A note on the number of additive triples in subsets of integers

Size: px
Start display at page:

Download "A note on the number of additive triples in subsets of integers"

Transcription

1 A note on the number of additive triples in subsets of integers Katherine Staden Mathematics Institute and DIMAP University of Warwick Coventry CV4 7AL, UK Abstract An additive triple in a set A of integers is a subset {x, y, z} A such that x + y = z. In this note, we precisely count the both the minimum and maximum number of additive triples among all subsets of the first n positive integers of a given size. These quantities were determined by Huczynska in [4]. We further determine the extremal subsets. 1 Introduction An additive triple, or Schur triple, or sum in a set A is a subset {x, y, z} A such that x+y = z. Note that x, y, z need not be distinct. Given n m 1, write [m, n] := {m,..., n} and [n] := [1, n]. The size and structure of the largest sum-free subsets of [n] is well known. Indeed, every such subset has size n/ and the unique extremal subsets are O = {1, 3, 5,..., n/ 1} and [ n/ + 1, n]; and additionally [n/, n 1] if n is even. Stability results of Deshouillers, Freiman, Sós and Temkin [3] and more recently Tran [7] show that every large sum-free subset must resemble one of these examples. In this note we are interested in the more general question of counting the number of sums in a set of a fixed size a [n]. Given A [n], define { ( ) s(a) := A ({x, y}, z) A : x + y = z} to be the number of additive triples in A. Let s (a) be the minimum of s(a) and s + (a) the maximum over all subsets A [n] of size a. So s (a) > 0 if and only if a > n/. We prove that in fact, when a > n/, we have s (a) = (a n/ )(a n/ ), and, moreover, there is a unique extremal set (i.e. a set which attains this bound). The situation for s + (a) is only slightly more complicated, and there may be multiple extremal sets, but they have a very similar structure. Given a set X of natural numbers, write b X := {bx : x X}. Our main result is the following. Theorem 1 For all positive integers n a, Supported by ERC grant

2 (i) s (a) = max{0, (a n/ )(a n/ )}, and if a > n/ then the unique extremal set is [n a + 1, n]. (ii) s + (a) = a /4 and the only extremal sets are of the form l [a], or if a is odd additionally l ([a 1] {a + 1}), for l N. Notice that, if a n/, there is more than one (usually many) sum-free subsets of [n], so we do not provide a characterisation for minimising sets here. These conclusions are not particularly surprising. One might expect that, in order to obtain a minimising set of size a > n/, one should add appropriate elements to a sum-free set of largest size n/. These elements should be as large as possible since the number of additive triples is limited by edge effects. This is indeed the case, but note that adding a single new element to the other sum-free set of largest size, the set of odd integers, gives rise to many additive triples. For the maximisation problem, [a] is a natural candidate, and it is clear that dilations have no effect. Note that here n is redundant; its only effect is to upper bound l. The questions addressed in this paper are instances of the so-called supersaturation problem which has been studied in several contexts in discrete mathematics. It was initiated by Erdős in 1955 [] who asked for the minimum number of triangles one can guarantee in a graph of given order and size. In fact a special case was already addressed by Rademacher in 1941 (unpublished), but the problem was only solved asymptotically more than sixty years later by Razborov [5]. In contrast, the maximisation problem for triangles is relatively simple. Indeed, determining the maximum number of triangles in a graph of given order and size is a consequence of the Kruskal-Katona theorem on set systems. See Chapter VII in [1] for more details on the history and recent progress on this fascinating problem in graph theory. Samotij and Sudakov [6] initiated the study of exact supersaturation in finite abelian groups. That is, given an (additive) abelian group Γ, and a [ Γ ], they asked for the minimum number of (ordered) additive triples in subsets A of Γ of size a. They were able to solve the problem completely in the case when Γ = Z p for prime p, and in the hypercube Z n for all natural numbers n. They obtained other partial results and explained why this problem seems rather hard to solve for general abelian groups Γ. Theorem 1 shows that, in the integer setting, the situation is very much simpler. The proof of Theorem 1 The proof of Theorem 1 is elementary. Let us briefly describe the main idea for (i) (the proof of (ii) is very similar). We choose an a [n] and corresponding hypothetical worst counterexample A of size a. This means that, when compared to the conjectured extremal subset [n a + 1, n] of the same size, the set A contains the fewest number of additive triples. Then every element of A must lie in few additive triples, or we could remove it and find a worse counterexample. Then it is simply a matter of considering an element of A which should lie in many additive tuples (the smallest element of A is a natural choice), and showing that it must

3 in fact lie in too many. First we do some easy calculations to determine s([n a + 1, n]) and s([a]). Proposition For all positive integers n a we have ( n ) ( s([n a + 1, n]) = a a a s([a]) =, 4 and if a is odd, then s([a 1] {a + 1}) = s([a]). n ), Proof. For each i [a], the number of additive triples in [n a + 1, n] whose smallest element is n i + 1 is min{0, [n i + 1, i 1] } = min{0, i n 1}. So s([n a + 1, n]) = i [a] min{0, i n 1} = a i= n/ +1 (i n 1) = a n/ (a n 1 + ( n/ + 1) n 1) = (a n/ )(a n/ ), as required. For each i [ a/ ], the number of additive triples in [a] whose smallest element is i is [i, a i] = a + 1 i. If i [ a/ + 1, a] then there are no such additive triples. So s([a]) = i [ a/ ] (a + 1 i) = a/ (a + 1 a/ + a 1) = a /4. The final assertion follows from the fact that, when a is odd, both a and a + 1 lie in the same number of additive triples whose other members lie in [a 1]. Given a set A [n] and y A, we write s A (y) := s(a) s(a \ {y}) for the number of additive triples in A which contain y. Given B A \ {y}, write s A (y, B) = s A (y) s A\B (y) for the number of additive triples in A which contain y and at least one element from B. Proof of Theorem 1. We first prove (i). Suppose that (i) is not true for some fixed n N. For all y [n], write I y := [n y + 1, n]. Among all a [n] consider only those for which the difference s(i a ) s (a) 0 is maximised. Among these, choose the smallest such a. Recall that we are assuming a n/ +1. Then there is a set A [n] of size a such that s(a) s(i a ) and A I a. We claim that s A (y) a n + 1 for all y A. (1) 3

4 Indeed, for all y A, we have by the choice of a that So as required. s(a) s(i a ) = s (a) s(i a ) s (a 1) s(i a ) s(a \ {y}) s(i a 1 ). s A (y) = s(a) s(a \ {y}) s(i a ) s(i a 1 ) () = s Ia (n a + 1) = [n a + 1, a 1] = a n + 1, Now let b be such that min(a) = n b+1. So b a+1. We have that s Ib (n b+1) = b n+1. For every x I b \ A, there are at most two additive triples {n b + 1, x, z}: namely taking z = n b x and z = x (n b + 1). Thus So s Ib (n b + 1, I b \ A) ( I b \ A ) = (b a). (3) s A (n b + 1) s Ib (n b + 1) (b a) = b n + 1 (b a) = a n + 1. (4) Thus we have equality in (), (3) and (4), so s(a) = s (a) and s(a ) = s (a 1) where A := A \ {n b + 1}. That is, A is extremal for parameter a 1. Since a is minimal, we have A := I a 1. But then a n + 1 = s Ia 1 {n b+1}(n b + 1) = 1 + [n a +, b 1] = b n + a 1, so b = a, a contradiction to A I a. This completes the proof of (i). We now turn to (ii), and begin by considering some small values of a. The statement is vacuous when a = 1. For a =, we have for x < y that s({x, y}) {x + x} {x, y} 1 with equality if and only if y = x. Suppose now that a = 3, let x < y < z and let A := {x, y, z}. The potential sums are x + x = y, x + x = z, x + y = z and y + y = z. At most two of these can hold simultaneously, with equality if and only if y = x and z = x + y = 3x; or y = x and z = y = 4x. Thus A = x [3] or x {1,, 4}, as required. Suppose that (ii) is not true for some fixed n N. Among all a [n] consider only those for which the difference s + (a) s([a]) 0 is maximised. Among these, choose the smallest such a. By the above discussion, we may assume that a 4. Then there is a set A [n] of size a such that s(a) = s + (a), but s(a) s([a]) and for every l [n] we have A l [a] and A l ([a 1] {a + 1}). We claim that a s A (y) for all y A. Indeed, for all y A, we have by the choice of a that s(a) s([a]) = s + (a) s([a]) s + (a 1) s([a 1]) s(a \ {y}) s([a 1]). (5) So s A (y) = s(a) s(a \ {y}) s([a]) s([a 1]) = s [a] (a) = a, (6) 4

5 as required. Now let b := max(a). So b a + 1. We have that s [b] (b) = b/. Now {1, b 1} {, b }... { b/, b/ } is a partition of [b 1], and each part destroys one additive tuple in [b] containing b. But at least [b] \ A / = (b a)/ of these parts intersect with [b] \ A. Thus s [b] (b, [b] \ A) (b a)/. Then s A (b) = s [b] (b) s [b] (b, [b] \ A) b b a = a. Thus we have equality in (5) and (6), so s(a) = s + (a) and s(a ) = s + (a 1) where A := A\{b}. That is, A is extremal for parameter a 1. Since a is minimal, there is some l N for which A = l [a 1], or A = l ([a ] {a}) if a 1 is odd. Since every sum of elements in A is a multiple of l, we must have b l N or otherwise s A (b) = 0. Thus we may assume without loss of generality that l = 1. Let G be the graph with vertex set A in which {x, y} is an edge whenever {x, y, b} is an additive triple. Using the fact that b > max(a ), we see that G has s A (b) = a/ edges. Note that G contains at most one loop (an edge of the form {x, x}), with equality if and only if b is even and b/ A. The non-loop edges form a matching, so there are either a/ or a/ 1 non-isolated vertices. Since G has a 1 vertices, it has at most one isolated vertex, with equality if and only if a is odd and there is a single loop. First consider the case when A = [a 1]. If 1 has some neighbour x in G, then b = x + 1 a, a contradiction. So 1 is the sole isolated vertex in G. Thus in [, a 1], the smallest element must be adjacent to the largest a 1 in G, so b = a + 1. Thus A = [a 1] {a + 1}, which is again a contradiction. Finally consider the case when A = [a ] {a}, in which case a is even. So G consists of a/ edges and no vertex is isolated. Since a 1 3, we see that {1, a} and {, a } must be distinct edges. So 1 + a = b = + a =, a contradiction. This completes the proof of (ii). Acknowledgements. I am grateful to Oleg Pikhurko for helpful discussions. References [1] B. Bollobás, Extremal graph theory, Academic Press, London, [] P. Erdős, Some theorems on graphs, Riveon Lematematika 9 (1955), [3] J. Deshouillers, G. Freiman, V. Sós and M. Temkin, On the structure of sum-free sets II, Astérisque, 58, (1999), [4] S. Huczynska, Beyond sum-free sets in the natural numbers, Elec. J. Combin. 1(1) (014), P1.1 [5] A. Razborov, On the minimal density of triangles in graphs, Combin. Probab. Comput. 17(4) (008),

6 [6] W. Samotij and B. Sudakov, The number of additive triples in subsets of abelian groups, Math. Proc. Cambridge Phil. Soc. 160 (016), [7] T. Tran, On the structure of large sum-free sets in integers, preprint,

On non-hamiltonian circulant digraphs of outdegree three

On non-hamiltonian circulant digraphs of outdegree three On non-hamiltonian circulant digraphs of outdegree three Stephen C. Locke DEPARTMENT OF MATHEMATICAL SCIENCES, FLORIDA ATLANTIC UNIVERSITY, BOCA RATON, FL 33431 Dave Witte DEPARTMENT OF MATHEMATICS, OKLAHOMA

More information

Characterizing extremal limits

Characterizing extremal limits Characterizing extremal limits Oleg Pikhurko University of Warwick ICERM, 11 February 2015 Rademacher Problem g(n, m) := min{#k 3 (G) : v(g) = n, e(g) = m} Mantel 1906, Turán 41: max{m : g(n, m) = 0} =

More information

Pair dominating graphs

Pair dominating graphs Pair dominating graphs Paul Balister Béla Bollobás July 25, 2004 Department of Mathematical Sciences, University of Memphis, Memphis, TN 38152 USA Abstract An oriented graph dominates pairs if for every

More information

Forbidding complete hypergraphs as traces

Forbidding complete hypergraphs as traces Forbidding complete hypergraphs as traces Dhruv Mubayi Department of Mathematics, Statistics, and Computer Science University of Illinois Chicago, IL 60607 Yi Zhao Department of Mathematics and Statistics

More information

The power graph of a finite group, II

The power graph of a finite group, II The power graph of a finite group, II Peter J. Cameron School of Mathematical Sciences Queen Mary, University of London Mile End Road London E1 4NS, U.K. Abstract The directed power graph of a group G

More information

Graphs with large maximum degree containing no odd cycles of a given length

Graphs with large maximum degree containing no odd cycles of a given length Graphs with large maximum degree containing no odd cycles of a given length Paul Balister Béla Bollobás Oliver Riordan Richard H. Schelp October 7, 2002 Abstract Let us write f(n, ; C 2k+1 ) for the maximal

More information

Bounds on the generalised acyclic chromatic numbers of bounded degree graphs

Bounds on the generalised acyclic chromatic numbers of bounded degree graphs Bounds on the generalised acyclic chromatic numbers of bounded degree graphs Catherine Greenhill 1, Oleg Pikhurko 2 1 School of Mathematics, The University of New South Wales, Sydney NSW Australia 2052,

More information

Counting substructures II: hypergraphs

Counting substructures II: hypergraphs Counting substructures II: hypergraphs Dhruv Mubayi December, 01 Abstract For various k-uniform hypergraphs F, we give tight lower bounds on the number of copies of F in a k-uniform hypergraph with a prescribed

More information

c 2010 Society for Industrial and Applied Mathematics

c 2010 Society for Industrial and Applied Mathematics SIAM J. DISCRETE MATH. Vol. 24, No. 3, pp. 1038 1045 c 2010 Society for Industrial and Applied Mathematics SET SYSTEMS WITHOUT A STRONG SIMPLEX TAO JIANG, OLEG PIKHURKO, AND ZELEALEM YILMA Abstract. A

More information

Quadruple Systems with Independent Neighborhoods

Quadruple Systems with Independent Neighborhoods Quadruple Systems with Independent Neighborhoods Zoltan Füredi Dhruv Mubayi Oleg Pikhurko Abstract A -graph is odd if its vertex set can be partitioned into two sets so that every edge intersects both

More information

Cycles with consecutive odd lengths

Cycles with consecutive odd lengths Cycles with consecutive odd lengths arxiv:1410.0430v1 [math.co] 2 Oct 2014 Jie Ma Department of Mathematical Sciences, Carnegie Mellon University, Pittsburgh, PA 15213. Abstract It is proved that there

More information

Katarzyna Mieczkowska

Katarzyna Mieczkowska Katarzyna Mieczkowska Uniwersytet A. Mickiewicza w Poznaniu Erdős conjecture on matchings in hypergraphs Praca semestralna nr 1 (semestr letni 010/11 Opiekun pracy: Tomasz Łuczak ERDŐS CONJECTURE ON MATCHINGS

More information

On the number of cycles in a graph with restricted cycle lengths

On the number of cycles in a graph with restricted cycle lengths On the number of cycles in a graph with restricted cycle lengths Dániel Gerbner, Balázs Keszegh, Cory Palmer, Balázs Patkós arxiv:1610.03476v1 [math.co] 11 Oct 2016 October 12, 2016 Abstract Let L be a

More information

VERTEX DEGREE SUMS FOR PERFECT MATCHINGS IN 3-UNIFORM HYPERGRAPHS

VERTEX DEGREE SUMS FOR PERFECT MATCHINGS IN 3-UNIFORM HYPERGRAPHS VERTEX DEGREE SUMS FOR PERFECT MATCHINGS IN 3-UNIFORM HYPERGRAPHS YI ZHANG, YI ZHAO, AND MEI LU Abstract. We determine the minimum degree sum of two adjacent vertices that ensures a perfect matching in

More information

On sum-free and solution-free sets of integers

On sum-free and solution-free sets of integers On sum-free and solution-free sets of integers Andrew Treglown Joint work with József Balogh, Hong Liu, Maryam Sharifzadeh, and Robert Hancock University of Birmingham 7th October 2016 Introduction Definition

More information

Minimal Paths and Cycles in Set Systems

Minimal Paths and Cycles in Set Systems Minimal Paths and Cycles in Set Systems Dhruv Mubayi Jacques Verstraëte July 9, 006 Abstract A minimal k-cycle is a family of sets A 0,..., A k 1 for which A i A j if and only if i = j or i and j are consecutive

More information

On tight cycles in hypergraphs

On tight cycles in hypergraphs On tight cycles in hypergraphs Hao Huang Jie Ma Abstract A tight k-uniform l-cycle, denoted by T Cl k, is a k-uniform hypergraph whose vertex set is v 0,, v l 1, and the edges are all the k-tuples {v i,

More information

On sets of integers whose shifted products are powers

On sets of integers whose shifted products are powers On sets of integers whose shifted products are powers C.L. Stewart 1 Department of Pure Mathematics, University of Waterloo, Waterloo, Ontario, Canada, NL 3G1 Abstract Let N be a positive integer and let

More information

Bichain graphs: geometric model and universal graphs

Bichain graphs: geometric model and universal graphs Bichain graphs: geometric model and universal graphs Robert Brignall a,1, Vadim V. Lozin b,, Juraj Stacho b, a Department of Mathematics and Statistics, The Open University, Milton Keynes MK7 6AA, United

More information

Forcing unbalanced complete bipartite minors

Forcing unbalanced complete bipartite minors Forcing unbalanced complete bipartite minors Daniela Kühn Deryk Osthus Abstract Myers conjectured that for every integer s there exists a positive constant C such that for all integers t every graph of

More information

Path decompositions and Gallai s conjecture

Path decompositions and Gallai s conjecture Journal of Combinatorial Theory, Series B 93 (005) 117 15 www.elsevier.com/locate/jctb Path decompositions and Gallai s conjecture Genghua Fan Department of Mathematics, Fuzhou University, Fuzhou, Fujian

More information

Properly colored Hamilton cycles in edge colored complete graphs

Properly colored Hamilton cycles in edge colored complete graphs Properly colored Hamilton cycles in edge colored complete graphs N. Alon G. Gutin Dedicated to the memory of Paul Erdős Abstract It is shown that for every ɛ > 0 and n > n 0 (ɛ), any complete graph K on

More information

arxiv: v1 [math.co] 1 Dec 2016

arxiv: v1 [math.co] 1 Dec 2016 LOCAL CONDITIONS FOR EXPONENTIALLY MANY SUBDIVISIONS HONG LIU, MARYAM SHARIFZADEH AND KATHERINE STADEN arxiv:1612.00206v1 [math.co] 1 Dec 2016 Abstract. Given a graph F, let s t (F) be the number of subdivisions

More information

Matchings in hypergraphs of large minimum degree

Matchings in hypergraphs of large minimum degree Matchings in hypergraphs of large minimum degree Daniela Kühn Deryk Osthus Abstract It is well known that every bipartite graph with vertex classes of size n whose minimum degree is at least n/2 contains

More information

On solution-free sets of integers II

On solution-free sets of integers II ACTA ARITHMETICA Online First version On solution-free sets of integers II by Robert Hancock and Andrew Treglown (Birmingham) 1. Introduction. In this paper we study solution-free sets of integers, that

More information

Maximum union-free subfamilies

Maximum union-free subfamilies Maximum union-free subfamilies Jacob Fox Choongbum Lee Benny Sudakov Abstract An old problem of Moser asks: how large of a union-free subfamily does every family of m sets have? A family of sets is called

More information

Monochromatic Clique Decompositions of Graphs

Monochromatic Clique Decompositions of Graphs Monochromatic Clique Decompositions of Graphs arxiv:14016345v2 [mathco] 18 Dec 2014 Henry Liu Centro de Matemática e Aplicações Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa Campus de

More information

RELATIVE N-TH NON-COMMUTING GRAPHS OF FINITE GROUPS. Communicated by Ali Reza Ashrafi. 1. Introduction

RELATIVE N-TH NON-COMMUTING GRAPHS OF FINITE GROUPS. Communicated by Ali Reza Ashrafi. 1. Introduction Bulletin of the Iranian Mathematical Society Vol. 39 No. 4 (2013), pp 663-674. RELATIVE N-TH NON-COMMUTING GRAPHS OF FINITE GROUPS A. ERFANIAN AND B. TOLUE Communicated by Ali Reza Ashrafi Abstract. Suppose

More information

Variants of the Erdős-Szekeres and Erdős-Hajnal Ramsey problems

Variants of the Erdős-Szekeres and Erdős-Hajnal Ramsey problems Variants of the Erdős-Szekeres and Erdős-Hajnal Ramsey problems Dhruv Mubayi December 19, 2016 Abstract Given integers l, n, the lth power of the path P n is the ordered graph Pn l with vertex set v 1

More information

THE UNIT DISTANCE PROBLEM ON SPHERES

THE UNIT DISTANCE PROBLEM ON SPHERES THE UNIT DISTANCE PROBLEM ON SPHERES KONRAD J. SWANEPOEL AND PAVEL VALTR Abstract. For any D > 1 and for any n 2 we construct a set of n points on a sphere in R 3 of diameter D determining at least cn

More information

AN IMPROVED ERROR TERM FOR MINIMUM H-DECOMPOSITIONS OF GRAPHS. 1. Introduction We study edge decompositions of a graph G into disjoint copies of

AN IMPROVED ERROR TERM FOR MINIMUM H-DECOMPOSITIONS OF GRAPHS. 1. Introduction We study edge decompositions of a graph G into disjoint copies of AN IMPROVED ERROR TERM FOR MINIMUM H-DECOMPOSITIONS OF GRAPHS PETER ALLEN*, JULIA BÖTTCHER*, AND YURY PERSON Abstract. We consider partitions of the edge set of a graph G into copies of a fixed graph H

More information

New infinite families of Candelabra Systems with block size 6 and stem size 2

New infinite families of Candelabra Systems with block size 6 and stem size 2 New infinite families of Candelabra Systems with block size 6 and stem size 2 Niranjan Balachandran Department of Mathematics The Ohio State University Columbus OH USA 4210 email:niranj@math.ohio-state.edu

More information

Cocliques in the Kneser graph on line-plane flags in PG(4, q)

Cocliques in the Kneser graph on line-plane flags in PG(4, q) Cocliques in the Kneser graph on line-plane flags in PG(4, q) A. Blokhuis & A. E. Brouwer Abstract We determine the independence number of the Kneser graph on line-plane flags in the projective space PG(4,

More information

MONOCHROMATIC SCHUR TRIPLES IN RANDOMLY PERTURBED DENSE SETS OF INTEGERS

MONOCHROMATIC SCHUR TRIPLES IN RANDOMLY PERTURBED DENSE SETS OF INTEGERS MONOCHROMATIC SCHUR TRIPLES IN RANDOMLY PERTURBED DENSE SETS OF INTEGERS ELAD AIGNER-HOREV AND YURY PERSON Abstract. Given a dense subset A of the first n positive integers, we provide a short proof showing

More information

A DEGREE VERSION OF THE HILTON MILNER THEOREM

A DEGREE VERSION OF THE HILTON MILNER THEOREM A DEGREE VERSION OF THE HILTON MILNER THEOREM PETER FRANKL, JIE HAN, HAO HUANG, AND YI ZHAO Abstract An intersecting family of sets is trivial if all of its members share a common element Hilton and Milner

More information

DAVID ELLIS AND BHARGAV NARAYANAN

DAVID ELLIS AND BHARGAV NARAYANAN ON SYMMETRIC 3-WISE INTERSECTING FAMILIES DAVID ELLIS AND BHARGAV NARAYANAN Abstract. A family of sets is said to be symmetric if its automorphism group is transitive, and 3-wise intersecting if any three

More information

Semiregular automorphisms of vertex-transitive cubic graphs

Semiregular automorphisms of vertex-transitive cubic graphs Semiregular automorphisms of vertex-transitive cubic graphs Peter Cameron a,1 John Sheehan b Pablo Spiga a a School of Mathematical Sciences, Queen Mary, University of London, Mile End Road, London E1

More information

Entropy for zero-temperature limits of Gibbs-equilibrium states for countable-alphabet subshifts of finite type

Entropy for zero-temperature limits of Gibbs-equilibrium states for countable-alphabet subshifts of finite type Entropy for zero-temperature limits of Gibbs-equilibrium states for countable-alphabet subshifts of finite type I. D. Morris August 22, 2006 Abstract Let Σ A be a finitely primitive subshift of finite

More information

Independent Transversals in r-partite Graphs

Independent Transversals in r-partite Graphs Independent Transversals in r-partite Graphs Raphael Yuster Department of Mathematics Raymond and Beverly Sackler Faculty of Exact Sciences Tel Aviv University, Tel Aviv, Israel Abstract Let G(r, n) denote

More information

Generating p-extremal graphs

Generating p-extremal graphs Generating p-extremal graphs Derrick Stolee Department of Mathematics Department of Computer Science University of Nebraska Lincoln s-dstolee1@math.unl.edu August 2, 2011 Abstract Let f(n, p be the maximum

More information

Graph Theory. Thomas Bloom. February 6, 2015

Graph Theory. Thomas Bloom. February 6, 2015 Graph Theory Thomas Bloom February 6, 2015 1 Lecture 1 Introduction A graph (for the purposes of these lectures) is a finite set of vertices, some of which are connected by a single edge. Most importantly,

More information

Equidivisible consecutive integers

Equidivisible consecutive integers & Equidivisible consecutive integers Ivo Düntsch Department of Computer Science Brock University St Catherines, Ontario, L2S 3A1, Canada duentsch@cosc.brocku.ca Roger B. Eggleton Department of Mathematics

More information

Maximizing the number of independent sets of a fixed size

Maximizing the number of independent sets of a fixed size Maximizing the number of independent sets of a fixed size Wenying Gan Po-Shen Loh Benny Sudakov Abstract Let i t (G be the number of independent sets of size t in a graph G. Engbers and Galvin asked how

More information

Balanced bipartitions of graphs

Balanced bipartitions of graphs 2010.7 - Dedicated to Professor Feng Tian on the occasion of his 70th birthday Balanced bipartitions of graphs Baogang Xu School of Mathematical Science, Nanjing Normal University baogxu@njnu.edu.cn or

More information

Constructive bounds for a Ramsey-type problem

Constructive bounds for a Ramsey-type problem Constructive bounds for a Ramsey-type problem Noga Alon Michael Krivelevich Abstract For every fixed integers r, s satisfying r < s there exists some ɛ = ɛ(r, s > 0 for which we construct explicitly an

More information

Hadwiger's Conjecture is True for Almost Every Graph

Hadwiger's Conjecture is True for Almost Every Graph Burop.l. Combinatorics (1980) 1, 195-199 Hadwiger's Conjecture is True for Almost Every Graph B. BOLLOBA.S, P. A. CATLN* AND P. ERDOS The contraction clique number ccl( OJ of a graph G is the maximal r

More information

Subset sums modulo a prime

Subset sums modulo a prime ACTA ARITHMETICA 131.4 (2008) Subset sums modulo a prime by Hoi H. Nguyen, Endre Szemerédi and Van H. Vu (Piscataway, NJ) 1. Introduction. Let G be an additive group and A be a subset of G. We denote by

More information

Supersaturation in the Boolean lattice

Supersaturation in the Boolean lattice Supersaturation in the Boolean lattice Andrew P. Dove Jerrold R. Griggs Ross J. Kang Jean-Sébastien Sereni March 18, 013 Abstract We prove a supersaturation-type extension of both Sperner s Theorem 198

More information

ON THE ERDOS-STONE THEOREM

ON THE ERDOS-STONE THEOREM ON THE ERDOS-STONE THEOREM V. CHVATAL AND E. SZEMEREDI In 1946, Erdos and Stone [3] proved that every graph with n vertices and at least edges contains a large K d+l (t), a complete (d + l)-partite graph

More information

Square 2-designs/1. 1 Definition

Square 2-designs/1. 1 Definition Square 2-designs Square 2-designs are variously known as symmetric designs, symmetric BIBDs, and projective designs. The definition does not imply any symmetry of the design, and the term projective designs,

More information

Maximal non-commuting subsets of groups

Maximal non-commuting subsets of groups Maximal non-commuting subsets of groups Umut Işık March 29, 2005 Abstract Given a finite group G, we consider the problem of finding the maximal size nc(g) of subsets of G that have the property that no

More information

The Turán number of sparse spanning graphs

The Turán number of sparse spanning graphs The Turán number of sparse spanning graphs Noga Alon Raphael Yuster Abstract For a graph H, the extremal number ex(n, H) is the maximum number of edges in a graph of order n not containing a subgraph isomorphic

More information

arxiv: v1 [cs.dm] 24 Jan 2008

arxiv: v1 [cs.dm] 24 Jan 2008 5-cycles and the Petersen graph arxiv:0801.3714v1 [cs.dm] 24 Jan 2008 M. DeVos, V. V. Mkrtchyan, S. S. Petrosyan, Department of Mathematics, Simon Fraser University, Canada Department of Informatics and

More information

Induced subgraphs of prescribed size

Induced subgraphs of prescribed size Induced subgraphs of prescribed size Noga Alon Michael Krivelevich Benny Sudakov Abstract A subgraph of a graph G is called trivial if it is either a clique or an independent set. Let q(g denote the maximum

More information

Decomposition of random graphs into complete bipartite graphs

Decomposition of random graphs into complete bipartite graphs Decomposition of random graphs into complete bipartite graphs Fan Chung Xing Peng Abstract We consider the problem of partitioning the edge set of a graph G into the minimum number τg of edge-disjoint

More information

GRAPH CHOOSABILITY AND DOUBLE LIST COLORABILITY. Hamid-Reza Fanaï

GRAPH CHOOSABILITY AND DOUBLE LIST COLORABILITY. Hamid-Reza Fanaï Opuscula Mathematica Vol. 30 No. 3 2010 http://dx.doi.org/10.7494/opmath.2010.30.3.271 GRAPH CHOOSABILITY AND DOUBLE LIST COLORABILITY Hamid-Reza Fanaï Abstract. In this paper, we give a sufficient condition

More information

SHORT PATHS IN 3-UNIFORM QUASI-RANDOM HYPERGRAPHS. Joanna Polcyn. Department of Discrete Mathematics Adam Mickiewicz University

SHORT PATHS IN 3-UNIFORM QUASI-RANDOM HYPERGRAPHS. Joanna Polcyn. Department of Discrete Mathematics Adam Mickiewicz University Discussiones Mathematicae Graph Theory 24 (2004 ) 469 484 SHORT PATHS IN 3-UNIFORM QUASI-RANDOM HYPERGRAPHS Joanna Polcyn Department of Discrete Mathematics Adam Mickiewicz University Poznań e-mail: joaska@amu.edu.pl

More information

Off-diagonal hypergraph Ramsey numbers

Off-diagonal hypergraph Ramsey numbers Off-diagonal hypergraph Ramsey numbers Dhruv Mubayi Andrew Suk Abstract The Ramsey number r k (s, n) is the minimum such that every red-blue coloring of the k- subsets of {1,..., } contains a red set of

More information

Maximum density of an induced 5-cycle is achieved by an iterated blow-up of a 5-cycle

Maximum density of an induced 5-cycle is achieved by an iterated blow-up of a 5-cycle Maximum density of an induced 5-cycle is achieved by an iterated blow-up of a 5-cycle József Balogh Ping Hu Bernard Lidický Florian Pfender arxiv:1411.4645v1 [math.co] 17 Nov 2014 October 19, 2018 Abstract

More information

On zero-sum partitions and anti-magic trees

On zero-sum partitions and anti-magic trees Discrete Mathematics 09 (009) 010 014 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: wwwelseviercom/locate/disc On zero-sum partitions and anti-magic trees Gil Kaplan,

More information

On the chromatic number and independence number of hypergraph products

On the chromatic number and independence number of hypergraph products On the chromatic number and independence number of hypergraph products Dhruv Mubayi Vojtĕch Rödl January 10, 2004 Abstract The hypergraph product G H has vertex set V (G) V (H), and edge set {e f : e E(G),

More information

Reconstructing integer sets from their representation functions

Reconstructing integer sets from their representation functions Reconstructing integer sets from their representation functions Vsevolod F. Lev Department of Mathematics University of Haifa at Oranim Tivon 36006, Israel seva@math.haifa.ac.il Submitted: Oct 5, 2004;

More information

WORKSHEET ON NUMBERS, MATH 215 FALL. We start our study of numbers with the integers: N = {1, 2, 3,...}

WORKSHEET ON NUMBERS, MATH 215 FALL. We start our study of numbers with the integers: N = {1, 2, 3,...} WORKSHEET ON NUMBERS, MATH 215 FALL 18(WHYTE) We start our study of numbers with the integers: Z = {..., 2, 1, 0, 1, 2, 3,... } and their subset of natural numbers: N = {1, 2, 3,...} For now we will not

More information

A sequence of triangle-free pseudorandom graphs

A sequence of triangle-free pseudorandom graphs A sequence of triangle-free pseudorandom graphs David Conlon Abstract A construction of Alon yields a sequence of highly pseudorandom triangle-free graphs with edge density significantly higher than one

More information

A NOTE ON THE TURÁN FUNCTION OF EVEN CYCLES

A NOTE ON THE TURÁN FUNCTION OF EVEN CYCLES PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 00, Number 0, Pages 000 000 S 0002-9939(XX)0000-0 A NOTE ON THE TURÁN FUNCTION OF EVEN CYCLES OLEG PIKHURKO Abstract. The Turán function ex(n, F

More information

Hypergraph Turán Problems (IPAM Tutorial)

Hypergraph Turán Problems (IPAM Tutorial) (IPAM Tutorial) Peter Keevash School of Mathematical Sciences, Queen Mary, University of London. p.keevash@qmul.ac.uk Introduction: From graphs to hypergraphs Mantel s Theorem (1907) The largest graph

More information

The Generalised Randić Index of Trees

The Generalised Randić Index of Trees The Generalised Randić Index of Trees Paul Balister Béla Bollobás Stefanie Gerke December 10, 2006 Abstract The Generalised Randić index R α (T ) of a tree T is the sum over the edges uv of T of (d(u)d(v))

More information

Minimum degree conditions for large subgraphs

Minimum degree conditions for large subgraphs Minimum degree conditions for large subgraphs Peter Allen 1 DIMAP University of Warwick Coventry, United Kingdom Julia Böttcher and Jan Hladký 2,3 Zentrum Mathematik Technische Universität München Garching

More information

First Order Convergence and Roots

First Order Convergence and Roots Article First Order Convergence and Roots Christofides, Demetres and Kral, Daniel Available at http://clok.uclan.ac.uk/17855/ Christofides, Demetres and Kral, Daniel (2016) First Order Convergence and

More information

Compatible Hamilton cycles in Dirac graphs

Compatible Hamilton cycles in Dirac graphs Compatible Hamilton cycles in Dirac graphs Michael Krivelevich Choongbum Lee Benny Sudakov Abstract A graph is Hamiltonian if it contains a cycle passing through every vertex exactly once. A celebrated

More information

Disjoint Subgraphs in Sparse Graphs 1

Disjoint Subgraphs in Sparse Graphs 1 Disjoint Subgraphs in Sparse Graphs 1 Jacques Verstraëte Department of Pure Mathematics and Mathematical Statistics Centre for Mathematical Sciences Wilberforce Road Cambridge CB3 OWB, UK jbav2@dpmms.cam.ac.uk

More information

On the Local Colorings of Graphs

On the Local Colorings of Graphs On the Local Colorings of Graphs Behnaz Omoomi and Ali Pourmiri Department of Mathematical Sciences Isfahan University of Technology 84154, Isfahan, Iran Abstract A local coloring of a graph G is a function

More information

The Rainbow Turán Problem for Even Cycles

The Rainbow Turán Problem for Even Cycles The Rainbow Turán Problem for Even Cycles Shagnik Das University of California, Los Angeles Aug 20, 2012 Joint work with Choongbum Lee and Benny Sudakov Plan 1 Historical Background Turán Problems Colouring

More information

ON THE STRUCTURE OF ORIENTED GRAPHS AND DIGRAPHS WITH FORBIDDEN TOURNAMENTS OR CYCLES

ON THE STRUCTURE OF ORIENTED GRAPHS AND DIGRAPHS WITH FORBIDDEN TOURNAMENTS OR CYCLES ON THE STRUCTURE OF ORIENTED GRAPHS AND DIGRAPHS WITH FORBIDDEN TOURNAMENTS OR CYCLES DANIELA KÜHN, DERYK OSTHUS, TIMOTHY TOWNSEND, YI ZHAO Abstract. Motivated by his work on the classification of countable

More information

Induced subgraphs of graphs with large chromatic number. IX. Rainbow paths

Induced subgraphs of graphs with large chromatic number. IX. Rainbow paths Induced subgraphs of graphs with large chromatic number. IX. Rainbow paths Alex Scott Oxford University, Oxford, UK Paul Seymour 1 Princeton University, Princeton, NJ 08544, USA January 20, 2017; revised

More information

Toughness and Vertex Degrees

Toughness and Vertex Degrees Toughness and Vertex Degrees D. Bauer Department of Mathematical Sciences Stevens Institute of Technology Hoboken, NJ 07030, U.S.A. H.J. Broersma School of Engineering and Computing Sciences Durham University

More information

Groups of Prime Power Order with Derived Subgroup of Prime Order

Groups of Prime Power Order with Derived Subgroup of Prime Order Journal of Algebra 219, 625 657 (1999) Article ID jabr.1998.7909, available online at http://www.idealibrary.com on Groups of Prime Power Order with Derived Subgroup of Prime Order Simon R. Blackburn*

More information

Decomposing oriented graphs into transitive tournaments

Decomposing oriented graphs into transitive tournaments Decomposing oriented graphs into transitive tournaments Raphael Yuster Department of Mathematics University of Haifa Haifa 39105, Israel Abstract For an oriented graph G with n vertices, let f(g) denote

More information

warwick.ac.uk/lib-publications

warwick.ac.uk/lib-publications Original citation: Liu, Henry, Pikhurko, Oleg and Sousa, Teresa. (2015) Monochromatic clique decompositions of graphs. Journal of Graph Theory, 80 (4). pp. 287-298. Permanent WRAP URL: http://wrap.warwick.ac.uk/79455

More information

Jacques Verstraëte

Jacques Verstraëte 2 - Turán s Theorem Jacques Verstraëte jacques@ucsd.edu 1 Introduction The aim of this section is to state and prove Turán s Theorem [17] and to discuss some of its generalizations, including the Erdős-Stone

More information

All Ramsey numbers for brooms in graphs

All Ramsey numbers for brooms in graphs All Ramsey numbers for brooms in graphs Pei Yu Department of Mathematics Tongji University Shanghai, China yupeizjy@16.com Yusheng Li Department of Mathematics Tongji University Shanghai, China li yusheng@tongji.edu.cn

More information

ON A CONJECTURE BY KALAI

ON A CONJECTURE BY KALAI ISRAEL JOURNAL OF MATHEMATICS 00 (XXXX), 1 5 DOI: 10.1007/s000000000000000000000000 ON A CONJECTURE BY KALAI BY Giulio Caviglia Department of Mathematics, Purdue University 150 N. University Street, West

More information

Sidon sets and C 4 -saturated graphs

Sidon sets and C 4 -saturated graphs Sidon sets and C 4 -saturated graphs arxiv:1810.056v1 [math.co] 11 Oct 018 David F. Daza Carlos A. Trujillo Universidad del Cauca, A.A. 755, Colombia. davidaza@unicauca.edu.co - trujillo@unicauca.edu.co

More information

Even Cycles in Hypergraphs.

Even Cycles in Hypergraphs. Even Cycles in Hypergraphs. Alexandr Kostochka Jacques Verstraëte Abstract A cycle in a hypergraph A is an alternating cyclic sequence A 0, v 0, A 1, v 1,..., A k 1, v k 1, A 0 of distinct edges A i and

More information

A quasisymmetric function generalization of the chromatic symmetric function

A quasisymmetric function generalization of the chromatic symmetric function A quasisymmetric function generalization of the chromatic symmetric function Brandon Humpert University of Kansas Lawrence, KS bhumpert@math.ku.edu Submitted: May 5, 2010; Accepted: Feb 3, 2011; Published:

More information

Mathathon Round 1 (2 points each)

Mathathon Round 1 (2 points each) Mathathon Round ( points each). A circle is inscribed inside a square such that the cube of the radius of the circle is numerically equal to the perimeter of the square. What is the area of the circle?

More information

On representable graphs

On representable graphs On representable graphs Sergey Kitaev and Artem Pyatkin 3rd November 2005 Abstract A graph G = (V, E) is representable if there exists a word W over the alphabet V such that letters x and y alternate in

More information

arxiv: v1 [math.co] 13 May 2016

arxiv: v1 [math.co] 13 May 2016 GENERALISED RAMSEY NUMBERS FOR TWO SETS OF CYCLES MIKAEL HANSSON arxiv:1605.04301v1 [math.co] 13 May 2016 Abstract. We determine several generalised Ramsey numbers for two sets Γ 1 and Γ 2 of cycles, in

More information

Ramsey Theory. May 24, 2015

Ramsey Theory. May 24, 2015 Ramsey Theory May 24, 2015 1 König s Lemma König s Lemma is a basic tool to move between finite and infinite combinatorics. To be concise, we use the notation [k] = {1, 2,..., k}, and [X] r will denote

More information

arxiv:math/ v2 [math.nt] 3 Dec 2003

arxiv:math/ v2 [math.nt] 3 Dec 2003 arxiv:math/0302091v2 [math.nt] 3 Dec 2003 Every function is the representation function of an additive basis for the integers Melvyn B. Nathanson Department of Mathematics Lehman College (CUNY) Bronx,

More information

Locally maximal product-free sets of size 3

Locally maximal product-free sets of size 3 Locally maximal product-free sets of size 3 By Chimere S. Anabanti and Sarah B. Hart Birkbeck Pure Mathematics Preprint Series Preprint Number 10 www.bbk.ac.uk/ems/research/pure/preprints Locally maximal

More information

On the densities of cliques and independent sets in graphs

On the densities of cliques and independent sets in graphs On the densities of cliques and independent sets in graphs Hao Huang Nati Linial Humberto Naves Yuval Peled Benny Sudakov Abstract Let r, s 2 be integers. Suppose that the number of blue r-cliques in a

More information

Rainbow Matchings of Size δ(g) in Properly Edge-Colored Graphs

Rainbow Matchings of Size δ(g) in Properly Edge-Colored Graphs Rainbow Matchings of Size δ(g) in Properly Edge-Colored Graphs Jennifer Diemunsch Michael Ferrara, Allan Lo, Casey Moffatt, Florian Pfender, and Paul S. Wenger Abstract A rainbow matching in an edge-colored

More information

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4

Homework #2 Solutions Due: September 5, for all n N n 3 = n2 (n + 1) 2 4 Do the following exercises from the text: Chapter (Section 3):, 1, 17(a)-(b), 3 Prove that 1 3 + 3 + + n 3 n (n + 1) for all n N Proof The proof is by induction on n For n N, let S(n) be the statement

More information

A simple branching process approach to the phase transition in G n,p

A simple branching process approach to the phase transition in G n,p A simple branching process approach to the phase transition in G n,p Béla Bollobás Department of Pure Mathematics and Mathematical Statistics Wilberforce Road, Cambridge CB3 0WB, UK b.bollobas@dpmms.cam.ac.uk

More information

A proof of a partition conjecture of Bateman and Erdős

A proof of a partition conjecture of Bateman and Erdős proof of a partition conjecture of Bateman and Erdős Jason P. Bell Department of Mathematics University of California, San Diego La Jolla C, 92093-0112. US jbell@math.ucsd.edu 1 Proposed Running Head:

More information

D-bounded Distance-Regular Graphs

D-bounded Distance-Regular Graphs D-bounded Distance-Regular Graphs CHIH-WEN WENG 53706 Abstract Let Γ = (X, R) denote a distance-regular graph with diameter D 3 and distance function δ. A (vertex) subgraph X is said to be weak-geodetically

More information

Group Colorability of Graphs

Group Colorability of Graphs Group Colorability of Graphs Hong-Jian Lai, Xiankun Zhang Department of Mathematics West Virginia University, Morgantown, WV26505 July 10, 2004 Abstract Let G = (V, E) be a graph and A a non-trivial Abelian

More information

On the Turán number of forests

On the Turán number of forests On the Turán number of forests Bernard Lidický Hong Liu Cory Palmer April 13, 01 Abstract The Turán number of a graph H, ex(n, H, is the maximum number of edges in a graph on n vertices which does not

More information

Sum-free sets. Peter J. Cameron University of St Andrews

Sum-free sets. Peter J. Cameron University of St Andrews Sum-free sets Peter J. Cameron University of St Andrews Topological dynamics, functional equations, infinite combinatorics and probability LSE, June 2017 Three theorems A set of natural numbers is k-ap-free

More information