Study Guide #1. L. Colonna-Romano/T. Keil. Electricity and Magnetism

Size: px
Start display at page:

Download "Study Guide #1. L. Colonna-Romano/T. Keil. Electricity and Magnetism"

Transcription

1 PH1120 Electricity and Magnetism L. Colonna-Romano/T. Keil Term B98 Study Guide #1 This is the first in a series of four Study Guides that have been designed to help you get the most out of this course. You will receive the others as the course progresses. The study guides are built around a set of course objectives and include suggested study procedures and problems to help you thoroughly understand those objectives. In addition, the homework assignments are in the study guides. For many students, following the study guides closely has proven to be an effective approach to successfully completing this course. Vectors will be used throughout this course and it may be useful for you to review vectors and operations involving vectors now. In particular, you should be familiar with the contents of Secs. 1-8 through (All references of this type may be found in the course textbook: Hugh D. Young and Roger A. Freedman, University Physics, Addison-Wesley Pub. Co., Ninth Ed., c 1996.) Be certain that you can express a vector in î ĵ ˆk-notation and also by giving a magnitude and direction relative to some well-designated coordinate axes. Unit vectors (Sec. 1-10) are sometimes confusing to students; be certain that you can calculate the components of a unit vector parallel to a specified vector. Objective 1 Coulomb s Law 1) State Coulomb s Law. (This means write it out in symbolic form and make sure you can define each symbol used in the expression. 2) Given a set of point charges (two or more) at rest at specified locations, calculate the resultant force (a vector quantity) on one of the charges caused by the other charge or charges. Suggested Study Procedures for Obj. 1 Read Secs through Study carefully Sec This section contains two important ideas: Coulomb s law and the principle of superposition. The four examples are important; you should be able to do similar problems. (When you study examples, I suggest you do so by first observing the general approach to the problem and then working out all the intermediate algebraic steps with pencil and paper.) Suggested Problems for Obj. 1 1) In each case, determine the unit vector that is parallel to the two-dimensional vector described below: a) from (0, 0) to (0, 3) b) from (0, 0) to ( 4, 0) c) from (0, 0) to (1, 1) d) from (1, 2) to (3, 3) e) from (1, 2) to ( 2, 1) 2) Exercises: 22-6, 22-9, 22-13, ) Problems: 22-57,

2 PH1120B98 Study Guide #1 2 Objective 2 Electric Field and Electric Flux 1) Define the electric field. 2) Calculate the electric field due to a set of point charges at rest at specified locations. 3) Determine the motion of a charged particle passing through an electric field. 4) Calculate the electric flux through a given surface. Suggested Study Procedures for Obj. 2 Study Secs and 22-7 paying particular attention to Examples 22-5 through You should examine Examples through as we will refer to them later in the course. Read Secs through Suggested Problems for Obj. 2 1) Exercises: 22-23, 22-25, 22-28, 22-29, 22-30, 22-32, 22-35, 22-36, ) Problem: Objective 3 Visualizing Electric Fields and Gauss Law 1) Sketch qualitatively the electric field associated with: a single point charge of given polarity; two or more stationary point charges of given relative magnitude and polarities; a point charge or charges in the vicinity if a conducting surface. 2) Use Gauss Law to relate the electric flux through a closed surface to the charge contained within that surface, and to the electric field along the same surface. Suggested Study Procedures for Obj. 3 Study Sec and 23-4 through All the example problems in these sections are important. Electric field lines form a useful way to picture how the electric field behaves in space. The following is a set or rules for sketching electric field lines: 1) Field lines begin and end only on charges. 2) The number of lines beginning at a positive charge or ending at a negative charge is proportional to the magnitude of the charge. 3) The direction of the field line is parallel to the direction of the force experienced by a small positive charge at each point along the field line. 4) The number of field lines passing through an area of one square meter whose surface is perpendicular to the lines (i.e., the density of field lines) is proportional to the magnitude of the electric field. 5) No two field lines can cross.

3 PH1120B98 Study Guide #1 3 6) Under electrostatic conditions, field lines always meet the surface of a conductor perpendicularly; under electrostatic conditions, no field lines penetrate a conductor. Suggested Problems for Obj. 3 1) Sketch the electric-field diagrams for each of the configurations in Fig. 1. a) +q b) -q c) d) +q -2q 3q -q -q (conductor) (conductor) Fig. 1. Configurations for Suggested Problem 1, Objective 3. 2) Exercises: 23-10, 23-16, Homework The homework assignments are an important part of this course and overall will count for 10% of your final grade. Students are free to discuss the homework problems among themselves, however, each student should write up his or her own individual solution for submission. Blatant copying of the work of another student is unlikely to help you understand the material. Please note that because of the limited number of homework problems that you will be submitting for grading, it is important that you also attempt as many of the suggested problems as possible. Although the suggested problems are not to be turned in for grading, they are equally important as the assigned homework in mastering the course objectives. Solutions for assigned and suggested problems are posted. Homework solutions are due at the beginning of your assigned lecture on the due date. Late homework is accepted only in extraordinary circumstances. Homework Assignment #1 due Friday, October 30, 1998 Prob Given the vectors A =3.00 cm î cm ĵ and B = 3.50 cm î 1.00 cm ĵ, calculate a) the magnitudes of A and B, b) the angle B makes with the positive x-axis, c) a unit vector in the same direction as A, and d) a unit vector in the same direction as A + B. Prob a) Two charged bodies exert a force of 40.0 mn on each other. What will the force be if they are moved so that they are only one-eighth as far apart? b) How close must two electrons be if the electric force between them is equal to the weight of one electron at the earth s surface?

4 PH1120B98 Study Guide #1 4 Prob A small charge of C is located at the point x =2.00 m and y = 3.00 m in the x-y plane. A second small charge of Cisatthepoint x =4.00 m and y = 1.00 m. a) Draw a diagram showing the two point charges in the x-y plane. b) Calculate the force that the first charge exerts on the second. Express your answer in î ĵ-notation. Show this force in your diagram. c) Calculate the force that the second charge exerts on the first charge. Homework Assignment #2 due Monday, November 2, 1998 Prob Two point charges are placed on the x-axis as follows: charge q 1 =1.00 µc is located at x = m, and charge q 2 =5.00 µc isatx =0.600 m. What is the magnitude and direction of the total force exerted by these two charges on a charge q 3 =4.00µC located at the origin? Prob Four point charges are placed at the corners of a rectangle as shown in Fig. 2. The magnitude of each charge is q =1.20 µc and the sign of each charge is as shown in the figure. If L =1.200 m and W =0.800 m, what is the electric field at the position of the charge located at the lower left corner of the rectangle? What is the force exerted on the charge at this position? y -q -q q L q W x Fig. 2. Prob Prob An electron is injected into the region of space between two horizontal parallel plates 3.00 cm long with a velocity of m/s directed 10 above the horizontal. The magnitude of the uniform electric field between the plates is 1000 N/C directed upward as shown in Fig. 3. a) Find the maximum distance the electron rises above its initial elevation. b) After what horizontal distance does the electron return to its initial elevation? c) How much time does the electron spend between the plates? d) If the electron is injected midway between the plates, what is the minimum plate separation if the electron is to avoid hitting the plates? e) Sketch the trajectory of the electron.

5 PH1120B98 Study Guide #1 5 y Fig. 3. Prob v x E 3.00 cm Homework Assignment #3 due Wednesday, November 4, 1998 Prob A point charge, q 1 =3.00 nc, is placed at x = 2.00 cm, y = 0 and a second point charge, q 2 = 3.00 nc, is placed at x =3.00 cm, y =2.00 cm. a) Compute the electric field at the point x =1.00 cm, y = 1.00 cm due to the two point charges. b) If a proton were to be placed at x =1.00 cm, y = 1.0 cm, what force would the other two charges exert on it? Prob Three point charges of equal magnitude are evenly spaced along a vertical axis; the outer charges are positive, the central one, negative. a) Sketch the electric field lines due to this configuration of charges. b) Where is the electric field zero? You need not work the algebra out completely but at least write an equation that would allow you to solve for the zero-field locations in terms of L, the distance between consecutive charges. Explain your reasoning; be sure to discuss the symmetry of the problem. Prob A cube is placed in a three-dimensional coordinate system with an edge (L = 4.00 cm) along each of the three positive axes. There exists a uniform electric field everywhere in space given by E = 1.30 N/C î N/C ĵ. Find the electric flux through each of the six faces of the cube and the total electric flux through the entire cube. Homework Assignment #4 due Friday, November 6, 1998 Prob Two small spheres, each with mass 8.5 g, are hung by silk threads of length m from the same point. The spheres are given equal amounts of positive charge and move apart until each thread makes an angle of 18 with the vertical. a) Draw a diagram showing all forces acting on each sphere. b) Find the magnitude of the charge on each sphere andthetensioninthethread. Prob Exercise 23-8 on p. 725 in the text. Prob Problem on p. 728 in the text. Also, if b = 1.00 cm and α = 2.00 nc/m, what is the magnitude of the electric field 1.00 m away from the tube? LCR sg1.tex 22 Oct :13a.m.

Study Guide #2. L. Colonna-Romano/T. Keil. Electricity and Magnetism

Study Guide #2. L. Colonna-Romano/T. Keil. Electricity and Magnetism PH1120 Electricity and Magnetism L. Colonna-Romano/T. Keil Term B99 Study Guide #2 With this Study Guide, we will discuss work and energy in situations involving an electric field and related concepts.

More information

Study Guide #2. L. Colonna-Romano/T. Keil. Electricity and Magnetism

Study Guide #2. L. Colonna-Romano/T. Keil. Electricity and Magnetism PH1120 Electricity and Magnetism L. Colonna-Romano/T. Keil Term B98 Study Guide #2 With this Study Guide, we will discuss work and energy in situations involving an electric field and related concepts.

More information

2. Gauss Law [1] Equipment: This is a theoretical lab so your equipment is pencil, paper, and textbook.

2. Gauss Law [1] Equipment: This is a theoretical lab so your equipment is pencil, paper, and textbook. Purpose: Theoretical study of Gauss law. 2. Gauss Law [1] Equipment: This is a theoretical lab so your equipment is pencil, paper, and textbook. When drawing field line pattern around charge distributions

More information

Gauss Law 1. Name Date Partners GAUSS' LAW. Work together as a group on all questions.

Gauss Law 1. Name Date Partners GAUSS' LAW. Work together as a group on all questions. Gauss Law 1 Name Date Partners 1. The statement of Gauss' Law: (a) in words: GAUSS' LAW Work together as a group on all questions. The electric flux through a closed surface is equal to the total charge

More information

Name Date Partners. Lab 2 GAUSS LAW

Name Date Partners. Lab 2 GAUSS LAW L02-1 Name Date Partners Lab 2 GAUSS LAW On all questions, work together as a group. 1. The statement of Gauss Law: (a) in words: The electric flux through a closed surface is equal to the total charge

More information

Name Date Partners. Lab 4 - GAUSS' LAW. On all questions, work together as a group.

Name Date Partners. Lab 4 - GAUSS' LAW. On all questions, work together as a group. 65 Name Date Partners 1. The statement of Gauss' Law: Lab 4 - GAUSS' LAW On all questions, work together as a group. (a) in words: The electric flux through a closed surface is equal to the total charge

More information

Introduction to Charges. BCLN PHYSICS 12 - Rev. Sept/2012

Introduction to Charges. BCLN PHYSICS 12 - Rev. Sept/2012 Electrostatics ~ Learning Guide Name: Instructions: Using a pencil, answer the following questions. The Pre-Reading is marked, based on effort, completeness, and neatness (not accuracy). The rest of the

More information

3. A solid conducting sphere has net charge of +6nC. At electrostatic equilibrium the electric field inside the sphere is:

3. A solid conducting sphere has net charge of +6nC. At electrostatic equilibrium the electric field inside the sphere is: Conceptual Questions. Circle the best answer. (2 points each) 1. If more electric field lines point into a balloon than come out of it, you can conclude that this balloon must contain more positive charge

More information

2. E A 3. E A 4. E A 5. E A

2. E A 3. E A 4. E A 5. E A west (mrw3223) HW 23 lyle (16001) 1 This print-out should have 32 questions. Multiple-choice questions may continue on the next column or page find all choices before answering. Reading assignment: Hecht

More information

q C e C k (Equation 18.1) for the distance r, we obtain k (Equation 18.1), where Homework#1 3. REASONING

q C e C k (Equation 18.1) for the distance r, we obtain k (Equation 18.1), where Homework#1 3. REASONING Homework# 3. REASONING a. Since the objects are metallic and identical, the charges on each combine and produce a net charge that is shared equally by each object. Thus, each object ends up with one-fourth

More information

Chapters 21 and 22: Giancoli, 4 th Edition Electrostatics

Chapters 21 and 22: Giancoli, 4 th Edition Electrostatics Chapters 21 and 22: Giancoli, 4 th Edition Electrostatics Electric Charges Coulomb s Law and Electric force The Electric Field Electric Field Lines Electric flux Gauss Law and applications of Gauss Law

More information

Physics for Scientists and Engineers 4th Edition 2017

Physics for Scientists and Engineers 4th Edition 2017 A Correlation and Narrative Summary of Physics for Scientists and Engineers 4th Edition 2017 To the AP Physics C: Electricity and Magnetism Course Description AP is a trademark registered and/or owned

More information

Physics 1302, Exam 1 Review

Physics 1302, Exam 1 Review c V Andersen, 2006 1 Physics 1302, Exam 1 Review The following is a list of things you should definitely know for the exam, however, the list is not exhaustive. You are responsible for all the material

More information

PHYS208 RECITATIONS PROBLEMS: Week 2. Gauss s Law

PHYS208 RECITATIONS PROBLEMS: Week 2. Gauss s Law Gauss s Law Prob.#1 Prob.#2 Prob.#3 Prob.#4 Prob.#5 Total Your Name: Your UIN: Your section# These are the problems that you and a team of other 2-3 students will be asked to solve during the recitation

More information

ELECTRIC FORCES AND ELECTRIC FIELDS

ELECTRIC FORCES AND ELECTRIC FIELDS chapter ELECTRIC FORCES AND ELECTRIC FIELDS www.tutor-homework.com (for tutoring, homework help, or help with online classes) Section 18.1 The Origin of Electricity Section 18.2 Charged Objects and the

More information

Electric Charge and Electric Field AP Physics 4 Lecture Notes

Electric Charge and Electric Field AP Physics 4 Lecture Notes Electric Charge and Electric Field AP Physics 4 Lecture Notes Coulomb s Law The Electric Field Field Lines Electric Fields and Conductors Coulomb s law: Coulomb s Law Force (N) F F F k r F F F r Charge

More information

Homework 4: Hard-Copy Homework Due Wednesday 2/17

Homework 4: Hard-Copy Homework Due Wednesday 2/17 Homework 4: Hard-Copy Homework Due Wednesday 2/17 Special instructions for this homework: Please show all work necessary to solve the problems, including diagrams, algebra, calculus, or whatever else may

More information

PHYS102 Previous Exam Problems. Electric Fields

PHYS102 Previous Exam Problems. Electric Fields PHYS102 Previous Exam Problems CHAPTER 22 Electric Fields Electric field Point charge in an electric field Electric dipole 1. Two identical charges, each of charge Q, are positioned at points A (5.0 m,

More information

1.2 Inductive Reasoning

1.2 Inductive Reasoning 1.2 Inductive Reasoning Goal Use inductive reasoning to make conjectures. Key Words conjecture inductive reasoning counterexample Scientists and mathematicians look for patterns and try to draw conclusions

More information

Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5.

Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5. Physics 126 Fall 2004 Practice Exam 1. Answer will be posted about Oct. 5. 1. Which one of the following statements best explains why tiny bits of paper are attracted to a charged rubber rod? A) Paper

More information

Welcome Back to Physics Electric Fields. Micheal Faraday Physics 1308: General Physics II - Professor Jodi Cooley

Welcome Back to Physics Electric Fields. Micheal Faraday Physics 1308: General Physics II - Professor Jodi Cooley Welcome Back to Physics 1308 Electric Fields Micheal Faraday 1791-1867 Announcements Assignments for Thursday, August 30th: - Reading: Chapter 22.3-22.5 - Watch Video: https://youtu.be/wc79wv5klx4 Lecture

More information

Chapter 18 Electrostatics Electric Forces and Fields

Chapter 18 Electrostatics Electric Forces and Fields Chapter 18 Electrostatics Electric Forces and Fields Electrical charges that does not flow through an object, but sit stationary on the surface of an object. Usually it is isolated on the surface, but

More information

University Physics (Prof. David Flory) Chapt_24 Sunday, February 03, 2008 Page 1

University Physics (Prof. David Flory) Chapt_24 Sunday, February 03, 2008 Page 1 University Physics (Prof. David Flory) Chapt_4 Sunday, February 03, 008 Page 1 Name: Date: 1. A point charged particle is placed at the center of a spherical Gaussian surface. The net electric flux Φ net

More information

Electric Force and Electric Field Practice Problems PSI AP Physics 1

Electric Force and Electric Field Practice Problems PSI AP Physics 1 Electric Force and Electric Field Practice Problems PSI AP Physics 1 Name Multiple Choice 1. A plastic rod is rubbed with a piece of wool. During the process the plastic rod acquires a negative charge

More information

Section 1: Electric Fields

Section 1: Electric Fields PHY 132 Outline of Lecture Notes i Section 1: Electric Fields A property called charge is part of the basic nature of protons and electrons. Large scale objects become charged by gaining or losing electrons.

More information

PHYS102 Previous Exam Problems. Electric Potential

PHYS102 Previous Exam Problems. Electric Potential PHYS102 Previous Exam Problems CHAPTER 24 Electric Potential Electric potential energy of a point charge Calculating electric potential from electric field Electric potential of point charges Calculating

More information

PH 1120 Term D, 2011

PH 1120 Term D, 2011 PH 1120 Term D, 2011 STUDY GUIDE 2 / Objective 4 Electrical Potential (Uniform Field) \ / i) Define electric potential. Calculate the potential difference \ / between two points in a uniform electric field.

More information

PHYSICS 241 TEST 1 Monday, February 17, 2003

PHYSICS 241 TEST 1 Monday, February 17, 2003 PHYSICS 241 TEST 1 Monday, February 17, 2003 This 15-question test (each question is worth approximately 6.67 points) is worth 100 points, each question is weighted equally. Please fill out the answer

More information

Chapter 21. Electric Fields

Chapter 21. Electric Fields Chapter 21 Electric Fields The Origin of Electricity The electrical nature of matter is inherent in the atoms of all substances. An atom consists of a small relatively massive nucleus that contains particles

More information

Section 1 Measuring Electric Fields: Practice Problems

Section 1 Measuring Electric Fields: Practice Problems Section 1 Measuring Electric Fields: Practice Problems 1. A positive test charge of 5.0 10 6 C is in an electric field that exerts a force of 2.0 10 4 N on it. What is the magnitude of the electric field

More information

AP Physics C. Magnetism - Term 4

AP Physics C. Magnetism - Term 4 AP Physics C Magnetism - Term 4 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the world

More information

Cutnell/Johnson Physics

Cutnell/Johnson Physics Cutnell/Johnson Physics Classroom Response System Questions Chapter 18 Electric Forces and Electric Fields Interactive Lecture Questions 18.1.1. A brass key has a net positive charge of +1.92 10 16 C.

More information

AP Physics C. Electricity - Term 3

AP Physics C. Electricity - Term 3 AP Physics C Electricity - Term 3 Interest Packet Term Introduction: AP Physics has been specifically designed to build on physics knowledge previously acquired for a more in depth understanding of the

More information

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer "none of the above" may can be a valid answer

Physics 212 Exam I Sample Question Bank 2008 Multiple Choice: choose the best answer none of the above may can be a valid answer Multiple Choice: choose the best answer "none of the above" may can be a valid answer The (attempted) demonstration in class with the pith balls and a variety of materials indicated that () there are two

More information

Physics Electrostatics

Physics Electrostatics Homework Procedure: Read pages specified in Honors Physics Essentials by Dan Fullerton. Questions labeled TQ will be questions about the text you read. These TQ s can be answered in one word, one phrase,

More information

Downloaded from

Downloaded from Question 1.1: What is the force between two small charged spheres having charges of 2 10 7 C and 3 10 7 C placed 30 cm apart in air? Repulsive force of magnitude 6 10 3 N Charge on the first sphere, q

More information

Electric Flux and Gauss s Law

Electric Flux and Gauss s Law Electric Flux and Gauss s Law Electric Flux Figure (1) Consider an electric field that is uniform in both magnitude and direction, as shown in Figure 1. The total number of lines penetrating the surface

More information

Física Básica Experimental I Cuestiones Tema VII. Electrostática. Soluciones incluidas. 1.

Física Básica Experimental I Cuestiones Tema VII. Electrostática. Soluciones incluidas. 1. 1. A cubical surface with no charge enclosed and with sides 2.0 m long is oriented with right and left faces perpendicular to a uniform electric field E of (1.6 10 5 N/C) î. The net electric flux E through

More information

VU Mobile Powered by S NO Group All Rights Reserved S NO Group 2012

VU Mobile Powered by S NO Group All Rights Reserved S NO Group 2012 PHY101 Physics Final Term Solved MCQs (Latest) 1 1. A total charge of 6.3 10 8 C is distributed uniformly throughout a 2.7-cm radius sphere. The volume charge density is: A. 3.7 10 7 C/m3 B. 6.9 10 6 C/m3

More information

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance

Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance Mansfield Independent School District AP Physics C: Electricity and Magnetism Year at a Glance First Six-Weeks Second Six-Weeks Third Six-Weeks Lab safety Lab practices and ethical practices Math and Calculus

More information

Chapter 23. Electric Fields

Chapter 23. Electric Fields Chapter 23 Electric Fields Electric Charges There are two kinds of electric charges Called positive and negative Negative charges are the type possessed by electrons Positive charges are the type possessed

More information

Welcome. to Physics 2135.

Welcome. to Physics 2135. Welcome to Physics 2135. PHYSICS 2135 Engineering Physics II Dr. S. Thomas Vojta Instructor in charge Office: 204 Physics, Phone: 341-4793 vojtat@mst.edu www.mst.edu/~vojtat Office hours: Mon+ Wed 11am-12pm

More information

Electric Force and Electric Field

Electric Force and Electric Field Electric Force and Electric Field Electrostatics Sources Outcomes Maxwell s Equation Stationary Charge Electric Force Gauss s Law Electric Field Electric Potential Capacitors Electric Forces and Electric

More information

PHYS 1441 Section 002 Lecture #6

PHYS 1441 Section 002 Lecture #6 PHYS 1441 Section 002 Lecture #6 Monday, Sept. 18, 2017 Chapter 21 Motion of a Charged Particle in an Electric Field Electric Dipoles Chapter 22 Electric Flux Gauss Law with many charges What is Gauss

More information

Physics 210 Q ( PHYSICS210BRIDGE ) My Courses Course Settings

Physics 210 Q ( PHYSICS210BRIDGE ) My Courses Course Settings 1 of 13 9/7/2012 1:57 PM Logged in as Julie Alexander, Instructor Help Log Out Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library

More information

Classical Electromagnetism

Classical Electromagnetism Classical Electromagnetism Workbook David Michael Judd Problems for Chapter 33 1.) Determine the number of electrons in a pure sample of copper if the sample has a mass of M Cu = 0.00250 kg. The molecular

More information

CHAPTER 4: MAGNETIC FIELD

CHAPTER 4: MAGNETIC FIELD CHAPTER 4: MAGNETIC FIELD PSPM II 2005/2006 NO. 4 4. FIGURE 3 A copper rod of mass 0.08 kg and length 0.20 m is attached to two thin current carrying wires, as shown in FIGURE 3. The rod is perpendicular

More information

P Q 2 = -3.0 x 10-6 C

P Q 2 = -3.0 x 10-6 C 1. Which one of the following represents correct units for electric field strength? A. T B. N/C C. J / C D. N m 2 /C 2 2. The diagram below shows two positive charges of magnitude Q and 2Q. P Q 2Q Which

More information

Physics 1202: Lecture 3 Today s Agenda

Physics 1202: Lecture 3 Today s Agenda Physics 1202: Lecture 3 Today s Agenda Announcements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW assignments, solutions etc. Homework #1: On Masterphysics: due this coming Friday Go to the syllabus

More information

Electric Force and Field Chapter Questions

Electric Force and Field Chapter Questions Electric Force and Field Chapter Questions 1. What happens to a plastic rod when it is rubbed with a piece of animal fur? What happens to the piece of fur? 2. How many types of electric charge are there?

More information

Calculus Relationships in AP Physics C: Electricity and Magnetism

Calculus Relationships in AP Physics C: Electricity and Magnetism C: Electricity This chapter focuses on some of the quantitative skills that are important in your C: Mechanics course. These are not all of the skills that you will learn, practice, and apply during the

More information

APRIL 2015 EXAMINATION version A PHY 132H1S Duration - 2 hours

APRIL 2015 EXAMINATION version A PHY 132H1S Duration - 2 hours Family Name Given Name(s) Student Number Practical Group (Please print in BLOCK LETTERS) as on student card Code as on student card UNIVERSITY OF TORONTO Faculty of Arts and Science APRIL 2015 EXAMINATION

More information

2 Coulomb s Law and Electric Field 23.13, 23.17, 23.23, 23.25, 23.26, 23.27, 23.62, 23.77, 23.78

2 Coulomb s Law and Electric Field 23.13, 23.17, 23.23, 23.25, 23.26, 23.27, 23.62, 23.77, 23.78 College of Engineering and Technology Department of Basic and Applied Sciences PHYSICS I Sheet Suggested Problems 1 Vectors 2 Coulomb s Law and Electric Field 23.13, 23.17, 23.23, 23.25, 23.26, 23.27,

More information

Chapter 16. Properties of Electric Charge. Electric Charge. The Milikan Experiment. Properties of Electric Charge, continued

Chapter 16. Properties of Electric Charge. Electric Charge. The Milikan Experiment. Properties of Electric Charge, continued Properties of Electric Charge Electric Charge There are two kinds of electric charge. like charges repel unlike charges attract Electric charge is conserved. Positively charged particles are called protons.

More information

r 2 and the charge on a proton is +e. We never see objects that have a charge which is not a whole number multiple of this number.

r 2 and the charge on a proton is +e. We never see objects that have a charge which is not a whole number multiple of this number. Name: Physics Chapter 16 Study Guide ----------------------------------------------------------------------------------------------------- Useful Information: e = 1.6"10 #19 C mass electron = 9.11"10 #31

More information

AP* Electrostatics Free Response Questions

AP* Electrostatics Free Response Questions AP* Electrostatics Free Response Questions 1987 Q2 Object I, shown above, has a charge of +3 10 6 coulomb and a mass of 0.0025 kilogram. (a) What is the electric potential at point P, 0.30 meter from object

More information

A) 1, 2, 3, 4 B) 4, 3, 2, 1 C) 2, 3, 1, 4 D) 2, 4, 1, 3 E) 3, 2, 4, 1. Page 2

A) 1, 2, 3, 4 B) 4, 3, 2, 1 C) 2, 3, 1, 4 D) 2, 4, 1, 3 E) 3, 2, 4, 1. Page 2 1. Two parallel-plate capacitors with different plate separation but the same capacitance are connected in series to a battery. Both capacitors are filled with air. The quantity that is NOT the same for

More information

Conceptual Questions. Fig.8.51 EXERCISES. 8. Why can t electric field lines cross? 9. In which direction do charges always move in an electric field?

Conceptual Questions. Fig.8.51 EXERCISES. 8. Why can t electric field lines cross? 9. In which direction do charges always move in an electric field? EXERCISES Conceptual Questions 1. Explain why a neutral object can be attracted to a charged object. Why can this neutral object not be repelled by a charged object? 2. What is the function of an electroscope?

More information

PHYS 2135 Engineering Physics II Fall Course Information: Canvas and Course Website Begin with Course Handbook and Syllabus

PHYS 2135 Engineering Physics II Fall Course Information: Canvas and Course Website Begin with Course Handbook and Syllabus Instructor: Dr. Jim Musser musserj@mst.edu Physics 122 PHYS 2135 Engineering Physics II Fall 2018 Course Information: Canvas and Course Website Begin with Course Handbook and Syllabus PHYS 2135 Engineering

More information

HOMEWORK 1 SOLUTIONS

HOMEWORK 1 SOLUTIONS HOMEWORK 1 SOLUTIONS CHAPTER 18 3. REASONING AND SOLUTION The total charge to be removed is 5.0 µc. The number of electrons corresponding to this charge is N = ( 5.0 10 6 C)/( 1.60 10 19 C) = 3.1 10 13

More information

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields Physics Week 5(Sem. 2) Name Chapter Summary Magnetism Magnetic Fields Permanent magnets have long been used in navigational compasses. The needle in a compass is supported to allow it to freely rotate

More information

General Physics II Spring Electric Forces and Fields

General Physics II Spring Electric Forces and Fields General Physics II Spring 2008 Electric Forces and Fields 1 Coulomb s Law 2 The direction of the electric force is always along the line joining the two charges. Charges of the same sign repel; charges

More information

Electrostatics Notes 1 Charges and Coulomb s Law

Electrostatics Notes 1 Charges and Coulomb s Law Electrostatics Notes 1 Charges and Coulomb s Law Matter is made of particles which are or charged. The unit of charge is the ( ) Charges are, meaning that they cannot be It is thought that the total charge

More information

Physics 222 Quiz 3 Electric Field of Distributed Charge, Form: A

Physics 222 Quiz 3 Electric Field of Distributed Charge, Form: A Physics 222 Quiz 3 Electric Field of Distributed Charge, Form: A Name: Date: 1. Sketch the electric field at each of three points along an axis through the centers of the plates: (1) between the capacitor

More information

ELECTROSTATICS (Important formulae and Concepts) I Electric charges and Coulomb s law

ELECTROSTATICS (Important formulae and Concepts) I Electric charges and Coulomb s law ELECTROSTATICS (Important formulae and Concepts) I Electric charges and Coulomb s law II Electric Field and Electric Dipole www.nrpschool.com www.nrpschool.com III ELECTRIC POTENTIAL www.nrpschool.com

More information

PHYS 2421 Fields and Waves. Instructor: Jorge A. López Office: PSCI 209 A, Phone: Textbook: University Physics 11e, Young and Freedman

PHYS 2421 Fields and Waves. Instructor: Jorge A. López Office: PSCI 209 A, Phone: Textbook: University Physics 11e, Young and Freedman PHYS 41 Fields and Waves Instructor: Jorge A. López Office: PSCI 9 A, Phone: 747-758 Textbook: University Physics 11e, Young and Freedman Chapter : Gauss law.1 Charge and electric flux. Calculating electric

More information

Physics 102. First Midterm Examination Fall Semester 2015/2016. November 3, 2015 Time: 6.30 p.m p.m. Name. Student No..

Physics 102. First Midterm Examination Fall Semester 2015/2016. November 3, 2015 Time: 6.30 p.m p.m. Name. Student No.. Kuwait University Physics Department Physics 102 First Midterm Examination Fall Semester 2015/2016 November 3, 2015 Time: 6.30 p.m. - 8.00 p.m. Name. Student No.. Section No. Instructors: Drs. Abdelkarim,

More information

Electric field Physics 122

Electric field Physics 122 Electric field Physics 122 9/3/13 Lecture II 1 Workshops start next week. The first homework assignment is due next week as well! Workshops 9/3/13 Lecture II 2 9/3/13 Lecture II 3 Concepts Primary concepts:

More information

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1

Review. Spring Semester /21/14. Physics for Scientists & Engineers 2 1 Review Spring Semester 2014 Physics for Scientists & Engineers 2 1 Notes! Homework set 13 extended to Tuesday, 4/22! Remember to fill out SIRS form: https://sirsonline.msu.edu Physics for Scientists &

More information

Lecture 8 Multiple Choice Questions :

Lecture 8 Multiple Choice Questions : Lecture 8 Multiple Choice Questions : 1. A point charge -3Q lies at the centre of a conducting shell of radius 2R. The net charge on the outer surface of the shell is -3Q Zero +1.5 Q d. +3Q 2. Two identical

More information

INDIAN SCHOOL MUSCAT Department of Physics Class : XII Physics Worksheet - 1 ( ) Electric Charges and Fields

INDIAN SCHOOL MUSCAT Department of Physics Class : XII Physics Worksheet - 1 ( ) Electric Charges and Fields INDIAN SCHOOL MUSCAT Department of Physics Class : XII Physics Worksheet - 1 (2017-2018) Electric Charges and Fields Section A Conceptual and application type Questions 1 What happens to the electric field

More information

- Like charges repel Induced Charge. or by induction. Electric charge is conserved

- Like charges repel Induced Charge. or by induction. Electric charge is conserved Course website: http://course.physastro.iastate.edu/phys112/ Here you will find the syllabus, lecture notes and other course information Links to the website are also on Blackboard: Phys 112 (Spring 2017)

More information

Welcome to PHY2054C. Office hours: MoTuWeTh 10:00-11:00am (and after class) at PS140

Welcome to PHY2054C. Office hours: MoTuWeTh 10:00-11:00am (and after class) at PS140 Welcome to PHY2054C Office hours: MoTuWeTh 10:00-11:00am (and after class) at PS140 Book: Physics 8 ed. by Cutnell & Johnson, Volume 2 and PHY2054 Lab manual for your labs. One Midterm (July 14) and final

More information

ELECTRIC FORCES AND ELECTRIC FIELDS

ELECTRIC FORCES AND ELECTRIC FIELDS CHATER 18 ELECTRIC FORCES AND ELECTRIC FIELDS CONCETUAL QUESTIONS 1. REASONING AND SOLUTION In Figure 18.9, the grounding wire is removed first, followed by the rod, and the sphere is left with a positive

More information

UNIT 2 COULOMB S LAW. Objectives. to understand Coulomb s Law qualitatively and quantitatively

UNIT 2 COULOMB S LAW. Objectives. to understand Coulomb s Law qualitatively and quantitatively UNIT 2 COULOMB S LAW Objectives to understand Coulomb s Law qualitatively and quantitatively to understand the principle of superposition 1 Electric Field Hockey program 1.1 Open the program Electric Field

More information

Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Fiona Website:

Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Fiona Website: Semester 2 Physics (SF 026) Lecture: BP 3 by Yew Sze Ling @ Fiona Website: http://yslphysics.weebly.com/ Chapter 1: Electrostatics The study of electric charges at rest, the forces between them and the

More information

PH 1120 Term D, 2017

PH 1120 Term D, 2017 PH 1120 Term D, 2017 Study Guide 4 / Objective 13 The Biot-Savart Law \ / a) Calculate the contribution made to the magnetic field at a \ / specified point by a current element, given the current, location,

More information

Electric Force and Coulombs Law

Electric Force and Coulombs Law Electric Force and Coulombs Law 1 Coulombs law is an inverse squared law prove this graphically / experimentally 2 NOTE: THIS IS ONLY FOR POINT CHARGES. Schematics I.) +5C 3C II.) Q Q 3 III.) more than

More information

CPS lesson Electric Field ANSWER KEY

CPS lesson Electric Field ANSWER KEY CPS lesson Electric Field ANSWER KEY 1. A positively charged rod is brought near a conducting sphere on an insulated base. The opposite side of the sphere is briefly grounded. If the rod is now withdrawn,

More information

A 12-V battery does 1200 J of work transferring charge. How much charge is transferred? A source of 1.0 µc is meters is from a positive test

A 12-V battery does 1200 J of work transferring charge. How much charge is transferred? A source of 1.0 µc is meters is from a positive test 1 A source of 1.0 µc is 0.030 meters is from a positive test charge of 2.0 µc. (a) What is the force on the test charge? (b) What is the potential energy of the test charge? (c) What is the strength of

More information

PHYSICS 222 Fall 2009 EXAM 1: October 1, :00pm 10:00pm

PHYSICS 222 Fall 2009 EXAM 1: October 1, :00pm 10:00pm PHYSICS 222 Fall 2009 EXAM 1: October 1, 2009 8:00pm 10:00pm Name (printed): Recitation Instructor: Section # INSTRUCTIONS: This exam contains 25 multiple-choice questions, plus two extra-credit questions,

More information

Phys 2102 Spring 2002 Exam 1

Phys 2102 Spring 2002 Exam 1 Phys 2102 Spring 2002 Exam 1 February 19, 2002 1. When a positively charged conductor touches a neutral conductor, the neutral conductor will: (a) Lose protons (b) Gain electrons (c) Stay neutral (d) Lose

More information

Physics 210 Q ( PHYSICS210BRIDGE ) My Courses Course Settings

Physics 210 Q ( PHYSICS210BRIDGE ) My Courses Course Settings 1 of 10 9/7/2012 1:11 PM Logged in as Julie Alexander, Instructor Help Log Out Physics 210 Q1 2012 ( PHYSICS210BRIDGE ) My Courses Course Settings Course Home Assignments Roster Gradebook Item Library

More information

Chapter 21 Chapter 23 Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved.

Chapter 21 Chapter 23 Gauss Law. Copyright 2014 John Wiley & Sons, Inc. All rights reserved. Chapter 21 Chapter 23 Gauss Law Copyright 23-1 What is Physics? Gauss law relates the electric fields at points on a (closed) Gaussian surface to the net charge enclosed by that surface. Gauss law considers

More information

Lecture Outline Chapter 19. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 19. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 19 Physics, 4 th Edition James S. Walker Chapter 19 Electric Charges, Forces, and Fields Units of Chapter 19 Electric Charge Insulators and Conductors Coulomb s Law The Electric

More information

Electric Fields and Forces. Key Concepts

Electric Fields and Forces. Key Concepts Ch20Lectures Page 1 Ch20Lectures Monday, January 25, 2010 7:33 AM Chapter 20 Electric Fields and Forces Key Concepts electric charge principle of conservation of charge charge polarization, both permanent

More information

C Electric Force & Field Practice Problems PSI Physics

C Electric Force & Field Practice Problems PSI Physics C Electric Force & Field Practice Problems PSI Physics Name Multiple Choice 1. A plastic rod is rubbed with a piece of wool. During the process the plastic rod acquires a positive charge and the wool:

More information

Lecture Power Points. Chapter 16 Physics: Principles with Applications, 6 th edition Giancoli

Lecture Power Points. Chapter 16 Physics: Principles with Applications, 6 th edition Giancoli Lecture Power Points Chapter 16 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

free space (vacuum) permittivity [ F/m]

free space (vacuum) permittivity [ F/m] Electrostatic Fields Electrostatic fields are static (time-invariant) electric fields produced by static (stationary) charge distributions. The mathematical definition of the electrostatic field is derived

More information

Welcome. to Electrostatics

Welcome. to Electrostatics Welcome to Electrostatics Outline 1. Coulomb s Law 2. The Electric Field - Examples 3. Gauss Law - Examples 4. Conductors in Electric Field Coulomb s Law Coulomb s law quantifies the magnitude of the electrostatic

More information

Two equally charges particles are 3 cm apart and repel each other with a force of 4 x10-5 N. Compute the charge on each particle.

Two equally charges particles are 3 cm apart and repel each other with a force of 4 x10-5 N. Compute the charge on each particle. Physics QOD 12.3 Two equally charges particles are 3 cm apart and repel each other with a force of 4 x10-5 N. Compute the charge on each particle. q 1 = q 2 = 2 x 10-9 C 12.3 ELECTRIC FIELDS Electric Fields

More information

1. (a) +EA; (b) EA; (c) 0; (d) 0 2. (a) 2; (b) 3; (c) 1 3. (a) equal; (b) equal; (c) equal e; (b) 150e 5. 3 and 4 tie, then 2, 1

1. (a) +EA; (b) EA; (c) 0; (d) 0 2. (a) 2; (b) 3; (c) 1 3. (a) equal; (b) equal; (c) equal e; (b) 150e 5. 3 and 4 tie, then 2, 1 CHAPTER 24 GAUSS LAW 659 CHAPTER 24 Answer to Checkpoint Questions 1. (a) +EA; (b) EA; (c) ; (d) 2. (a) 2; (b) 3; (c) 1 3. (a) eual; (b) eual; (c) eual 4. +5e; (b) 15e 5. 3 and 4 tie, then 2, 1 Answer

More information

Chapter 1 The Electric Force

Chapter 1 The Electric Force Chapter 1 The Electric Force 1. Properties of the Electric Charges 1- There are two kinds of the electric charges in the nature, which are positive and negative charges. - The charges of opposite sign

More information

Chapter 15. Electric Forces and Electric Fields

Chapter 15. Electric Forces and Electric Fields Chapter 15 Electric Forces and Electric Fields First Observations Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber, when rubbed, became electrified and attracted pieces

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the 1) A small sphere with a mass of 441 g is moving upward along the vertical +y-axis when it encounters

More information

Chapter 15. Electric Forces and Electric Fields

Chapter 15. Electric Forces and Electric Fields Chapter 15 Electric Forces and Electric Fields First Studies Greeks Observed electric and magnetic phenomena as early as 700 BC Found that amber, when rubbed, became electrified and attracted pieces of

More information

Work and Energy. v f. v i. F(x ) F(x ) x f. Consider a block of mass m moving along the x-axis. Conservative force acting on block: F = F(x) Z xf

Work and Energy. v f. v i. F(x ) F(x ) x f. Consider a block of mass m moving along the x-axis. Conservative force acting on block: F = F(x) Z xf Work and Energy Consider a block of mass m moving along the x-axis. Conservative force acting on block: F = F(x) Work done by F(x) on block: W if = Kinetic energy of block: K = 1 2 mv2 Potential energy

More information

Chapter 19 Electric Potential and Electric Field Sunday, January 31, Key concepts:

Chapter 19 Electric Potential and Electric Field Sunday, January 31, Key concepts: Chapter 19 Electric Potential and Electric Field Sunday, January 31, 2010 10:37 PM Key concepts: electric potential electric potential energy the electron-volt (ev), a convenient unit of energy when dealing

More information

INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION PHYSICS

INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION PHYSICS Roll Number SET NO. General Instructions: INDIAN SCHOOL MUSCAT FIRST TERM EXAMINATION PHYSICS CLASS: XII Sub. Code: 04 Time Allotted: Hrs 0.04.08 Max. Marks: 70. All questions are compulsory. There are

More information

University Physics 227N/232N Old Dominion University. Flux and Gauss s Law Example Problems and Solutions

University Physics 227N/232N Old Dominion University. Flux and Gauss s Law Example Problems and Solutions University Physics 227N/232N Old Dominion University Flux and Gauss s Law Example Problems and Solutions Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2014-odu Wednesday,

More information