PROBLEM SOLUTIONS: Chapter 4

Size: px
Start display at page:

Download "PROBLEM SOLUTIONS: Chapter 4"

Transcription

1 48 PROBLEM SOLUTIONS: Chapter 4 Problem 4.1 ω m = 100 π/30 = 40π rad/sec part (b): 60 Hz; 10π rad/sec part (c): 100 5/6 = 1000 r/min Problem 4. The voltages in the remaining two phases can be expressed as V 0 cos (ωt π/3) and V 0 cos (ωt +π/3). Problem 4.3 It is an induction motor. parts (b) and (c): It sounds like an 8-pole motor supplied by 60 Hz. Problem 4.4 part (b):

2 49 part (c): part (d): Problem 4.5 Under this condition, the mmf wave is equivalent to that of a single-phase motor and hence the positive- and negative-traveling mmf waves will be of equal magnitude. Problem 4.6 The mmf and flux waves will reverse direction. Reversing two phases is the procedure for reversing the direction of a three-phase induction motor. Problem 4.7 F 1 = F max cos θ ae cos ω e t = F max (cos (θ ae ω t ) + cos (θ ae + ω t )) F = F max sin θ ae sin ω e t = F max and thus (cos (θ ae ω t ) cos (θ ae + ω t )) F total = F 1 + F = F max cos (θ ae ω t )

3 50 Problem 4.8 For n odd β/ β/ π/ π/ cos (nθ)dθ cos (nθ)dθ = sin (nθ ) For β =5π/6, sin ( nθ )= 0.97 n = 1 0 n = n = 5 Problem 4.9 Rated speed = 100 r/min part (b): I r = πgb ag1,peak(poles) 4µ 0 k r N r = 113 A part (c): Φ P = ( ) lrb ag1,peak = Wb Problem 4.10 From the solution to Problem 4.9, Φ P =0.937 Wb. V rms = ωnφ =8.4 kv Problem 4.11 From the solution to Problem 4.9, Φ P =0.937 Wb. V rms = ωk wn a Φ =10.4 kv Problem 4.1 The required rms line-to-line voltage is V rms =13.0/ 3=7.51 kv. Thus Vrms N a = ωk w Φ Problem 4.13 The flux per pole is = 39 turns Φ=lRB ag1,peak = Wb The electrical frequency of the generated voltage will be 50 Hz. The peak voltage will be

4 51 V peak = ωnφ = 388 V Because the space-fundamental winding flux linkage is at is peak at time t = 0 and because the voltage is equal to the time derivative of the flux linkage, we can write v(t) =±V peak sin ωt where the sign of the voltage depends upon the polarities defined for the flux and the stator coil and ω = 10π rad/sec. part (b): In this case, Φ will be of the form Φ(t) =Φ 0 cos ωt where Φ 0 = Wb as found in part (a). The stator coil flux linkages will thus be λ(t) =±NΦ(t) =NΦ 0 cos ωt = ± 1 NΦ 0(1 + cos ωt) and the generated voltage will be v(t) = ωφ 0 sin ωt This scheme will not work since the dc-component of the coil flux will produce no voltage. Problem 4.14 Similarly, we can write F a = i a [A 1 cos θ a + A 3 cos 3θ a + A 5 cos 5θ a ] = I a cos ωt[a 1 cos θ a + A 3 cos 3θ a + A 5 cos 5θ a ] F b = i b [A 1 cos (θ a 10 )+A 3 cos 3(θ a 10 )+A 5 cos 5(θ a 10 )] = I a cos (ωt 10 )[A 1 cos (θ a 10 )+A 3 cos 3θ a + A 5 cos (5θ a + 10 )] and F c = i c [A 1 cos (θ a + 10 )+A 3 cos 3(θ a + 10 )+A 5 cos 5(θ a + 10 )] = I a cos (ωt + 10 )[A 1 cos (θ a + 10 )+A 3 cos 3θ a + A 5 cos (5θ a 10 )] The total mmf will be

5 5 F tot = F a + F b + F c = 3 I a[a 1 cos (θ a ωt)a 5 cos (5θ a + ωt)] = 3 ( I a[a 1 cos (θ a ωt)a 5 cos 5 θ a +( ωt ) 5 ) ] We see that the combined mmf contains only a fundamental space-harmonic component that rotates in the forward direction at angular velocity ω and a 5 th space-harmonic that rotates in the negative direction at angular velocity ω/5. Problem 4.15 The turns must be modified by a factor of ( )( ) = =0.64 Problem 4.16 Φ p = 30E a N(poles)n =6.5 mwb Problem 4.17 ( Φ p = poles ) B peak lr = ( ) (.095/) = 1.5 mwb 4 N ph = V rms poles (30/ 3) 4 = = 43 turns πfme k w Φ p π part (b): From Eq. B.7 Problem 4.18 L = 16µ 0lr πg ( ) kw N ph =1. mh poles Φ p = V rms πnph =10.8 mwb B peak = Φ p lr =0.53 T

6 53 part (b): I f = πb peakg µ 0 k r N r =0.65 A part (c): L af = λ a,peak Vrms /ω = =0.69 H I f I f Problem 4.19 No numerical solution required. Problem 4.0 Φ peak = ( ) Dl B peak poles F r,peak = 4k rn r I r,max π poles ( ) poles Φ peakf r,peak = N m T peak = π P peak = T peak ω m = 88 MW Problem 4.1 Φ peak = ( ) Dl B peak poles F r,peak = 4k rn r I r,max π poles ( ) poles Φ peakf r,peak =16.1 N m T peak = π P peak = T peak ω m =6.06 kw Problem 4. dm af dm bf T = i a i f + i b i f = Mi f (i b cos θ 0 i a sin θ 0 )

7 54 This expression applies under all operating conditions. part (b): T =MI 0 (cos θ 0 sin θ 0 )= MI 0 sin (θ 0 π/4) Provided there are any losses at all, the rotor will come to rest at θ 0 = π/4 for which T = 0 and dt/ < 0. part (c): part (d): T = MI a I f (sin ωtcos θ 0 cos ωt sin θ 0 ) = MI a I f sin (ωt θ 0 )= MI a I f sin δ v a = R a i a + d dt (L aai a + M af i f ) = I a (R a cos ωt ωl aa sin ωt) ωmi f sin (ωt δ) Problem 4.3 v b = R a i b + d dt (L aai b + M bf i f ) = I a (R a sin ωt + ωl aa cos ωt)+ωmi f cos (ωt δ) T = MI f (i b cos θ 0 i a sin θ 0 ) = MI f [(I a + I /) sin δ +(I /) sin (ωt + δ)] The time-averaged torque is thus Problem 4.4 <T >= MI f (I a + I /) sin δ T = i a dl aa + i b dl bb + i a i b dl ab = I a I f M sin δ +I al sin δ + i a i f dm af + i b i f dm bf part (b): Motor if T>0, δ>0. Generator if T<0, δ<0. part (c): For I f = 0, there will still be a reluctance torque T =I a L sin δ and the machine can still operate.

8 55 Problem 4.5 v = f λ =5 m/sec part (b): The synchronous rotor velocity is 5 m/sec. part (c): For a slip of 0.045, the rotor velocity will be ( ) 5 = 3.9 m/sec. Problem 4.6 ) (π ) ( ) p 4 k w N ph = 1.45 ( )( ) (π 3 4 I rms = B peak ( g µ 0 )( 3 µ 0 Problem 4.7 Defining β = π/wavelength ) ( ) = 18 A Φ p = w π/β 0 B peak cos βxdx = wb peak β = 1.48 mwb part (b): Since the rotor is 5 wavelengths long, the armature winding will link 10 poles of flux with 10 turns per pole. Thus, λ peak = 100Φ p =0.148 Wb. part (c): ω = βv and thus V rms = ωλ peak =34.6 V, rms

PROBLEM SOLUTIONS: Chapter 1

PROBLEM SOLUTIONS: Chapter 1 1 PROBLEM SOLUTIONS: Chapter 1 Problem 1.1 Part (a): R c = l c l c = =0 A/Wb µa c µ r µ 0 A c R g = g µ 0 A c =1.017 10 6 A/Wb Φ= NI R c + R g =1.4 10 4 Wb part (c): λ = NΦ =1.016 10 Wb part (d): L = λ

More information

Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines)

Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines) Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines) d axis: L fd L F - M R fd F L 1d L D - M R 1d D R fd R F e fd e F R 1d R D Subscript Notations: ( ) fd ~ field winding quantities

More information

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque.

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque. Exam Electrical Machines and Drives (ET4117) 11 November 011 from 14.00 to 17.00. This exam consists of 5 problems on 4 pages. Page 5 can be used to answer problem 4 question b. The number before a question

More information

Lesson 17: Synchronous Machines

Lesson 17: Synchronous Machines Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines

More information

Synchronous Machines

Synchronous Machines Synchronous Machines Synchronous generators or alternators are used to convert mechanical power derived from steam, gas, or hydraulic-turbine to ac electric power Synchronous generators are the primary

More information

Chapter 5 Three phase induction machine (1) Shengnan Li

Chapter 5 Three phase induction machine (1) Shengnan Li Chapter 5 Three phase induction machine (1) Shengnan Li Main content Structure of three phase induction motor Operating principle of three phase induction motor Rotating magnetic field Graphical representation

More information

INDUCTION MOTOR MODEL AND PARAMETERS

INDUCTION MOTOR MODEL AND PARAMETERS APPENDIX C INDUCTION MOTOR MODEL AND PARAMETERS C.1 Dynamic Model of the Induction Motor in Stationary Reference Frame A three phase induction machine can be represented by an equivalent two phase machine

More information

EE 742 Chapter 3: Power System in the Steady State. Y. Baghzouz

EE 742 Chapter 3: Power System in the Steady State. Y. Baghzouz EE 742 Chapter 3: Power System in the Steady State Y. Baghzouz Transmission Line Model Distributed Parameter Model: Terminal Voltage/Current Relations: Characteristic impedance: Propagation constant: π

More information

Prof. Krishna Vasudevan, Prof. G. Sridhara Rao, Prof. P. Sasidhara Rao

Prof. Krishna Vasudevan, Prof. G. Sridhara Rao, Prof. P. Sasidhara Rao 2 Basic Principles As mentioned earlier the transformer is a static device working on the principle of Faraday s law of induction. Faraday s law states that a voltage appears across the terminals of an

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent

More information

Overview Electrical Machines and Drives

Overview Electrical Machines and Drives Overview Electrical Machine and Drive 7-9 1: Introduction, Maxwell equation, magnetic circuit 11-9 1.-3: Magnetic circuit, Princile 14-9 3-4.: Princile, DC machine 18-9 4.3-4.7: DC machine and drive 1-9

More information

Lecture 9: Space-Vector Models

Lecture 9: Space-Vector Models 1 / 30 Lecture 9: Space-Vector Models ELEC-E8405 Electric Drives (5 ECTS) Marko Hinkkanen Autumn 2017 2 / 30 Learning Outcomes After this lecture and exercises you will be able to: Include the number of

More information

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Force Motor action Generator action Types and parts

More information

Chapter 4. Synchronous Generators. Basic Topology

Chapter 4. Synchronous Generators. Basic Topology Basic Topology Chapter 4 ynchronous Generators In stator, a three-phase winding similar to the one described in chapter 4. ince the main voltage is induced in this winding, it is also called armature winding.

More information

Step Motor Modeling. Step Motor Modeling K. Craig 1

Step Motor Modeling. Step Motor Modeling K. Craig 1 Step Motor Modeling Step Motor Modeling K. Craig 1 Stepper Motor Models Under steady operation at low speeds, we usually do not need to differentiate between VR motors and PM motors (a hybrid motor is

More information

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I

ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR-621220 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I Unit I Introduction 1. What are the three basic types

More information

Chapter 15 Magnetic Circuits and Transformers

Chapter 15 Magnetic Circuits and Transformers Chapter 15 Magnetic Circuits and Transformers Chapter 15 Magnetic Circuits and Transformers 1. Understand magnetic fields and their interactio with moving charges. 2. Use the right-hand rule to determine

More information

Unified Torque Expressions of AC Machines. Qian Wu

Unified Torque Expressions of AC Machines. Qian Wu Unified Torque Expressions of AC Machines Qian Wu Outline 1. Review of torque calculation methods. 2. Interaction between two magnetic fields. 3. Unified torque expression for AC machines. Permanent Magnet

More information

Lecture (20) DC Machine Examples Start of Synchronous Machines

Lecture (20) DC Machine Examples Start of Synchronous Machines Lecture (20) DC Machine Examples Start of Synchronous Machines Energy Systems Research Laboratory, FIU All rights reserved. 20-1 Energy Systems Research Laboratory, FIU All rights reserved. 20-2 Ra R f

More information

University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department

University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department EE471: Electrical Machines-II Tutorial # 2: 3-ph Induction Motor/Generator Question #1 A 100 hp, 60-Hz, three-phase

More information

Synchronous machine with PM excitation Two-axis model

Synchronous machine with PM excitation Two-axis model Synchronous machine with PM excitation q Two-axis model q i q u q d i Q d Q D i d N S i D u d Voltage, flux-linkage and motion equations for a PM synchronous machine dd ud Ri s d q dt dq uq Ri s q d dt

More information

Tutorial Sheet Fig. Q1

Tutorial Sheet Fig. Q1 Tutorial Sheet - 04 1. The magnetic circuit shown in Fig. Q1 has dimensions A c = A g = 9 cm 2, g = 0.050 cm, l c = 30 cm, and N = 500 turns. Assume the value of the relative permeability,µ r = 70,000

More information

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy

An Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy An Introduction to Electrical Machines P. Di Barba, University of Pavia, Italy Academic year 0-0 Contents Transformer. An overview of the device. Principle of operation of a single-phase transformer 3.

More information

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi

Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi AC Machines Operating Principles: Synchronous Motor In synchronous motors, the stator of the motor has a rotating magnetic

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Class Notes 4: Elementary Synchronous Machine Models September 14, 2005 c 2005 James

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents tudent s Checklist Revision otes Transformer... 4 Electromagnetic induction... 4 Generator... 5 Electric motor... 6 Magnetic field... 8 Magnetic flux... 9 Force on

More information

From now, we ignore the superbar - with variables in per unit. ψ ψ. l ad ad ad ψ. ψ ψ ψ

From now, we ignore the superbar - with variables in per unit. ψ ψ. l ad ad ad ψ. ψ ψ ψ From now, we ignore the superbar - with variables in per unit. ψ 0 L0 i0 ψ L + L L L i d l ad ad ad d ψ F Lad LF MR if = ψ D Lad MR LD id ψ q Ll + Laq L aq i q ψ Q Laq LQ iq 41 Equivalent Circuits for

More information

You know for EE 303 that electrical speed for a generator equals the mechanical speed times the number of poles, per eq. (1).

You know for EE 303 that electrical speed for a generator equals the mechanical speed times the number of poles, per eq. (1). Stability 1 1. Introduction We now begin Chapter 14.1 in your text. Our previous work in this course has focused on analysis of currents during faulted conditions in order to design protective systems

More information

Lecture Set 8 Induction Machines

Lecture Set 8 Induction Machines Lecture Set 8 Induction Machine S.D. Sudhoff Spring 2018 Reading Chapter 6, Electromechanical Motion Device, Section 6.1-6.9, 6.12 2 Sample Application Low Power: Shaded pole machine (mall fan) Permanent

More information

Electric Machines I Three Phase Induction Motor. Dr. Firas Obeidat

Electric Machines I Three Phase Induction Motor. Dr. Firas Obeidat Electric Machines I Three Phase Induction Motor Dr. Firas Obeidat 1 Table of contents 1 General Principles 2 Construction 3 Production of Rotating Field 4 Why Does the Rotor Rotate 5 The Slip and Rotor

More information

Synchronous Machines

Synchronous Machines Synchronous machine 1. Construction Generator Exciter View of a twopole round rotor generator and exciter. A Stator with laminated iron core C Slots with phase winding B A B Rotor with dc winding B N S

More information

Dynamics of the synchronous machine

Dynamics of the synchronous machine ELEC0047 - Power system dynamics, control and stability Dynamics of the synchronous machine Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 38 Time constants and

More information

Chapter 1 Magnetic Circuits

Chapter 1 Magnetic Circuits Principles of Electric Machines and Power Electronics Third Edition P. C. Sen Chapter 1 Magnetic Circuits Chapter 1: Main contents i-h relation, B-H relation Magnetic circuit and analysis Property of magnetic

More information

ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 2 Synchronous Machine Modeling

ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 2 Synchronous Machine Modeling ECE 422/522 Power System Operations & Planning/ Power Systems Analysis II 2 Synchronous achine odeling Spring 214 Instructor: Kai Sun 1 Outline Synchronous achine odeling Per Unit Representation Simplified

More information

JRE SCHOOL OF Engineering

JRE SCHOOL OF Engineering JRE SCHOOL OF Engineering Class Test-1 Examinations September 2014 Subject Name Electromechanical Energy Conversion-II Subject Code EEE -501 Roll No. of Student Max Marks 30 Marks Max Duration 1 hour Date

More information

Simplified Analysis Technique for Double Layer Non-overlap Multiphase Slip Permanent Magnet Couplings in Wind Energy Applications

Simplified Analysis Technique for Double Layer Non-overlap Multiphase Slip Permanent Magnet Couplings in Wind Energy Applications Simplified Analysis Technique for Double Layer Non-overlap Multiphase Slip Permanent Magnet Couplings in Wind Energy Applications Petrus JJ van Wyk - Prof. Maarten J. Kamper Renewable Energy Postgraduate

More information

2. Electromagnetic fundamentals

2. Electromagnetic fundamentals 2. Electromagnetic fundamentals Prof. A. Binder 2/1 AMPERE s law: Excitation of magnetic field by electric current Examle: Two different currents I 1, I 2 with two different numbers of turns 1 and N and

More information

Generators for wind power conversion

Generators for wind power conversion Generators for wind power conversion B. G. Fernandes Department of Electrical Engineering Indian Institute of Technology, Bombay Email : bgf@ee.iitb.ac.in Outline of The Talk Introduction Constant speed

More information

Lezione 9 30 March. Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota

Lezione 9 30 March. Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota Control Laboratory: a.a. 2015/2016 Lezione 9 30 March Instructor: Luca Schenato Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota What is left to do is how to design the low pass pole τ L for the

More information

PROBLEMS - chapter 3 *

PROBLEMS - chapter 3 * OpenStax-CNX module: m28362 1 PROBLEMS - chapter 3 * NGUYEN Phuc This work is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 3.0 PROBLEMS This lecture note is based

More information

Three Phase Circuits

Three Phase Circuits Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/ OUTLINE Previously on ELCN102 Three Phase Circuits Balanced

More information

Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars

Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars 223 Finite Element Analysis of Hybrid Excitation Axial Flux Machine for Electric Cars Pelizari, A. ademir.pelizari@usp.br- University of Sao Paulo Chabu, I.E. ichabu@pea.usp.br - University of Sao Paulo

More information

Lecture 12. Time Varying Electromagnetic Fields

Lecture 12. Time Varying Electromagnetic Fields Lecture. Time Varying Electromagnetic Fields For static electric and magnetic fields: D = ρ () E = 0...( ) D= εe B = 0...( 3) H = J H = B µ...( 4 ) For a conducting medium J =σ E From Faraday s observations,

More information

ELECTRICALMACHINES-I QUESTUION BANK

ELECTRICALMACHINES-I QUESTUION BANK ELECTRICALMACHINES-I QUESTUION BANK UNIT-I INTRODUCTION OF MAGNETIC MATERIAL PART A 1. What are the three basic rotating Electric machines? 2. Name the three materials used in machine manufacture. 3. What

More information

CHAPTER 8 DC MACHINERY FUNDAMENTALS

CHAPTER 8 DC MACHINERY FUNDAMENTALS CHAPTER 8 DC MACHINERY FUNDAMENTALS Summary: 1. A Simple Rotating Loop between Curved Pole Faces - The Voltage Induced in a Rotating Loop - Getting DC voltage out of the Rotating Loop - The Induced Torque

More information

Analysis of Idle Power and Iron Loss Reduction in an Interior PM Automotive Alternator

Analysis of Idle Power and Iron Loss Reduction in an Interior PM Automotive Alternator Analysis of Idle Power and Iron Loss Reduction in an Interior PM Automotive Alternator by Vlatka Životić-Kukolj M.Eng.Sci. (Research) Electrical and Electronic Engineering, Adelaide University, 2001 B.Eng

More information

Steady State Modeling of Doubly Fed Induction Generator

Steady State Modeling of Doubly Fed Induction Generator Steady State Modeling of Douly Fed Induction Generator Bhola Jha 1, Dr. K. R. M Rao 2 1 Dept. of Electrical Engg., G. B. Pant Engg. College, Pauri-Garhwal, India 2 Dept. of Electrical Engg., M. J. College

More information

DESIGN OF ELECTRICAL APPARATUS SOLVED PROBLEMS

DESIGN OF ELECTRICAL APPARATUS SOLVED PROBLEMS DESIGN OF ELECTRICAL APPARATUS SOLVED PROBLEMS 1. A 350 KW, 500V, 450rpm, 6-pole, dc generator is built with an armature diameter of 0.87m and core length of 0.32m. The lap wound armature has 660 conductors.

More information

Lecture 1: Induction Motor

Lecture 1: Induction Motor 1 / 22 Lecture 1: Induction Motor ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Aalto University School of Electrical Engineering Spring 2016 2 / 22 Learning Outcomes

More information

Loss analysis of a 1 MW class HTS synchronous motor

Loss analysis of a 1 MW class HTS synchronous motor Journal of Physics: Conference Series Loss analysis of a 1 MW class HTS synchronous motor To cite this article: S K Baik et al 2009 J. Phys.: Conf. Ser. 153 012003 View the article online for updates and

More information

Chapter 6. Induction Motors. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 6. Induction Motors. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Induction Motors 1 The Development of Induced Torque in an Induction Motor Figure 6-6 The development of induced torque in an induction motor. (a) The rotating stator field B S induces a voltage

More information

Synchronous Machines

Synchronous Machines Synchronous Machines Synchronous Machines n 1 Φ f n 1 Φ f I f I f I f damper (run-up) winding Stator: similar to induction (asynchronous) machine ( 3 phase windings that forms a rotational circular magnetic

More information

Parameter Estimation of Three Phase Squirrel Cage Induction Motor

Parameter Estimation of Three Phase Squirrel Cage Induction Motor International Conference On Emerging Trends in Mechanical and Electrical Engineering RESEARCH ARTICLE OPEN ACCESS Parameter Estimation of Three Phase Squirrel Cage Induction Motor Sonakshi Gupta Department

More information

Analytical and numerical computation of the no-load magnetic field in induction motors

Analytical and numerical computation of the no-load magnetic field in induction motors Analytical and numerical computation of the no-load induction motors Dan M. Ionel University of Glasgow, Glasgow, Scotland, UK and Mihai V. Cistelecan Research Institute for Electrical Machines, Bucharest

More information

Alternating current. Book pg

Alternating current. Book pg Alternating current Book pg.440-442 Review of induced emf Emf = BLv, v = speed of rod Φ = BA flux density Emf = NΦ rate of change of flux density t Normal to surface Φ = BA cos θ θ = 0 Φ = BA θ = 90 0

More information

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR

International Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR Scientific Journal of Impact Factor(SJIF): 3.134 e-issn(o): 2348-4470 p-issn(p): 2348-6406 International Journal of Advance Engineering and Research Development Volume 2,Issue 4, April -2015 SIMULATION

More information

For any use or distribution of this textbook, please cite as follows:

For any use or distribution of this textbook, please cite as follows: MIT OpenCourseWare http://ocw.mit.edu Electromechanical Dynamics For any use or distribution of this textbook, please cite as follows: Woodson, Herbert H., and James R. Melcher. Electromechanical Dynamics.

More information

SYMMETRICAL FAULTS Revised: 10/8/13 1:49 PM

SYMMETRICAL FAULTS Revised: 10/8/13 1:49 PM SYMMETRICAL FAULTS Revised: 10/8/13 1:49 PM 10/8/13 Symmetrical Faults 1 What is a fault? A faults is any failure which interferes with the normal flow of current. Most faults on transmission lines of

More information

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18,

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2006 196 A Method for the Modeling and Analysis of Permanent

More information

UNIT I INTRODUCTION Part A- Two marks questions

UNIT I INTRODUCTION Part A- Two marks questions ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR-621220 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING DESIGN OF ELECTRICAL MACHINES UNIT I INTRODUCTION 1. Define specific magnetic

More information

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients)

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients) ELEC0047 - Power system dynamics, control and stability (a simple example of electromagnetic transients) Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 25 Objectives

More information

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008]

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008] Doubly salient reluctance machine or, as it is also called, switched reluctance machine [Pyrhönen et al 2008] Pros and contras of a switched reluctance machine Advantages Simple robust rotor with a small

More information

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines

Analytical Model for Sizing the Magnets of Permanent Magnet Synchronous Machines Journal of Electrical Engineering 3 (2015) 134-141 doi: 10.17265/2328-2223/2015.03.004 D DAVID PUBLISHING Analytical Model for Sizing Magnets of Permanent Magnet Synchronous Machines George Todorov and

More information

Electromagnetic Induction & Inductors

Electromagnetic Induction & Inductors Electromagnetic Induction & Inductors 1 Revision of Electromagnetic Induction and Inductors (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) Magnetic Field

More information

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application 797 Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application Ritu Tak 1, Sudhir Y Kumar 2, B.S.Rajpurohit 3 1,2 Electrical Engineering, Mody University of Science & Technology,

More information

Overview: Induction Motors. Review Questions. Why the Rotor Moves: Motor Speed

Overview: Induction Motors. Review Questions. Why the Rotor Moves: Motor Speed Overview: nduction Motor Motor operation & Slip Speed-torque relationhip Equivalent circuit model Tranformer Motor efficiency Starting induction motor Smith College, EGR 35 ovember 5, 04 Review Quetion

More information

Revision Guide for Chapter 15

Revision Guide for Chapter 15 Revision Guide for Chapter 15 Contents Revision Checklist Revision otes Transformer...4 Electromagnetic induction...4 Lenz's law...5 Generator...6 Electric motor...7 Magnetic field...9 Magnetic flux...

More information

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference Mukesh C Chauhan 1, Hitesh R Khunt 2 1 P.G Student (Electrical),2 Electrical Department, AITS, rajkot 1 mcchauhan1@aits.edu.in

More information

MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES

MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES JOHN CHIASSON IEEE PRESS ü t SERIES ON POWER ENGINEERING IEEE Press Series on Power Engineering Mohamed E. El-Hawary, Series Editor The Institute

More information

(Refer Slide Time: 00:55) Friends, today we shall continue to study about the modelling of synchronous machine. (Refer Slide Time: 01:09)

(Refer Slide Time: 00:55) Friends, today we shall continue to study about the modelling of synchronous machine. (Refer Slide Time: 01:09) (Refer Slide Time: 00:55) Power System Dynamics Prof. M. L. Kothari Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 09 Modelling of Synchronous Machine (Contd ) Friends,

More information

Guangjin Li, Javier Ojeda, Emmanuel Hoang, Mohamed Gabsi, Cederic Balpe. To cite this version:

Guangjin Li, Javier Ojeda, Emmanuel Hoang, Mohamed Gabsi, Cederic Balpe. To cite this version: Design of Double Salient Interior Permanent Magnet Machine Based on Mutually Coupled Reluctance Machine for Increasing the Torque Density and Flux-Weakening Capability Guangjin Li, Javier Ojeda, Emmanuel

More information

Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi

Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi Electrical Machines and Energy Systems: Operating Principles (Part 1) SYED A Rizvi AC Machines Operating Principles: Rotating Magnetic Field The key to the functioning of AC machines is the rotating magnetic

More information

Modeling Free Acceleration of a Salient Synchronous Machine Using Two-Axis Theory

Modeling Free Acceleration of a Salient Synchronous Machine Using Two-Axis Theory 1 Modeling ree Acceleration of a Salient Synchronous Machine Using Two-Axis Theory Abdullah H. Akca and Lingling an, Senior Member, IEEE Abstract This paper investigates a nonlinear simulation model of

More information

UNIT-I INTRODUCTION. 1. State the principle of electromechanical energy conversion.

UNIT-I INTRODUCTION. 1. State the principle of electromechanical energy conversion. UNIT-I INTRODUCTION 1. State the principle of electromechanical energy conversion. The mechanical energy is converted in to electrical energy which takes place through either by magnetic field or electric

More information

LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES

LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES ET 332b Ac Motors, Generators and Power Systems LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES 1 LEARNING OBJECTIVES After this presentation you will be able to: Interpret alternator phasor diagrams

More information

The Control of a Continuously Operated Pole-Changing Induction Machine

The Control of a Continuously Operated Pole-Changing Induction Machine The Control of a Continuously Operated PoleChanging Induction Machine J.W. Kelly Electrical and Computer Engineering Michigan State University East Lansing, MI 48824 28 February 2002 MD Lab 1/0202 1 Outline

More information

Basics of rotordynamics 2

Basics of rotordynamics 2 Basics of rotordynamics Jeffcott rotor 3 M A O a rigid rotor disk rotates at angular frequency W massless shaft acts as a spring restoring displacements disk can move only in the plane defined by axes

More information

Motor-CAD combined electromagnetic and thermal model (January 2015)

Motor-CAD combined electromagnetic and thermal model (January 2015) Motor-CAD combined electromagnetic and thermal model (January 2015) Description The Motor-CAD allows the machine performance, losses and temperatures to be calculated for a BPM machine. In this tutorial

More information

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University

Control of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Control of Wind Turbine Generators James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Review from Day 1 Review Last time, we started with basic concepts from physics such as

More information

Loss of excitation protection function (40Z)

Loss of excitation protection function (40Z) Loss of excitation protection function (40Z) Budapest, April 2016 Loss of excitation protection function The loss of excitation protection function can be applied mainly for synchronous generators. On

More information

Eddy Current Heating in Large Salient Pole Generators

Eddy Current Heating in Large Salient Pole Generators Eddy Current Heating in Large Salient Pole Generators C.P.Riley and A.M. Michaelides Vector Fields Ltd., 24 Bankside, Kidlington, Oxford OX5 1JE, UK phone: (+44) 1865 370151, fax: (+44) 1865 370277 e-mail:

More information

Application Of Faraday s Law

Application Of Faraday s Law Application Of Faraday s Law Dr Miguel Cavero September 2, 2014 Application Of Faraday s Law September 2, 2014 1 / 23 The PHYS120 Exam will be divided into three sections as follows: Section A: Short Questions

More information

EXPERIMENTAL COMPARISON OF LAMINATION MATERIAL CASE OF SWITCHING FLUX SYNCHRONOUS MACHINE WITH HYBRID EXCITATION

EXPERIMENTAL COMPARISON OF LAMINATION MATERIAL CASE OF SWITCHING FLUX SYNCHRONOUS MACHINE WITH HYBRID EXCITATION EXPERIMENTAL COMPARISON OF LAMINATION MATERIAL CASE OF SWITCHING FLUX SYNCHRONOUS MACHINE WITH HYBRID EXCITATION Emmanuel Hoang, Sami Hlioui, Michel Lécrivain, Mohamed Gabsi To cite this version: Emmanuel

More information

DC Shunt Excited Motor

DC Shunt Excited Motor A DC motor has DC hunt Excited Motor A constant (DC) magnetic field for the stator, and A constant (DC) magnetic field in the rotor, That switches as the motor rotates. This switching results in a constant

More information

Fachgebiet Leistungselektronik und Elektrische Antriebstechnik. Test Examination: Mechatronics and Electrical Drives

Fachgebiet Leistungselektronik und Elektrische Antriebstechnik. Test Examination: Mechatronics and Electrical Drives Prof. Dr. Ing. Joachim Böcker Test Examination: Mechatronics and Electrical Drives 8.1.214 First Name: Student number: Last Name: Course of Study: Exercise: 1 2 3 Total (Points) (2) (2) (2) (6) Duration:

More information

GATEFORUM- India s No.1 institute for GATE training 1

GATEFORUM- India s No.1 institute for GATE training 1 EE-GATE-03 PAPER Q. No. 5 Carry One Mark Each. Given a vector field F = y xax yzay = x a z, the line integral F.dl evaluated along a segment on the x-axis from x= to x= is -.33 (B) 0.33 (D) 7 : (B) x 0.

More information

Experimental and Finite Element Analysis of an Electronic Pole-Change Drive

Experimental and Finite Element Analysis of an Electronic Pole-Change Drive Experimental and Finite Element Analysis of an Electronic Pole-Change Drive Mohamed Osama Thomas A. Lipo General Electric Company University of Wisconsin - Madison Corporate Research and Development Center

More information

Introduction. Energy is needed in different forms: Light bulbs and heaters need electrical energy Fans and rolling miles need mechanical energy

Introduction. Energy is needed in different forms: Light bulbs and heaters need electrical energy Fans and rolling miles need mechanical energy Introduction Energy is needed in different forms: Light bulbs and heaters need electrical energy Fans and rolling miles need mechanical energy What does AC and DC stand for? Electrical machines Motors

More information

Generators. What its all about

Generators. What its all about Generators What its all about How do we make a generator? Synchronous Operation Rotor Magnetic Field Stator Magnetic Field Forces and Magnetic Fields Force Between Fields Motoring Generators & motors are

More information

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015 ECE 325 Electric Energy System Components 7- Synchronous Machines Instructor: Kai Sun Fall 2015 1 Content (Materials are from Chapters 16-17) Synchronous Generators Synchronous Motors 2 Synchronous Generators

More information

Generalized Theory of Electrical Machines- A Review

Generalized Theory of Electrical Machines- A Review Generalized Theory of Electrical Machines- A Review Dr. Sandip Mehta Department of Electrical and Electronics Engineering, JIET Group of Institutions, Jodhpur Abstract:-This paper provides an overview

More information

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 47 CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 5.1 INTRODUCTION This chapter describes the simulation model and experimental set up used for the fault analysis. For the simulation set up, the

More information

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science

Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Class Notes 7: Permanent Magnet Brushless DC Motors September 5, 005 c 005 James

More information

6 Chapter 6 Testing and Evaluation

6 Chapter 6 Testing and Evaluation 6 Chapter 6 Testing and Evaluation n this chapter the results obtained during the testing of the LS PMSM prototype are provided. The test results are compared with Weg s LS PMSM machine, WQuattro. The

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.7 International Journal of Advance Engineering and Research Development Volume 4, Issue 5, May-07 e-issn (O): 348-4470 p-issn (P): 348-6406 Mathematical modeling

More information

Electric Machinery Fundamentals

Electric Machinery Fundamentals Solutions Manual to accompany Chapman Electric Machinery Fundamentals Fifth Edition Stephen J. Chapman BAE Systems Australia i Solutions Manual to accompany Electric Machinery Fundamentals, Fifth Edition

More information

Lecture 8: Sensorless Synchronous Motor Drives

Lecture 8: Sensorless Synchronous Motor Drives 1 / 22 Lecture 8: Sensorless Synchronous Motor Drives ELEC-E8402 Control of Electric Drives and Power Converters (5 ECTS) Marko Hinkkanen Spring 2017 2 / 22 Learning Outcomes After this lecture and exercises

More information

EC T32 - ELECTRICAL ENGINEERING

EC T32 - ELECTRICAL ENGINEERING EC T32 - ELECTRICAL ENGINEERING UNIT-I - TRANSFORMER 1. What is a transformer? 2. Briefly explain the principle of operation of transformers. 3. What are the parts of a transformer? 4. What are the types

More information

3- BASICS. YTransformation. for balanced load. \V ab 120 = \V bc. \V ab 240 = \V ca \I a 120 = \I b \I a 240 = \I c V ab I a

3- BASICS. YTransformation. for balanced load. \V ab 120 = \V bc. \V ab 240 = \V ca \I a 120 = \I b \I a 240 = \I c V ab I a 3- BASICS YTransformation for balanced load Z =3Z Y Balanced 3- Systems \V ab 10 = \V bc \V ab 40 = \V ca \I a 10 = \I b \I a 40 = \I c V ab I a = p 3 V an = p 3 I ab \V ab 30 = \V an \I ab 30 = \I a S

More information

ECE 421/521 Electric Energy Systems Power Systems Analysis I 3 Generators, Transformers and the Per-Unit System. Instructor: Kai Sun Fall 2013

ECE 421/521 Electric Energy Systems Power Systems Analysis I 3 Generators, Transformers and the Per-Unit System. Instructor: Kai Sun Fall 2013 ECE 41/51 Electric Energy Systems Power Systems Analysis I 3 Generators, Transformers and the Per-Unit System Instructor: Kai Sun Fall 013 1 Outline Synchronous Generators Power Transformers The Per-Unit

More information