Mixed-Mode Fracture Toughness Determination USING NON-CONVENTIONAL TECHNIQUES

Size: px
Start display at page:

Download "Mixed-Mode Fracture Toughness Determination USING NON-CONVENTIONAL TECHNIQUES"

Transcription

1 Mixed-Mode Fracture Toughness Determination USING NON-CONVENTIONAL TECHNIQUES IDMEC- Pólo FEUP DEMec - FEUP ESM Virginia Tech

2 motivation fracture modes conventional tests [mode I] conventional tests [mode II] conventional tests [mixed-mode I + II] non-conventional tests [mixed-mode I + II] conclusions acknowledgments outline

3 Boeing 737 Aloha Flight 243 Bonded joints in service are usually subjected to mixed-mode conditions due to geometric and loading complexities. Consequently, the fracture characterization of bonded joints under mixed-mode loading is a fundamental task. There are some conventional tests proposed in the literature concerning this subject, as is the case of the asymmetric double cantilever beam (ADCB), the single leg bending (SLB) and the cracked lap shear (CLS). Nevertheless, these tests are limited in which concerns the variation of the mode-mixity, which means that different tests are necessary to cover the fracture envelope in the G I -G II space. This work consists on the analysis of the different mixed mode tests already in use, allowing to design an optimized test protocol to obtain the fracture envelope for an adhesive, using a Double Cantilever Beam (DCB) specimen. motivation Photos from NTSB 3

4 fracture modes for adhesive joints mode I Mode I opening mode (a tensile stress normal to the plane of the crack); mode II Mode II Sliding mode (a shear stress acting parallel to the plane of the crack and perpendicular to the crack front); mode III Mode III tearing mode (a shear stress acting parallel to the plane of the crack and parallel to the crack front) Figure 1. Fracture modes. fracture modes 4

5 ASTM D Mode I release rate energy G I is well known and well characterized. DCB Double Cantilever Beam Aa & TDCB Tapered Double Cantilever Beam Figure2. DCB specimen and test. Figure 3. TDCB specimen and test. conventional tests [mode I] 5

6 Mode II release rate energy G IIC. Aa ENF End Notch Flexure 4ENF - 4 Points End Notch Flexure ELS End Load Split Figure 4. ENF specimen and test. Figure 5. 4 ENF scheme Figure 6. ELS scheme conventional tests [mode II] 6

7 Mixed-Mode I + II release rates energies G T = G IC + G IIC. CLS - Crack Lap Shear EDT - Edge Delamination Tension Arcan MMF - Mixed Mode Flexure Mixed Mode Bending [MMB] ASTM D6671 Asymmetrical Double Cantilever Beam [ADCB] Asymmetrical Tapered Double Cantilever Beam [ATDCB] SLB Single Leg Bending Figure 7. Conventional test schemes for mixed-mode I + II. conventional tests [mixed-mode I+II] 7

8 specimens [DCB,ATDCB,SLB, ENF] Bondline thickness = 0.2 mm Table1. Adhesive shear properties using the thick adherend shear test method ISO Araldite Table2. Steel adherend properties Steel Young modulus, E [Gpa] 205 Yield strength, s y [MPa] ~900 Shear strength, s y [MPa] ~1000 Figure 8. DCB, ATDCB, SLB and ENF specimen geometries. conventional tests Strain, e f [%] ~15 8

9 Table 3. Fracture toughness obtained with the conventional testing methods (average and standard deviation). Figure 9. Fracture envelope for conventional tests. conventional tests [envelope] 9

10 Standard Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites Compliance Based Beam Method applied to MMB J.M.Q. Oliveira et al. / Composites Science and Technology 67 (2007) G I = (1) G II = (2) Figure 10. Modified Mixed Mode Bending by Reeder. conventional tests [mixed-mode I+II] An equivalent crack length (a eq,i and a eq,ii ) can be obtained from the previous equation as a function of the measured current compliance a eq,i = f(c I ) and a eq,ii = f(c II ) 10

11 The specimen was modelled with plane strain 8-node quadrilateral elements and node interface elements with null thickness placed at the mid-plane of the bonded specimen. ABAQUS Table 4. Elastic and cohesive properties. Elastic properties (Steel) Cohesive properties (Adhesive) E (GPa) G (MPa) s u,i (MPa) s u,ii (MPa) G Ic (N/mm) G IIc (N/mm) G G 1 G G I II Linear Criterion Ic IIc Figure 11. Numerical Fracture Envelope for MMB. conventional tests [mixed-mode I+II] 11

12 The Dual Actuator Load Frame (DAL) test is based on a DCB specimen loaded asymmetrically by means of two independent hydraulic actuators Figure 12. DAL loading a DCB specimen. Different combinations of applied displacement rates provide different levels of mode ratios, thus allowing an easy definition of the fracture envelope in the G I versus G II space. Figure 13. DAL frame 12

13 DAL loading schemes for this study Figure 14. Loading schemes. Classical data reduction schemes based on compliance calibration and beam theories require crack length monitoring during its growth, which in addition to FPZ ahead of the crack tip can be considered important limitations. 13

14 Using Timoshenko beam theory, the strain energy of the specimen due to bending and including shear effects is: a M a R M L L M a h T 2 a h R 2 L h L T U dx dx dx 2EI 2EI a 0 0 2EI B dydx B dydx B dydx h h 22G 22G a h2g 0 0 R L (3) M is the bending moment subscripts R and L stand for right and left adherends T refers to the total bonded beam (of thickness 2h) E is the longitudinal modulus G is the shear modulus B is the specimen and bond width I is the second moment of area of the indicated section For adherends with same thickness, considered in this analysis, I = 8I R = 8I L Figure 15. Schematic representation of loading in the DAL test. 14

15 The shear stresses induced by bending are given by: c - beam half-thickness V - transverse load 3 2 V y 1 Bh c 2 2 (4) on each arm for 0 x a, and on total bonded beam for a x L From Castigliano s theorem U / P P is the applied load is the resulting displacement at the same point the displacements of the specimen arms can be written as 7a 3 L 3 F ( L 3 a 3 ) F 3 L ( F F ) a( F F ) L R L R L R L 3 3 2Bh E 2Bh E 5BhG 7a 3 L 3 F ( L 3 a 3 ) F 3 L ( F F ) a( F F ) R L L R R L R 3 3 2Bh E 2Bh E 5BhG (5) 15

16 The DAL test can be viewed as a combination of the DCB and ELS tests Figure 16. Schematic representation of loading in the DAL test. pure mode loading P I F F 2 P F F (6) R L II R L pure mode displacements I R L II 2 R L (7) 16

17 Combining equations (5-7), the pure mode compliances become 3 3 a II 3a L 3L (8) C CII 3 P Bh E BhG and (9) P 2Bh E 5BhG 3 I 8a 12 I 3 I 5 II However, stress concentrations, root rotation effects, the presence of the adhesive, load frame flexibility, and the existence of a non-negligible fracture process zone ahead of crack tip during propagation are not included in these equations To overcome these drawbacks, equivalent crack lengths can be calculated from the current compliances C I and C II (eq. 6 and 7) a 3 ei aei 0 a a ei eii 1 2 A 6 A 3 3 3L 2Bh E L CII 5BhG 3 3 1/3 (10) (11) 8 12 ; ; C 3 Bh E 5BhG I A

18 The strain energy release rate components can be determined using the Irwin-Kies equation: (12) G 2 P dc 2B da combined with equation 6 C a P Bh E BhG 3 I 8a 12 I 3 I 5 combined with equation 7 C a L L P Bh E BhG 3 3 II 3 3 II 3 II P I 2aeI 1 GI B 2 h h 2 E 5 G G 9Pa 4B h E 2 2 II eii II 2 3 (13) (14) The method only requires the data given in the load-displacement (P- ) curves of the two specimen arms registered during the experimental test. Accounts for the Fracture Process Zone (FPZ) effects, since it is based on current specimen compliance which is influenced by the presence of the FPZ. 18

19 Figure 16. Specimen geometry used in the simulations of the DAL test Numerical analysis including a cohesive damage model was carried out to verify the performance of the test and the adequacy of the proposed data reduction scheme. Table 4. Elastic and cohesive properties. Elastic properties (Steel) Cohesive properties (Adhesive) E (GPa) G (MPa) s u,i (MPa) s u,ii (MPa) G Ic (N/mm) G IIc (N/mm) The specimen was modelled with 7680 plane strain 8-node quadrilateral elements and node interface elements with null thickness placed at the mid-plane of the bonded specimen. 19

20 Figure 17. ABAQUS simulation mixed-mode (left) mode I (right) s i a b quadratic stress criterion to simulate damage initiation s u,i s um,i Pure mode model G ic i = I, II 2 2 s I s II s u,i s u,ii 1 (15) om,i G i i = I, II o,i um,i Mixed-mode model u,i Figure 18. The linear softening law for pure and mixed-mode cohesive damage model. i c the linear energetic criterion to deal with damage growth G I G II 1 G G Ic IIc (16) 20

21 l = -1 pure mode I It is useful to define the displacement ratio l = L / R l = 1 pure mode II G I/G Ic G II/G IIc a ei (mm) a a eii (mm) b Figure 19. Normalized R-curves for the pure modes loading: a) Mode I; b) Mode II. 21

22 Table 5. Imposed displacements for each simulation six different cases were considered in the range -0.9 l -0.1 in this case mode I loading clearly predominates nine combinations were analysed for 0.1 l 0.9 a large range of mode ratios is covered imposed displacem. Simul. # beam 1 beam

23 G II (N/mm) G I (N/mm) variation of mode-mixity as the crack grows for l = 0.7, the R-curves vary as a function of crack length no plateau a ei (mm) no plateau Figure 20. R-curves for l = 0.7 (both curves were plotted as function of a ei for better comparison) a ei (mm) 23

24 spurious effect phenomenon envelope Figure 21. Spurious effect phenomenon. the curves were cut at the beginning of the inflexion caused by the referred effects 24

25 envelope mode I predominant loading conditions combinations -0.9 l -0.7, are nearly pure mode I loading conditions Figure 22. Plot of the G I versus G II strain energy components for -0.9 l

26 envelope combinations using the positive values of l induce quite a large range of mode ratios during crack propagation excellent reproduction of the inputted linear criterion in the vicinity of pure modes, presenting a slight difference where mixed-mode loading prevail explained by the non self-similar crack growth, which is more pronounced in these cases Figure 23. Plot of the G I versus G II strain energies for 0.1 l

27 envelope practically the entire fracture envelope can be obtained using only two combinations ( l = 0.1 and l = 0.75) important advantage of the DAL test Figure 24. Plot of the G I versus G II strain energies for l = 0.1 and l =

28 experimental envelope From table 3. G I = 0.44 ± 0.05 [N/mm] G II = 2.1 ± 0.21 [N/mm] 0.75 mm/min 1 mm/min Figure 25. Schematic representation of loading scheme 2 with l = Figure 26. Envelope for Araldite 2015 with 0.2 mm bondline and l =

29 spelt G. Fernlund & J. K. Spelt, Composites Science and Technology 50 (1994) Mixed-mode testing is being implemented with a specimen load jig similar to the one that Spelt proposed, using DCB specimens used for the pure mode I (DCB) and pure mode II (ENF) and also for mixed-mode DAL. Figure 27. Load jig specimen geometry. Figure 28. Specimen tested with the Spelt load jig. 29

30 The SPELT test can be viewed as a combination of the DCB and EENF tests Figure 29. Schematic representation of loading in the SPELT test. pure mode loading P I = F 1 F 2 2 P II = F 1 + F 2 (17) pure mode displacements (18) δ I = δ 1 δ 2 δ I = δ 1 + δ 2 2 (19) R G = F 1+F 2 2 L 2L L 1 and R H = F 1+F 2 L 1 2L L 1 R A = 2 L P II 2L L 1 and R B = P IIL I 2L L 1 (20) 30

31 spelt data reduction scheme Assuming G = E 2 1+u, the pure compliances become: (21) C I = 8a3 24 a 1 + u 3 + Ebh 5Ebh C II = 1 E I a L L L 1 L 1+u 5 E b h 2L L 1 (22) (23) G I = 12 P I 2 E f,i b 2 h 2 a e,i h u 5 G II = 3 P II 2 2 a e,ii 2 E f,ii I (24) 31

32 spelt numerical model h = 12.7 mm 2L = 260 mm L 2 = 35 mm b = 25 mm Figure 30. Specimen geometry used in the simulations of the SPELT test Numerical analysis including a cohesive damage model was carried out to verify the performance of the test and the adequacy of the proposed data reduction scheme. Table 4. Elastic and cohesive properties. Elastic properties (Steel) Cohesive properties (Adhesive) E (GPa) G (MPa) s u,i (MPa) s u,ii (MPa) G Ic (N/mm) G IIc (N/mm) The specimen was modelled with 3992 plane strain 8-node quadrilateral elements and node interface elements with null thickness placed at the mid-plane of the bonded specimen. 32

33 spelt numerical model P54 P96 Figure 31. Job manager (left) and two combinatons. 33

34 spelt numerical model Linear criterion Figure 32. Spelt numerical fracture envelope plot. 34

35 spelt numerical model Linear criterion Figure 33. numerical envelope plot for MMB, DAL and SPELT. 35

36 spelt experimental Y = 56º Figure 34. P- curve for Y = 56º Figure35. P-Da curve for Y = 56º Figure 36. R curve for Y = 56º 36

37 spelt experimental envelope Figure 37. Experimental envelope (Araldite 2015) 37

38 a new data reduction scheme based on specimen compliance, beam theory and crack equivalent concept was proposed to overcome some problems intrinsic to the DAL and SPELT tests the model provides a simple mode partitioning method and does not require crack length monitoring during the test, which can lead to incorrect estimation of fracture energy due to measurements errors since the current compliance is used to estimate the equivalent crack length, the method is able to account indirectly for the presence of a non-negligible fracture process zone (very important for ductile adhesives) for pure modes I and II, excellent agreement was achieved with the fracture values inputted in the cohesive model for DAL tests a slight difference relative to the inputted linear energetic criterion was observed in the central region of the G I versus G II plot, corresponding to mixed-mode loading, which is attributed to the non self-similar crack propagation conditions that are more pronounced in these cases. The SPELT test has a nearly constant mixed-mode, providing better results for this central region of the fracture envelope. with the DAL test only two combinations of the displacement ratio are sufficient to cover almost all the fracture envelope conclusions 38

39 The authors would like to thank the contribution of Edoardo Nicoli, and Youliang Guan for their work in experimental testing at Virginia Tech. The authors also acknowledge the financial support of Fundação Luso Americana para o Desenvolvimento (FLAD) through project 314/06, 2007, IDMEC and FEUP. Thank you. acknowledgments 39

40

41 Data reduction schemes conventional techniques [data reduction scheme] February 28,

NUMERICAL INVESTIGATION OF DELAMINATION IN L-SHAPED CROSS-PLY COMPOSITE BRACKET

NUMERICAL INVESTIGATION OF DELAMINATION IN L-SHAPED CROSS-PLY COMPOSITE BRACKET NUMERICAL INVESTIGATION OF DELAMINATION IN L-SHAPED CROSS-PLY COMPOSITE BRACKET M.Gümüş a*, B.Gözlüklü a, D.Çöker a a Department of Aerospace Eng., METU, Ankara, Turkey *mert.gumus@metu.edu.tr Keywords:

More information

A NEW METHODOLOGY FOR THE CHARACTERIZATION OF MODE II FRACTURE OF PINUS PINASTER WOOD

A NEW METHODOLOGY FOR THE CHARACTERIZATION OF MODE II FRACTURE OF PINUS PINASTER WOOD 5th International Conference on Mechanics and Materials in Design REF: A0604.009 (Invited Paper) A NEW METHODOLOY FOR THE CHARACTERIZATION OF MODE II FRACTURE OF PINUS PINASTER WOOD M.F.S.F. de Moura 1*,

More information

FRACTURE TOUGHNESS OF ADHESIVE BONDED COMPOSITE JOINTS UNDER MIXED MODE LOADING.

FRACTURE TOUGHNESS OF ADHESIVE BONDED COMPOSITE JOINTS UNDER MIXED MODE LOADING. FRACTURE TOUGHNESS OF ADHESIVE BONDED COMPOSITE JOINTS UNDER MIXED MODE LOADING. X. J. Gong, F. Hernandez, G. Verchery. ISAT - Institut Supérieur de l Automobile et des Transports, LRMA - Laboratoire de

More information

Fracture Behavior. Section

Fracture Behavior. Section Section 6 Fracture Behavior In January 1943 the one-day old Liberty Ship, SS Schenectady, had just completed successful sea trials and returned to harbor in calm cool weather when... "Without warning and

More information

Autodesk Helius PFA. Guidelines for Determining Finite Element Cohesive Material Parameters

Autodesk Helius PFA. Guidelines for Determining Finite Element Cohesive Material Parameters Autodesk Helius PFA Guidelines for Determining Finite Element Cohesive Material Parameters Contents Introduction...1 Determining Cohesive Parameters for Finite Element Analysis...2 What Test Specimens

More information

Crack Equivalent Concept Applied to the Fracture Characterization of Bonded Joints under Pure Mode I Loading

Crack Equivalent Concept Applied to the Fracture Characterization of Bonded Joints under Pure Mode I Loading Crack Equivalent Concept Applied to the Fracture Characterization of Bonded Joints under Pure Mode I Loading M.F.S.F. De Moura, R.D.S.G. Campilho, J.P.M. Gonçalves To cite this version: M.F.S.F. De Moura,

More information

Cohesive Fracture Study of a Bonded Coarse Silica Sand Aggregate Bond Interface Subjected to Mixed-Mode Bending Conditions

Cohesive Fracture Study of a Bonded Coarse Silica Sand Aggregate Bond Interface Subjected to Mixed-Mode Bending Conditions Polymers 04, 6, -8; doi:0.90/polym6000 Article OPEN ACCESS polymers ISSN 07-460 www.mdpi.com/journal/polymers Cohesive Fracture Study of a Bonded Coarse Silica Sand Aggregate Bond Interface Subjected to

More information

Interlaminar fracture characterization in composite materials by using acoustic emission

Interlaminar fracture characterization in composite materials by using acoustic emission 5th International Symposium on NDT in Aerospace, 13-15th November 2013, Singapore Interlaminar fracture characterization in composite materials by using acoustic emission Ian SILVERSIDES 1, Ahmed MASLOUHI

More information

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens.

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens. a). Cohesive Failure b). Interfacial Failure c). Oscillatory Failure d). Alternating Failure Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double

More information

Characterization of Fiber Bridging in Mode II Fracture Growth of Laminated Composite Materials

Characterization of Fiber Bridging in Mode II Fracture Growth of Laminated Composite Materials Applied Mechanics and Materials Online: 2010-06-30 ISSN: 1662-7482, Vols. 24-25, pp 245-250 doi:10.4028/www.scientific.net/amm.24-25.245 2010 Trans Tech Publications, Switzerland Characterization of Fiber

More information

Comparison between a Cohesive Zone Model and a Continuum Damage Model in Predicting Mode-I Fracture Behavior of Adhesively Bonded Joints

Comparison between a Cohesive Zone Model and a Continuum Damage Model in Predicting Mode-I Fracture Behavior of Adhesively Bonded Joints Copyright 2012 Tech Science Press CMES, vol.83, no.2, pp.169-181, 2012 Comparison between a Cohesive Zone Model and a Continuum Damage Model in Predicting Mode-I Fracture Behavior of Adhesively Bonded

More information

The Effects of Transverse Shear on the Delamination of Edge-Notch Flexure and 3-Point Bend Geometries

The Effects of Transverse Shear on the Delamination of Edge-Notch Flexure and 3-Point Bend Geometries The Effects of Transverse Shear on the Delamination of Edge-Notch Flexure and 3-Point Bend Geometries M. D. Thouless Department of Mechanical Engineering Department of Materials Science & Engineering University

More information

On characterising fracture resistance in mode-i delamination

On characterising fracture resistance in mode-i delamination 9 th International Congress of Croatian Society of Mechanics 18-22 September 2018 Split, Croatia On characterising fracture resistance in mode-i delamination Leo ŠKEC *, Giulio ALFANO +, Gordan JELENIĆ

More information

EXPERIMENT-BASED CRITERION FOR THE CRACK STABILITY ANALYSIS IN COMPOSITE MATERIALS

EXPERIMENT-BASED CRITERION FOR THE CRACK STABILITY ANALYSIS IN COMPOSITE MATERIALS Gépészet 008 Budapest, 9-0.May 008. G-008-J-04 EXPERIMENT-BASED CRITERION FOR THE CRACK STABILITY ANALYSIS IN COMPOSITE MATERIALS András Szekrényes Assistant Professor, Department of Applied Mechanics,

More information

CHARACTERIZATION, ANALYSIS AND PREDICTION OF DELAMINATION IN COMPOSITES USING FRACTURE MECHANICS

CHARACTERIZATION, ANALYSIS AND PREDICTION OF DELAMINATION IN COMPOSITES USING FRACTURE MECHANICS Oral Reference Number: ICF100942OR CHARACTERIZATION, ANALYSIS AND PREDICTION OF DELAMINATION IN COMPOSITES USING FRACTURE MECHANICS T. Kevin O Brien U.S. Army Research Laboratory Vehicle Technology Directorate

More information

Durability of bonded aircraft structure. AMTAS Fall 2016 meeting October 27 th 2016 Seattle, WA

Durability of bonded aircraft structure. AMTAS Fall 2016 meeting October 27 th 2016 Seattle, WA Durability of bonded aircraft structure AMTAS Fall 216 meeting October 27 th 216 Seattle, WA Durability of Bonded Aircraft Structure Motivation and Key Issues: Adhesive bonding is a key path towards reduced

More information

Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives

Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives Mark Oliver October 19, 2016 Adhesives and Sealants Council Fall Convention contact@veryst.com www.veryst.com Outline

More information

Effects of Resin and Fabric Structure

Effects of Resin and Fabric Structure Fatigue of Wind Blade Laminates: Effects of Resin and Fabric Structure Details David Miller, Daniel D. Samborsky and John F. Mandell Montana State t University it MCARE 2012 Outline Overview of MSU Fatigue

More information

SSRG International Journal of Mechanical Engineering (SSRG-IJME) volume1 issue5 September 2014

SSRG International Journal of Mechanical Engineering (SSRG-IJME) volume1 issue5 September 2014 Finite Element Modeling for Delamination Analysis of Double Cantilever Beam Specimen Mohammed Waseem H.S. 1, Kiran Kumar N. 2 1 Post Graduate Student, 2 Asst. Professor Dept. of Mechanical Engineering,

More information

Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2BX. UK.

Department of Mechanical Engineering, Imperial College London, Exhibition Road, London SW7 2BX. UK. Engineering Fracture Mechanics, vol. 7, 005, 877-897 The determination of the mode II adhesive fracture resistance, G IIC, of structural adhesive joints: An effective crack length approach. B.R.K. Blackman

More information

FASTENER PULL-THROUGH FAILURE IN GFRP LAMINATES

FASTENER PULL-THROUGH FAILURE IN GFRP LAMINATES 18 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS FASTENER PULL-THROUGH FAILURE IN GFRP LAMINATES G. Catalanotti 1*, P.P. Camanho 1, P. Ghys 2, A.T. Marques 1 1 DEMec, Faculdade de Engenharia, Universidade

More information

Fracture Mechanics, Damage and Fatigue Linear Elastic Fracture Mechanics - Energetic Approach

Fracture Mechanics, Damage and Fatigue Linear Elastic Fracture Mechanics - Energetic Approach University of Liège Aerospace & Mechanical Engineering Fracture Mechanics, Damage and Fatigue Linear Elastic Fracture Mechanics - Energetic Approach Ludovic Noels Computational & Multiscale Mechanics of

More information

DYNAMIC DELAMINATION OF AERONAUTIC STRUCTURAL COMPOSITES BY USING COHESIVE FINITE ELEMENTS

DYNAMIC DELAMINATION OF AERONAUTIC STRUCTURAL COMPOSITES BY USING COHESIVE FINITE ELEMENTS DYNAMIC DELAMINATION OF AERONAUTIC STRUCTURAL COMPOSITES BY USING COHESIVE FINITE ELEMENTS M. Ilyas, F. Lachaud 1, Ch. Espinosa and M. Salaün Université de Toulouse, ISAE/DMSM, 1 avenue Edouard Belin,

More information

NASA TECHNICAL MEMORANDUM

NASA TECHNICAL MEMORANDUM NASA TECHNICAL MEMORANDUM 102777 NONLINEAR ANANLYSIS AND REDESIGN OF THE MIXED-MODE BENDING DELAMINATION TEST J. R. Reeder and J. H. Crews, Jr. January 1991 National Aeronautics and Space Administration

More information

COMPARISON OF COHESIVE ZONE MODELS USED TO PREDICT DELAMINATION INITIATED FROM FREE-EDGES : VALIDATION AGAINST EXPERIMENTAL RESULTS

COMPARISON OF COHESIVE ZONE MODELS USED TO PREDICT DELAMINATION INITIATED FROM FREE-EDGES : VALIDATION AGAINST EXPERIMENTAL RESULTS COMPARISON OF COHESIVE ZONE MODELS USED TO PREDICT DELAMINATION INITIATED FROM FREE-EDGES : VALIDATION AGAINST EXPERIMENTAL RESULTS A. Uguen 1, L. Zubillaga 2, A. Turon 3, N. Carrère 1 1 Laboratoire Brestois

More information

A SELF-INDICATING MODE I INTERLAMINAR TOUGHNESS TEST

A SELF-INDICATING MODE I INTERLAMINAR TOUGHNESS TEST A SELF-INDICATING MODE I INTERLAMINAR TOUGHNESS TEST P. Robinson The Composites Centre, Department of Aeronautics, Imperial College London South Kensington, London, SW7 2AZ, UK p.robinson@imperial.ac.uk

More information

FRACTURE MECHANICS TEST METHODS

FRACTURE MECHANICS TEST METHODS DEVELOPMENT AND EVALUATION OF FRACTURE MECHANICS TEST METHODS FOR SANDWICH COMPOSITES Dan Adams Department of Mechanical Engineering University it of Utah Salt Lake City, UT AMTAS A t 2012 M ti AMTAS Autumn

More information

Application of fracture mechanics-based methodologies for failure predictions in composite structures

Application of fracture mechanics-based methodologies for failure predictions in composite structures Application of fracture mechanics-based methodologies for failure predictions in composite structures Zoltan Mikulik a, B. Gangadhara Prusty a, Rodney S. Thomson b, Donald W. Kelly a,* a School of Mechanical

More information

Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites

Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites Copyright c 2007 ICCES ICCES, vol.1, no.2, pp.61-67, 2007 Calculation of Energy Release Rate in Mode I Delamination of Angle Ply Laminated Composites K. Gordnian 1, H. Hadavinia 1, G. Simpson 1 and A.

More information

Finite element modelling of infinitely wide Angle-ply FRP. laminates

Finite element modelling of infinitely wide Angle-ply FRP. laminates www.ijaser.com 2012 by the authors Licensee IJASER- Under Creative Commons License 3.0 editorial@ijaser.com Research article ISSN 2277 9442 Finite element modelling of infinitely wide Angle-ply FRP laminates

More information

SKIN-STRINGER DEBONDING AND DELAMINATION ANALYSIS IN COMPOSITE STIFFENED SHELLS

SKIN-STRINGER DEBONDING AND DELAMINATION ANALYSIS IN COMPOSITE STIFFENED SHELLS SKIN-STRINER DEBONDIN AND DELAMINATION ANALYSIS IN COMPOSITE STIFFENED SHELLS R. Rikards, K. Kalnins & O. Ozolinsh Institute of Materials and Structures, Riga Technical University, Riga 1658, Latvia ABSTRACT

More information

Int. J. Fracture, 119, 2003, 25-46

Int. J. Fracture, 119, 2003, 25-46 Int. J. Fracture, 119, 003, 5-46 THE USE OF A COHESIVE ZONE MODEL TO STUDY THE FRACTURE OF FIBRE COMPOSITES AND ADHESIVELY-BONDED JOINTS Blackman, B.R.K., Hadavinia, H., Kinloch, A.J. and Williams, J.G.

More information

A 3D ductile constitutive mixed-mode model of cohesive elements for the finite element analysis of adhesive joints

A 3D ductile constitutive mixed-mode model of cohesive elements for the finite element analysis of adhesive joints Downloaded from orbit.dtu.dk on: Jun 28, 2018 A 3D ductile constitutive mixed-mode model of cohesive elements for the finite element analysis of adhesive joints Anyfantis, Konstantinos; Tsouvalis, Nicholas

More information

Fracture Behaviour of FRP Cross-Ply Laminate With Embedded Delamination Subjected To Transverse Load

Fracture Behaviour of FRP Cross-Ply Laminate With Embedded Delamination Subjected To Transverse Load Fracture Behaviour of FRP Cross-Ply Laminate With Embedded Delamination Subjected To Transverse Load Sriram Chintapalli 1, S.Srilakshmi 1 1 Dept. of Mech. Engg., P. V. P. Siddhartha Institute of Technology.

More information

TESTING AND ANALYSIS OF COMPOSITE SKIN/STRINGER DEBONDING UNDER MULTI-AXIAL LOADING.

TESTING AND ANALYSIS OF COMPOSITE SKIN/STRINGER DEBONDING UNDER MULTI-AXIAL LOADING. TESTING AND ANALYSIS OF COMPOSITE SKIN/STRINGER DEBONDING UNDER MULTI-AXIAL LOADING. Ronald Krueger*, Michael K. Cvitkovich*, T. Kevin O'Brien**, and Pierre J. Minguet*** * National Research Council Research

More information

Energy release rate analysis for adhesive and laminate double cantilever beam specimens emphasizing the effect of residual stresses

Energy release rate analysis for adhesive and laminate double cantilever beam specimens emphasizing the effect of residual stresses International Journal of Adhesion & Adhesives 20 (1999) 59 70 International Journal of Adhesion & Adhesives Energy release rate analysis for adhesive and laminate double cantilever beam specimens emphasizing

More information

FRACTURE MECHANICS OF COMPOSITES WITH RESIDUAL STRESSES, TRACTION-LOADED CRACKS, AND IMPERFECT INTERFACES

FRACTURE MECHANICS OF COMPOSITES WITH RESIDUAL STRESSES, TRACTION-LOADED CRACKS, AND IMPERFECT INTERFACES Proc. 2 nd ESIS TC4 Conference on Polymers and Composites, in press, 1999 Author prepared reprint FRACTURE MECHANICS OF COMPOSITES WITH RESIDUAL STRESSES, TRACTION-LOADED CRACKS, AND IMPERFECT INTERFACES

More information

EXPERIMENTAL CHARACTERIZATION AND COHESIVE LAWS FOR DELAMINATION OF OFF-AXIS GFRP LAMINATES

EXPERIMENTAL CHARACTERIZATION AND COHESIVE LAWS FOR DELAMINATION OF OFF-AXIS GFRP LAMINATES 20 th International Conference on Composite Materials Copenhagen, 19-24 th July 2015 EXPERIMENTAL CHARACTERIZATION AND COHESIVE LAWS FOR DELAMINATION OF OFF-AXIS GFRP LAMINATES Esben Lindgaard 1 and Brian

More information

Tensile behaviour of anti-symmetric CFRP composite

Tensile behaviour of anti-symmetric CFRP composite Available online at www.sciencedirect.com Procedia Engineering 1 (211) 1865 187 ICM11 Tensile behaviour of anti-symmetric CFRP composite K. J. Wong a,b, *, X. J. Gong a, S. Aivazzadeh a, M. N. Tamin b

More information

NUMERICAL AND EXPERIMENTAL ANALYSES OF MULTIPLE DELAMINATIONS IN CURVED COMPOSITE LAMINATES

NUMERICAL AND EXPERIMENTAL ANALYSES OF MULTIPLE DELAMINATIONS IN CURVED COMPOSITE LAMINATES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS NUMERICAL AND EXPERIMENTAL ANALYSES OF MULTIPLE DELAMINATIONS IN CURVED COMPOSITE LAMINATES A. Baldi 1 *, A. Airoldi 1, P. Belotti 1, P. Bettini

More information

Numerical Simulation of the Mode I Fracture of Angle-ply Composites Using the Exponential Cohesive Zone Model

Numerical Simulation of the Mode I Fracture of Angle-ply Composites Using the Exponential Cohesive Zone Model Numerical Simulation of the Mode I Fracture of Angle-ply Composites Using the Exponential Cohesive Zone Model Numerical Simulation of the Mode I Fracture of Angle-ply Composites Using the Exponential Cohesive

More information

High Fidelity Failure Analysis for A Composite Fuselage Section 1

High Fidelity Failure Analysis for A Composite Fuselage Section 1 High Fidelity Failure Analysis for A Composite Fuselage Section 1 Jian Li Engineer/Scientist, The Boeing Company Mesa, Arizona Jian.Li@Boeing.com Carlos G. Dávila Aerospace Engineer, NASA Langley Research

More information

Finite Element Analysis of FRP Debonding Failure at the Tip of Flexural/Shear Crack in Concrete Beam

Finite Element Analysis of FRP Debonding Failure at the Tip of Flexural/Shear Crack in Concrete Beam Marquette University e-publications@marquette Civil and Environmental Engineering Faculty Research and Publications Civil and Environmental Engineering, Department of 12-1-2013 Finite Element Analysis

More information

Numerical simulation of delamination onset and growth in laminated composites

Numerical simulation of delamination onset and growth in laminated composites Numerical simulation of delamination onset and growth in laminated composites G. Wimmer, C. Schuecker, H.E. Pettermann Austrian Aeronautics Research (AAR) / Network for Materials and Engineering at the

More information

DESIGNING A FLEXIBLE BELLOWS COUPLING MADE FROM COMPOSITE MATERIALS USING NUMERICAL SIMULATIONS SVOČ FST 2018

DESIGNING A FLEXIBLE BELLOWS COUPLING MADE FROM COMPOSITE MATERIALS USING NUMERICAL SIMULATIONS SVOČ FST 2018 DESIGNING A FLEXIBLE BELLOWS COUPLING MADE FROM COMPOSITE MATERIALS USING NUMERICAL SIMULATIONS SVOČ FST 2018 Ing. Frantisek Sedlacek, University of West Bohemia, Univerzitni 8, 306 14, Pilsen, Czech Republic

More information

Geometric and Material Property Effects on the Strength of Rubber-Toughened Adhesive Joints

Geometric and Material Property Effects on the Strength of Rubber-Toughened Adhesive Joints Geometric and Material Property Effects on the Strength of Rubber-Toughened Adhesive Joints Altering the geometry of a bonded joint will invariably cause changes to occur in the stress and strain distribution

More information

Numerical Analysis of Delamination Behavior in Laminated Composite with Double Delaminations Embedded in Different Depth Positions

Numerical Analysis of Delamination Behavior in Laminated Composite with Double Delaminations Embedded in Different Depth Positions Numerical Analysis of Delamination Behavior in Laminated Composite with Double Delaminations Embedded in Different Depth Positions Numerical Analysis of Delamination Behavior in Laminated Composite with

More information

American Society for Testing and Materials (ASTM) Standards. Mechanical Testing of Composites and their Constituents

American Society for Testing and Materials (ASTM) Standards. Mechanical Testing of Composites and their Constituents Mechanical Testing of Composites and their Constituents American Society for Testing and Materials (ASTM) Standards Tests done to determine intrinsic material properties such as modulus and strength for

More information

University of Bristol - Explore Bristol Research. Early version, also known as pre-print

University of Bristol - Explore Bristol Research. Early version, also known as pre-print Hallett, S. R., & Wisnom, M. R. (2006). Numerical investigation of progressive damage and the effect of layup in notched tensile tests. Journal of Composite Materials, 40 (14), 1229-1245. DOI: 10.1177/0021998305057432

More information

CHARACTERIZING ADHESION OF PSA TAPES USING THE SHAFT LOADED BLISTER TEST

CHARACTERIZING ADHESION OF PSA TAPES USING THE SHAFT LOADED BLISTER TEST .. CHARACTERIZING ADHESION OF PSA TAPES USING THE SHAFT LOADED BLISTER TEST Emmett O'Brien Graduate Student Dept. of Chemical Engineering Virginia Tech Blacksburg, VA Shu Guo Graduate Student Dept. of

More information

PROGRESSIVE DAMAGE ANALYSES OF SKIN/STRINGER DEBONDING. C. G. Dávila, P. P. Camanho, and M. F. de Moura

PROGRESSIVE DAMAGE ANALYSES OF SKIN/STRINGER DEBONDING. C. G. Dávila, P. P. Camanho, and M. F. de Moura PROGRESSIVE DAMAGE ANALYSES OF SKIN/STRINGER DEBONDING C. G. Dávila, P. P. Camanho, and M. F. de Moura Abstract The debonding of skin/stringer constructions is analyzed using a step-by-step simulation

More information

Development of testing methods for characterization of delamination behavior under pure mode III and mixed modes in a laminated composite

Development of testing methods for characterization of delamination behavior under pure mode III and mixed modes in a laminated composite Development of testing methods for characterization of delamination behavior under pure mode III and mixed modes in a laminated composite Yangyang Ge To cite this version: Yangyang Ge. Development of testing

More information

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering FCP Short Course Ductile and Brittle Fracture Stephen D. Downing Mechanical Science and Engineering 001-015 University of Illinois Board of Trustees, All Rights Reserved Agenda Limit theorems Plane Stress

More information

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011

INTERNATIONAL JOURNAL OF APPLIED ENGINEERING RESEARCH, DINDIGUL Volume 2, No 1, 2011 Interlaminar failure analysis of FRP cross ply laminate with elliptical cutout Venkateswara Rao.S 1, Sd. Abdul Kalam 1, Srilakshmi.S 1, Bala Krishna Murthy.V 2 1 Mechanical Engineering Department, P. V.

More information

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina Module III - Macro-mechanics of Lamina Lecture 23 Macro-Mechanics of Lamina For better understanding of the macromechanics of lamina, the knowledge of the material properties in essential. Therefore, the

More information

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence Girão-Coelho AM. Finite element guidelines for simulation of delamination dominated failures in composite materials validated by case studies. Archives of Computational Methods in Engineering 2016, 1-26.

More information

Fracture mechanics fundamentals. Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design

Fracture mechanics fundamentals. Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design Fracture mechanics fundamentals Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design Failure modes Failure can occur in a number of modes: - plastic deformation

More information

Adhesive Joints Theory (and use of innovative joints) ERIK SERRANO STRUCTURAL MECHANICS, LUND UNIVERSITY

Adhesive Joints Theory (and use of innovative joints) ERIK SERRANO STRUCTURAL MECHANICS, LUND UNIVERSITY Adhesive Joints Theory (and use of innovative joints) ERIK SERRANO STRUCTURAL MECHANICS, LUND UNIVERSITY Wood and Timber Why I m intrigued From this to this! via this Fibre deviation close to knots and

More information

THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH

THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH M. R. Wisnom University of Bristol Advanced Composites Centre for Innovation and Science University Walk, Bristol BS8 1TR, UK M.Wisnom@bristol.ac.uk

More information

Numerical Evaluation of Fracture in Woven Composites by Using Properties of Unidirectional Type for modelling

Numerical Evaluation of Fracture in Woven Composites by Using Properties of Unidirectional Type for modelling J. Basic. Appl. Sci. Res., 2(12)13202-13209, 2012 2012, TextRoad Publication ISSN 2090-4304 Journal of Basic and Applied Scientific Research www.textroad.com Numerical Evaluation of Fracture in Woven Composites

More information

Modeling of Interfacial Debonding Induced by IC Crack for Concrete Beam-bonded with CFRP

Modeling of Interfacial Debonding Induced by IC Crack for Concrete Beam-bonded with CFRP Proceedings of the World Congress on Engineering 21 Vol II WCE 21, June 2 - July 1, 21, London, U.K. Modeling of Interfacial Debonding Induced by IC Crack for Concrete Beam-bonded with CFRP Lihua Huang,

More information

TABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA

TABLE OF CONTENTS. Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA Mechanics of Composite Materials, Second Edition Autar K Kaw University of South Florida, Tampa, USA TABLE OF CONTENTS 1. INTRODUCTION TO COMPOSITE MATERIALS 1.1 Introduction... 1.2 Classification... 1.2.1

More information

Prediction of Delamination Growth Behavior in a Carbon Fiber Composite Laminate Subjected to Constant Amplitude Compression-Compression Fatigue Loads

Prediction of Delamination Growth Behavior in a Carbon Fiber Composite Laminate Subjected to Constant Amplitude Compression-Compression Fatigue Loads Prediction of Delamination Growth Behavior in a Carbon Fiber Composite Laminate Subjected to Constant Amplitude Compression-Compression Fatigue Loads J. Raju 1*, D.S. Sreedhar 2, & C.M. Manjunatha 1 1

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

Elastic-Plastic Fracture Mechanics. Professor S. Suresh

Elastic-Plastic Fracture Mechanics. Professor S. Suresh Elastic-Plastic Fracture Mechanics Professor S. Suresh Elastic Plastic Fracture Previously, we have analyzed problems in which the plastic zone was small compared to the specimen dimensions (small scale

More information

Transactions on Modelling and Simulation vol 10, 1995 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 10, 1995 WIT Press,  ISSN X Parameters controlling the numerical simulation validity of damageable composite toughness testing S. Yotte, C. Currit, E. Lacoste, J.M. Quenisset Laboratoire de Genie Meanique - IUT 'A\ Domaine Universitaire,

More information

Lab Exercise #5: Tension and Bending with Strain Gages

Lab Exercise #5: Tension and Bending with Strain Gages Lab Exercise #5: Tension and Bending with Strain Gages Pre-lab assignment: Yes No Goals: 1. To evaluate tension and bending stress models and Hooke s Law. a. σ = Mc/I and σ = P/A 2. To determine material

More information

SSNV199 Cracking of a beam DCB with cohesive models

SSNV199 Cracking of a beam DCB with cohesive models Titre : SSNV199 - Fissuration d une poutre DCB avec des mo[...] Date : 05/09/2012 Page : 1/12 SSNV199 Cracking of a beam DCB with cohesive models Summarized: This test makes it possible to model the propagation

More information

BRIDGING LAW SHAPE FOR LONG FIBRE COMPOSITES AND ITS FINITE ELEMENT CONSTRUCTION

BRIDGING LAW SHAPE FOR LONG FIBRE COMPOSITES AND ITS FINITE ELEMENT CONSTRUCTION Proceedings of ALGORITMY 2012 pp. 353 361 BRIDGING LAW SHAPE FOR LONG FIBRE COMPOSITES AND ITS FINITE ELEMENT CONSTRUCTION VLADISLAV KOZÁK AND ZDENEK CHLUP Abstract. Ceramic matrix composites reinforced

More information

Experimental characterization of interlaminar fracture toughness of composite laminates assembled with three different carbon fiber lamina

Experimental characterization of interlaminar fracture toughness of composite laminates assembled with three different carbon fiber lamina Experimental characterization of interlaminar fracture toughness of composite laminates assembled with three different carbon fiber lamina Domenico Gentile University of Cassino and Southern Lazio, Cassino

More information

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in Sabah Shawkat Cabinet of Structural Engineering 17 3.6 Shear walls Walls carrying vertical loads should be designed as columns. Basically walls are designed in the same manner as columns, but there are

More information

Dynamic mixed-mode I/II delamination fracture and energy release rate of unidirectional graphite/epoxy composites

Dynamic mixed-mode I/II delamination fracture and energy release rate of unidirectional graphite/epoxy composites Engineering Fracture Mechanics 7 (5) 53 558 www.elsevier.com/locate/engfracmech Dynamic mixed-mode I/II delamination fracture and energy release rate of unidirectional graphite/epoxy composites Sylvanus

More information

DAMAGE MECHANICS MODEL FOR OFF-AXIS FATIGUE BEHAVIOR OF UNIDIRECTIONAL CARBON FIBER-REINFORCED COMPOSITES AT ROOM AND HIGH TEMPERATURES

DAMAGE MECHANICS MODEL FOR OFF-AXIS FATIGUE BEHAVIOR OF UNIDIRECTIONAL CARBON FIBER-REINFORCED COMPOSITES AT ROOM AND HIGH TEMPERATURES DAMAGE MECHANICS MODEL FOR OFF-AXIS FATIGUE BEHAVIOR OF UNIDIRECTIONAL CARBON FIBER-REINFORCED COMPOSITES AT ROOM AND HIGH TEMPERATURES M. Kawai Institute of Engineering Mechanics University of Tsukuba,

More information

Bending Load & Calibration Module

Bending Load & Calibration Module Bending Load & Calibration Module Objectives After completing this module, students shall be able to: 1) Conduct laboratory work to validate beam bending stress equations. 2) Develop an understanding of

More information

Finite Element Modeling of Viscoelastic Behavior and Interface Damage in Adhesively Bonded Joints Feifei Cheng, Ö. Özgü Özsoy and J.N.

Finite Element Modeling of Viscoelastic Behavior and Interface Damage in Adhesively Bonded Joints Feifei Cheng, Ö. Özgü Özsoy and J.N. Finite Element Modeling of Viscoelastic Behavior and Interface Damage in Adhesively Bonded Joints Feifei Cheng, Ö. Özgü Özsoy and J.N. Reddy* Advanced Computational Mechanics Laboratory, Department of

More information

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship

Chapter 5 Elastic Strain, Deflection, and Stability 1. Elastic Stress-Strain Relationship Chapter 5 Elastic Strain, Deflection, and Stability Elastic Stress-Strain Relationship A stress in the x-direction causes a strain in the x-direction by σ x also causes a strain in the y-direction & z-direction

More information

Simulation of Dynamic Delamination and Mode I Energy Dissipation

Simulation of Dynamic Delamination and Mode I Energy Dissipation Simulation of Dynamic Delamination and Mode I Energy Dissipation Muhammad Ilyas, Christine Espinosa 1, Frédéric Lachaud and Michel Salaün Université de Toulouse ISAE, DMSM, 1 Avenue Edouard Belin, 3154

More information

Tentamen/Examination TMHL61

Tentamen/Examination TMHL61 Avd Hållfasthetslära, IKP, Linköpings Universitet Tentamen/Examination TMHL61 Tentamen i Skademekanik och livslängdsanalys TMHL61 lördagen den 14/10 2000, kl 8-12 Solid Mechanics, IKP, Linköping University

More information

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO BOLETIM TÉCNICO PEF-EPUSP. Título:

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO BOLETIM TÉCNICO PEF-EPUSP. Título: ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO BOLETIM TÉCNICO PEF-EPUSP Título: STUDY OF CRACK PROPAGATION IN THE SPECIMEN RECOMMENDED BY RILEM TC 16 BASED ON LINEAR ELASTIC FRACTURE MECHANICS LUIZ EDUARDO

More information

TOUGHNESS OF PLASTICALLY-DEFORMING ASYMMETRIC JOINTS. Ford Research Laboratory, Ford Motor Company, Dearborn, MI 48121, U.S.A. 1.

TOUGHNESS OF PLASTICALLY-DEFORMING ASYMMETRIC JOINTS. Ford Research Laboratory, Ford Motor Company, Dearborn, MI 48121, U.S.A. 1. TOUGHNESS OF PLASTICALLY-DEFORMING ASYMMETRIC JOINTS M. D. Thouless, M. S. Kafkalidis, S. M. Ward and Y. Bankowski Department of Mechanical Engineering and Applied Mechanics, University of Michigan, Ann

More information

Open-hole compressive strength prediction of CFRP composite laminates

Open-hole compressive strength prediction of CFRP composite laminates Open-hole compressive strength prediction of CFRP composite laminates O. İnal 1, A. Ataş 2,* 1 Department of Mechanical Engineering, Balikesir University, Balikesir, 10145, Turkey, inal@balikesir.edu.tr

More information

2012 MECHANICS OF SOLIDS

2012 MECHANICS OF SOLIDS R10 SET - 1 II B.Tech II Semester, Regular Examinations, April 2012 MECHANICS OF SOLIDS (Com. to ME, AME, MM) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry Equal Marks ~~~~~~~~~~~~~~~~~~~~~~

More information

INFLUENCE OF A WELDED PIPE WHIP RESTRAINT ON THE CRITICAL CRACK SIZE IN A 90 BEND

INFLUENCE OF A WELDED PIPE WHIP RESTRAINT ON THE CRITICAL CRACK SIZE IN A 90 BEND 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18) Beijing, China, August 7-12, 25 SMiRT18-G8-5 INFLUENCE OF A WELDED PIPE WHIP RESTRAINT ON THE CRITICAL CRACK SIZE

More information

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft.

ME Final Exam. PROBLEM NO. 4 Part A (2 points max.) M (x) y. z (neutral axis) beam cross-sec+on. 20 kip ft. 0.2 ft. 10 ft. 0.1 ft. ME 323 - Final Exam Name December 15, 2015 Instructor (circle) PROEM NO. 4 Part A (2 points max.) Krousgrill 11:30AM-12:20PM Ghosh 2:30-3:20PM Gonzalez 12:30-1:20PM Zhao 4:30-5:20PM M (x) y 20 kip ft 0.2

More information

SDM 2013 Student Papers Competition Modeling fiber-matrix splitting failure through a mesh-objective continuum-decohesive finite element method

SDM 2013 Student Papers Competition Modeling fiber-matrix splitting failure through a mesh-objective continuum-decohesive finite element method Structures, Structural Dynamics, and Materials and Co-located Conferences April 8-11, 2013, Boston, Massachusetts 54th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference AIAA

More information

IMPACT ON LAMINATED COMPOSITE PLATES: COMPARISON OF TEST AND SIMULATION RESULTS OBTAINED WITH LMS SAMTECH SAMCEF

IMPACT ON LAMINATED COMPOSITE PLATES: COMPARISON OF TEST AND SIMULATION RESULTS OBTAINED WITH LMS SAMTECH SAMCEF V ECCOMAS Thematic Conference on the Mechanical Response of Composites COMPOSITES 015 S.R. Hallett and J.J.C. Remmers (Editors) IMPACT ON LAMINATED COMPOSITE PLATES: COMPARISON OF TEST AND SIMULATION RESULTS

More information

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS

Name :. Roll No. :... Invigilator s Signature :.. CS/B.TECH (CE-NEW)/SEM-3/CE-301/ SOLID MECHANICS Name :. Roll No. :..... Invigilator s Signature :.. 2011 SOLID MECHANICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are required to give their answers

More information

Passive Damping Characteristics of Carbon Epoxy Composite Plates

Passive Damping Characteristics of Carbon Epoxy Composite Plates Journal of Materials Science and Engineering A 6 (-) 35-4 doi:.765/6-63/6.-.5 D DAVID PUBLISHING Passive Damping Characteristics of Carbon Epoxy Composite Plates Dileep Kumar K * and V V Subba Rao Faculty

More information

Stress Intensity Factor Determination of Multiple Straight and Oblique Cracks in Double Cover Butt Riveted Joint

Stress Intensity Factor Determination of Multiple Straight and Oblique Cracks in Double Cover Butt Riveted Joint ISSN (Online) : 2319-8753 ISSN (Print) : 2347-671 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 214 214 International Conference on

More information

A Performance Modeling Strategy based on Multifiber Beams to Estimate Crack Openings ESTIMATE in Concrete Structures CRACK

A Performance Modeling Strategy based on Multifiber Beams to Estimate Crack Openings ESTIMATE in Concrete Structures CRACK A Performance Modeling Strategy based on Multifiber Beams to Estimate Crack Openings ESTIMATE in Concrete Structures CRACK A. Medjahed, M. Matallah, S. Ghezali, M. Djafour RiSAM, RisK Assessment and Management,

More information

accounts for both linear and nonlinear material response, whereas the

accounts for both linear and nonlinear material response, whereas the AN ABSTRACT OF THE THESIS OF Paul Edward Keary for the degree of Master of Science in Mechanical Engineering presented on April 26, 1984 Title: A Comparison of Experimental Mode I Analysis Methods for

More information

The Effects of Cohesive Strength and Toughness on Mixed-Mode Delamination of Beam-Like Geometries

The Effects of Cohesive Strength and Toughness on Mixed-Mode Delamination of Beam-Like Geometries The Effects of Cohesive Strength and Toughness on Mixed-Mode Delamination of Beam-Like Geometries J. P. Parmigiani and M. D. Thouless,2 Department of Mechanical Engineering 2 Department of Materials Science

More information

Project MMS13 Task 5 Report No 3 (M6/D3)

Project MMS13 Task 5 Report No 3 (M6/D3) Project MMS13 Task 5 Report No 3 (M6/D3) Material Data Requirements and Recommended Test Methods for the Predictive Modelling of Defect Criticality in Composite Material Systems M R L Gower and G D Sims

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To generalize the procedure by formulating equations that can be plotted so that they describe the internal shear and moment throughout a member. To use the relations between distributed

More information

STRENGTH AND STIFFNESS REDUCTION OF LARGE NOTCHED BEAMS

STRENGTH AND STIFFNESS REDUCTION OF LARGE NOTCHED BEAMS STRENGTH AND STIFFNESS REDUCTION OF LARGE NOTCHED BEAMS By Joseph F. Murphy 1 ABSTRACT: Four large glulam beams with notches on the tension side were tested for strength and stiffness. Using either bending

More information

FIS Specifications for Flex Poles (Edition May 2008) Original Text: German

FIS Specifications for Flex Poles (Edition May 2008) Original Text: German FIS Specifications for Flex Poles (Edition May 2008) Original Text: German 1 Field of Application and Basic Information The following FIS specifications for flex poles are intended to ensure that flex

More information

Computational Analysis for Composites

Computational Analysis for Composites Computational Analysis for Composites Professor Johann Sienz and Dr. Tony Murmu Swansea University July, 011 The topics covered include: OUTLINE Overview of composites and their applications Micromechanics

More information

Complete analytical solutions for double cantilever beam specimens with bi-linear quasi-brittle and brittle interfaces

Complete analytical solutions for double cantilever beam specimens with bi-linear quasi-brittle and brittle interfaces Int J Fract (2019) 215:1 37 https://doi.org/10.1007/s10704-018-0324-5 ORIGINAL PAPER Complete analytical solutions for double cantilever beam specimens with bi-linear quasi-brittle and brittle interfaces

More information

Constitutive behaviour of mixed mode loaded adhesive layer

Constitutive behaviour of mixed mode loaded adhesive layer Available online at www.sciencedirect.com International Journal of Solids and Structures 44 (27) 8335 8354 www.elsevier.com/locate/ijsolstr Constitutive behaviour of mixed mode loaded adhesive layer J.L.

More information

Interaction of Z-pins with multiple mode II delaminations in composite laminates

Interaction of Z-pins with multiple mode II delaminations in composite laminates Interaction of Z-pins with multiple mode II delaminations in composite laminates Mehdi Yasaee *, Galal Mohamed, Stephen R. Hallett School of Aerospace, Transport and Manufacturing, Cranfield University,

More information