of EECS GIST September 2017 (VTC-Fall 2017) 1 / 46 Abstract: Non-orthogonal multiple access (NOMA) becomes a key technology in 5G as it can improve

More information

Random Access Game. Medium Access Control Design for Wireless Networks 1. Sandip Chakraborty. Department of Computer Science and Engineering,

Random Access Game. Medium Access Control Design for Wireless Networks 1. Sandip Chakraborty. Department of Computer Science and Engineering, Random Access Game Medium Access Control Design for Wireless Networks 1 Sandip Chakraborty Department of Computer Science and Engineering, INDIAN INSTITUTE OF TECHNOLOGY KHARAGPUR October 22, 2016 1 Chen

More information

Capturing Network Traffic Dynamics Small Scales. Rolf Riedi

Capturing Network Traffic Dynamics Small Scales. Rolf Riedi Capturing Network Traffic Dynamics Small Scales Rolf Riedi Dept of Statistics Stochastic Systems and Modelling in Networking and Finance Part II Dependable Adaptive Systems and Mathematical Modeling Kaiserslautern,

More information

Max-min Fairness in Mesh Networks

Max-min Fairness in Mesh Networks Max-min Fairness in 802. Mesh Networks Douglas J. Leith, Qizhi Cao, Vijay G. Subramanian Hamilton Institute, NUI Maynooth arxiv:002.58v2 [cs.ni] 3 Mar 200 Abstract In this paper we build upon the recent

More information

Efficient Nonlinear Optimizations of Queuing Systems

Efficient Nonlinear Optimizations of Queuing Systems Efficient Nonlinear Optimizations of Queuing Systems Mung Chiang, Arak Sutivong, and Stephen Boyd Electrical Engineering Department, Stanford University, CA 9435 Abstract We present a systematic treatment

More information

Meta-heuristic Solution for Dynamic Association Control in Virtualized Multi-rate WLANs

Meta-heuristic Solution for Dynamic Association Control in Virtualized Multi-rate WLANs Meta-heuristic Solution for Dynamic Association Control in Virtualized Multi-rate WLANs Dawood Sajjadi, Maryam Tanha, Jianping Pan Department of Computer Science, University of Victoria, BC, Canada November

More information

Power Allocation and Coverage for a Relay-Assisted Downlink with Voice Users

Power Allocation and Coverage for a Relay-Assisted Downlink with Voice Users Power Allocation and Coverage for a Relay-Assisted Downlink with Voice Users Junjik Bae, Randall Berry, and Michael L. Honig Department of Electrical Engineering and Computer Science Northwestern University,

More information

Lexicographic Max-Min Fairness in a Wireless Ad Hoc Network with Random Access

Lexicographic Max-Min Fairness in a Wireless Ad Hoc Network with Random Access Lexicographic Max-Min Fairness in a Wireless Ad Hoc Network with Random Access Xin Wang, Koushik Kar, and Jong-Shi Pang Abstract We consider the lexicographic max-min fair rate control problem at the link

More information

Cell throughput analysis of the Proportional Fair scheduler in the single cell environment

Cell throughput analysis of the Proportional Fair scheduler in the single cell environment Cell throughput analysis of the Proportional Fair scheduler in the single cell environment Jin-Ghoo Choi and Seawoong Bahk IEEE Trans on Vehicular Tech, Mar 2007 *** Presented by: Anh H. Nguyen February

More information

Network Control: A Rate-Distortion Perspective

Network Control: A Rate-Distortion Perspective Network Control: A Rate-Distortion Perspective Jubin Jose and Sriram Vishwanath Dept. of Electrical and Computer Engineering The University of Texas at Austin {jubin, sriram}@austin.utexas.edu arxiv:8.44v2

More information

Network Optimization and Control

Network Optimization and Control Foundations and Trends R in Networking Vol. 2, No. 3 (2007) 271 379 c 2008 S. Shakkottai and R. Srikant DOI: 10.1561/1300000007 Network Optimization and Control Srinivas Shakkottai 1 and R. Srikant 2 1

More information

Optimal Power Allocation for Parallel Gaussian Broadcast Channels with Independent and Common Information

Optimal Power Allocation for Parallel Gaussian Broadcast Channels with Independent and Common Information SUBMIED O IEEE INERNAIONAL SYMPOSIUM ON INFORMAION HEORY, DE. 23 1 Optimal Power Allocation for Parallel Gaussian Broadcast hannels with Independent and ommon Information Nihar Jindal and Andrea Goldsmith

More information

Measurements made for web data, media (IP Radio and TV, BBC Iplayer: Port 80 TCP) and VoIP (Skype: Port UDP) traffic.

Measurements made for web data, media (IP Radio and TV, BBC Iplayer: Port 80 TCP) and VoIP (Skype: Port UDP) traffic. Real time statistical measurements of IPT(Inter-Packet time) of network traffic were done by designing and coding of efficient measurement tools based on the Libpcap package. Traditional Approach of measuring

More information

Service differentiation without prioritization in IEEE WLANs

Service differentiation without prioritization in IEEE WLANs Service differentiation without prioritization in IEEE 8. WLANs Suong H. Nguyen, Student Member, IEEE, Hai L. Vu, Senior Member, IEEE, and Lachlan L. H. Andrew, Senior Member, IEEE Abstract Wireless LANs

More information

Low-Complexity and Distributed Energy Minimization in Multi-hop Wireless Networks

Low-Complexity and Distributed Energy Minimization in Multi-hop Wireless Networks IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. X, NO. XX, XXXXXXX X Low-Complexity and Distributed Energy Minimization in Multi-hop Wireless Networks Longbi Lin, Xiaojun Lin, Member, IEEE, and Ness B. Shroff,

More information

Congestion Equilibrium for Differentiated Service Classes Richard T. B. Ma

Congestion Equilibrium for Differentiated Service Classes Richard T. B. Ma Congestion Equilibrium for Differentiated Service Classes Richard T. B. Ma School of Computing National University of Singapore Allerton Conference 2011 Outline Characterize Congestion Equilibrium Modeling

More information

MASTER THESIS. Development and Testing of Index Policies in Internet Routers

MASTER THESIS. Development and Testing of Index Policies in Internet Routers Universidad del País Vasco / Euskal Herriko Unibertsitatea MASTER THESIS Development and Testing of Index Policies in Internet Routers Author: Josu Doncel Advisor: Peter Jacko Urtzi Ayesta Leioa, September

More information

Window Flow Control Systems with Random Service

Window Flow Control Systems with Random Service Window Flow Control Systems with Random Service Alireza Shekaramiz Joint work with Prof. Jörg Liebeherr and Prof. Almut Burchard April 6, 2016 1 / 20 Content 1 Introduction 2 Related work 3 State-of-the-art

More information

On the Flow-level Dynamics of a Packet-switched Network

On the Flow-level Dynamics of a Packet-switched Network On the Flow-level Dynamics of a Packet-switched Network Ciamac Moallemi Graduate School of Business Columbia University ciamac@gsb.columbia.edu Devavrat Shah LIDS, EECS Massachusetts Institute of Technology

More information

Performance Evaluation of Deadline Monotonic Policy over protocol

Performance Evaluation of Deadline Monotonic Policy over protocol Performance Evaluation of Deadline Monotonic Policy over 80. protocol Ines El Korbi and Leila Azouz Saidane National School of Computer Science University of Manouba, 00 Tunisia Emails: ines.korbi@gmail.com

More information

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016

Probabilistic classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2016 Probabilistic classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2016 Topics Probabilistic approach Bayes decision theory Generative models Gaussian Bayes classifier

More information

Utility, Fairness and Rate Allocation

Utility, Fairness and Rate Allocation Utility, Fairness and Rate Allocation Laila Daniel and Krishnan Narayanan 11th March 2013 Outline of the talk A rate allocation example Fairness criteria and their formulation as utilities Convex optimization

More information

Input-queued switches: Scheduling algorithms for a crossbar switch. EE 384X Packet Switch Architectures 1

Input-queued switches: Scheduling algorithms for a crossbar switch. EE 384X Packet Switch Architectures 1 Input-queued switches: Scheduling algorithms for a crossbar switch EE 84X Packet Switch Architectures Overview Today s lecture - the input-buffered switch architecture - the head-of-line blocking phenomenon

More information

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012

Classification CE-717: Machine Learning Sharif University of Technology. M. Soleymani Fall 2012 Classification CE-717: Machine Learning Sharif University of Technology M. Soleymani Fall 2012 Topics Discriminant functions Logistic regression Perceptron Generative models Generative vs. discriminative

More information

Networked Control Systems

Networked Control Systems Networked Control Systems Simulation & Analysis J.J.C. van Schendel DCT 2008.119 Traineeship report March till June 2008 Coaches: Supervisor TU/e: Prof. Dr. D. Nesic, University of Melbourne Dr. M. Tabbara,

More information

Optimal Power Control in Decentralized Gaussian Multiple Access Channels

Optimal Power Control in Decentralized Gaussian Multiple Access Channels 1 Optimal Power Control in Decentralized Gaussian Multiple Access Channels Kamal Singh Department of Electrical Engineering Indian Institute of Technology Bombay. arxiv:1711.08272v1 [eess.sp] 21 Nov 2017

More information

Dynamic Power Allocation and Routing for Time Varying Wireless Networks

Dynamic Power Allocation and Routing for Time Varying Wireless Networks Dynamic Power Allocation and Routing for Time Varying Wireless Networks X 14 (t) X 12 (t) 1 3 4 k a P ak () t P a tot X 21 (t) 2 N X 2N (t) X N4 (t) µ ab () rate µ ab µ ab (p, S 3 ) µ ab µ ac () µ ab (p,

More information

LECTURE 3. Last time:

LECTURE 3. Last time: LECTURE 3 Last time: Mutual Information. Convexity and concavity Jensen s inequality Information Inequality Data processing theorem Fano s Inequality Lecture outline Stochastic processes, Entropy rate

More information

Energy Optimal Control for Time Varying Wireless Networks. Michael J. Neely University of Southern California

Energy Optimal Control for Time Varying Wireless Networks. Michael J. Neely University of Southern California Energy Optimal Control for Time Varying Wireless Networks Michael J. Neely University of Southern California http://www-rcf.usc.edu/~mjneely Part 1: A single wireless downlink (L links) L 2 1 S={Totally

More information

4888 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 7, JULY 2016

4888 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 7, JULY 2016 4888 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 15, NO. 7, JULY 2016 Online Power Control Optimization for Wireless Transmission With Energy Harvesting and Storage Fatemeh Amirnavaei, Student Member,

More information

Understanding the Capacity Region of the Greedy Maximal Scheduling Algorithm in Multi-hop Wireless Networks

Understanding the Capacity Region of the Greedy Maximal Scheduling Algorithm in Multi-hop Wireless Networks Understanding the Capacity Region of the Greedy Maximal Scheduling Algorithm in Multi-hop Wireless Networks Changhee Joo, Xiaojun Lin, and Ness B. Shroff Abstract In this paper, we characterize the performance

More information

ECE521 Lecture7. Logistic Regression

ECE521 Lecture7. Logistic Regression ECE521 Lecture7 Logistic Regression Outline Review of decision theory Logistic regression A single neuron Multi-class classification 2 Outline Decision theory is conceptually easy and computationally hard

More information

Rate and Power Allocation in Fading Multiple Access Channels

Rate and Power Allocation in Fading Multiple Access Channels 1 Rate and Power Allocation in Fading Multiple Access Channels Ali ParandehGheibi, Atilla Eryilmaz, Asuman Ozdaglar, and Muriel Médard Abstract We consider the problem of rate and power allocation in a

More information

Online Scheduling for Energy Harvesting Broadcast Channels with Finite Battery

Online Scheduling for Energy Harvesting Broadcast Channels with Finite Battery Online Scheduling for Energy Harvesting Broadcast Channels with Finite Battery Abdulrahman Baknina Sennur Ulukus Department of Electrical and Computer Engineering University of Maryland, College Park,

More information

Distributed Joint Offloading Decision and Resource Allocation for Multi-User Mobile Edge Computing: A Game Theory Approach

Distributed Joint Offloading Decision and Resource Allocation for Multi-User Mobile Edge Computing: A Game Theory Approach Distributed Joint Offloading Decision and Resource Allocation for Multi-User Mobile Edge Computing: A Game Theory Approach Ning Li, Student Member, IEEE, Jose-Fernan Martinez-Ortega, Gregorio Rubio Abstract-

More information

Morning Session Capacity-based Power Control. Department of Electrical and Computer Engineering University of Maryland

Morning Session Capacity-based Power Control. Department of Electrical and Computer Engineering University of Maryland Morning Session Capacity-based Power Control Şennur Ulukuş Department of Electrical and Computer Engineering University of Maryland So Far, We Learned... Power control with SIR-based QoS guarantees Suitable

More information

A Generalized FAST TCP Scheme

A Generalized FAST TCP Scheme A Generalized FAST TCP Scheme Cao Yuan a, Liansheng Tan a,b, Lachlan L. H. Andrew c, Wei Zhang a, Moshe Zukerman d,, a Department of Computer Science, Central China Normal University, Wuhan 430079, P.R.

More information

9. Dual decomposition and dual algorithms

9. Dual decomposition and dual algorithms EE 546, Univ of Washington, Spring 2016 9. Dual decomposition and dual algorithms dual gradient ascent example: network rate control dual decomposition and the proximal gradient method examples with simple

More information

Solving Dual Problems

Solving Dual Problems Lecture 20 Solving Dual Problems We consider a constrained problem where, in addition to the constraint set X, there are also inequality and linear equality constraints. Specifically the minimization problem

More information

Adaptive Distributed Algorithms for Optimal Random Access Channels

Adaptive Distributed Algorithms for Optimal Random Access Channels Forty-Eighth Annual Allerton Conference Allerton House, UIUC, Illinois, USA September 29 - October, 2 Adaptive Distributed Algorithms for Optimal Random Access Channels Yichuan Hu and Alejandro Ribeiro

More information

Modeling and Stability of PERT

Modeling and Stability of PERT Modeling Stability of PET Yueping Zhang yueping@cs.tamu.edu I. SYSTEM MODEL Our modeling of PET is composed of three parts: window adjustment ED emulation queuing behavior. We start with the window dynamics.

More information

A State Action Frequency Approach to Throughput Maximization over Uncertain Wireless Channels

A State Action Frequency Approach to Throughput Maximization over Uncertain Wireless Channels A State Action Frequency Approach to Throughput Maximization over Uncertain Wireless Channels Krishna Jagannathan, Shie Mannor, Ishai Menache, Eytan Modiano Abstract We consider scheduling over a wireless

More information

Queue Length Stability in Trees under Slowly Convergent Traffic using Sequential Maximal Scheduling

Queue Length Stability in Trees under Slowly Convergent Traffic using Sequential Maximal Scheduling 1 Queue Length Stability in Trees under Slowly Convergent Traffic using Sequential Maximal Scheduling Saswati Sarkar and Koushik Kar Abstract In this paper, we consider queue-length stability in wireless

More information

On the stability of flow-aware CSMA

On the stability of flow-aware CSMA On the stability of flow-aware CSMA Thomas Bonald, Mathieu Feuillet To cite this version: Thomas Bonald, Mathieu Feuillet. On the stability of flow-aware CSMA. Performance Evaluation, Elsevier, 010, .

More information

Markovian Model of Internetworking Flow Control

Markovian Model of Internetworking Flow Control Информационные процессы, Том 2, 2, 2002, стр. 149 154. c 2002 Bogoiavlenskaia. KALASHNIKOV MEMORIAL SEMINAR Markovian Model of Internetworking Flow Control O. Bogoiavlenskaia Petrozavodsk State University

More information

Battery-State Dependent Power Control as a Dynamic Game

Battery-State Dependent Power Control as a Dynamic Game 1 Battery-State Dependent Power Control as a Dynamic Game Ishai Menache and Eitan Altman Faculty of Electrical Engineering, Technion, Haifa 32000, Israel INRIA, Sophia-Antipolis, 2004 Route des Lucioles,

More information

A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The Single Node Case. 1

A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The Single Node Case. 1 A Generalized Processor Sharing Approach to Flow Control in Integrated Services Networks: The Single Node Case 1 Abhay K Parekh 2 3 and Robert G Gallager 4 Laboratory for Information and Decision Systems

More information

Internet Congestion Control: Equilibrium and Dynamics

Internet Congestion Control: Equilibrium and Dynamics Internet Congestion Control: Equilibrium and Dynamics A. Kevin Tang Cornell University ISS Seminar, Princeton University, February 21, 2008 Networks and Corresponding Theories Power networks (Maxwell Theory)

More information

Information Theory vs. Queueing Theory for Resource Allocation in Multiple Access Channels

Information Theory vs. Queueing Theory for Resource Allocation in Multiple Access Channels 1 Information Theory vs. Queueing Theory for Resource Allocation in Multiple Access Channels Invited Paper Ali ParandehGheibi, Muriel Médard, Asuman Ozdaglar, and Atilla Eryilmaz arxiv:0810.167v1 cs.it

More information

Distributed Resource Allocation Using One-Way Communication with Applications to Power Networks

Distributed Resource Allocation Using One-Way Communication with Applications to Power Networks Distributed Resource Allocation Using One-Way Communication with Applications to Power Networks Sindri Magnússon, Chinwendu Enyioha, Kathryn Heal, Na Li, Carlo Fischione, and Vahid Tarokh Abstract Typical

More information

A Stochastic Control Approach for Scheduling Multimedia Transmissions over a Polled Multiaccess Fading Channel

A Stochastic Control Approach for Scheduling Multimedia Transmissions over a Polled Multiaccess Fading Channel A Stochastic Control Approach for Scheduling Multimedia Transmissions over a Polled Multiaccess Fading Channel 1 Munish Goyal, Anurag Kumar and Vinod Sharma Dept. of Electrical Communication Engineering,

More information

Combining Opportunistic and Size-Based Scheduling in Wireless Systems

Combining Opportunistic and Size-Based Scheduling in Wireless Systems Combining Opportunistic and Size-Based Scheduling in Wireless Systems Pasi Lassila TKK Helsinki University of Technology P.O.Box 3, FI-15 TKK, Finland Pasi.Lassila@tkk.fi Samuli Aalto TKK Helsinki University

More information

Quiz 1 EE 549 Wednesday, Feb. 27, 2008

Quiz 1 EE 549 Wednesday, Feb. 27, 2008 UNIVERSITY OF SOUTHERN CALIFORNIA, SPRING 2008 1 Quiz 1 EE 549 Wednesday, Feb. 27, 2008 INSTRUCTIONS This quiz lasts for 85 minutes. This quiz is closed book and closed notes. No Calculators or laptops

More information

Node-based Service-Balanced Scheduling for Provably Guaranteed Throughput and Evacuation Time Performance

Node-based Service-Balanced Scheduling for Provably Guaranteed Throughput and Evacuation Time Performance Node-based Service-Balanced Scheduling for Provably Guaranteed Throughput and Evacuation Time Performance Yu Sang, Gagan R. Gupta, and Bo Ji Member, IEEE arxiv:52.02328v2 [cs.ni] 8 Nov 207 Abstract This

More information

Understanding the Capacity Region of the Greedy Maximal Scheduling Algorithm in Multi-hop Wireless Networks

Understanding the Capacity Region of the Greedy Maximal Scheduling Algorithm in Multi-hop Wireless Networks Understanding the Capacity Region of the Greedy Maximal Scheduling Algorithm in Multi-hop Wireless Networks Changhee Joo Departments of ECE and CSE The Ohio State University Email: cjoo@ece.osu.edu Xiaojun

More information

CS276 Homework 1: ns-2

CS276 Homework 1: ns-2 CS276 Homework 1: ns-2 Erik Peterson October 28, 2006 1 Part 1 - Fairness between TCP variants 1.1 Method After learning ns-2, I wrote a script (Listing 3) that runs a simulation of one or two tcp flows

More information

A POMDP Framework for Cognitive MAC Based on Primary Feedback Exploitation

A POMDP Framework for Cognitive MAC Based on Primary Feedback Exploitation A POMDP Framework for Cognitive MAC Based on Primary Feedback Exploitation Karim G. Seddik and Amr A. El-Sherif 2 Electronics and Communications Engineering Department, American University in Cairo, New

More information

Can Shortest-path Routing and TCP Maximize Utility

Can Shortest-path Routing and TCP Maximize Utility Can Shortest-path Routing and TCP Maximize Utility Jiantao Wang Lun Li Steven H. Low John C. Doyle California Institute of Technology, Pasadena, USA {jiantao@cds., lun@cds., slow@, doyle@cds.}caltech.edu

More information

Utility Maximizing Routing to Data Centers

Utility Maximizing Routing to Data Centers 0-0 Utility Maximizing Routing to Data Centers M. Sarwat, J. Shin and S. Kapoor (Presented by J. Shin) Sep 26, 2011 Sep 26, 2011 1 Outline 1. Problem Definition - Data Center Allocation 2. How to construct

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Methodology for Computer Science Research Lecture 4: Mathematical Modeling

Methodology for Computer Science Research Lecture 4: Mathematical Modeling Methodology for Computer Science Research Andrey Lukyanenko Department of Computer Science and Engineering Aalto University, School of Science and Technology andrey.lukyanenko@tkk.fi Definitions and Goals

More information