CITY UNIVERSITY SCHOOL OF ENGINEERING AND MATHEMATICAL SCIENCES


 Shanon Russell
 11 months ago
 Views:
Transcription
1 CITY UNIVERSITY SCHOOL OF ENGINEERING AND MATHEMATICAL SCIENCES AERONAUTICAL ENGINEERING MEng/BEng (Hons) AIR TRANSPORT ENGINEERING MEng/BEng (Hons) AIR TRANSPORT ENGINEERING BSc (Hons) AUTOMOTIVE AND MOTOR SPORT ENGINEERING MEng/BEng (Hons) AUTOMOTIVE AND MOTOR SPORT TECHNOLOGY BSc (Hons) MECHANICAL ENGINEERING MEng/BEng (Hons) ENGINEERING AND ENERGY MANAGEMENT MEng/BEng (Hons) PART II Examination Mechatronics [ME2106] Date: May 2007 Time: 3 hours Answer SIX Questions  TWO from each section Page 1 of 10
2 Question 1 SECTION A DYNAMICS A trolley has a mass m and rests on frictionless wheels, Fig Q1. The trolley is connected to a base by a damping element with damping constant c and a system of two identical springs of constant k (see the figure). The trolley was observed to oscillate harmonically in free vibration with the natural frequencyω. n Fig Q1 Considering that the base undergoes harmonic motion: y ( t ) Y ( ωt ) mass m has a response x(t): = sin 0 and that the Hint: (i) Compute the equivalent stiffness of the springs. [3 Marks] (ii) Draw the free body diagram for the mass m. (iii)state the equation of motion. (iv) What is the significance of Y 0 in the expression y ( t ) = Y sin 0 ( ωt )? What is the generic expression for the motion of the cart motion x(t)? (v) Draw the Phasor Diagram for the given system. k = k 1 + k 2 Page 2 of 10
3 Question 2 A disc with the inertia I 0 is liked to base using a shaft with stiffness k and damping constant c, Fig Q2. The base of this singledegreeoffreedom system undergoes θ t = Θ sin ωt. Considering that the disk I 0 has a response harmonic motion: y ( ) y ( ) θ ( t) x L θy I o θx k, c Fig Q2 Base (i) Draw the free body diagram for the disc I 0 (ii) State the equation of motion. [4 Mark] = Θ sin ωt? (iii)what is the significance of ω in the expression θ ( t) ( ) (iv) Draw the Phasor Diagram for the given system. [13 Marks] y y Page 3 of 10
4 Question 3 In the singledegreeoffreedom system Fig Q3 the mass m and the spring constants k are known. The coefficient of viscous damping c is not known. However, it is known that the system is underdamped. Hints: T = Fig Q3 (i) Compute the equivalent stiffness of the springs.. (ii) Compute the natural frequency for the system. (iii)define the viscous damping factor Which condition should it fulfill? (iv) It is known that the motion of mass m can be described by. ζω ( ) n = t cos ( ω φ ) x t Ce t An experimental record showed that for two successive oscillations, the xi amplitude drop can be expressed as: = A. Considering that for the two x + oscillations the maximum amplitude is reached at t i and t = i 1 t + + i T, respectively, determine an expression for the viscous damping factor as a function of ω and T. n (v) What is the significance of ω d in equation (1)? Express it as a function of ω n and ζ. [3 Marks] 2π ωd i 1 d k = 1 1 / k + k / 2 k = k 1 + k Page 4 of 10
5 Question 4 Consider the undamped, 2 degree of freedom system represented in Fig Q4. Using the notations in the figure (where: k 1 = k 2 = k 3 = k and m 1 = m 2 = m): (i) Draw the free body diagram for each body (ii) State the equations of motion (iii) State the characteristic equation [9 Marks] (iv) Compute the eigenvalues (v) Compute the natural frequencies x (t) 1 k 1 m 1 k 2 m2 x (t) 2 k 3 FigQ4 Page 5 of 10
6 Question 5 Considering the mechanism shown in fig Q5 (where the length of each element is written next to it) Fig Q5 (i) Compute the number of degrees of present in the system: (ii) Determine if at least one link is capable of making a full revolution (iii) Calculate the output position and the angular velocity ratio for input values of 90 o [15 Marks] Hints: It is known that : arctan A A B C ψ = + B + C ψ& sin ( φ ψ ) K1 sinφ = & φ sin φ ψ K sinφ where : ( ) 2 d K1 = c A = sinφ d K2 = B = cosφ K2 a C = K cosφ K a b + c + d K3 = 2ac Page 6 of 10
7 SECTION B MICROPROCESSORS Question 6 a) A microprocessor has a reboot address of 0000 Hex. Draw a suitable memory map for a system with 4k ROM and 1kRAM [ 5 Marks] b) Design an address decoding circuit for question 6a c) Explain how the FETCHEXECUTE cycle transfers data from memory to the CPU ( or microprocessor unit ) Question 7 a) Why is it necessary to use a handshaking protocol when interfacing a mechanical device, such as a printer to a computer system? [2 Marks] b) Explain clearly, with a circuit diagram and a software flowchart, how the handshaking for a parallel printer port works c) What, essentially is the difference between polling and interrupts? [3 Marks] d) What happens to the SP ( Stack Pointer ) and PC ( Program counter ) during a hardware generated interrupt cycle? Question 8 (a) How can a simple length of thin wire be used to measure mechanical strain? (b) How can a strain gauge be interfaced to a computer? (c) Four identical strain gauges are mounted on a cantilever beam and interfaced to a computer. (i) Explain how calibrate the experiment [5Marks] (ii) How could the same experiment be used to measure mechanical vibrations? [ 5 Marks] Page 7 of 10
8 Question 9 What is a USB and how does it work? You answer should include the concepts of plug and play, collision detection, data transfer protocols, device drivers, operating system, and unique addresses [25 Marks] Question 10 (a) What are: (a) ROM (b) RAM (c ) EPROM (d) PROM, (e) FLASH (b) Draw the circuit diagram, truth table and Boolean equation for the following 2 input logic gates: a. AND b. OR c. NOR d. NAND (e) XOR [15 Marks] (c) Write down the truth table, circuit diagram and Boolean equation for an NOT gate. How many inputs are there? [ 4Marks] (d) What is an XOR gate used for? [1Mark] Page 8 of 10
9 SECTION C CONTROL Question 11 (a) Define two parameters which we can use to measure the performance of an analogue control system. [ 2 Marks] (b) What are Poles and Zeros? [ 3 Marks] (c) A DC servo motor has an armature resistance of R a Ohms, a motor torque constant k m and a back emf constant k b. The motor is connected to a mechanical load with inertia J and viscous damping factor D. Find the transfer function in the s domain. ( take system input as the voltage applied to the motor ( volts) and the position of the motor shaft (radians) as output. (d) Draw the block diagram of a position control system with feedback H(s)=1, and same motor and load as Q11(c ) (e) Find the transfer function of s suitable lag/lead compensator. Question 12 (a) Write down the standard form of the general second order transfer function (b) Discuss the response of the general second order T.F. to a STEP input signal [6 Marks] (c) A general first order Transfer Function is given by G(s) = k/(s+a) Calculate the step response, in the time domain. Note: step response in the s domain is 1/s and the Laplace transform of 1/(s+a) is e at [15 Marks] Page 9 of 10
10 Question 13 An automobile suspension system can be modelled as a mass m hung vertically from a spring stiffness k and a shock absorber c. (a) Draw the free body diagram and obtain the equation of motion [ 5 Marks] (b) Take the upward force F as the input and displacement of the mass, x, as output, calculate the transfer function (c) Prove the system is UNCONDITIONALLY STABLE [15 Marks] Question 14 Why is Failure Modes And Effects Analysis important in the design of aircraft and automobile control systems? Your answer should explain the concept of a SOFTWARE GEARBOX and compare the advantages and disadvantages of mechanical control systems as compared with microprocessor based systems. [25 Marks] Internal Examiners : Dr R.C. Edney Dr M. Teodorescu External Examiners: Professor R. Crookes Page 10 of 10
EQUIVALENT SINGLEDEGREEOFFREEDOM SYSTEM AND FREE VIBRATION
1 EQUIVALENT SINGLEDEGREEOFFREEDOM SYSTEM AND FREE VIBRATION The course on Mechanical Vibration is an important part of the Mechanical Engineering undergraduate curriculum. It is necessary for the development
More informationChapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.
Chapter 14 Oscillations Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator Simple Harmonic Motion Related to Uniform Circular Motion The Simple Pendulum The Physical
More informationQuanser NIELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual
Quanser NIELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control DC Motor Control Trainer (DCMCT) Student Manual Table of Contents 1 Laboratory Objectives1 2 References1 3 DCMCT Plant
More informationChapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.
Chapter 14 Oscillations 141 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The
More informationChapter 14 Oscillations
Chapter 14 Oscillations If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system is a
More information3.1 Centrifugal Pendulum Vibration Absorbers: Centrifugal pendulum vibration absorbers are a type of tuned dynamic absorber used for the reduction of
3.1 Centrifugal Pendulum Vibration Absorbers: Centrifugal pendulum vibration absorbers are a type of tuned dynamic absorber used for the reduction of torsional vibrations in rotating and reciprocating
More informationWEEKS 89 Dynamics of Machinery
WEEKS 89 Dynamics of Machinery References Theory of Machines and Mechanisms, J.J.Uicker, G.R.Pennock ve J.E. Shigley, 2011 Mechanical Vibrations, Singiresu S. Rao, 2010 Mechanical Vibrations: Theory and
More informationAppendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2)
Appendix A: Exercise Problems on Classical Feedback Control Theory (Chaps. 1 and 2) For all calculations in this book, you can use the MathCad software or any other mathematical software that you are familiar
More informationPh.D. Qualifying Exam. Electrical Engineering Part I
Ph.D. Qualifying Exam February 5th, 2015 1:005:00pm Electrical Engineering Part I Instructions: This is a closedbook/closednotes exam module, four hours in duration. There are ten (10) problems in this
More informationThe basic principle to be used in mechanical systems to derive a mathematical model is Newton s law,
Chapter. DYNAMIC MODELING Understanding the nature of the process to be controlled is a central issue for a control engineer. Thus the engineer must construct a model of the process with whatever information
More informationFEEDBACK CONTROL SYSTEMS
FEEDBAC CONTROL SYSTEMS. Control System Design. Open and ClosedLoop Control Systems 3. Why ClosedLoop Control? 4. Case Study  Speed Control of a DC Motor 5. SteadyState Errors in Unity Feedback Control
More informationEDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1  TRIGONOMETRICAL GRAPHS
EDEXCEL NATIONAL CERTIFICATE UNIT 28 FURTHER MATHEMATICS FOR TECHNICIANS OUTCOME 3 TUTORIAL 1  TRIGONOMETRICAL GRAPHS CONTENTS 3 Be able to understand how to manipulate trigonometric expressions and apply
More informationECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67
1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure
More informationFinal Exam April 30, 2013
Final Exam Instructions: You have 120 minutes to complete this exam. This is a closedbook, closednotes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic
More informationMechatronics Engineering. Li Wen
Mechatronics Engineering Li Wen Bioinspired robotdc motor drive Unstable system Mirko Kovac,EPFL Modeling and simulation of the control system Problems 1. Why we establish mathematical model of the control
More informationState Feedback Controller for Position Control of a Flexible Link
Laboratory 12 Control Systems Laboratory ECE3557 Laboratory 12 State Feedback Controller for Position Control of a Flexible Link 12.1 Objective The objective of this laboratory is to design a full state
More informationLaboratory 11 Control Systems Laboratory ECE3557. State Feedback Controller for Position Control of a Flexible Joint
Laboratory 11 State Feedback Controller for Position Control of a Flexible Joint 11.1 Objective The objective of this laboratory is to design a full state feedback controller for endpoint position control
More informationTOPIC E: OSCILLATIONS EXAMPLES SPRING Q1. Find general solutions for the following differential equations:
TOPIC E: OSCILLATIONS EXAMPLES SPRING 2019 Mathematics of Oscillating Systems Q1. Find general solutions for the following differential equations: Undamped Free Vibration Q2. A 4 g mass is suspended by
More informationa) Find the equation of motion of the system and write it in matrix form.
.003 Engineering Dynamics Problem Set Problem : Torsional Oscillator Two disks of radius r and r and mass m and m are mounted in series with steel shafts. The shaft between the base and m has length L
More informationChapter 5 Design. D. J. Inman 1/51 Mechanical Engineering at Virginia Tech
Chapter 5 Design Acceptable vibration levels (ISO) Vibration isolation Vibration absorbers Effects of damping in absorbers Optimization Viscoelastic damping treatments Critical Speeds Design for vibration
More informationR10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1
Code No: R06 R0 SET  II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry
More informationMATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL 3 PERIODIC FUNCTIONS
MATHEMATICS FOR ENGINEERING TRIGONOMETRY TUTORIAL 3 PERIODIC FUNCTIONS This is the one of a series of basic tutorials in mathematics aimed at beginners or anyone wanting to refresh themselves on fundamentals.
More informationIntroduction to Controls
EE 474 Review Exam 1 Name Answer each of the questions. Show your work. Note were essaytype answers are requested. Answer with complete sentences. Incomplete sentences will count heavily against the grade.
More informationSAMPLE EXAMINATION PAPER (with numerical answers)
CID No: IMPERIAL COLLEGE LONDON Design Engineering MEng EXAMINATIONS For Internal Students of the Imperial College of Science, Technology and Medicine This paper is also taken for the relevant examination
More informationA Guide to linear dynamic analysis with Damping
A Guide to linear dynamic analysis with Damping This guide starts from the applications of linear dynamic response and its role in FEA simulation. Fundamental concepts and principles will be introduced
More informationMeasurement Techniques for Engineers. Motion and Vibration Measurement
Measurement Techniques for Engineers Motion and Vibration Measurement Introduction Quantities that may need to be measured are velocity, acceleration and vibration amplitude Quantities useful in predicting
More informationMechatronics II Laboratory EXPERIMENT #1: FORCE AND TORQUE SENSORS DC Motor Characteristics Dynamometer, Part I
Mechatronics II Laboratory EXPEIMENT #1: FOCE AND TOQUE SENSOS DC Motor Characteristics Dynamometer, Part I Force Sensors Force and torque are not measured directly. Typically, the deformation or strain
More informationDynamics Qualifying Exam Sample
Dynamics Qualifying Exam Sample Instructions: Complete the following five problems worth 20 points each. No material other than a calculator and pen/pencil can be used in the exam. A passing grade is approximately
More informationSection 3.7: Mechanical and Electrical Vibrations
Section 3.7: Mechanical and Electrical Vibrations Second order linear equations with constant coefficients serve as mathematical models for mechanical and electrical oscillations. For example, the motion
More informationDSC HW 3: Assigned 6/25/11, Due 7/2/12 Page 1
DSC HW 3: Assigned 6/25/11, Due 7/2/12 Page 1 Problem 1 (MotorFan): A motor and fan are to be connected as shown in Figure 1. The torquespeed characteristics of the motor and fan are plotted on the same
More informationMechatronics. MANE 4490 Fall 2002 Assignment # 1
Mechatronics MANE 4490 Fall 2002 Assignment # 1 1. For each of the physical models shown in Figure 1, derive the mathematical model (equation of motion). All displacements are measured from the static
More informationOverview of motors and motion control
Overview of motors and motion control. Elements of a motioncontrol system Power upply Highlevel controller owlevel controller Driver Motor. Types of motors discussed here; Brushed, PM DC Motors Cheap,
More informationIntroduction to Vibration. Mike Brennan UNESP, Ilha Solteira São Paulo Brazil
Introduction to Vibration Mike Brennan UNESP, Ilha Solteira São Paulo Brazil Vibration Most vibrations are undesirable, but there are many instances where vibrations are useful Ultrasonic (very high
More informationMechatronics Modeling and Analysis of Dynamic Systems CaseStudy Exercise
Mechatronics Modeling and Analysis of Dynamic Systems CaseStudy Exercise Goal: This exercise is designed to take a realworld problem and apply the modeling and analysis concepts discussed in class. As
More informationConventional PaperI2011 PARTA
Conventional PaperI0 PARTA.a Give five properties of static magnetic field intensity. What are the different methods by which it can be calculated? Write a Maxwell s equation relating this in integral
More informationContents. Dynamics and control of mechanical systems. Focus on
Dynamics and control of mechanical systems Date Day 1 (01/08) Day 2 (03/08) Day 3 (05/08) Day 4 (07/08) Day 5 (09/08) Day 6 (11/08) Content Review of the basics of mechanics. Kinematics of rigid bodies
More informationElectrical Machine & Automatic Control (EEE409) (MEII Yr) UNIT3 Content: Signals u(t) = 1 when t 0 = 0 when t <0
Electrical Machine & Automatic Control (EEE409) (MEII Yr) UNIT3 Content: Modeling of Mechanical : linear mechanical elements, forcevoltage and force current analogy, and electrical analog of simple
More informationDynamics and control of mechanical systems
Dynamics and control of mechanical systems Date Day 1 (03/05)  05/05 Day 2 (07/05) Day 3 (09/05) Day 4 (11/05) Day 5 (14/05) Day 6 (16/05) Content Review of the basics of mechanics. Kinematics of rigid
More informationME 375 Final Examination Thursday, May 7, 2015 SOLUTION
ME 375 Final Examination Thursday, May 7, 2015 SOLUTION POBLEM 1 (25%) negligible mass wheels negligible mass wheels v motor no slip ω r r F D O no slip e in Motor% Cart%with%motor%a,ached% The coupled
More informationLinear Control Systems Solution to Assignment #1
Linear Control Systems Solution to Assignment # Instructor: H. Karimi Issued: Mehr 0, 389 Due: Mehr 8, 389 Solution to Exercise. a) Using the superposition property of linear systems we can compute the
More information10 Measurement of Acceleration, Vibration and Shock Transducers
Chapter 10: Acceleration, Vibration and Shock Measurement Dr. Lufti AlSharif (Revision 1.0, 25/5/2008) 1. Introduction This chapter examines the measurement of acceleration, vibration and shock. It starts
More informationIntroduction to Mechanical Vibration
2103433 Introduction to Mechanical Vibration Nopdanai Ajavakom (NAV) 1 Course Topics Introduction to Vibration What is vibration? Basic concepts of vibration Modeling Linearization SingleDegreeofFreedom
More informationUNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOPUP SEMESTER 1 EXAMINATION 2017/2018 ADVANCED MECHATRONIC SYSTEMS
ENG08 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BSC (HONS) MECHATRONICS TOPUP SEMESTER EXAMINATION 07/08 ADVANCED MECHATRONIC SYSTEMS MODULE NO: MEC600 Date: 7 January 08 Time: 0.00.00 INSTRUCTIONS TO
More informationR a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies.
SET  1 II B. Tech II Semester Supplementary Examinations Dec 01 1. a) Compare open loop and closed loop control systems. b) Clearly bring out, from basics, Forcecurrent and ForceVoltage analogies..
More informationSRV02Series Rotary Experiment # 1. Position Control. Student Handout
SRV02Series Rotary Experiment # 1 Position Control Student Handout SRV02Series Rotary Experiment # 1 Position Control Student Handout 1. Objectives The objective in this experiment is to introduce the
More informationLab 3: Quanser Hardware and Proportional Control
Lab 3: Quanser Hardware and Proportional Control The worst wheel of the cart makes the most noise. Benjamin Franklin 1 Objectives The goal of this lab is to: 1. familiarize you with Quanser s QuaRC tools
More informationLezione 9 30 March. Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota
Control Laboratory: a.a. 2015/2016 Lezione 9 30 March Instructor: Luca Schenato Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota What is left to do is how to design the low pass pole τ L for the
More informationTheory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati
Theory & Practice of Rotor Dynamics Prof. Rajiv Tiwari Department of Mechanical Engineering Indian Institute of Technology Guwahati Module  5 Torsional Vibrations Lecture  4 Transfer Matrix Approach
More informationIndex. Index. More information. in this web service Cambridge University Press
Atype elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 Atype variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,
More information2.4 Models of Oscillation
2.4 Models of Oscillation In this section we give three examples of oscillating physical systems that can be modeled by the harmonic oscillator equation. Such models are ubiquitous in physics, but are
More informationLesson 17: Synchronous Machines
Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines
More information2.003 Engineering Dynamics Problem Set 10 with answer to the concept questions
.003 Engineering Dynamics Problem Set 10 with answer to the concept questions Problem 1 Figure 1. Cart with a slender rod A slender rod of length l (m) and mass m (0.5kg)is attached by a frictionless pivot
More informationMechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation
Mechatronic System Case Study: Rotary Inverted Pendulum Dynamic System Investigation Dr. Kevin Craig Greenheck Chair in Engineering Design & Professor of Mechanical Engineering Marquette University K.
More informationSubject: BT6008 Process Measurement and Control. The General Control System
WALJAT COLLEGES OF APPLIED SCIENCES In academic partnership with BIRLA INSTITUTE OF TECHNOLOGY Question Bank Course: Biotechnology Session: 005006 Subject: BT6008 Process Measurement and Control Semester:
More informationEngineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration
Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Introduction to vibration Module 15 Lecture 38 Vibration of Rigid Bodies Part1 Today,
More informationMECHATRONICS ENGINEERING TECHNOLOGY. Modeling a Servo Motor System
Modeling a Servo Motor System Definitions Motor: A device that receives a continuous (Analog) signal and operates continuously in time. Digital Controller: Discretizes the amplitude of the signal and also
More informationOscillatory Motion SHM
Chapter 15 Oscillatory Motion SHM Dr. Armen Kocharian Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A
More informationMechanical Oscillations
Mechanical Oscillations Richard Spencer, Med Webster, Roy Albridge and Jim Waters September, 1988 Revised September 6, 010 1 Reading: Shamos, Great Experiments in Physics, pp. 458 Harmonic Motion.1 Free
More informationVIBRATION PROBLEMS IN ENGINEERING
VIBRATION PROBLEMS IN ENGINEERING FIFTH EDITION W. WEAVER, JR. Professor Emeritus of Structural Engineering The Late S. P. TIMOSHENKO Professor Emeritus of Engineering Mechanics The Late D. H. YOUNG Professor
More informationMULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A 4.8kg block attached to a spring executes simple harmonic motion on a frictionless
More informationHours / 100 Marks Seat No.
17322 21314 3 Hours / 100 Seat No. Instructions (1) All Questions are Compulsory. (2) Answer each next main Question on a new page. (3) Illustrate your answers with neat sketches wherever necessary. (4)
More informationModule 4: Dynamic Vibration Absorbers and Vibration Isolator Lecture 19: Active DVA. The Lecture Contains: Development of an Active DVA
The Lecture Contains: Development of an Active DVA Proof Mass Actutor Application of Active DVA file:///d /chitra/vibration_upload/lecture19/19_1.htm[6/25/2012 12:35:51 PM] In this section, we will consider
More informationEqual Pitch and Unequal Pitch:
Equal Pitch and Unequal Pitch: EqualPitch MultipleStack Stepper: For each rotor stack, there is a toothed stator segment around it, whose pitch angle is identical to that of the rotor (θs = θr). A stator
More informationSolved Problems. Electric Circuits & Components. 11 Write the KVL equation for the circuit shown.
Solved Problems Electric Circuits & Components 11 Write the KVL equation for the circuit shown. 12 Write the KCL equation for the principal node shown. 12A In the DC circuit given in Fig. 1, find (i)
More informationWORK SHEET FOR MEP311
EXPERIMENT II1A STUDY OF PRESSURE DISTRIBUTIONS IN LUBRICATING OIL FILMS USING MICHELL TILTING PAD APPARATUS OBJECTIVE To study generation of pressure profile along and across the thick fluid film (converging,
More informationIntroduction to Vibration. Professor Mike Brennan
Introduction to Vibration Professor Mie Brennan Introduction to Vibration Nature of vibration of mechanical systems Free and forced vibrations Frequency response functions Fundamentals For free vibration
More informationUNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS
ENG0016 UNIVERSITY OF BOLTON SCHOOL OF ENGINEERING BENG (HONS) IN BIOMEDICAL ENGINEERING SEMESTER 1 EXAMINATION 2017/2018 ADVANCED BIOMECHATRONIC SYSTEMS MODULE NO: BME6003 Date: Friday 19 January 2018
More information3. (a) Figure 3(a) shows a Bridge T network used in control systems. The element values are clearly marked in the figure.
I.E.S.(Conv.) 1987 ELECTRICAL ENGINEERING PAPER  I PART A 1. (a) Define precisely unit step and unit impulse functions. Sketch the following function from t = 0 to t = 10 units, indicating all salient
More informationCoupled Drive Apparatus Modelling and Simulation
University of Ljubljana Faculty of Electrical Engineering Victor Centellas Gil Coupled Drive Apparatus Modelling and Simulation Diploma thesis Menthor: prof. dr. Maja AtanasijevićKunc Ljubljana, 2015
More informationEE Branch GATE Paper 2010
Q.1 Q.25 carry one mark each 1. The value of the quantity P, where, is equal to 0 1 e 1/e 2. Divergence of the threedimensional radial vector field is 3 1/r 3. The period of the signal x(t) = 8 is 0.4
More informationState Space Representation
ME Homework #6 State Space Representation Last Updated September 6 6. From the homework problems on the following pages 5. 5. 5.6 5.7. 5.6 Chapter 5 Homework Problems 5.6. Simulation of Linear and Nonlinear
More information6) Motors and Encoders
6) Motors and Encoders Electric motors are by far the most common component to supply mechanical input to a linear motion system. Stepper motors and servo motors are the popular choices in linear motion
More informationAcousticsAn An Overview. Lecture 1. VibroAcoustics. What? Why? How? Lecture 1
VibroAcoustics AcousticsAn An Overview 1 VibroAcoustics What? Why? How? 2 Linear NonLinear Force Motion Arbitrary motion Harmonic Motion Mechanical Vibrations Sound (Acoustics) 3 Our heart beat, our
More informationWHAT A SINGLE JOINT IS MADE OF RA
Anthropomorphic robotics WHAT A SINGLE JOINT IS MADE OF Notation d F ( mv) mx Since links are physical objects with mass dt J J f i i J = moment of inertia F r F r Moment of inertia Around an axis m3 m1
More informationEngineering Science OUTCOME 2  TUTORIAL 3 FREE VIBRATIONS
Unit 2: Unit code: QCF Level: 4 Credit value: 5 Engineering Science L/60/404 OUTCOME 2  TUTORIAL 3 FREE VIBRATIONS UNIT CONTENT OUTCOME 2 Be able to determine the behavioural characteristics of elements
More information2.4 Harmonic Oscillator Models
2.4 Harmonic Oscillator Models In this section we give three important examples from physics of harmonic oscillator models. Such models are ubiquitous in physics, but are also used in chemistry, biology,
More information2. (a) Differentiate between rare metal thermocouples and base metal thermocouples.
Code No: R05410304 Set No. 1 1. (a) Distinguish between direct and indirect methods of measurement with suitable examples. (b) What are desired, modifying and interfering inputs for an instrumentation
More informationPHYSICS. Chapter 15 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.
PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 15 Lecture RANDALL D. KNIGHT Chapter 15 Oscillations IN THIS CHAPTER, you will learn about systems that oscillate in simple harmonic
More informationChapter 14 Oscillations
Chapter 14 Oscillations Chapter Goal: To understand systems that oscillate with simple harmonic motion. Slide 142 Chapter 14 Preview Slide 143 Chapter 14 Preview Slide 144 Chapter 14 Preview Slide 145
More informationBasics of Electric Circuits
António Dente Célia de Jesus February 2014 1 Alternating Current Circuits 1.1 Using Phasors There are practical and economic reasons justifying that electrical generators produce emf with alternating and
More informationRLC Circuit (3) We can then write the differential equation for charge on the capacitor. The solution of this differential equation is
RLC Circuit (3) We can then write the differential equation for charge on the capacitor The solution of this differential equation is (damped harmonic oscillation!), where 25 RLC Circuit (4) If we charge
More informationLANMARK UNIVERSITY OMUARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR.
LANMARK UNIVERSITY OMUARAN, KWARA STATE DEPARTMENT OF MECHANICAL ENGINEERING COURSE: MECHANICS OF MACHINE (MCE 322). LECTURER: ENGR. IBIKUNLE ROTIMI ADEDAYO SIMPLE HARMONIC MOTION. Introduction Consider
More informationFinal Exam December 11, 2017
Final Exam Instructions: You have 120 minutes to complete this exam. This is a closedbook, closednotes exam. You are NOT allowed to use a calculator with communication capabilities during the exam. Usage
More informationRotational Systems, Gears, and DC Servo Motors
Rotational Systems Rotational Systems, Gears, and DC Servo Motors Rotational systems behave exactly like translational systems, except that The state (angle) is denoted with rather than x (position) Inertia
More informationVTU ELEARNING NOTES ON:
VTU ELEARNING NOTES ON: 10EE35 ELECTRICAL AND ELECTRONIC MEASUREMENTS AND INSTRUMENTATION BY DR. M.S. RAVIPRAKASHA PROFESSOR & HEAD DEPT. OF E&E ENGG. MALNAD COLLEGE OF ENGG. HASSAN 573 201. SUBJECT CODE
More informationExample: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and OpenLoop Response
Page 1 of 5 Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and OpenLoop Response Physical Setup A common actuator in control systems is the
More informationChapter 15. Oscillations
Chapter 15 Oscillations 15.1 Simple Harmonic Motion Oscillatory Motion: Motion which is periodic in time; motion that repeats itself in time. Examples: SHM: Power line oscillates when the wind blows past.
More informationOscillations. PHYS 101 Previous Exam Problems CHAPTER. Simple harmonic motion Massspring system Energy in SHM Pendulums
PHYS 101 Previous Exam Problems CHAPTER 15 Oscillations Simple harmonic motion Massspring system Energy in SHM Pendulums 1. The displacement of a particle oscillating along the x axis is given as a function
More informationII/IV B.Tech. DEGREE EXAMINATIONS, NOV/DEC2017
CSE/IT 213 (CR) Total No. of Questions :09] [Total No. of Pages : 03 II/IV B.Tech. DEGREE EXAMINATIONS, NOV/DEC2017 First Semester CSE/IT BASIC ELECTRICAL AND ELECTRONICS ENGINEERING Time: Three Hours
More informationThe student will experimentally determine the parameters to represent the behavior of a damped oscillatory system of one degree of freedom.
Practice 3 NAME STUDENT ID LAB GROUP PROFESSOR INSTRUCTOR Vibrations of systems of one degree of freedom with damping QUIZ 10% PARTICIPATION & PRESENTATION 5% INVESTIGATION 10% DESIGN PROBLEM 15% CALCULATIONS
More informationLaboratory notes. Torsional Vibration Absorber
Titurus, Marsico & Wagg Torsional Vibration Absorber UoB/111, v1. Laboratory notes Torsional Vibration Absorber Contents 1 Objectives... Apparatus... 3 Theory... 3 3.1 Background information... 3 3. Undamped
More informationVibrations Qualifying Exam Study Material
Vibrations Qualifying Exam Study Material The candidate is expected to have a thorough understanding of engineering vibrations topics. These topics are listed below for clarification. Not all instructors
More informationChapter 15 Periodic Motion
Chapter 15 Periodic Motion Slide 11 Chapter 15 Periodic Motion Concepts Slide 12 Section 15.1: Periodic motion and energy Section Goals You will learn to Define the concepts of periodic motion, vibration,
More informationImplementation Issues for the Virtual Spring
Implementation Issues for the Virtual Spring J. S. Freudenberg EECS 461 Embedded Control Systems 1 Introduction One of the tasks in Lab 4 is to attach the haptic wheel to a virtual reference position with
More informationRotary Motion Servo Plant: SRV02. Rotary Experiment #11: 1DOF Torsion. 1DOF Torsion Position Control using QuaRC. Student Manual
Rotary Motion Servo Plant: SRV02 Rotary Experiment #11: 1DOF Torsion 1DOF Torsion Position Control using QuaRC Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1 3. OVERVIEW OF
More informationGATE 2008 Electrical Engineering
GATE 2008 Electrical Engineering Q.1 Q. 20 carry one mark each. 1. The number of chords in the graph of the given circuit will be + _ (A) 3 (B) 4 (C) 5 (D) 6 2. The Thevenin'a equivalent of a circuit operating
More informationUnforced Oscillations
Unforced Oscillations Simple Harmonic Motion Hooke s Law Newton s Second Law Method of Force Competition Visualization of Harmonic Motion PhaseAmplitude Conversion The Simple Pendulum and The Linearized
More informationGATE 2010 Electrical Engineering
GATE 2010 Electrical Engineering Q.1 Q.25 carry one mark each 1. The value of the quantity P, where P = xe dx, is equal to (A) 0 (B) 1 (C) e (D) 1/e 2. Divergence of the threedimensional radial vector
More informationDcMotor_ Model Help File
Name of Model: DcMotor_021708 Author: Vladimir L. Chervyakov Date: 20021026 Executable file name DcMotor_021708.vtm Version number: 1.0 Description This model represents a Nonlinear model of a permanent
More informationSchool of Engineering Faculty of Built Environment, Engineering, Technology & Design
Module Name and Code : ENG60803 Real Time Instrumentation Semester and Year : Semester 5/6, Year 3 Lecture Number/ Week : Lecture 3, Week 3 Learning Outcome (s) : LO5 Module Coordinator/Tutor : Dr. Phang
More information