Biophysics of Macromolecules

Size: px
Start display at page:

Download "Biophysics of Macromolecules"

Transcription

1 Biophysics of Macromolecules Lecture 11: Dynamic Force Spectroscopy Rädler/Lipfert SS Forced Ligand-Receptor Unbinding - Bell-Evans Theory 22. Mai. 2014

2 AFM experiments with single molecules custom-built instrument (M. Rief, H. Gaub et al., Science 275, 1295 (1997)):" Deflection" Piezopath" intermolecular forces" (binding interactions)" intramolecular forces" (polymer elasticity)" Force [pn]" 600" 400" 200" 0" -200" -400" 0" 100" 200" 300" 400" Extension [nm]"

3 Measuring the binding strength of individual ligand-receptor pair commercial instrument designed for! high resolution imaging:! H.L. Florin, H. Gaub et al., " Science 264, " 415 (1994)" lense" laser! " diode" segmented! photodiode! biotin" avidin! agarose bead" sample" x-y-z-! piezo! tube" " Das Bild kann nicht angezeigt werden. Dieser Computer D verfügt möglicherweise über zu wenig Arbeitsspeicher, um das Bild D zu öffnen, oder das Bild ist beschädigt. Starten Sie den Computer neu, und öffnen Sie dann erneut die Datei. Wenn weiterhin das rote x angezeigt wird, müssen Sie das Bild möglicherweise löschen und dann erneut einfügen. cantilever with! integrated tip" " Counts " 200" 400" 600" 800" 1000" adhesion force [pn] Precision: position accuracy ~ 0.1 nm!! Sensitivity: measuring forces < 10 pn! adhesion force quantized! in integer multiples of ~160 pn!

4 Principle of the biomembrane force probe (BFP)! R. Merkel, Physics Reports 346, 343 (2001)"

5 The rupture force is loading rate dependent! Slow retraction (10 pn/sec ) Fast retraction (60000 pn/sec ) Evans, Annu. Rev. Biophys. Biomol. Struct :105 28

6 Biotin-streptavidin bond strength measured by BFP! Merkel et al., Nature 397, 50 (1999)"

7 Probing potential landscapes by dynamic force spectroscopy" R. Merkel et al., Nature 397, 50 (1999)" External force along the molecular coordinate, x " adds a mechanical potential to the energy landsscape" inner barrier dominates! when outer barrier falls! below k B T! sharp barriers (transition states) change little" in shape or location under force, while" shallow barriers may completely vanish"

8 Desorption of single polymer chains from a solid surface! F Kraft! L k off << F s F u Binding sites! Between polymer! and substrate Länge! k on k off 'Kraft! k off >> F s F u s L Länge!

9 Chemical bonds in equilibrium k S D 1 S 2 k A S 2 [ ] = k off [ S 1 ] [ S 1 ] = k on S 2 [ ] [ S 2 ] [ ] = k off S 1 k on S 1 and S 2 are different states, e.g.conformations of a protein Free energy landscape G = H TS S 2 [ S ] ΔG 2 [ S ] = e kt 1 = k off k on =: K eq S 1 Δx ΔG(0) Def.: equilibrium constant

10 The energy landscape tilts under external force ΔG(F) ΔG(0) FΔx Δx ΔG(0) [ S ] ΔG FΔx 2 [ S ] (F) = K kt eq (F) = e 1

11 Chemische Bindungen unter Kraft II: Nichtgleichgewicht Beispiel: Das Rezeptor-Ligand System Biotin-Avidin k off (F) BA A + B Die Polymeranker verhindern eine mögliche Rückbindung k on =0 Gaub/SS 2005 BPM

12 The rate of escape is force dependent k off k off (F) ΔG a * : Free activation energy ΔG a* ΔG (F) a* (F=0) Arrhenius: Δx a * k off = ν e ΔG a kt ν: attempt frequency Under external force: k off = ν e ΔG a * F Δx a kt FΔx k off (F) = k 0 kt off e The escape rate increases exponentially under force (Bell, 1978) Gaub/SS 2005 BPM

13 Rate of Escape Over an Idealized Barrier Kramer Theory (1956) k off = ν e ΔG a kt * k off The attempts are described as a diffusive motion in a potential ν = l c l st D Δx a l c represents the thermal spread in bound states ound states limited by the rise in ene l c = R dx exp[ 1E c (x)/k B T]. l c 2πkT /κ c l ST 2πkT /κ ST κ c curvature at the minimum κ ST curvature at the maximum ν = τ D 1 = κ c κ ST / 2πζ m Kramers formula

14 k off (F) BA A + B Bond rupture as a statistical prozess dn BA = k off n BA dt dp Z = P Ü k off (t) dt dp Z : Probability that a bond breaks in the time interval dt P Z : Probability that bond is broken at time t P ü : Probability that bond still exisits at time t ( ) k off (t) dt dp Z = 1 P Z P Ü =1 P Z Spring const. Loading rate f(t) = v P k C t with: dp Z df (F) dp Z (F) ΔF df P Z (T )= 1 e P Z (F)= 1 e T 0 1 v P k C k off (t ) dt k off (f ) df dp Z df (F)= 1 k v P k off (F) e C : Probability density of bond rupture. Gaub/SS 2005 BPM F 0 1 v P k C Probability that a bond ruptures in the force interval F 0 k off (f ) df

15 dp Z df (F)= 1 k off (F) e v P k C mit: 1 v P k C ( k off (F) = k 0 e ΔG * F Δx a ) k B T F 0 k off (f ) df ( ΔG* F Δx a ) 1 k dp Z df (F)= k B T 0 e v P k C * k, B T k 0, e v P k C Δx, a, + $ & ΔG * F Δx % a k B T ' ) ( ΔG* k e B T - / / / /. Maximum of the probability density yields most probable rupture force F A F A = kt $ ln Δx a k ' & c ) Δx a %& α 0 kt () + kt ln v Δx P a k 0 [ ] Gaub/SS 2005 BPM

16 F A = kt " % $ Δ x a k c ' ln$ ' + kt ln v P Δ x a # $ α 0 kt &' Δ x a k 0 [ ] Force [pn] Δ x=3å 1/ s 1/30000 s 1/3000 s 1/300 s 1/30 s Force [pn] k =1/30000 s 0 1Å 2Å 3Å 4Å 5Å Pulling Speed [m/s] Pulling Speed [m/s] Ratedependent force measurements yield information about the width of the energy landscape (Δx a ). Gaub/SS 2005 BPM

17 Die Verteilung der Entfaltungskräfte von Titindomänen spiegeln die Zufallsnatur des Bindungsbruchprozesses wider. Gaub/SS 2005 BPM

18 Schlußfolgerungen 1. Bindungsbrüche sind thermisch aktivierte statistische Prozesse und haben dementsprechend keinen scharfen Wert sondern eine charakteristische Verteilung 2. Die Bruchkräfte hängen von der Geschwindigkeit ab, mit der ein Experiment durchgeführt wird.

Imaging and quantification of nanoparticle uptake by ICP-MS based techniques

Imaging and quantification of nanoparticle uptake by ICP-MS based techniques www.nanovalid.eu Date MARINA and NanoValid International Conference Event )tle 29 September 2015 OECD Conference Center 2, rue André Pascal, 5775 Paris Cedex 16, France Imaging and quantification of nanoparticle

More information

U. S. Contributions to COPS: Satellite-estimated Convective Initiation

U. S. Contributions to COPS: Satellite-estimated Convective Initiation U. S. Contributions to COPS: Satellite-estimated Convective Initiation John R. Mecikalski 1, Kristopher M. Bedka 2 Simon J. Paech 1, Todd A. Berendes 1, Wayne M. Mackenzie 1 1 Atmospheric Science Department

More information

Labelling strategies in the NMR structure determination of larger proteins

Labelling strategies in the NMR structure determination of larger proteins Labelling strategies in the NMR structure determination of larger proteins - Difficulties of studying larger proteins - The effect of deuteration on spectral complexity and relaxation rates - NMR expts

More information

Lecture 12: Biomaterials Characterization in Aqueous Environments

Lecture 12: Biomaterials Characterization in Aqueous Environments 3.051J/20.340J 1 Lecture 12: Biomaterials Characterization in Aqueous Environments High vacuum techniques are important tools for characterizing surface composition, but do not yield information on surface

More information

thiol monolayers by means of high-rate dynamic force spectroscopy

thiol monolayers by means of high-rate dynamic force spectroscopy 1) Max Planck Institute for Polymer Research 2) Poznan University of Technology Adhesion on self-assembled thiol monolayers by means of high-rate dynamic force spectroscopy Hubert Gojżewski 1,2, Arkadiusz

More information

Measurements of interaction forces in (biological) model systems

Measurements of interaction forces in (biological) model systems Measurements of interaction forces in (biological) model systems Marina Ruths Department of Chemistry, UMass Lowell What can force measurements tell us about a system? Depending on the technique, we might

More information

Scanning Force Microscopy. i.e. Atomic Force Microscopy. Josef A. Käs Institute for Soft Matter Physics Physics Department. Atomic Force Microscopy

Scanning Force Microscopy. i.e. Atomic Force Microscopy. Josef A. Käs Institute for Soft Matter Physics Physics Department. Atomic Force Microscopy Scanning Force Microscopy i.e. Atomic Force Microscopy Josef A. Käs Institute for Soft Matter Physics Physics Department Atomic Force Microscopy Single Molecule Force Spectroscopy Zanjan 4 Hermann E. Gaub

More information

Structural investigation of single biomolecules

Structural investigation of single biomolecules Structural investigation of single biomolecules NMR spectroscopy and X-ray crystallography are currently the most common techniques capable of determining the structures of biological macromolecules like

More information

Dynamic Force Spectroscopy of the Silicon Carbon Bond

Dynamic Force Spectroscopy of the Silicon Carbon Bond Hochschule für angewandte Wissenschaften FH München Fakultät 06 Feinwerk- und Mikrotechnik, Physikalische Technik Mikro- und Nanotechnik Master Thesis Dynamic Force Spectroscopy of the Silicon Carbon Bond

More information

Atomic and molecular interactions. Scanning probe microscopy.

Atomic and molecular interactions. Scanning probe microscopy. Atomic and molecular interactions. Scanning probe microscopy. Balázs Kiss Nanobiotechnology and Single Molecule Research Group, Department of Biophysics and Radiation Biology 27. November 2013. 2 Atomic

More information

PROBING THE RELATION BETWEEN FORCE LIFETIME AND CHEMISTRY

PROBING THE RELATION BETWEEN FORCE LIFETIME AND CHEMISTRY Annu. Rev. Biophys. Biomol. Struct. 2001. 30:105 28 Copyright c 2001 by Annual Reviews. All rights reserved PROBING THE RELATION BETWEEN FORCE LIFETIME AND CHEMISTRY IN SINGLE MOLECULAR BONDS Evan Evans

More information

3.052 Nanomechanics of Materials and Biomaterials Tuesday 04/03/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 13: MIDTERM #1 SOLUTIONS REVIEW

3.052 Nanomechanics of Materials and Biomaterials Tuesday 04/03/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 13: MIDTERM #1 SOLUTIONS REVIEW I LECTURE 13: MIDTERM #1 SOLUTIONS REVIEW Outline : HIGH RESOLUTION FORCE SPECTROSCOPY...2-10 General Experiment Description... 2 Verification of Surface Functionalization:Imaging of Planar Substrates...

More information

Biomolecular Interactions Measured by Atomic Force Microscopy

Biomolecular Interactions Measured by Atomic Force Microscopy Biophysical Journal Volume 79 December 2000 3267 3281 3267 Biomolecular Interactions Measured by Atomic Force Microscopy Oscar H. Willemsen,* Margot M. E. Snel,* Alessandra Cambi, Jan Greve,* Bart G. De

More information

3.052 Nanomechanics of Materials and Biomaterials Thursday 02/15/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 4: FORCE-DISTANCE CURVES

3.052 Nanomechanics of Materials and Biomaterials Thursday 02/15/07 Prof. C. Ortiz, MIT-DMSE I LECTURE 4: FORCE-DISTANCE CURVES I LECTURE 4: FORCE-DISTANCE CURVES Outline : LAST TIME : ADDITIONAL NANOMECHANICS INSTRUMENTATION COMPONENTS... 2 PIEZOS TUBES : X/Y SCANNING... 3 GENERAL COMPONENTS OF A NANOMECHANICAL DEVICE... 4 HIGH

More information

Phys 450 Spring 2011 Solution set 6. A bimolecular reaction in which A and B combine to form the product P may be written as:

Phys 450 Spring 2011 Solution set 6. A bimolecular reaction in which A and B combine to form the product P may be written as: Problem Phys 45 Spring Solution set 6 A bimolecular reaction in which A and combine to form the product P may be written as: k d A + A P k d k a where k d is a diffusion-limited, bimolecular rate constant

More information

Introductory guide to measuring the mechanical properties of nanoobjects/particles

Introductory guide to measuring the mechanical properties of nanoobjects/particles Jeremias Seppä MIKES Metrology, VTT Technical Research Centre of Finland Ltd P.O. Box 1000, FI-02044 VTT, Finland Contents: AFM Cantilever calibration F-d curves and cantilever bending Hitting the particles

More information

Steered Molecular Dynamics Introduction and Examples

Steered Molecular Dynamics Introduction and Examples Steered Molecular Dynamics Introduction and Examples Klaus Schulten Justin Gullingsrud Hui Lu avidin Sergei Izrailev biotin Rosemary Braun Ferenc Molnar Dorina Kosztin Barry Isralewitz Why Steered Molecular

More information

PC IV Grenzflächen WS 2011/12. Adsorptions- und Desorptionsdynamik

PC IV Grenzflächen WS 2011/12. Adsorptions- und Desorptionsdynamik Adsorptions- und Desorptionsdynamik Gas-Surface Dynamics Pd(111) / He 300 K direct scattering sticking Pd(111) / CO 300 K trapping desorption T. Engel & G. Ertl, ~1980 He Beugung rekonstruierte Au(111)

More information

Announcements & Lecture Points

Announcements & Lecture Points Announcements & Lecture Points Homework 3 (Klaus Schulten s Lecture): Due Wednesday. Quiz returned, next homework on Wednesday. Today s Lecture: Protein Folding, Misfolding, Aggregation. Experimental Approach

More information

Evaluation of the binding energy of viral capsid proteins using a Virtual AFM

Evaluation of the binding energy of viral capsid proteins using a Virtual AFM Departament de Física de la Matèria Condensada, Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisor: Prof. David Reguera López Abstract: Viruses are biological agents

More information

arxiv:cond-mat/ v2 [cond-mat.soft] 29 Nov 2004

arxiv:cond-mat/ v2 [cond-mat.soft] 29 Nov 2004 arxiv:cond-mat/411654v2 [cond-mat.soft] 29 Nov 24 ork probability distribution in single molecule experiments Alberto Imparato ( ) and Luca Peliti ( ) Dipartimento di Scienze Fisiche and Unità INFM, Università

More information

Electrically controlled DNA adhesion

Electrically controlled DNA adhesion SUPPLEMENTARY INFORMATION Electrically controlled DNA adhesion Matthias Erdmann, Ralf David +, Ann Fornof and Hermann E. Gaub* Chair for Applied Physics and Center for NanoScience, Ludwigs-Maximilians-Universität

More information

h m h a + ρ c h c + ρ a + ρ m

h m h a + ρ c h c + ρ a + ρ m Beckenanalyse 1. Subsidenz Hohe Sediment-Akkumulation und die Bildung Sedimentärer Becken sind nicht möglich ohne entsprechenden Subsidenz. Subsidenz beschreibt die Senkung der Erdoberfläche (Landoberfläche

More information

Advanced Physical Chemistry CHAPTER 18 ELEMENTARY CHEMICAL KINETICS

Advanced Physical Chemistry CHAPTER 18 ELEMENTARY CHEMICAL KINETICS Experimental Kinetics and Gas Phase Reactions Advanced Physical Chemistry CHAPTER 18 ELEMENTARY CHEMICAL KINETICS Professor Angelo R. Rossi http://homepages.uconn.edu/rossi Department of Chemistry, Room

More information

K ex. Conformational equilibrium. equilibrium K B

K ex. Conformational equilibrium. equilibrium K B Effects of Chemical Exchange on NMR Spectra Chemical exchange refers to any yprocess in which a nucleus exchanges between two or more environments in which its NMR parameters (e.g. chemical shift, scalar

More information

Swelling and Collapse of Single Polymer Molecules and Gels.

Swelling and Collapse of Single Polymer Molecules and Gels. Swelling and Collapse of Single Polymer Molecules and Gels. Coil-Globule Transition in Single Polymer Molecules. the coil-globule transition If polymer chains are not ideal, interactions of non-neighboring

More information

Instrumentation and Operation

Instrumentation and Operation Instrumentation and Operation 1 STM Instrumentation COMPONENTS sharp metal tip scanning system and control electronics feedback electronics (keeps tunneling current constant) image processing system data

More information

TOPIC 6: Chemical kinetics

TOPIC 6: Chemical kinetics TOPIC 6: Chemical kinetics Reaction rates Reaction rate laws Integrated reaction rate laws Reaction mechanism Kinetic theories Arrhenius law Catalysis Enzimatic catalysis Fuente: Cedre http://loincognito.-iles.wordpress.com/202/04/titanic-

More information

Lecture 4 Scanning Probe Microscopy (SPM)

Lecture 4 Scanning Probe Microscopy (SPM) Lecture 4 Scanning Probe Microscopy (SPM) General components of SPM; Tip --- the probe; Cantilever --- the indicator of the tip; Tip-sample interaction --- the feedback system; Scanner --- piezoelectric

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics 1 Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 5, April 14, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/

More information

Organische Chemie IV: Organische Photochemie

Organische Chemie IV: Organische Photochemie Organische Chemie IV: Organische Photochemie Wintersemester 2014/15 Technische Universität München Klausur am 05.02.2015 Name, Vorname... Matrikel-Nr.... (Druckbuchstaben) geboren am... in...... (Eigenhändige

More information

The Kramers problem and first passage times.

The Kramers problem and first passage times. Chapter 8 The Kramers problem and first passage times. The Kramers problem is to find the rate at which a Brownian particle escapes from a potential well over a potential barrier. One method of attack

More information

Scanning Force Microscopy

Scanning Force Microscopy Scanning Force Microscopy Roland Bennewitz Rutherford Physics Building 405 Phone 398-3058 roland.bennewitz@mcgill.ca Scanning Probe is moved along scan lines over a sample surface 1 Force Microscopy Data

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 5, April 14, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Mechanical stability and internal friction of GB1 protein

Mechanical stability and internal friction of GB1 protein Lehigh University Lehigh Preserve Theses and Dissertations 2013 Mechanical stability and internal friction of GB1 protein WEI ZHANG Lehigh University Follow this and additional works at: http://preserve.lehigh.edu/etd

More information

Multi-Bead-and-Spring Model to Interpret Protein Detachment Studied by AFM Force Spectroscopy

Multi-Bead-and-Spring Model to Interpret Protein Detachment Studied by AFM Force Spectroscopy 706 Biophysical Journal Volume 83 August 2002 706 722 Multi-Bead-and-Spring Model to Interpret Protein Detachment Studied by AFM Force Spectroscopy Csilla Gergely,* Joseph Hemmerlé,* Pierre Schaaf, J.

More information

Visualizing folding of proteins (1 3) and RNA (2) in terms of

Visualizing folding of proteins (1 3) and RNA (2) in terms of Can energy landscape roughness of proteins and RNA be measured by using mechanical unfolding experiments? Changbong Hyeon and D. Thirumalai Chemical Physics Program, Institute for Physical Science and

More information

Nature Methods: doi: /nmeth Supplementary Figure 1. Principle of force-distance (FD) curve based AFM.

Nature Methods: doi: /nmeth Supplementary Figure 1. Principle of force-distance (FD) curve based AFM. Supplementary Figure 1 Principle of force-distance (FD) curve based AFM. (a) FD-based AFM contours the sample surface while oscillating the AFM tip with a sine wave at a frequency of 0.25 khz. Pixel-by-pixel

More information

Mechanical forces play an increasingly recognized role in

Mechanical forces play an increasingly recognized role in Theory, analysis, and interpretation of single-molecule force spectroscopy experiments Olga K. Dudko, Gerhard Hummer, and Attila Szabo Department of Physics and Center for Theoretical Biological Physics,

More information

Intermolecular forces and enthalpies in bacterial adhesion

Intermolecular forces and enthalpies in bacterial adhesion Intermolecular forces and enthalpies in bacterial adhesion Henk J. Busscher, Henny C. van der Mei and Willem Norde University Medical Center Groningen and University of Groningen Department of BioMedical

More information

Energy Barriers and Rates - Transition State Theory for Physicists

Energy Barriers and Rates - Transition State Theory for Physicists Energy Barriers and Rates - Transition State Theory for Physicists Daniel C. Elton October 12, 2013 Useful relations 1 cal = 4.184 J 1 kcal mole 1 = 0.0434 ev per particle 1 kj mole 1 = 0.0104 ev per particle

More information

Lecture Note October 1, 2009 Nanostructure characterization techniques

Lecture Note October 1, 2009 Nanostructure characterization techniques Lecture Note October 1, 29 Nanostructure characterization techniques UT-Austin PHYS 392 T, unique # 5977 ME 397 unique # 1979 CHE 384, unique # 151 Instructor: Professor C.K. Shih Subjects: Applications

More information

Flexing Protein muscles: How to Pull with a "Burning Rope"

Flexing Protein muscles: How to Pull with a Burning Rope Flexing Protein muscles: How to Pull with a "Burning Rope" J. P. Keener 215 Joint International Conference on via Guangzhou University and Huaihua University Huaihua 8/15 p.1/28 Eukaryotic Chromosomal

More information

Nonlinear Dynamic Force Spectroscopy

Nonlinear Dynamic Force Spectroscopy Manuscript version riday, July 01, 016 Nonlinear Dynamic orce Spectroscopy Oscar Björnham 1 and Magnus Andersson,3 1 Swedish Defence Research Agency (OI), SE-906 1 Umeå, Sweden, Department of Physics,

More information

Supplemental Information - Glassy Dynamics in Composite Biopolymer Networks

Supplemental Information - Glassy Dynamics in Composite Biopolymer Networks Electronic Supplementary Material (ESI) for Soft Matter. This journal is The Royal Society of Chemistry 2018 Supplemental Information - Glassy Dynamics in Composite Biopolymer Networks Tom Golde, 1 Constantin

More information

The four forces of nature. Intermolecular forces, surface forces & the Atomic Force Microscope (AFM) Force- and potential curves

The four forces of nature. Intermolecular forces, surface forces & the Atomic Force Microscope (AFM) Force- and potential curves Intermolecular forces, surface forces & the Atomic Force Microscope (AFM) The four forces of nature Strong interaction Holds neutrons and protons together in atomic nuclei. Weak interaction β and elementary

More information

Synthetic Nanopore Force- Spectroscopy

Synthetic Nanopore Force- Spectroscopy Synthetic Nanopore Force- Spectroscopy Andre Marziali Department of Physics and Astronomy University of British Columbia Nanopore force spectroscopy DNA-DNA Interactions - Genotyping (SNP) Receptor-Ligand

More information

Untangling the Mechanics of Entangled Biopolymers

Untangling the Mechanics of Entangled Biopolymers Untangling the Mechanics of Entangled Biopolymers Rae M. Robertson-Anderson Physics Department University of San Diego students/postdocs: Cole Chapman, PhD Tobias Falzone, PhD Stephanie Gorczyca, USD 16

More information

Recently developed single-molecule atomic force microscope

Recently developed single-molecule atomic force microscope Stepwise unfolding of titin under force-clamp atomic force microscopy Andres F. Oberhauser*, Paul K. Hansma, Mariano Carrion-Vazquez*, and Julio M. Fernandez* *Department of Physiology and Biophysics,

More information

140a Final Exam, Fall 2007., κ T 1 V P. (? = P or V ), γ C P C V H = U + PV, F = U TS G = U + PV TS. T v. v 2 v 1. exp( 2πkT.

140a Final Exam, Fall 2007., κ T 1 V P. (? = P or V ), γ C P C V H = U + PV, F = U TS G = U + PV TS. T v. v 2 v 1. exp( 2πkT. 4a Final Exam, Fall 27 Data: P 5 Pa, R = 8.34 3 J/kmol K = N A k, N A = 6.2 26 particles/kilomole, T C = T K 273.5. du = TdS PdV + i µ i dn i, U = TS PV + i µ i N i Defs: 2 β ( ) V V T ( ) /dq C? dt P?

More information

Single-Molecule Recognition and Manipulation Studied by Scanning Probe Microscopy

Single-Molecule Recognition and Manipulation Studied by Scanning Probe Microscopy Single-Molecule Recognition and Manipulation Studied by Scanning Probe Microscopy Byung Kim Department of Physics Boise State University Langmuir (in press, 2006) swollen collapsed Hydrophilic non-sticky

More information

Piezoelectric Multilayer Beam Bending Actuators

Piezoelectric Multilayer Beam Bending Actuators Microtechnology and MEMS Piezoelectric Multilayer Beam Bending Actuators Static and Dynamic Behavior and Aspects of Sensor Integration Bearbeitet von Rüdiger G Ballas 1. Auflage 7. Buch. XXIII, 358 S.

More information

Capillarity. ESS5855 Lecture Fall 2010

Capillarity. ESS5855 Lecture Fall 2010 Capillarity ESS5855 Lecture Fall 2010 Capillarity: the tendency of a liquid in a narrow tube or pore to rise or fall as a result of surface tension (The concise Oxford Dictionary) Surface tension: the

More information

Characterization of MEMS Devices

Characterization of MEMS Devices MEMS: Characterization Characterization of MEMS Devices Prasanna S. Gandhi Assistant Professor, Department of Mechanical Engineering, Indian Institute of Technology, Bombay, Recap Characterization of MEMS

More information

PY5020 Nanoscience Scanning probe microscopy

PY5020 Nanoscience Scanning probe microscopy PY500 Nanoscience Scanning probe microscopy Outline Scanning tunnelling microscopy (STM) - Quantum tunnelling - STM tool - Main modes of STM Contact probes V bias Use the point probes to measure the local

More information

Formation and breakage of noncovalent protein protein interactions

Formation and breakage of noncovalent protein protein interactions Dynamics of unbinding of cell adhesion molecules: Transition from catch to slip bonds V. Barsegov and D. Thirumalai Institute for Physical Science and Technology and Department of Chemistry and Biochemistry,

More information

Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions

Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions Supplemental Information Linker Dependent Bond Rupture Force Measurements in Single-Molecule Junctions M. Frei 1, S Aradhya 1, M. S. Hybertsen 2, L. Venkataraman 1 1 Department of Applied Physics and Applied

More information

3.5. Kinetic Approach for Isotherms

3.5. Kinetic Approach for Isotherms We have arrived isotherm equations which describe adsorption from the two dimensional equation of state via the Gibbs equation (with a saturation limit usually associated with monolayer coverage). The

More information

11.1. FÖRSTER RESONANCE ENERGY TRANSFER

11.1. FÖRSTER RESONANCE ENERGY TRANSFER 11-1 11.1. FÖRSTER RESONANCE ENERGY TRANSFER Förster resonance energy transfer (FRET) refers to the nonradiative transfer of an electronic excitation from a donor molecule to an acceptor molecule: D *

More information

BMB November 17, Single Molecule Biophysics (I)

BMB November 17, Single Molecule Biophysics (I) BMB 178 2017 November 17, 2017 14. Single Molecule Biophysics (I) Goals 1. Understand the information SM experiments can provide 2. Be acquainted with different SM approaches 3. Learn to interpret SM results

More information

Atomic Force Microscopy imaging and beyond

Atomic Force Microscopy imaging and beyond Atomic Force Microscopy imaging and beyond Arif Mumtaz Magnetism and Magnetic Materials Group Department of Physics, QAU Coworkers: Prof. Dr. S.K.Hasanain M. Tariq Khan Alam Imaging and beyond Scanning

More information

STM: Scanning Tunneling Microscope

STM: Scanning Tunneling Microscope STM: Scanning Tunneling Microscope Basic idea STM working principle Schematic representation of the sample-tip tunnel barrier Assume tip and sample described by two infinite plate electrodes Φ t +Φ s =

More information

Adventures in nanoscale mechanics. Peter M. Hoffmann Department of Physics & Astronomy Wayne State University

Adventures in nanoscale mechanics. Peter M. Hoffmann Department of Physics & Astronomy Wayne State University Adventures in nanoscale mechanics Peter M. Hoffmann Department of Physics & Astronomy Wayne State University What s so special about the nanoscale? Na no tech nol o gy Noun, From the Greek, for give me

More information

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM)

Basic Laboratory. Materials Science and Engineering. Atomic Force Microscopy (AFM) Basic Laboratory Materials Science and Engineering Atomic Force Microscopy (AFM) M108 Stand: 20.10.2015 Aim: Presentation of an application of the AFM for studying surface morphology. Inhalt 1.Introduction...

More information

Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability

Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Lecture 2-3: Review of forces (ctd.) and elementary statistical mechanics. Contributions to protein stability Part I. Review of forces Covalent bonds Non-covalent Interactions Van der Waals Interactions

More information

2 Reaction kinetics in gases

2 Reaction kinetics in gases 2 Reaction kinetics in gases October 8, 2014 In a reaction between two species, for example a fuel and an oxidizer, bonds are broken up and new are established in the collision between the species. In

More information

Mechanical Proteins. Stretching imunoglobulin and fibronectin. domains of the muscle protein titin. Adhesion Proteins of the Immune System

Mechanical Proteins. Stretching imunoglobulin and fibronectin. domains of the muscle protein titin. Adhesion Proteins of the Immune System Mechanical Proteins F C D B A domains of the muscle protein titin E Stretching imunoglobulin and fibronectin G NIH Resource for Macromolecular Modeling and Bioinformatics Theoretical Biophysics Group,

More information

Single-Molecule Force Spectroscopy on Poly(acrylic acid) by AFM

Single-Molecule Force Spectroscopy on Poly(acrylic acid) by AFM 2120 Langmuir 1999, 15, 2120-2124 Single-Molecule Force Spectroscopy on Poly(acrylic acid) by AFM Hongbin Li, Bingbing Liu, Xi Zhang,*, Chunxiao Gao, Jiacong Shen, and Guangtian Zou Key Lab for Supramolecular

More information

FROM LOCALIZATION TO INTERACTION

FROM LOCALIZATION TO INTERACTION EPFL SV PTBIOP FROM LOCALIZATION TO INTERACTION BIOP COURSE 2015 COLOCALIZATION TYPICAL EXAMPLE EPFL SV PTBIOP Vinculin Alexa568 Actin Alexa488 http://www.olympusconfocal.com/applications/colocalization.html

More information

Tecniche sperimentali: le optical tweezers

Tecniche sperimentali: le optical tweezers Tecniche sperimentali: le optical tweezers Le tecniche di molecola singola rispetto a quelle di insieme ensemble z z z z z z frequency activity activity time z z z Single molecule frequency activity activity

More information

Lecture 10 Thin Film Growth

Lecture 10 Thin Film Growth Lecture 10 Thin Film Growth 1/76 Announcements Homework: Homework Number 2 is returned today, please pick it up from me at the end of the class. Solutions are online. Homework 3 will be set Thursday (2

More information

Multimedia : Fibronectin and Titin unfolding simulation movies.

Multimedia : Fibronectin and Titin unfolding simulation movies. I LECTURE 21: SINGLE CHAIN ELASTICITY OF BIOMACROMOLECULES: THE GIANT PROTEIN TITIN AND DNA Outline : REVIEW LECTURE #2 : EXTENSIBLE FJC AND WLC... 2 STRUCTURE OF MUSCLE AND TITIN... 3 SINGLE MOLECULE

More information

Minimal encounter time and separation determine ligand-receptor binding in cell adhesion SUPPLEMENTARY INFORMATION

Minimal encounter time and separation determine ligand-receptor binding in cell adhesion SUPPLEMENTARY INFORMATION Minimal encounter time and separation determine ligand-receptor binding in cell adhesion SUPPLEMENTARY INFORMATION Philippe Robert Alice Nicolas Said Aranda-Espinoza Pierre Bongrand Laurent Limozin Molecular

More information

Lecture 34 Protein Unfolding Thermodynamics

Lecture 34 Protein Unfolding Thermodynamics Physical Principles in Biology Biology 3550 Fall 2018 Lecture 34 Protein Unfolding Thermodynamics Wednesday, 21 November c David P. Goldenberg University of Utah goldenberg@biology.utah.edu Clicker Question

More information

MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy. Byungha Shin Dept. of MSE, KAIST

MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy. Byungha Shin Dept. of MSE, KAIST 2015 Fall Semester MS482 Materials Characterization ( 재료분석 ) Lecture Note 11: Scanning Probe Microscopy Byungha Shin Dept. of MSE, KAIST 1 Course Information Syllabus 1. Overview of various characterization

More information

Lecture 15 - The pn Junction Diode (I) I-V Characteristics. November 1, 2005

Lecture 15 - The pn Junction Diode (I) I-V Characteristics. November 1, 2005 6.012 - Microelectronic Devices and Circuits - Fall 2005 Lecture 15-1 Lecture 15 - The pn Junction Diode (I) I-V Characteristics November 1, 2005 Contents: 1. pn junction under bias 2. I-V characteristics

More information

L. Introduction to Chemical Engineering ETH Zürich. Page 1 of 7 FS Prof. Marco Mazzotti Written Examination,

L. Introduction to Chemical Engineering ETH Zürich. Page 1 of 7 FS Prof. Marco Mazzotti Written Examination, Introduction to Chemical Engineering ETH Zürich Page 1 of 7 FS 2017 151-0942-00L Introduction to Chemical Engineering Prof. Marco Mazzotti Written Examination, 29.05.2017, 15:0016:00 Student Name: ETH

More information

GEM4 Summer School OpenCourseWare

GEM4 Summer School OpenCourseWare GEM4 Summer School OpenCourseWare http://gem4.educommons.net/ http://www.gem4.org/ Lecture: Polymer Chains by Ju Li. Given August 16, 2006 during the GEM4 session at MIT in Cambridge, MA. Please use the

More information

Lecture 27. Transition States and Enzyme Catalysis

Lecture 27. Transition States and Enzyme Catalysis Lecture 27 Transition States and Enzyme Catalysis Reading for Today: Chapter 15 sections B and C Chapter 16 next two lectures 4/8/16 1 Pop Question 9 Binding data for your thesis protein (YTP), binding

More information

Supplementary Information

Supplementary Information Supplementary Information Mechanical unzipping and rezipping of a single SNARE complex reveals hysteresis as a force-generating mechanism Duyoung Min, Kipom Kim, Changbong Hyeon, Yong Hoon Cho, Yeon-Kyun

More information

Detailed AFM Force Spectroscopy of the Interaction between. CD44-IgG-Fusion Protein and Hyaluronan

Detailed AFM Force Spectroscopy of the Interaction between. CD44-IgG-Fusion Protein and Hyaluronan Electronic Supplementary Material to: Detailed AFM Force Spectroscopy of the Interaction between CD44-IgG-Fusion Protein and Hyaluronan Aernout A. Martens a, Marcel Bus a, Peter C. Thüne b,, Tjerk H. Oosterkamp,

More information

Dissociation of Ligand-Receptor Complexes Using Magnetic Tweezers

Dissociation of Ligand-Receptor Complexes Using Magnetic Tweezers Anal. Chem. 2005, 77, 3023-3028 Accelerated Articles Dissociation of Ligand-Receptor Complexes Using Magnetic Tweezers Claudia Danilowicz, Derek Greenfield, and Mara Prentiss* Physics Department, Harvard

More information

Sub -T g Relaxation in Thin Glass

Sub -T g Relaxation in Thin Glass Sub -T g Relaxation in Thin Glass Prabhat Gupta The Ohio State University ( Go Bucks! ) Kyoto (January 7, 2008) 2008/01/07 PK Gupta(Kyoto) 1 Outline 1. Phenomenology (Review). A. Liquid to Glass Transition

More information

Grundlagen der Systembiologie und der Modellierung epigenetischer Prozesse

Grundlagen der Systembiologie und der Modellierung epigenetischer Prozesse Grundlagen der Systembiologie und der Modellierung epigenetischer Prozesse Sonja J. Prohaska Bioinformatics Group Institute of Computer Science University of Leipzig October 25, 2010 Genome-scale in silico

More information

Free energy, electrostatics, and the hydrophobic effect

Free energy, electrostatics, and the hydrophobic effect Protein Physics 2016 Lecture 3, January 26 Free energy, electrostatics, and the hydrophobic effect Magnus Andersson magnus.andersson@scilifelab.se Theoretical & Computational Biophysics Recap Protein structure

More information

Lecture 7. Surface Reaction Kinetics on a

Lecture 7. Surface Reaction Kinetics on a Lecture 7 Data processing in SPR Surface Reaction Kinetics on a Biochip Surface plasmon sensor Principle of affinity SP biosensor Data processing Processing steps: zero response to the base line before

More information

Chemical Kinetics. Topic 7

Chemical Kinetics. Topic 7 Chemical Kinetics Topic 7 Corrosion of Titanic wrec Casón shipwrec 2Fe(s) + 3/2O 2 (g) + H 2 O --> Fe 2 O 3.H 2 O(s) 2Na(s) + 2H 2 O --> 2NaOH(aq) + H 2 (g) Two examples of the time needed for a chemical

More information

Features of static and dynamic friction profiles in one and two dimensions on polymer and atomically flat surfaces using atomic force microscopy

Features of static and dynamic friction profiles in one and two dimensions on polymer and atomically flat surfaces using atomic force microscopy Features of static and dynamic friction profiles in one and two dimensions on polymer and atomically flat surfaces using atomic force microscopy Author Watson, Gregory, Watson, Jolanta Published 008 Journal

More information

Micro-Rheology Measurements with the NanoTracker

Micro-Rheology Measurements with the NanoTracker Micro-Rheology Measurements with the NanoTracker JPK s NanoTracker optical tweezers system is a versatile high resolution force measurement tool. It is based on the principle of optical trapping and uses

More information

macroscopic view (phenomenological) microscopic view (atomistic) computing reaction rate rate of reactions experiments thermodynamics

macroscopic view (phenomenological) microscopic view (atomistic) computing reaction rate rate of reactions experiments thermodynamics Rate heory (overview) macroscopic view (phenomenological) rate of reactions experiments thermodynamics Van t Hoff & Arrhenius equation microscopic view (atomistic) statistical mechanics transition state

More information

Lecture: P1_Wk1_L1 IntraMolecular Interactions. Ron Reifenberger Birck Nanotechnology Center Purdue University 2012

Lecture: P1_Wk1_L1 IntraMolecular Interactions. Ron Reifenberger Birck Nanotechnology Center Purdue University 2012 Lecture: IntraMolecular Interactions Distinguish between IntraMolecular (within a molecule) and InterMolecular (between molecules) Ron Reifenberger Birck Nanotechnology Center Purdue University 2012 1

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supplementary Information for Manuscript: Nanoscale wear as a stress-assisted chemical reaction Supplementary Methods For each wear increment, the diamond indenter was slid laterally relative to the silicon

More information

Organische Chemie IV: Organische Photochemie

Organische Chemie IV: Organische Photochemie Organische Chemie IV: Organische Photochemie Wintersemester 2015/16 Technische Universität München Klausur am 19.02.2016 Name, Vorname... Matrikel-Nr.... (Druckbuchstaben) geboren am... in...... (Eigenhändige

More information

Statistical Methods in Particle Physics

Statistical Methods in Particle Physics Statistical Methods in Particle Physics 4. Monte Carlo Methods Prof. Dr. Klaus Reygers (lectures) Dr. Sebastian Neubert (tutorials) Heidelberg University WS 2017/18 Monte Carlo Method Any method which

More information

Graphene mechanics: II. Atomic stress distribution during indentation until rupture. Supplementary Material

Graphene mechanics: II. Atomic stress distribution during indentation until rupture. Supplementary Material Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2014 1 CALCULATION OF ATOMIC STRESS Graphene mechanics: II. Atomic stress distribution

More information

Statistics, Data Analysis, and Simulation SS 2013

Statistics, Data Analysis, and Simulation SS 2013 Statistics, Data Analysis, and Simulation SS 2013 08.128.730 Statistik, Datenanalyse und Simulation Dr. Michael O. Distler Mainz, May 21, 2013 3. Parameter estimation 1 Consistency:

More information

Effects of Chemical Exchange on NMR Spectra

Effects of Chemical Exchange on NMR Spectra Effects of Chemical Exchange on NMR Spectra Chemical exchange refers to any process in which a nucleus exchanges between two or more environments in which its NMR parameters (e.g. chemical shift, scalar

More information

QENS in the Energy Domain: Backscattering and Time-of

QENS in the Energy Domain: Backscattering and Time-of QENS in the Energy Domain: Backscattering and Time-of of-flight Alexei Sokolov Department of Polymer Science, The University of Akron Outline Soft Matter and Neutron Spectroscopy Using elastic scattering

More information

FD-based AFM: The tool to image and simultaneously map multiple properties of biological systems

FD-based AFM: The tool to image and simultaneously map multiple properties of biological systems force-distance curve-based atomic force microscopy FD-based AFM: The tool to image and simultaneously map multiple properties of biological systems Technical Journal Club 1. Sept 215 Valeria Eckhardt Overview

More information

Concept review: Binding equilibria

Concept review: Binding equilibria Concept review: Binding equilibria 1 Binding equilibria and association/dissociation constants 2 The binding of a protein to a ligand at equilibrium can be written as: P + L PL And so the equilibrium constant

More information