123MEAN thermal properties KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE

Size: px
Start display at page:

Download "123MEAN thermal properties KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE"

Transcription

1 123MEAN thermal properties KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE

2 Heat transport in substances: conduction transfer of kinetic energy on the bases of disorded movement of molecules. Own heat transfer occurs from the place having higher temperature to place with lower. Conduction solid materials, liquids and in gases. convection heating of fluids (liquid or gaseous matters) causes simultaneous increase of volume and decrease of density. Lighter part of fluid rises and displaces a heavier part of liquid. radiation - heat is transported by electromagnetic waves. This type of transport can be significant for building materials containing big air cavities.

3 Heat transport by conduction: Heat transfer rate is defined as (Q - heat, τ- time) I q dq d The areal density of heat flow J q (q heat flow density vector, T - temperature) diq Jq dsn The main parameter of heat transport is temperature gradient as mentioned Fourier s relation: q gradt q is heat flow density vector, (W m -1 K -1 ) represents thermal conductivity ability of material to distribute heat within its mass. Thermal conductivity value is not constant for any materiál. This depends on its structure, total porosity, temperature, humidity content, etc.

4 Heat transport by conduction: High thermal conductivity possess metals mercury 402 W m -1 K -1 Lower values are detected for liquids water 0,56 W m -1 K -1 The worse substances for heat transport are gases good thermal insulators dry air 0,0258 W m -1 K -1 Thermal diffusivity a (m 2 s -1 ) is defined by using thermal conductivity λ, specific heat capacity c and bulk density ρ of tested material. a c where c is specific heat capacity (J kg -1 K -1 ).

5 Thermal conductivity of chosen materials: Material λ [W.m -1.K -1 ] silver 418 copper 395 aluminum 229 iron 73 granite 2,9-4,0 concrete 1,5 water 1,0 brick 0,28-1,2 glass 0,60-1,0 lime plaster 0,88 lightweight concrete 0,70 linoleum 0,19 cellular concrete 0,15 polystyrene 0,05 glass wool 0,04 extruded polystyrene 0,035 air 0,0258

6 Thermal conductivity of water: W/mK with increasing temperature increase thermal conductivity values.

7 Thermal conductivity of dry air and water vapor: increases with increasing temperature.

8 Thermal conductivity measurement: - Stationary methods thermal conductivity is determined in steady temperature field. Those methods are precise but very time consuming (hours, days) suitable for laboratory measurements, e.g. Bock device. - Nonstationary methods measurement is realized in unsteady temperature field. Those procedures are less precise but relatively quick (a few minutes, tens of minutes) useful for field and for quick laboratory measurements, e.g. Hot-wire, hot-ball or hot-disk method.

9 Stationary method Bock device: - two plates one heated, the other cooled - After temperature stabilization (hours, days) is determined thermal conductivity as:

10 Nonstationary method Hot-wire: - heated wire and recording thermocouple, q [W/m] - slope [ln (K/s)] = [K] Temperature field

11 Nonstationary method Hot-disk: - heated wire and recording thermocouple, q [W/m]

12 Isomet 2104 Lab device (hot-disk) serving to direct measurement of thermal conductivity, thermal diffusivity and volumetric heat capacity. Device range: Thermal conductivity [W m -1 K -1 ] 0,015-6 Volumetric heat capacity [J m -3 K -1 ] 4, Temperature [ C]

13 Thermophysical Tester RTB Transient method Generated heat pulse inside the specimen caused dynamic temperature field. From the parameters of the temperature response (the time t m and the magnitude of the temperature response T m ) to the heat pulse, the specific heat capacity, thermal diffusivity and thermal conductivity can be calculated. planar source thermocouple current pulse h T temperature response I t 0 I II III T m t m t specimen

14 Specific heat capacity: Represents the amount of heat required to heat1 kg of substance of 1 C. This is accumulation property of 1 kg of given material. - Water in comparison with other substances is able to accumulate a high amount of heat.

15 Calculation of specific heat capacity of moisture containing material: c ( c 0 cwu)/(1 u) u [kg/kg] - weight content of water in the material = water weight/sample weight C 0 [J kg -1 K -1 ] - specific heat capacity of dry material C w [J kg -1 K -1 ]- specific heat capacity of water 4184 J kg -1 K -1 at 20 C

Hot Runner Technology

Hot Runner Technology Peter Unger Hot Runner Technology Sample Chapter : Basic Aspects of Heat Technology ISBNs 978--56990-395-7-56990-395-6 HANSER Hanser Publishers, Munich Hanser Publications, Cincinnati 9 Basic Aspects of

More information

Handout 10: Heat and heat transfer. Heat capacity

Handout 10: Heat and heat transfer. Heat capacity 1 Handout 10: Heat and heat transfer Heat capacity Consider an experiment in Figure 1. Heater is inserted into a solid substance of mass m and the temperature rise T degrees Celsius is measured by a thermometer.

More information

Ministry of Higher Education And Scientific Research. University Of Technology Chemical Engineering Department. Heat Transfer

Ministry of Higher Education And Scientific Research. University Of Technology Chemical Engineering Department. Heat Transfer Ministry of Higher Education And Scientific Research University Of Technology Heat Transfer Third Year By Dr.Jamal Al-Rubeai 2008-2009 Heat Transfer 1. Modes of Heat Transfer: Conduction, Convection and

More information

HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION

HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION HEAT TRANSFER 1 INTRODUCTION AND BASIC CONCEPTS 5 2 CONDUCTION 11 Fourier s Law of Heat Conduction, General Conduction Equation Based on Cartesian Coordinates, Heat Transfer Through a Wall, Composite Wall

More information

Chapter 1 INTRODUCTION AND BASIC CONCEPTS

Chapter 1 INTRODUCTION AND BASIC CONCEPTS Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 1 INTRODUCTION AND BASIC CONCEPTS Mehmet Kanoglu University of Gaziantep

More information

If there is convective heat transfer from outer surface to fluid maintained at T W.

If there is convective heat transfer from outer surface to fluid maintained at T W. Heat Transfer 1. What are the different modes of heat transfer? Explain with examples. 2. State Fourier s Law of heat conduction? Write some of their applications. 3. State the effect of variation of temperature

More information

Thermal Interface Material Performance Measurement

Thermal Interface Material Performance Measurement Thermal Interface Material Performance Measurement Long Win Science & Technology Co., Ltd. www.longwin.com longwin@longwin.com 886-3-4643221 886-3-4986875 2007/07/16 Contents 1. Introduction Heat Transfer

More information

Temperature. Temperature Scales. Temperature (cont d) CHAPTER 14 Heat and Temperature

Temperature. Temperature Scales. Temperature (cont d) CHAPTER 14 Heat and Temperature Temperature CHAPTER 14 Heat and Temperature The temperature of a substance is proportional to the average kinetic energy of the substance s particles. As the average kinetic energy of the particles in

More information

P5 Heat and Particles Revision Kinetic Model of Matter: States of matter

P5 Heat and Particles Revision Kinetic Model of Matter: States of matter P5 Heat and Particles Revision Kinetic Model of Matter: States of matter State Size Shape Solid occupies a fixed volume has a fixed shape Liquid occupies a fixed volume takes the shape of its container

More information

Law of Heat Transfer

Law of Heat Transfer Law of Heat Transfer The Fundamental Laws which are used in broad area of applications are: 1. The law of conversion of mass 2. Newton s second law of motion 3. First and second laws of thermodynamics

More information

Introduction of Heat Transfer. Prepared by: Nimesh Gajjar GIT-MED

Introduction of Heat Transfer. Prepared by: Nimesh Gajjar GIT-MED Introduction of Heat Transfer Prepared by: Nimesh Gajjar GIT-MED Difference between heat and temperature Temperature is a measure of the amount of energy possessed by the molecules of a substance. It manifests

More information

Lecture 2: Fundamentals. Sourav Saha

Lecture 2: Fundamentals. Sourav Saha ME 267: Mechanical Engineering Fundamentals Credit hours: 3.00 Lecture 2: Fundamentals Sourav Saha Lecturer Department of Mechanical Engineering, BUET Email address: ssaha09@me.buet.ac.bd, souravsahame17@gmail.com

More information

L 18 Thermodynamics [3] Heat flow. Conduction. Convection. Thermal Conductivity. heat conduction. Heat transfer

L 18 Thermodynamics [3] Heat flow. Conduction. Convection. Thermal Conductivity. heat conduction. Heat transfer L 18 Thermodynamics [3] Heat transfer convection conduction emitters of seeing behind closed doors Greenhouse effect Heat Capacity How to boil water Heat flow HEAT the energy that flows from one system

More information

Figure 1.1. Relation between Celsius and Fahrenheit scales. From Figure 1.1. (1.1)

Figure 1.1. Relation between Celsius and Fahrenheit scales. From Figure 1.1. (1.1) CHAPTER I ELEMENTS OF APPLIED THERMODYNAMICS 1.1. INTRODUCTION. The Air Conditioning systems extract heat from some closed location and deliver it to other places. To better understanding the principles

More information

Properties of Matter. Heat. Summary

Properties of Matter. Heat. Summary Properties of Matter Heat Summary Heat is a form of energy that is measured in joules (J). The temperature of an object is a measure of the average kinetic energy of the particles in the object and is

More information

Chapter 1: 20, 23, 35, 41, 68, 71, 76, 77, 80, 85, 90, 101, 103 and 104.

Chapter 1: 20, 23, 35, 41, 68, 71, 76, 77, 80, 85, 90, 101, 103 and 104. Chapter 1: 0, 3, 35, 1, 68, 71, 76, 77, 80, 85, 90, 101, 103 and 10. 1-0 The filament of a 150 W incandescent lamp is 5 cm long and has a diameter of 0.5 mm. The heat flux on the surface of the filament,

More information

Lecture 4: Classical Illustrations of Macroscopic Thermal Effects. Heat capacity of solids & liquids. Thermal conductivity

Lecture 4: Classical Illustrations of Macroscopic Thermal Effects. Heat capacity of solids & liquids. Thermal conductivity Lecture 4: Classical Illustrations of Macroscopic Thermal Effects Heat capacity of solids & liquids Thermal conductivity References for this Lecture: Elements Ch 3,4A-C Reference for Lecture 5: Elements

More information

Thermal energy. Thermal energy is the internal energy of a substance. I.e. Thermal energy is the kinetic energy of atoms and molecules.

Thermal energy. Thermal energy is the internal energy of a substance. I.e. Thermal energy is the kinetic energy of atoms and molecules. Thermal energy Thermal energy is the internal energy of a substance. I.e. Thermal energy is the kinetic energy of atoms and molecules. Heat is the transfer of thermal energy between substances. Until the

More information

Study Guide Unit 3 Chapter 6 DRAFT

Study Guide Unit 3 Chapter 6 DRAFT Study Guide Unit 3 Chapter 6 DRAFT Unit 3 BIG IDEAS Energy can be transformed from one type into another. Energy transformation systems often involve thermal energy losses and are never 100 % efficient.

More information

Name Class Date. What are three kinds of energy transfer? What are conductors and insulators? What makes something a good conductor of heat?

Name Class Date. What are three kinds of energy transfer? What are conductors and insulators? What makes something a good conductor of heat? CHAPTER 14 SECTION Heat and Temperature 2 Energy Transfer KEY IDEAS As you read this section, keep these questions in mind: What are three kinds of energy transfer? What are conductors and insulators?

More information

Bell Ringer. What are the formulas to obtain the force, acceleration, and mass? And corresponding units. F= ma M= f/a A= f/m

Bell Ringer. What are the formulas to obtain the force, acceleration, and mass? And corresponding units. F= ma M= f/a A= f/m Bell Ringer What are the formulas to obtain the force, acceleration, and mass? And corresponding units. F= ma M= f/a A= f/m F= N M= kg A= m/s^2 What did we learn about the acceleration rate and gravitational

More information

Physics 231. Topic 13: Heat. Alex Brown Dec 1, MSU Physics 231 Fall

Physics 231. Topic 13: Heat. Alex Brown Dec 1, MSU Physics 231 Fall Physics 231 Topic 13: Heat Alex Brown Dec 1, 2015 MSU Physics 231 Fall 2015 1 8 th 10 pm correction for 3 rd exam 9 th 10 pm attitude survey (1% for participation) 10 th 10 pm concept test timed (50 min))

More information

Energy in Thermal Processes. Heat and Internal Energy

Energy in Thermal Processes. Heat and Internal Energy Energy in Thermal Processes Heat and Internal Energy Internal energy U: associated with the microscopic components of a system: kinetic and potential energies. The larger the number of internal degrees

More information

Experimental Assessment of Thermal Conductivity of a Brick Block with Internal Cavities Using a Semi-scale Experiment

Experimental Assessment of Thermal Conductivity of a Brick Block with Internal Cavities Using a Semi-scale Experiment Int J Thermophys (2013) 34:909 915 DOI 10.1007/s10765-012-1332-8 Experimental Assessment of Thermal Conductivity of a Brick Block with Internal Cavities Using a Semi-scale Experiment Zbyšek Pavlík Lukáš

More information

Thermal Effects. IGCSE Physics

Thermal Effects. IGCSE Physics Thermal Effects IGCSE Physics Starter What is the difference between heat and temperature? What unit is thermal energy measured in? And what does it depend on? In which direction does heat flow? Heat (Thermal

More information

Liquid water is one of the

Liquid water is one of the Formanski 71 1/07/09 8:57 Page 71 V olume 5 - Number 7 - May 2009 (71-75) Abstract Liquid water is one of the agents responsible for damage of building materials. Therefore determination of its content

More information

Review: Heat, Temperature, Heat Transfer and Specific Heat Capacity

Review: Heat, Temperature, Heat Transfer and Specific Heat Capacity Name: Block: Date: IP 614 Review: Heat, Temperature, Heat Transfer and Specific Heat Capacity All these questions are real MCAS questions! 1. In a copper wire, a temperature increase is the result of which

More information

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar

Experiment 1. Measurement of Thermal Conductivity of a Metal (Brass) Bar Experiment 1 Measurement of Thermal Conductivity of a Metal (Brass) Bar Introduction: Thermal conductivity is a measure of the ability of a substance to conduct heat, determined by the rate of heat flow

More information

Physical Science Chapter 5 Cont3. Temperature & Heat

Physical Science Chapter 5 Cont3. Temperature & Heat Physical Science Chapter 5 Cont3 Temperature & Heat What are we going to study? Heat Transfer Phases of Matter The Kinetic Theory of Gases Thermodynamics Specific Heat (Capacity) Specific Heat Latent Heat

More information

Chapter 17 Temperature and heat

Chapter 17 Temperature and heat Chapter 17 Temperature and heat 1 Temperature and Thermal Equilibrium When we speak of objects being hot and cold, we need to quantify this by some scientific method that is quantifiable and reproducible.

More information

Heat Transfer There are three mechanisms for the transfer of heat:

Heat Transfer There are three mechanisms for the transfer of heat: Heat Transfer There are three mechanisms for the transfer of heat: Conduction Convection Radiation CONDUCTION is a diffusive process wherein molecules transmit their kinetic energy to other molecules by

More information

Lecture 4: Classical Illustrations of Macroscopic Thermal Effects

Lecture 4: Classical Illustrations of Macroscopic Thermal Effects Lecture 4: Classical Illustrations of Macroscopic Thermal Effects Heat capacity of solids & liquids Thermal conductivity Irreversibility References for this Lecture: Elements Ch 3,4A-C Reference for Lecture

More information

ENERGY. Unit 12: IPC

ENERGY. Unit 12: IPC ENERGY Unit 12: IPC WHAT IS ENERGY? Energy- is the ability to do work. Energy is the ability to cause a change. Energy can change an object s: motion shape temperature color THERMAL internal motion of

More information

High temperature He is hot

High temperature He is hot Lecture 9 What is Temperature and Heat? High temperature He is hot Some important definitions * Two objects are in Thermal contact with each other if energy can be exchanged between them. Thermal equilibrium

More information

Heat and temperature are related and often confused, but they are not the same.

Heat and temperature are related and often confused, but they are not the same. Heat and temperature are related and often confused, but they are not the same. Heat Definition: Heat is energy that is transferred from one body to another as a result of a difference in temperature Symbol:

More information

Heat processes. Heat exchange

Heat processes. Heat exchange Heat processes Heat exchange Heat energy transported across a surface from higher temperature side to lower temperature side; it is a macroscopic measure of transported energies of molecular motions Temperature

More information

HEAT HISTORY. D. Whitehall

HEAT HISTORY. D. Whitehall 1 HEAT HISTORY 18 th Century In the 18 th century it was assumed that there was an invisible substance called caloric. When objects got it was assumed that they gained caloric, therefore hot objects should

More information

Heat Tracing Basics. By: Homi R. Mullan 1

Heat Tracing Basics. By: Homi R. Mullan 1 Heat Tracing Basics By: Homi R. Mullan 1 Heat Tracing Basics Topics of Discussion What is Heat Tracing? Why Heat Tracing? Fundamentals of Heat Loss and Heat Replenishment Rules to Remember in the Heat

More information

Heat Transfer. Heat always moves from a warmer place to a cooler place. Hot objects in a cooler room will cool to room temperature.

Heat Transfer. Heat always moves from a warmer place to a cooler place. Hot objects in a cooler room will cool to room temperature. Heat Transfer Heat always moves from a warmer place to a cooler place. Hot objects in a cooler room will cool to room temperature. Cold objects in a warmer room will heat up to room temperature. Question

More information

Chapter 2 Heat, Temperature and the First Law of Thermodynamics

Chapter 2 Heat, Temperature and the First Law of Thermodynamics Chapter 2 Heat, Temperature and the First Law of Thermodynamics 2.1. Temperature and the Zeroth Law of Thermodynamics 2.2. Thermal Expansion 2.3. Heat and the Absorption of Heat by Solids and Liquids 2.4.

More information

(Refer Slide Time: 01:09)

(Refer Slide Time: 01:09) Mechanical Measurements and Metrology Prof. S. P. Venkateshan Department of Mechanical Engineering Indian Institute of Technology, Madras Module - 4 Lecture - 36 Measurement of Thermo-Physical Properties

More information

Temperature and Heat. Two systems of temperature. Temperature conversions. PHY heat - J. Hedberg

Temperature and Heat. Two systems of temperature. Temperature conversions. PHY heat - J. Hedberg Temperature and Heat 1. Two systems of temperature 1. Temperature conversions 2. Real science (one scale to rule them all) 3. Temperature scales 2. Effects of temperature on materials 1. Linear Thermal

More information

Tick the box next to those resources for which the Sun is also the source of energy.

Tick the box next to those resources for which the Sun is also the source of energy. 1 (a) The source of solar energy is the Sun. Tick the box next to those resources for which the Sun is also the source of energy. coal geothermal hydroelectric nuclear wind [2] (b) Fig. 4.1 shows a solar

More information

Most of the energy from the light sources was transferred to the sand by the process of A) conduction B) convection C) radiation D) transpiration

Most of the energy from the light sources was transferred to the sand by the process of A) conduction B) convection C) radiation D) transpiration 1. Light and other forms of electromagnetic radiation are given off by stars using energy released during A) nuclear fusion B) conduction C) convection D) radioactive decay 2. At which temperature would

More information

MECH 375, Heat Transfer Handout #5: Unsteady Conduction

MECH 375, Heat Transfer Handout #5: Unsteady Conduction 1 MECH 375, Heat Transfer Handout #5: Unsteady Conduction Amir Maleki, Fall 2018 2 T H I S PA P E R P R O P O S E D A C A N C E R T R E AT M E N T T H AT U S E S N A N O PA R T I - C L E S W I T H T U

More information

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance

Thermal Systems. What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Introduction to Heat Transfer What and How? Physical Mechanisms and Rate Equations Conservation of Energy Requirement Control Volume Surface Energy Balance Thermal Resistance Thermal Capacitance Thermal

More information

S8P All of the substances on the periodic table are classified as elements because they

S8P All of the substances on the periodic table are classified as elements because they S8P1-2 1. Putting sand and salt together makes A. a compound. B. an element. C. a mixture. D. a solution. 2. All of the substances on the periodic table are classified as elements because they A. are pure

More information

11/13/2003 PHY Lecture 19 1

11/13/2003 PHY Lecture 19 1 Announcements 1. Schedule Chapter 19 macroscopic view of heat (today) Chapter 20 microscopic view of heat (Tuesday 11/18) Review Chapters 15-20 (Thursday 11/20) Exam 3 (Tuesday 11/25) 2. Physics colloquium

More information

Homework - Lecture 11.

Homework - Lecture 11. Homework - Lecture 11. Name: Topic: Heat Capacity and Specific Heat Type: Numerical 1. Two liquids, A and B, are mixed together, and the resulting temperature is 22 C. If liquid A has mass m and was initially

More information

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs

Mechanical Engineering. Postal Correspondence Course HEAT TRANSFER. GATE, IES & PSUs Heat Transfer-ME GATE, IES, PSU 1 SAMPLE STUDY MATERIAL Mechanical Engineering ME Postal Correspondence Course HEAT TRANSFER GATE, IES & PSUs Heat Transfer-ME GATE, IES, PSU 2 C O N T E N T 1. INTRODUCTION

More information

Supplemental Information. Storage and Recycling of Interfacial. Solar Steam Enthalpy

Supplemental Information. Storage and Recycling of Interfacial. Solar Steam Enthalpy JOUL, Volume 2 Supplemental Information Storage and Recycling of Interfacial Solar Steam Enthalpy Xiuqiang Li, Xinzhe Min, Jinlei Li, Ning Xu, Pengchen Zhu, Bin Zhu, Shining Zhu, and Jia Zhu Supplemental

More information

Chapter 16 Temperature and Heat

Chapter 16 Temperature and Heat Chapter 16 Temperature and Heat Temperature and the Zeroth Law of Thermodynamics Temperature Scales Thermal Expansion Heat and Mechanical Work Specific Heats Conduction, Convection, and Radiation 16-1

More information

HEAT AND MASS TRANSFER IN A HIGH-POROUS LOW- TEMPERATURE THERMAL INSULATION IN REAL OPERATING CONDITIONS

HEAT AND MASS TRANSFER IN A HIGH-POROUS LOW- TEMPERATURE THERMAL INSULATION IN REAL OPERATING CONDITIONS MATEC Web of Conferences 3, 0033 ( 05) DOI: 0.05/ matecconf/ 0530033 C Owned by the authors, published by EDP Sciences, 05 HEAT AND MASS TRANSFER IN A HIGH-POROUS LOW- TEMPERATURE THERMAL INSULATION IN

More information

Honors Physics. Notes Nov 16, 20 Heat. Persans 1

Honors Physics. Notes Nov 16, 20 Heat. Persans 1 Honors Physics Notes Nov 16, 20 Heat Persans 1 Properties of solids Persans 2 Persans 3 Vibrations of atoms in crystalline solids Assuming only nearest neighbor interactions (+Hooke's law) F = C( u! u

More information

Latest Heat Transfer

Latest Heat Transfer Latest Heat Transfer 1. Unit of thermal conductivity in M.K.S. units is (a) kcal/kg m2 C (b) kcal-m/hr m2 C (c) kcal/hr m2 C (d) kcal-m/hr C (e) kcal-m/m2 C. 2. Unit of thermal conductivity in S.I. units

More information

Temperature and Heat 4.1. Temperature depends on particle movement Energy flows from warmer to cooler objects. 4.3

Temperature and Heat 4.1. Temperature depends on particle movement Energy flows from warmer to cooler objects. 4.3 Temperature and Heat NEW the BIG idea Heat is a flow of energy due to temperature differences. 4.1 Temperature depends on particle movement. 4.2 Energy flows from warmer to cooler objects. 4.3 The transfer

More information

CHAPTER 4 THERMAL CONDUCTIVITY AND VISCOSITY MEASUREMENTS

CHAPTER 4 THERMAL CONDUCTIVITY AND VISCOSITY MEASUREMENTS 50 CHAPTER 4 THERMAL CONDUCTIVITY AND VISCOSITY MEASUREMENTS 4.1 INTRODUCTION In the development of any energy-efficient heat transfer fluids for enhanced heat transfer performance, in practical applications,

More information

THERMAL CONDUCTIVITY OF BUILDING MATERIALS: AN OVERVIEW OF ITS DETERMINATION

THERMAL CONDUCTIVITY OF BUILDING MATERIALS: AN OVERVIEW OF ITS DETERMINATION 15 THERMAL CONDUCTIVITY OF BUILDING MATERIALS: AN OVERVIEW OF ITS DETERMINATION E Latif *, M Pruteanu *** and G R Rhydwen *, D C Wijeyesekera *, S Tucker **, M A Ciupala *, D Newport * * School of Computing,

More information

6-3 Particle model of matter Physics

6-3 Particle model of matter Physics 6-3 Particle model of matter Physics.0 A teacher uses a tray filled with table tennis balls to model how particles are arranged in materials, as shown in Figure Figure. Initially the balls are arranged

More information

2011 Sec 1 Physics (Term 2) Block Test Practice Questions (by Topic)

2011 Sec 1 Physics (Term 2) Block Test Practice Questions (by Topic) 2011 Sec 1 Physics (Term 2) lock Test Practice Questions (by Topic) Name: ( ) Class: 1/ Date: Section (10 marks): Multiple-Choice Questions Choose the best answer and write its letter in the table provided

More information

SPH3U1 Lesson 03 Energy

SPH3U1 Lesson 03 Energy THERMAL ENERGY AND LATENT HEAT LEARNING GOALS Students will learn: Heat changes the amount of thermal energy in an object Temperature is a measure of the average thermal energy in an object Heat capacity

More information

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM V (ME-51, 52, 53, 54)] QUIZ TEST-1 (Session: )

SHRI RAMSWAROOP MEMORIAL COLLEGE OF ENGG. & MANAGEMENT B.Tech. [SEM V (ME-51, 52, 53, 54)] QUIZ TEST-1 (Session: ) QUIZ TEST-1 Time: 1 Hour HEAT AND MASS TRANSFER Note: All questions are compulsory. Q1) The inside temperature of a furnace wall ( k=1.35w/m.k), 200mm thick, is 1400 0 C. The heat transfer coefficient

More information

Thermal Sensors and Actuators

Thermal Sensors and Actuators Thermal Sensors and Actuators Part I Fundamentals of heat transfer Heat transfer occurs where there is a temperature gradient until an equilibrium is reached. Four major mechanism Thermal conduction Natural

More information

Chapter 4: Heat Capacity and Heat Transfer

Chapter 4: Heat Capacity and Heat Transfer Chapter 4: Heat Capacity and Heat Transfer Chapter 4: Heat Capacity and Heat Transfer Chapter 4: Heat Capacity and Heat Transfer 4.1 Material Structure 4.2 Temperature and Material Properties 4.3 Heating

More information

matter/index.html

matter/index.html http://www.colorado.edu/physics/2000/index.pl http://www.harcourtschool.com/activity/states_of_ matter/index.html Thermal Energy Ch 6-1 Temperature and Heat Objectives Explain the kinetic theory of matter

More information

Chapter 16 Temperature and Heat

Chapter 16 Temperature and Heat Chapter 16 Temperature and Heat 16-1 Temperature and the Zeroth Law of Thermodynamics Definition of heat: Heat is the energy transferred between objects because of a temperature difference. Objects are

More information

Heat and Temperature

Heat and Temperature Chapter 4 Heat Heat and Temperature Heat is a form of energy Heat is the energy of random motion of molecules constituting the body. It flows from a hot body to a cold body. Unit of heat is joule (J) and

More information

Heat & Temperature. What are heat & temperature and how do they relate?

Heat & Temperature. What are heat & temperature and how do they relate? Heat & Temperature What are heat & temperature and how do they relate? SPS7. Students will relate transformations and flow of energy within a system. a. Identify energy transformations within a system

More information

Introduction to Heat and Mass Transfer. Week 5

Introduction to Heat and Mass Transfer. Week 5 Introduction to Heat and Mass Transfer Week 5 Critical Resistance Thermal resistances due to conduction and convection in radial systems behave differently Depending on application, we want to either maximize

More information

AP PHYSICS 2 WHS-CH-14 Heat Show all your work, equations used, and box in your answers! 1 108kg

AP PHYSICS 2 WHS-CH-14 Heat Show all your work, equations used, and box in your answers! 1 108kg AP PHYSICS 2 WHS-CH-4 Heat Show all your work, equations used, and box in your answers! James Prescott Joule (88 889) James Prescott Joule studied the nature of heat, and discovered its relationship to

More information

Unit B-4: List of Subjects

Unit B-4: List of Subjects ES312 Energy Transfer Fundamentals Unit B: First Law of Thermodynamics ROAD MAP... B-1: The Concept of Energy B-2: Work Interactions B-3: First Law of Thermodynamics B-4: Heat Transfer Fundamentals Unit

More information

heat By cillian bryan and scott doyle

heat By cillian bryan and scott doyle heat By cillian bryan and scott doyle What is heat Heat energy is the result of the movement of tiny particles called atoms molecules or ions in solids, liquids and gases. Heat energy can be transferred

More information

6-3 Particle model of matter Trilogy

6-3 Particle model of matter Trilogy 6-3 Particle model of matter Trilogy.0 A teacher uses a tray filled with table tennis balls to model how particles are arranged in materials, as shown in Figure Figure. Initially the balls are arranged

More information

Thermal Energy. Practice Quiz Solutions

Thermal Energy. Practice Quiz Solutions Thermal Energy Practice Quiz Solutions What is thermal energy? What is thermal energy? Thermal energy is the energy that comes from heat. This heat is generated by the movement of tiny particles within

More information

Conducting Energy and Heat. Energy Likes to Move. Radiating Energy

Conducting Energy and Heat. Energy Likes to Move. Radiating Energy Energy Likes to Move If there is a temperature difference in a system, heat will naturally move from high to low temperatures. The place you find the higher temperature is the heat source. The area where

More information

Lecture 22. Temperature and Heat

Lecture 22. Temperature and Heat Lecture 22 Temperature and Heat Today s Topics: 0 th Law of Thermodynamics Temperature Scales Thermometers Thermal Expansion Heat, Internal Energy and Work Heat Transfer Temperature and the Zeroth Law

More information

Thermal Energy. Chapter 6 2 Transferring Thermal Energy

Thermal Energy. Chapter 6 2 Transferring Thermal Energy Thermal Energy Chapter 6 2 Transferring Thermal Energy Objectives Compare and contrast conduction, convection, and radiation. Compare and contrast conductors and insulators. CLE 3202.2.3 Examine the applications

More information

Physics 111. Lecture 36 (Walker: ) Heat Capacity & Specific Heat Heat Transfer. May 1, Quiz (Chaps. 14 & 16) on Wed.

Physics 111. Lecture 36 (Walker: ) Heat Capacity & Specific Heat Heat Transfer. May 1, Quiz (Chaps. 14 & 16) on Wed. Physics 111 Lecture 36 (Walker: 16.4-6) Heat Capacity & Specific Heat Heat Transfer May 1, 2009 Quiz (Chaps. 14 & 16) on Wed. May 6 Lecture 36 1/26 Heat Capacity (C) The heat capacity C of an object is

More information

1. How much heat was needed to raise the bullet to its final temperature?

1. How much heat was needed to raise the bullet to its final temperature? Name: Date: Use the following to answer question 1: A 0.0500-kg lead bullet of volume 5.00 10 6 m 3 at 20.0 C hits a block that is made of an ideal thermal insulator and comes to rest at its center. At

More information

Preview of Period 4: Transfer of Thermal Energy

Preview of Period 4: Transfer of Thermal Energy Preview of Period 4: Transfer of Thermal Energy 4.1 Temperature and Thermal Energy How is temperature measured? What temperature scales are used? 4.2 How is Thermal Energy Transferred? How do conduction,

More information

Tells us the average translational kinetic energy of the particles

Tells us the average translational kinetic energy of the particles Temperature and Heat What is temperature? Kinetic Energy What is heat? Thermal Expansion Specific Heat Latent Heat and phase changes Unit 03, Slide 1 Temperature Tells us the average translational kinetic

More information

THERMO-MECHANICAL ANALYSIS OF A COPPER VAPOR LASER

THERMO-MECHANICAL ANALYSIS OF A COPPER VAPOR LASER THERMO-MECHANICAL ANALYSIS OF A COPPER VAPOR LASER E.mail: rchaube@cat.ernet.in R. CHAUBE, B. SINGH Abstract The thermal properties of the laser head such as temperature distribution, thermal gradient

More information

Recap. There are 3 different temperature scales: Celsius, Kelvin, and Fahrenheit

Recap. There are 3 different temperature scales: Celsius, Kelvin, and Fahrenheit Recap Temperature, T, is related to the average kinetic energy of each atom/molecule the given material consists of: The ideal gas law relates pressure to density and temperature: There are 3 different

More information

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics

PHYS102 Previous Exam Problems. Temperature, Heat & The First Law of Thermodynamics PHYS102 Previous Exam Problems CHAPTER 18 Temperature, Heat & The First Law of Thermodynamics Equilibrium & temperature scales Thermal expansion Exchange of heat First law of thermodynamics Heat conduction

More information

Chapter 5: The First Law of Thermodynamics: Closed Systems

Chapter 5: The First Law of Thermodynamics: Closed Systems Chapter 5: The First Law of Thermodynamics: Closed Systems The first law of thermodynamics can be simply stated as follows: during an interaction between a system and its surroundings, the amount of energy

More information

Phase Change Diagram. Rank Solids, liquids and gases from weakest attractive forces to strongest:

Phase Change Diagram. Rank Solids, liquids and gases from weakest attractive forces to strongest: Unit 11 Kinetic molecular theory packet Page 1 of 13 Chemistry Unit 11 Kinetic Theory Unit Quiz: Test Objectives Be able to define pressure and memorize the basic pressure units. Be able to convert to/from:

More information

OCEAN/ESS 410. Class 3. Understanding Conductive Cooling: A Thought Experiment. Write your answers on the exercise sheet

OCEAN/ESS 410. Class 3. Understanding Conductive Cooling: A Thought Experiment. Write your answers on the exercise sheet Class 3. Understanding Conductive Cooling: A Thought Experiment Write your answers on the exercise sheet While looking at the global bathymetry maps you will have noticed that mid-ocean ridges or ocean

More information

Introduction to Heat Transfer

Introduction to Heat Transfer Question Bank CH302 Heat Transfer Operations Introduction to Heat Transfer Question No. 1. The essential condition for the transfer of heat from one body to another (a) Both bodies must be in physical

More information

Preview. Heat Section 1. Section 1 Temperature and Thermal Equilibrium. Section 2 Defining Heat. Section 3 Changes in Temperature and Phase

Preview. Heat Section 1. Section 1 Temperature and Thermal Equilibrium. Section 2 Defining Heat. Section 3 Changes in Temperature and Phase Heat Section 1 Preview Section 1 Temperature and Thermal Equilibrium Section 2 Defining Heat Section 3 Changes in Temperature and Phase Heat Section 1 TEKS The student is expected to: 6E describe how the

More information

NAME: ACTIVITY SHEETS PHYSICS AND CHEMISTRY (SECONDARY 3 rd YEAR)

NAME: ACTIVITY SHEETS PHYSICS AND CHEMISTRY (SECONDARY 3 rd YEAR) NAME: ACTIVITY SHEETS PHYSICS AND CHEMISTRY (SECONDARY 3 rd YEAR) ACTIVITY 1: Matter Lesson 2 THE PARTICULATE NATURE OF MATTER 1-What is matter? 2-What is a particle (corpuscle)? Set some examples 3-What

More information

Autumn 2005 THERMODYNAMICS. Time: 3 Hours

Autumn 2005 THERMODYNAMICS. Time: 3 Hours CORK INSTITUTE OF TECHNOOGY Bachelor of Engineering (Honours) in Mechanical Engineering Stage 3 (Bachelor of Engineering in Mechanical Engineering Stage 3) (NFQ evel 8) Autumn 2005 THERMODYNAMICS Time:

More information

Topic 2: Heat Affects Matter in Different Ways

Topic 2: Heat Affects Matter in Different Ways Topic 2: Heat Affects Matter in Different Ways 1 2.1 States of Matter and the Particle Model of Matter A. States of 1. Matter is made up of tiny particles and exist in 3 states:, and. 2. Matter can change

More information

TEMPERATURE. 8. Temperature and Heat 1

TEMPERATURE. 8. Temperature and Heat 1 TEMPERATURE Heat is the energy that is transferred between objects because of a temperature difference Terms such as transfer of heat or heat flow from object A to object B simply means that the total

More information

PHYSICAL MECHANISM OF CONVECTION

PHYSICAL MECHANISM OF CONVECTION Tue 8:54:24 AM Slide Nr. 0 of 33 Slides PHYSICAL MECHANISM OF CONVECTION Heat transfer through a fluid is by convection in the presence of bulk fluid motion and by conduction in the absence of it. Chapter

More information

8th Grade. Thermal Energy Study Guide.

8th Grade. Thermal Energy Study Guide. 1 8th Grade Thermal Energy Study Guide 2015 10 09 www.njctl.org 2 Thermal Energy Study Guide www.njctl.org 3 Part 1 Define the following terms and/or concepts 4 1 Temperature 5 2 Kinetic Energy 6 3 Thermal

More information

Slide 1 / 67. Slide 2 / 67. 8th Grade. Thermal Energy Study Guide Slide 3 / 67. Thermal Energy. Study Guide.

Slide 1 / 67. Slide 2 / 67. 8th Grade. Thermal Energy Study Guide Slide 3 / 67. Thermal Energy. Study Guide. Slide 1 / 67 Slide 2 / 67 8th Grade Thermal Energy Study Guide 2015-10-09 www.njctl.org Slide 3 / 67 Thermal Energy Study Guide www.njctl.org Slide 4 / 67 Part 1 Define the following terms and/or concepts

More information

FIND: (a) Sketch temperature distribution, T(x,t), (b) Sketch the heat flux at the outer surface, q L,t as a function of time.

FIND: (a) Sketch temperature distribution, T(x,t), (b) Sketch the heat flux at the outer surface, q L,t as a function of time. PROBLEM 5.1 NOWN: Electrical heater attached to backside of plate while front surface is exposed to convection process (T,h); initially plate is at a uniform temperature of the ambient air and suddenly

More information

Chapter 10: Steady Heat Conduction

Chapter 10: Steady Heat Conduction Chapter 0: Steady Heat Conduction In thermodynamics, we considered the amount of heat transfer as a system undergoes a process from one equilibrium state to another hermodynamics gives no indication of

More information

Chapter 2 HEAT CONDUCTION EQUATION

Chapter 2 HEAT CONDUCTION EQUATION Heat and Mass Transfer: Fundamentals & Applications 5th Edition in SI Units Yunus A. Çengel, Afshin J. Ghajar McGraw-Hill, 2015 Chapter 2 HEAT CONDUCTION EQUATION Mehmet Kanoglu University of Gaziantep

More information

Vincent Barraud SOPREMA BASICS OF THERMAL INSULATION

Vincent Barraud SOPREMA BASICS OF THERMAL INSULATION Vincent Barraud SOPREMA BASICS OF THERMAL INSULATION Summary Part 1 - What is thermal conductivity? Part 2 - How the thermal conductivity is measured? Part 3 How to certify a lambda value? Part 1 - What

More information