arxiv: v1 [math.ag] 14 Mar 2019

Size: px
Start display at page:

Download "arxiv: v1 [math.ag] 14 Mar 2019"

Transcription

1 ASYMPTOTIC CONSTRUCTIONS AND INVARIANTS OF GRADED LINEAR SERIES ariv: v1 [math.ag] 14 Mar 2019 CHIH-WEI CHANG AND SHIN-YAO JOW Abstract. Let be a complete variety of dimension n over an algebraically closed field K. Let V be a graded linear series associated to a line bundle L on, that is, a collection {V m } m N of vector subspaces V m H 0 (,L m ) such that V 0 = K and V k V l V k+l for all k,l N. For each m in the semigroup N(V ) = {m N V m 0}, the linear series V m defines a rational map φ m : Y m P(V m ), where Y m denotes the closure of the image φ m (). We show that for all sufficiently large m N(V ), these rational maps φ m : Y m are birationally equivalent, so in particular Y m are of the same dimension κ, and if κ = n then φ m : Y m are generically finite of the same degree. If N(V ) {0}, we show that the limit dim K V m vol κ (V ) = lim m N(V ) m κ /κ! exists, and 0 < vol κ (V ) <. Moreover, if Z is a general closed subvariety of dimension κ, then the limit (V κ # ( (D m 1 D m κ Z)\Bs(V m ) ) Z) mov = lim m N(V ) m κ exists, where D m 1,...,D m κ V m are general divisors, and (V κ Z) mov = deg ( φ m Z : Z φ m (Z) ) vol κ (V ) for all sufficiently large m N(V ). Notation and Conventions. Let N denote the set of nonnegative integers. We work over an algebraically closed field K of arbitrary characteristic. A variety is reduced and irreducible. Points of a variety refer to closed points. If is a variety, K() denotes the function field of. If V is a vector space, P(V) denotes the projective space of one-dimensional quotients of V. 1. Introduction Let be a complete variety. Recall from [6, Definition 2.4.1] that a graded linear series associated to a line bundle L on is a collection V = {V m } m N of vector 2010 Mathematics Subject Classification. 14C20. Key words and phrases. graded linear series, Iitaka fibration, Iitaka dimension, asymptotic moving intersection. 1

2 2 CHIH-WEI CHANG AND SHIN-YAO JOW subspaces V m H 0 (,L m ) such that V 0 = K and V k V l V k+l for all k,l N. The graded linear series {H 0 (,L m )} m N is called the complete graded linear series associated to L. The purpose of this article is to generalize some fundamental results about asymptotic constructions for complete graded linear series to arbitrary ones. This is useful because incomplete graded linear series do naturally arise, most notably in connection with the restricted volume [7, 2.4]. Our results generalize and unify several previous results in the literature: see Remark 1.6. For each m in the semigroup N(V ) = {m N V m 0}, the linear series V m defines a rational map φ m : Y m P(V m ), where Y m denotes the closure of the image φ m (). Our first result is about the asymptotic behavior of φ m. When V is the complete graded linear series and is normal, the well-known theorem of Iitaka fibrations [6, Theorem ] says that for all sufficiently large m N(V ), the rational maps φ m : Y m are birationally equivalent to a fixed algebraic fiber space φ : Y. We show that, for an arbitrary graded linear series, the same conclusion holds except that φ : Y may not be a fiber space. Theorem 1.1 (Asymptotic Iitaka map of graded linear series). Let be a complete variety, and let V be a graded linear series associated to a line bundle L on. Then there exist projective varieties, Y, and for each m N(V ) a commutative diagram u φ m φ Y m ν m of surjective morphisms and dominant rational maps, such that u is birational, and ν m is birational for all sufficiently large m N(V ). If V is semiample, meaning that V m is basepoint-free for some m > 0, then the maps φ m : Y m are surjective morphisms for all m in the sub-semigroup Y M(V ) = {m N V m is basepoint-free} N(V ). In this case we can conclude, as in the theorem of semiample fibrations [6, Theorem ], that for all sufficiently large m M(V ), the morphisms φ m : Y m are isomorphic to a fixed morphism. Theorem 1.2 (Asymptotic Iitaka morphism of semiample graded linear series). Let be a complete variety, and let V be a semiample graded linear series associated

3 ASYMPTOTIC CONSTRUCTIONS AND INVARIANTS OF GRADED LINEAR SERIES 3 to a line bundle L on. Then there exist a projective variety Y, and for each m M(V ) a commutative diagram (1) φ m φ Y m ν m of surjective morphisms, such that ν m is finite for all positive m M(V ), and is an isomorphism for all sufficiently large m M(V ). Y An immediate corollary of Theorem 1.1 and 1.2 is Corollary 1.3 (Iitaka dimension and asymptotic degree). Let be a complete variety, and let V be a graded linear series associated to a line bundle L on with N(V ) {0}. (1) There is a nonnegative integer κ(v ) dim, called the Iitaka dimension of V, such that dimφ m () κ(v ) for all m N(V ), and equality holds if m is sufficiently large or if m > 0 and V m is basepoint-free. Indeed κ(v ) = dimy. (2) If κ(v ) = dim, or equivalently φ m : Y m is generically finite for some m N(V ), then there is a positive integer δ(v ), which we call the asymptotic degree of V, such that deg(φ m : Y m ) δ(v ) for all m N(V ) with φ m : Y m generically finite, and equality holds if m is sufficiently large. Indeed δ(v ) = deg(φ : Y ). The Iitaka dimension κ(l) of a line bundle L on a complete variety is defined to be the Iitaka dimension of its associated complete linear series, and L is said to be big if κ(l) = dim. If L is big and dim = n, it is well-known that the limit h 0 (,L m ) vol(l) = lim m m n /n! exists [6, Example ] and is positive [6, Corollary ]. Moreover, this limit, called the volume of L, can be approached by the moving intersection number of n general divisors E m,1,...,e m,n L m : # ( (E m,1 E m,n )\Bs L m ) vol(l) = lim, m m n where Bs L m denotes the base locus of L m [6, Theorem ]. We will generalize these results to arbitrary graded linear series V. Since the usual volume of V is 0 if κ(v ) < n, to get more interesting results we will consider the κ(v )-dimensional

4 4 CHIH-WEI CHANG AND SHIN-YAO JOW volume of V and moving intersections of V m with a general κ(v )-dimensional closed subvariety. Definition 1.4 (Moving intersection number). Let be a complete variety, Z be a closed subvariety, and L be a line bundle on. Let V H 0 (,L) be a nonzero subspace, and denote by Bs(V) the base locus of V. If dimz = k, the moving intersection number of V with Z, denoted by (V k Z) mov, is defined by choosing k general divisors D 1,...,D k V and putting (V k Z) mov = # ( (D 1 D k Z)\Bs(V) ). Theorem 1.5 (κ-volume and asymptotic moving intersection number). Let be a complete variety, and let V be a graded linear series associated to a line bundle L on with N(V ) {0}. Write κ = κ(v ) and n = dim. (1) The limit dim K V m vol κ (V ) = lim m N(V ) m κ /κ! exists, and 0 < vol κ (V ) <. We call vol κ (V ) the κ-volume of V. (2) If Z is a closed subvariety such that dimz = κ and Z Bs(V m ) for some m > 0, then the limit (V κ Z) (Vm κ Z) mov mov = lim m N(V Z ) m κ exists, and 0 (V κ Z) mov <. We call (V κ Z) mov the asymptotic moving intersection number of V with Z. Moreover, (V κ Z) mov > 0 if and only if there exists l N(V ) such that Z Bs(V l ) and dimφ l (Z) = κ, in which case (V κ Z) mov = δ(v Z )vol κ (V ) = deg ( φ m Z : Z φ m (Z) ) vol κ (V ) for all sufficiently large m N(V ) with Z Bs(V m ). In particular, if κ = n, then (V n ) mov = δ(v )vol n (V ) = deg(φ : Y )vol n (V ). Note that a general κ-dimensional closed subvariety Z satisfies Z Bs(V m ) and dimφ m (Z) = κ for all sufficiently large m N(V ). Remark 1.6 (Special cases of Theorem 1.5 in the literature). Let V be a graded linear series on a complete variety. We summarize some special cases of Theorem 1.5 that have appeared in the literature. Note that none of them deals with graded linear series V such that κ(v ) < dim. [6, Theorem ]: as already mentioned, this is the case where V is the complete graded linear series associated to a big line bundle;

5 ASYMPTOTIC CONSTRUCTIONS AND INVARIANTS OF GRADED LINEAR SERIES 5 [2, Theorem B]: this deals with the case where V is the restricted complete linear series satisfying an additional assumption. The restricted complete linear series is the restriction of a complete graded linear series from an ambient variety containing. The additional assumption implies in particular that φ m : Y m is birational for all m 0; [4, Theorem C]: this generalizes [2, Theorem B] to any graded linear series such that φ m : Y m is birational for all m 0; [1, Theorem 1.2 (iv)]: this generalizes [2, Theorem B] to those restricted complete linear series such that φ m : Y m is generically finite for all m 0. Let us finish the introduction with a comparison between our results and some related results in [5]. Let V be a graded linear series with N(V ) {0} on a complete variety of dimension n. In [5], it was shown that dim K V m grows like m q for some nonnegative integer q, and this growth degree q was defined to be the Iitaka dimension of V (which is different from our definition in Corollary 1.3 in terms of dimφ m ()). It was further shown in [5, Corollary 3.11 (1)] that lim m N(V )dim K V m /m q exists, similar to our Theorem 1.5 (1). However, [5] did not show that the growth degree q is equaltodimφ m ()forsufficientlylargem N(V ). Infact, [5]containsnodiscussion about asymptotic Iitaka maps, let alone results similar to our Theorem 1.1, 1.2, or Corollary 1.3. As for our Theorem 1.5 (2), the result [5, Theorem 4.9 (1)] might look similar, but the latter is in fact non-asymptotic in nature: in our notation, [5, Theorem 4.9 (1)] is saying that if κ(v ) = n and V m = V1 m for all m > 0, then (V1 n ) mov = (degφ 1 )vol n (V ). 1 The assumption V m = V1 m for all m > 0 implies that φ m = φ 1 for all m > 0 and (V n ) mov = (V1 n ) mov, so there is essentially no asymptotic behavior in this case. Asymptotic moving intersection numbers of arbitrary graded linear series do not appear in [5]. Acknowledgment. The authors gratefully acknowledge the support of MoST (Ministry of Science and Technology, Taiwan). 2. Asymptotic Iitaka maps of graded linear series In this section, we will prove Theorem 1.1 and 1.2. We start by introducing some notation. Definition 2.1 (Section ring). Let be a complete variety, and let V be a graded linear series associated to a line bundle L on. The section ring associated to V is the graded K-algebra R(V ) = R(,V ) = V m. m=0 1 The notations L and Φ L in [5] correspond to our V 1 and φ 1, respectively.

6 6 CHIH-WEI CHANG AND SHIN-YAO JOW For each m N, we denote K[V m ] = the graded K-subalgebra of R(V ) generated by V m. If R is a graded integral domain, we write R ( 0 ) for the field R ( 0 ) = {a/b a,b R are homogeneous of the same degree, b 0}, namely the degree 0 part of the localization of R that inverts all homogeneous elements not in the prime ideal 0. Lemma 2.2. Let be a complete variety, and let V be a graded linear series associated to a line bundle L on. If φ m : P(V m ) is the rational map defined by V m, and Y m P(V m ) is the closure of φ m (), then K[V m ] is the homogeneous coordinate ring of Y m in P(V m ). Consequently, K[V m ] ( 0 ) is the function field of Y m, that is, K[V m ] ( 0 ) = K(Y m ). Proof. Let {s 0,...,s N } be a basis of V m. Then there is a surjective K-algebra homomorphism from the polynomial ring K[x 0,...,x N ] to K[V m ] sending x i to s i. The kernel is generated by all homogeneous polynomials f(x 0,...,x N ) such that f(s 0,...,s N ) = 0 in K[V m ]. Hence K[V m ] = K[x 0,...,x N ]/ f homogeneous f(s 0,...,s N ) = 0 in K[V m ]. On the other hand, the rational map φ m can be expressed as φ m : P(V m ) = P N, φ m (p) = [s 0 (p) : : s N (p)] for all points p of in the Zariski open set U = {p s 0 (p),...,s N (p) are not all 0}. Since Y m is the closure of φ m (U) in P N, the homogeneous ideal of Y m is generated by all homogeneous polynomials f(x 0,...,x N ) such that f ( φ m (p) ) = f ( s 0 (p),...,s N (p) ) = 0 for all p U. Since U is Zariski open, f ( s 0 (p),...,s N (p) ) = 0 for all p U f ( s 0 (p),...,s N (p) ) = 0 for all p f(s 0,...,s N ) = 0 in K[V m ]. Hence the homogeneous coordinate ring of Y m is precisely K[V m ]. Consequently, the function field K(Y m ) = K[V m ] ( 0 ) by [3, Ch. I, Theorem 3.4(c)].

7 ASYMPTOTIC CONSTRUCTIONS AND INVARIANTS OF GRADED LINEAR SERIES 7 Proof of Theorem 1.1. We may assume that is projective by Chow s lemma. There is a natural homomorphism R(V ) ( 0 ) K() since the quotient of two sections of a line bundle is a rational function. It follows that R(V ) ( 0 ) is a finitely generated extension field of K since K() is. Also, for each m N(V ) there is an inclusion K[V m ] ( 0 ) R(V ) ( 0 ) sincek[v m ] R(V ). By[3, Ch.I,Theorem4.4]andLemma2.2, thehomomorphisms induce dominant rational maps K[V m ] ( 0 ) R(V ) ( 0 ) K() Y m ν m Y ϕ where Y is a projective variety such that K(Y ) = R(V ) ( 0 ). Moreover, there is a commutative diagram φ m ϕ Y m Y. Let Y be the graph of ϕ, that is, the closure of ν m { ( p,ϕ(p) ) p, ϕ is regular at p} Y. Then there is a commutative diagram u ϕ Y φ where u and φ are the projections. The projection u is birational since is the graph of ϕ. Combining the previous two commutative diagrams, we have a commutative diagram u φ m φ Y m ν m Y of surjective morphisms and dominant rational maps for each m N(V ).

8 8 CHIH-WEI CHANG AND SHIN-YAO JOW It only remains to show that if m N(V ) issufficiently large, then ν m is birational, or equivalently K[V m ] ( 0 ) = R(V ) ( 0 ). First observe that for i,j N(V ) with i j, it follows from V j/i i V j that K[V i ] ( 0 ) K[V j ] ( 0 ). Since R(V ) ( 0 ) = m N(V ) K[V m] ( 0 ) is a finitely generated extension field of K, R(V ) ( 0 ) = K[V l ] ( 0 ) for some l N(V ). Let N be a positive integer such that all multiples of gcdn(v ) greater than or equal to N appear in N(V ). If m N(V ) and m N + l, then m l N(V ), namely V m l 0. Hence K[V l ] ( 0 ) K[V m ] ( 0 ) by V l V m l V m, so for all m N(V ) such that m N +l. Proof of Theorem 1.2. Let K[V m ] ( 0 ) = R(V ) ( 0 ) M(V ) + = {m M(V ) m > 0}. For any i,j M(V ) + with i j, the image of the (j/i) th symmetric power S j/i (V i ) of V i under the multiplication map S j/i (V i ) V j is a free subseries of V j, which corresponds to a projection from Y j onto the (j/i) th Veronese embedding of Y i in P(V j ). We denote this projection by π i,j, which is a finite surjective morphism that fits into the commutative diagram (2) φ i Y i Y j. π i,j Let φ: Y be the semiample fibration associated to the line bundle L [6, Theorem ]. Since φ is the morphism defined by the complete linear series H 0 (,L m ) for sufficiently large m M(V ), and φ m is defined by the subseries V m H 0 (,L m ), the corresponding projection π m : Y Y m is a finite surjective morphism that fits into the commutative diagram (3) φ m φ j Y m Y. π m In fact, there is a finite surjective morphism π m that fits into the commutative diagram (3) for all m M(V ) +, since for small m, one can again project onto a φ

9 ASYMPTOTIC CONSTRUCTIONS AND INVARIANTS OF GRADED LINEAR SERIES 9 suitable Veronese embedding of Y m. From the commutativity of (2) and (3) and the surjectivity of φ, it follows that the diagram π i Y π j Y i π i,j also commutes. We claim that for each m M(V ) +, there exists an l M(V ) + such that m l, and π l,k are isomorphisms for all k > 0 with l k. For if this were false, there would exist an infinite sequence m,k 1,k 2,... M(V ) + such that m k 1 k 2, and no π ki,k i+1 is an isomorphism. Then we would have a commutative diagram π k1 π k2 Y k1 Y k2 Y k3 π k1,k 2 π k2,k 3 Y j Y π k3 of finite surjective morphisms, with the bottom row an infinite strictly ascending chain of finite extensions, which is impossible since O Y is a Noetherian O Yk1 -module. We now define the variety Y and the morphisms ν m : Y Y m that fulfill the statement of Theorem 1.2. Fix m 0,l 0 M(V ) + such that m 0 l 0 and π l0,k are isomorphisms for all k > 0 with l 0 k. We define Y = Y l0 and φ = φ l0 : Y. For each m M(V ) +, pick an l M(V ) + such that m l and π l,k are isomorphisms for all k > 0 with l k, and define ν m : Y Y m to be the morphism that makes the diagram ν m Y = Y l0 π 1 l 0,ll 0 Y m Y l Y ll0 π m,l commute. The definition of ν m does not depend on the choice of l, thanks to the commutativity of the diagram π l,ll0 π i,k Y k π j,k Y i π i,j for any i,j,k M(V ) + with i j k, which in turn follows from the commutativity of (2). By definition, ν m are finite and surjective for all m M(V ) + since π i,j are so for all i,j M(V ) + with i j. The commutativity of (1) follows from that of (2). Y j

10 10 CHIH-WEI CHANG AND SHIN-YAO JOW It only remains to show that ν m is an isomorphism if m M(V ) is sufficiently large. Let N be a positive integer such that all multiples of gcdm(v ) greater than or equal to N appear in M(V ). If m M(V ) and m N+l 0, then m l 0 M(V ). The image of the multiplication map V l0 V m l0 V m is a free subseries of V m, which corresponds to a projection µ m from Y m to the Segre embedding of Y l0 Y m l0 in P(V m ) that fits into the commutative diagram φ l0 φ l0 φ m l0 φ m Y l0 Y l0 Y m l0 Y m. pr Yl0 This, combined with (1), shows that ν m and pr Yl0 µ m are inverses of each other, so ν m is an isomorphism. 3. κ-volumes and asymptotic moving intersection numbers In this section, we will prove Theorem 1.5. To streamline the proof, we first establish two lemmas. Lemma 3.1. Let be a complete variety. Let L be a line bundle on, and let V H 0 (,L) be a nonzero subspace. Let φ: P(V) be the rational map defined by V, and let Y P(V) be the closure of φ(). If Z is a subvariety not contained in the base locus Bs(V) of V, and φ(z) is dense in Y, then the restriction V H 0 (Z,L Z ) is injective. Proof. We may assume that φ is regular on Z after replacing Z by Z \Bs(V). There is a commutative diagram Z Y φ Z ι Y ι Z φ P(V) where ι Y and ι Z are the inclusions, which induces a commutative diagram µ m H 0 (Z,L Z ) φ Z ι Z φ V H 0( Y,O Y (1) ) H 0( P(V),O(1) ). ι Y Note that φ is an isomorphism, ι Y is injective since Y does not lie in a hyperplane in P(V), and φ Z is injective since φ Z is dominant. Therefore ι Z is injective.

11 ASYMPTOTIC CONSTRUCTIONS AND INVARIANTS OF GRADED LINEAR SERIES 11 Lemma 3.2. Let be a complete variety. Let M be a globally generated line bundle on, and let W H 0 (,M) be a basepoint-free linear series. Let Y P(W) be the image of the morphism P(W) defined by W. If W is the graded linear series associated to M on given by W k = Im ( S k (W) H 0 (,M k ) ), that is, the image of the k th symmetric power of W under the multiplication map, then dim K W k = h 0( Y,O Y (k) ) for all sufficiently large k. Proof. Write the morphism P(W) defined by W as a composition where ι denotes the inclusion. Then and Hence ϕ ι Y P(W), M = (ι ϕ) O P(W) (1) = ϕ O Y (1), W = (ι ϕ) H 0( P(W),O P(W) (1) ). W k = (ι ϕ) Im (S k H 0( P(W),O P(W) (1) ) H 0( P(W),O P(W) (k) )) = (ι ϕ) H 0( P(W),O P(W) (k) ) = ϕ (ι H 0( P(W),O P(W) (k) )). Let I Y denote the ideal sheaf of Y on P(W). The short exact sequence 0 I Y (k) O P(W) (k) O Y (k) 0 of sheaves on P(W) induces a long exact sequence H 0( P(W),O P(W) (k) ) ι H 0( Y,O Y (k) ) H 1( P(W),I Y (k) ) of cohomology groups. If k is sufficiently large, then H 1( P(W),I Y (k) ) = 0 by Serre s vanishing theorem, so ι H 0( P(W),O P(W) (k) ) = H 0( Y,O Y (k) ). Hence W k = ϕ H 0( Y,O Y (k) ). Since ϕ: Y is onto, ϕ is one-to-one. Thus dim K W k = dim K H 0( Y,O Y (k) ) = h 0( Y,O Y (k) ).

12 12 CHIH-WEI CHANG AND SHIN-YAO JOW Proof of Theorem 1.5. For each m N(V ), let π m : m be the blowing-up of with respect to the base ideal b m of V m. Then b m O m = O m ( F m ) for some effective Cartier divisor F m on m. Let M m denote the globally generated line bundle M m = π m L m O m ( F m ) on m. Then π m V m = W m +F m, where W m H 0 ( m,m m ) is a basepoint-free linear series that defines a morphism ϕ m : m Y m fitting into the commutative diagram m π m ϕ m Y m P m, where P m = P(V m ) = P(W m ). If Z Bs(V m ) and Z m m is the strict transform of Z, then φ m (4) (V κ m Z) mov = M κ m Z m = ( ϕ m O Y m (1) )κ Z m = O Ym (1) κ (ϕ m Z m ). Since ϕ m Z m = 0 if dimϕ m (Z m ) = dimφ m (Z) < κ, (V κ m Z) mov = 0 for all m N(V Z ) if κ(v Z ) < κ. Thus we may assume that κ(v Z ) = κ. Since κ(v Z ) = κ, by Lemma 3.1, dim K V m = dim K V m Z for all sufficiently large m N(V Z ). By definition, we also have (V κ m Z) mov = ( (V m Z ) κ Z ) mov for all m N(V Z ). Hence it is enough to prove Theorem 1.5 for the graded linear series V Z on Z. Since κ(v Z ) = dimz, this means that we may reduce Theorem 1.5 to the case κ = n. For each m N(V ), consider the graded linear series W m, associated to the line bundle M m on m given by By Lemma 3.2, W m,k = Im ( S k (W m ) H 0 ( m,m k m ) ). dim K W m,k = h 0( Y m,o Ym (k) )

13 ASYMPTOTIC CONSTRUCTIONS AND INVARIANTS OF GRADED LINEAR SERIES 13 for all sufficiently large k. Hence if m is large enough so that dimy m = κ = n, then ( dim K W m,k h 0 Ym,O Ym (k) ) vol n (W m, ) = lim = lim = vol ( O k k n /n! k k n Ym (1) ) = O Ym (1) n. /n! Using (4) in the case κ = n, Z =, and Z m = m, we get (5) vol n (W m, ) = O Ym (1) n = for all sufficiently large m N(V ). It is proved in [5] that the usual volume (Vm n ) mov deg(φ m : Y m ) = (V m n ) mov δ(v ) dim K V m vol(v ) = vol n (V ) = lim m N(V ) m n /n! ofany gradedlinear series V exists (andis finite), andthefollowing version of Fujita s approximation theorem holds: for any ǫ > 0, there exists an integer m 0 = m 0 (ǫ), such that if m N(V ) and m m 0, then vol(v ) ǫ vol(w m, ) m n vol(v ). This implies that vol(v ) > 0 since vol(w m, ) = O Ym (1) n > 0 for all sufficiently large m N(V ) by (5). It also implies that So by (5) again, (V n ) (Vm n mov = lim ) mov m N(V ) m n vol(w m, ) lim = vol(v m N(V ) m n ). δ(v )vol(w m, ) = lim = δ(v m N(V ) m n )vol(v ). References [1] L. D. Biagio and G. Pacienza, Restricted volumes of effective divisors, Bull. Soc. Math. France 144 (2016), [2] L. Ein, R. Lazarsfeld, M. Mustaţă, M. Nakamaye, and M. Popa, Restricted volumes and base loci of linear series, Amer. J. Math. 131 (2009), [3] R. Hartshorne, Algebraic Geometry, Graduate Texts in Math., vol. 52, Springer, New York, [4] S.-Y. Jow, Okounkov bodies and restricted volumes along very general curves, Adv. Math. 223 (2010), [5] K. Kaveh and A. Khovanskii, Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory, Ann. Math. 176 (2012), [6] R. Lazarsfeld, Positivity in Algebraic Geometry I II, Ergeb. Math. Grenzgeb., vols , Springer, Berlin, [7] R. Lazarsfeld and M. Mustaţă, Convex bodies associated to linear series, Ann. Sci. Ecole Norm. Sup. 42 (2009),

14 14 CHIH-WEI CHANG AND SHIN-YAO JOW Department of Mathematics, National Tsing Hua University, Taiwan address: Department of Mathematics, National Tsing Hua University, Taiwan address:

APPENDIX 3: AN OVERVIEW OF CHOW GROUPS

APPENDIX 3: AN OVERVIEW OF CHOW GROUPS APPENDIX 3: AN OVERVIEW OF CHOW GROUPS We review in this appendix some basic definitions and results that we need about Chow groups. For details and proofs we refer to [Ful98]. In particular, we discuss

More information

Asymptotic invariants of line bundles, semiampleness and finite generation

Asymptotic invariants of line bundles, semiampleness and finite generation UNIVERSITÀ DEGLI STUDI ROMA TRE FACOLTÀ DI SCIENZE MM. FF. NN. Graduation Thesis in Mathematics by Salvatore Cacciola Asymptotic invariants of line bundles, semiampleness and finite generation Supervisor

More information

LECTURE 7: STABLE RATIONALITY AND DECOMPOSITION OF THE DIAGONAL

LECTURE 7: STABLE RATIONALITY AND DECOMPOSITION OF THE DIAGONAL LECTURE 7: STABLE RATIONALITY AND DECOMPOSITION OF THE DIAGONAL In this lecture we discuss a criterion for non-stable-rationality based on the decomposition of the diagonal in the Chow group. This criterion

More information

arxiv: v1 [math.ag] 3 Mar 2018

arxiv: v1 [math.ag] 3 Mar 2018 CLASSIFICATION AND SYZYGIES OF SMOOTH PROJECTIVE VARIETIES WITH 2-REGULAR STRUCTURE SHEAF SIJONG KWAK AND JINHYUNG PARK arxiv:1803.01127v1 [math.ag] 3 Mar 2018 Abstract. The geometric and algebraic properties

More information

Algebraic Geometry Spring 2009

Algebraic Geometry Spring 2009 MIT OpenCourseWare http://ocw.mit.edu 18.726 Algebraic Geometry Spring 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.726: Algebraic Geometry

More information

Volumes of Arithmetic Okounkov Bodies

Volumes of Arithmetic Okounkov Bodies Volumes of Arithmetic Okounkov Bodies Xinyi Yuan April 27, 2015 Contents 1 Introduction 1 2 Lattice points in a filtration 3 3 The arithmetic Okounkov body 7 1 Introduction This paper is an improvement

More information

LECTURE 6: THE ARTIN-MUMFORD EXAMPLE

LECTURE 6: THE ARTIN-MUMFORD EXAMPLE LECTURE 6: THE ARTIN-MUMFORD EXAMPLE In this chapter we discuss the example of Artin and Mumford [AM72] of a complex unirational 3-fold which is not rational in fact, it is not even stably rational). As

More information

12. Linear systems Theorem Let X be a scheme over a ring A. (1) If φ: X P n A is an A-morphism then L = φ O P n

12. Linear systems Theorem Let X be a scheme over a ring A. (1) If φ: X P n A is an A-morphism then L = φ O P n 12. Linear systems Theorem 12.1. Let X be a scheme over a ring A. (1) If φ: X P n A is an A-morphism then L = φ O P n A (1) is an invertible sheaf on X, which is generated by the global sections s 0, s

More information

Algebraic Geometry and Convex Geometry. A. Khovanskii

Algebraic Geometry and Convex Geometry. A. Khovanskii Algebraic Geometry and Convex Geometry A. Khovanskii 1 Intersection index on an irreducible variety X, dim X = n Let K(X) be the semigroup of spaces L of rational functions on X such that: a) dim L

More information

the complete linear series of D. Notice that D = PH 0 (X; O X (D)). Given any subvectorspace V H 0 (X; O X (D)) there is a rational map given by V : X

the complete linear series of D. Notice that D = PH 0 (X; O X (D)). Given any subvectorspace V H 0 (X; O X (D)) there is a rational map given by V : X 2. Preliminaries 2.1. Divisors and line bundles. Let X be an irreducible complex variety of dimension n. The group of k-cycles on X is Z k (X) = fz linear combinations of subvarieties of dimension kg:

More information

Vector bundles in Algebraic Geometry Enrique Arrondo. 1. The notion of vector bundle

Vector bundles in Algebraic Geometry Enrique Arrondo. 1. The notion of vector bundle Vector bundles in Algebraic Geometry Enrique Arrondo Notes(* prepared for the First Summer School on Complex Geometry (Villarrica, Chile 7-9 December 2010 1 The notion of vector bundle In affine geometry,

More information

AUGMENTED BASE LOCI AND RESTRICTED VOLUMES ON NORMAL VARIETIES, II: THE CASE OF REAL DIVISORS

AUGMENTED BASE LOCI AND RESTRICTED VOLUMES ON NORMAL VARIETIES, II: THE CASE OF REAL DIVISORS AUGMENTED BASE LOCI AND RESTRICTED VOLUMES ON NORMAL VARIETIES, II: THE CASE OF REAL DIVISORS ANGELO FELICE LOPEZ* Abstract. Let X be a normal projective variety defined over an algebraically closed field

More information

CHAPTER 0 PRELIMINARY MATERIAL. Paul Vojta. University of California, Berkeley. 18 February 1998

CHAPTER 0 PRELIMINARY MATERIAL. Paul Vojta. University of California, Berkeley. 18 February 1998 CHAPTER 0 PRELIMINARY MATERIAL Paul Vojta University of California, Berkeley 18 February 1998 This chapter gives some preliminary material on number theory and algebraic geometry. Section 1 gives basic

More information

3. Lecture 3. Y Z[1/p]Hom (Sch/k) (Y, X).

3. Lecture 3. Y Z[1/p]Hom (Sch/k) (Y, X). 3. Lecture 3 3.1. Freely generate qfh-sheaves. We recall that if F is a homotopy invariant presheaf with transfers in the sense of the last lecture, then we have a well defined pairing F(X) H 0 (X/S) F(S)

More information

CHEVALLEY S THEOREM AND COMPLETE VARIETIES

CHEVALLEY S THEOREM AND COMPLETE VARIETIES CHEVALLEY S THEOREM AND COMPLETE VARIETIES BRIAN OSSERMAN In this note, we introduce the concept which plays the role of compactness for varieties completeness. We prove that completeness can be characterized

More information

Another proof of the global F -regularity of Schubert varieties

Another proof of the global F -regularity of Schubert varieties Another proof of the global F -regularity of Schubert varieties Mitsuyasu Hashimoto Abstract Recently, Lauritzen, Raben-Pedersen and Thomsen proved that Schubert varieties are globally F -regular. We give

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #18 11/07/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #18 11/07/2013 18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #18 11/07/2013 As usual, all the rings we consider are commutative rings with an identity element. 18.1 Regular local rings Consider a local

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #17 11/05/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #17 11/05/2013 18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #17 11/05/2013 Throughout this lecture k denotes an algebraically closed field. 17.1 Tangent spaces and hypersurfaces For any polynomial f k[x

More information

Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory

Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory Annals of Mathematics 176 (2012), 925 978 http://dx.doi.org/10.4007/annals.2012.176.2.5 Newton-Okounkov bodies, semigroups of integral points, graded algebras and intersection theory By Kiumars Kaveh and

More information

(1) is an invertible sheaf on X, which is generated by the global sections

(1) is an invertible sheaf on X, which is generated by the global sections 7. Linear systems First a word about the base scheme. We would lie to wor in enough generality to cover the general case. On the other hand, it taes some wor to state properly the general results if one

More information

4. Images of Varieties Given a morphism f : X Y of quasi-projective varieties, a basic question might be to ask what is the image of a closed subset

4. Images of Varieties Given a morphism f : X Y of quasi-projective varieties, a basic question might be to ask what is the image of a closed subset 4. Images of Varieties Given a morphism f : X Y of quasi-projective varieties, a basic question might be to ask what is the image of a closed subset Z X. Replacing X by Z we might as well assume that Z

More information

HIGHER COHOMOLOGY OF DIVISORS ON A PROJECTIVE VARIETY. Introduction

HIGHER COHOMOLOGY OF DIVISORS ON A PROJECTIVE VARIETY. Introduction HIGHER COHOMOLOGY OF DIVISORS ON A PROJECTIVE VARIETY TOMMASO DE FERNEX, ALEX KÜRONYA, AND ROBERT LAZARSFELD Introduction The purpose of this paper is to study the growth of higher cohomology of line bundles

More information

12. Hilbert Polynomials and Bézout s Theorem

12. Hilbert Polynomials and Bézout s Theorem 12. Hilbert Polynomials and Bézout s Theorem 95 12. Hilbert Polynomials and Bézout s Theorem After our study of smooth cubic surfaces in the last chapter, let us now come back to the general theory of

More information

arxiv:math/ v1 [math.ag] 17 Sep 1998

arxiv:math/ v1 [math.ag] 17 Sep 1998 arxiv:math/9809091v1 [math.ag] 17 Sep 1998 ON THE EXTENSION PROBLEM OF PLURICANONICAL FORMS DEDICATED TO PROFESSOR FRIEDRICH HIRZEBRUCH ON HIS SEVENTIETH BIRTHDAY Yujiro Kawamata Abstract. We review some

More information

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra D. R. Wilkins Contents 3 Topics in Commutative Algebra 2 3.1 Rings and Fields......................... 2 3.2 Ideals...............................

More information

Under these assumptions show that if D X is a proper irreducible reduced curve with C K X = 0 then C is a smooth rational curve.

Under these assumptions show that if D X is a proper irreducible reduced curve with C K X = 0 then C is a smooth rational curve. Example sheet 3. Positivity in Algebraic Geometry, L18 Instructions: This is the third and last example sheet. More exercises may be added during this week. The final example class will be held on Thursday

More information

(dim Z j dim Z j 1 ) 1 j i

(dim Z j dim Z j 1 ) 1 j i Math 210B. Codimension 1. Main result and some interesting examples Let k be a field, and A a domain finitely generated k-algebra. In class we have seen that the dimension theory of A is linked to the

More information

A finite universal SAGBI basis for the kernel of a derivation. Osaka Journal of Mathematics. 41(4) P.759-P.792

A finite universal SAGBI basis for the kernel of a derivation. Osaka Journal of Mathematics. 41(4) P.759-P.792 Title Author(s) A finite universal SAGBI basis for the kernel of a derivation Kuroda, Shigeru Citation Osaka Journal of Mathematics. 4(4) P.759-P.792 Issue Date 2004-2 Text Version publisher URL https://doi.org/0.890/838

More information

Rings and groups. Ya. Sysak

Rings and groups. Ya. Sysak Rings and groups. Ya. Sysak 1 Noetherian rings Let R be a ring. A (right) R -module M is called noetherian if it satisfies the maximum condition for its submodules. In other words, if M 1... M i M i+1...

More information

NOTES ON FIBER DIMENSION

NOTES ON FIBER DIMENSION NOTES ON FIBER DIMENSION SAM EVENS Let φ : X Y be a morphism of affine algebraic sets, defined over an algebraically closed field k. For y Y, the set φ 1 (y) is called the fiber over y. In these notes,

More information

arxiv: v1 [math.ag] 29 May 2008

arxiv: v1 [math.ag] 29 May 2008 CONVEX BODIES ASSOCIATED TO LINEAR SERIES ROBERT LAZARSFELD AND MIRCEA MUSTAŢǍ arxiv:0805.4559v1 [math.ag] 29 May 2008 Contents Introduction 1 0. Notation and Conventions 7 1. Okounkov s Construction 9

More information

ON SUBADDITIVITY OF THE LOGARITHMIC KODAIRA DIMENSION

ON SUBADDITIVITY OF THE LOGARITHMIC KODAIRA DIMENSION ON SUBADDITIVITY OF THE LOGARITHMIC KODAIRA DIMENSION OSAMU FUJINO Abstract. We reduce Iitaka s subadditivity conjecture for the logarithmic Kodaira dimension to a special case of the generalized abundance

More information

COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY

COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY BRIAN OSSERMAN Classical algebraic geometers studied algebraic varieties over the complex numbers. In this setting, they didn t have to worry about the Zariski

More information

Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35

Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35 Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35 1. Let R be a commutative ring with 1 0. (a) Prove that the nilradical of R is equal to the intersection of the prime

More information

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12 MATH 8253 ALGEBRAIC GEOMETRY WEEK 2 CİHAN BAHRAN 3.2.. Let Y be a Noetherian scheme. Show that any Y -scheme X of finite type is Noetherian. Moreover, if Y is of finite dimension, then so is X. Write f

More information

COMPARING NUMERICAL DIMENSIONS

COMPARING NUMERICAL DIMENSIONS COMPARING NUMERICAL DIMENSIONS BRIAN LEHMANN Abstract. The numerical dimension is a numerical measure of the positivity of a pseudo-effective divisor L. There are several proposed definitions of the numerical

More information

MATH 326: RINGS AND MODULES STEFAN GILLE

MATH 326: RINGS AND MODULES STEFAN GILLE MATH 326: RINGS AND MODULES STEFAN GILLE 1 2 STEFAN GILLE 1. Rings We recall first the definition of a group. 1.1. Definition. Let G be a non empty set. The set G is called a group if there is a map called

More information

OKOUNKOV BODIES OF FINITELY GENERATED DIVISORS

OKOUNKOV BODIES OF FINITELY GENERATED DIVISORS OKOUNKOV BODIES OF FINITELY GENERATED DIVISORS DAVE ANDERSON, ALEX KÜRONYA, AND VICTOR LOZOVANU Abstract. We show that the Okounkov body of a big divisor with finitely generated section ring is a rational

More information

INDRANIL BISWAS AND GEORG HEIN

INDRANIL BISWAS AND GEORG HEIN GENERALIZATION OF A CRITERION FOR SEMISTABLE VECTOR BUNDLES INDRANIL BISWAS AND GEORG HEIN Abstract. It is known that a vector bundle E on a smooth projective curve Y defined over an algebraically closed

More information

10. Noether Normalization and Hilbert s Nullstellensatz

10. Noether Normalization and Hilbert s Nullstellensatz 10. Noether Normalization and Hilbert s Nullstellensatz 91 10. Noether Normalization and Hilbert s Nullstellensatz In the last chapter we have gained much understanding for integral and finite ring extensions.

More information

Porteous s Formula for Maps between Coherent Sheaves

Porteous s Formula for Maps between Coherent Sheaves Michigan Math. J. 52 (2004) Porteous s Formula for Maps between Coherent Sheaves Steven P. Diaz 1. Introduction Recall what the Thom Porteous formula for vector bundles tells us (see [2, Sec. 14.4] for

More information

Resolution of Singularities in Algebraic Varieties

Resolution of Singularities in Algebraic Varieties Resolution of Singularities in Algebraic Varieties Emma Whitten Summer 28 Introduction Recall that algebraic geometry is the study of objects which are or locally resemble solution sets of polynomial equations.

More information

A MORE GENERAL ABC CONJECTURE. Paul Vojta. University of California, Berkeley. 2 December 1998

A MORE GENERAL ABC CONJECTURE. Paul Vojta. University of California, Berkeley. 2 December 1998 A MORE GENERAL ABC CONJECTURE Paul Vojta University of California, Berkeley 2 December 1998 In this note we formulate a conjecture generalizing both the abc conjecture of Masser-Oesterlé and the author

More information

HILBERT FUNCTIONS. 1. Introduction

HILBERT FUNCTIONS. 1. Introduction HILBERT FUCTIOS JORDA SCHETTLER 1. Introduction A Hilbert function (so far as we will discuss) is a map from the nonnegative integers to themselves which records the lengths of composition series of each

More information

AN EXPOSITION OF THE RIEMANN ROCH THEOREM FOR CURVES

AN EXPOSITION OF THE RIEMANN ROCH THEOREM FOR CURVES AN EXPOSITION OF THE RIEMANN ROCH THEOREM FOR CURVES DOMINIC L. WYNTER Abstract. We introduce the concepts of divisors on nonsingular irreducible projective algebraic curves, the genus of such a curve,

More information

PROBLEMS, MATH 214A. Affine and quasi-affine varieties

PROBLEMS, MATH 214A. Affine and quasi-affine varieties PROBLEMS, MATH 214A k is an algebraically closed field Basic notions Affine and quasi-affine varieties 1. Let X A 2 be defined by x 2 + y 2 = 1 and x = 1. Find the ideal I(X). 2. Prove that the subset

More information

Chern classes à la Grothendieck

Chern classes à la Grothendieck Chern classes à la Grothendieck Theo Raedschelders October 16, 2014 Abstract In this note we introduce Chern classes based on Grothendieck s 1958 paper [4]. His approach is completely formal and he deduces

More information

Singularities of hypersurfaces and theta divisors

Singularities of hypersurfaces and theta divisors Singularities of hypersurfaces and theta divisors Gregor Bruns 09.06.2015 These notes are completely based on the book [Laz04] and the course notes [Laz09] and contain no original thought whatsoever by

More information

MATH 233B, FLATNESS AND SMOOTHNESS.

MATH 233B, FLATNESS AND SMOOTHNESS. MATH 233B, FLATNESS AND SMOOTHNESS. The discussion of smooth morphisms is one place were Hartshorne doesn t do a very good job. Here s a summary of this week s material. I ll also insert some (optional)

More information

ALGEBRAIC GROUPS. Disclaimer: There are millions of errors in these notes!

ALGEBRAIC GROUPS. Disclaimer: There are millions of errors in these notes! ALGEBRAIC GROUPS Disclaimer: There are millions of errors in these notes! 1. Some algebraic geometry The subject of algebraic groups depends on the interaction between algebraic geometry and group theory.

More information

LECTURES ON SINGULARITIES AND ADJOINT LINEAR SYSTEMS

LECTURES ON SINGULARITIES AND ADJOINT LINEAR SYSTEMS LECTURES ON SINGULARITIES AND ADJOINT LINEAR SYSTEMS LAWRENCE EIN Abstract. 1. Singularities of Surfaces Let (X, o) be an isolated normal surfaces singularity. The basic philosophy is to replace the singularity

More information

arxiv:math/ v1 [math.ac] 3 Apr 2006

arxiv:math/ v1 [math.ac] 3 Apr 2006 arxiv:math/0604046v1 [math.ac] 3 Apr 2006 ABSOLUTE INTEGRAL CLOSURE IN OSITIVE CHARACTERISTIC CRAIG HUNEKE AND GENNADY LYUBEZNIK Abstract. Let R be a local Noetherian domain of positive characteristic.

More information

Intersection Theory course notes

Intersection Theory course notes Intersection Theory course notes Valentina Kiritchenko Fall 2013, Faculty of Mathematics, NRU HSE 1. Lectures 1-2: examples and tools 1.1. Motivation. Intersection theory had been developed in order to

More information

Segre classes of tautological bundles on Hilbert schemes of surfaces

Segre classes of tautological bundles on Hilbert schemes of surfaces Segre classes of tautological bundles on Hilbert schemes of surfaces Claire Voisin Abstract We first give an alternative proof, based on a simple geometric argument, of a result of Marian, Oprea and Pandharipande

More information

ABSTRACT NONSINGULAR CURVES

ABSTRACT NONSINGULAR CURVES ABSTRACT NONSINGULAR CURVES Affine Varieties Notation. Let k be a field, such as the rational numbers Q or the complex numbers C. We call affine n-space the collection A n k of points P = a 1, a,..., a

More information

Curves on P 1 P 1. Peter Bruin 16 November 2005

Curves on P 1 P 1. Peter Bruin 16 November 2005 Curves on P 1 P 1 Peter Bruin 16 November 2005 1. Introduction One of the exercises in last semester s Algebraic Geometry course went as follows: Exercise. Let be a field and Z = P 1 P 1. Show that the

More information

10. Smooth Varieties. 82 Andreas Gathmann

10. Smooth Varieties. 82 Andreas Gathmann 82 Andreas Gathmann 10. Smooth Varieties Let a be a point on a variety X. In the last chapter we have introduced the tangent cone C a X as a way to study X locally around a (see Construction 9.20). It

More information

Math 145. Codimension

Math 145. Codimension Math 145. Codimension 1. Main result and some interesting examples In class we have seen that the dimension theory of an affine variety (irreducible!) is linked to the structure of the function field in

More information

ALGEBRAIC GEOMETRY I, FALL 2016.

ALGEBRAIC GEOMETRY I, FALL 2016. ALGEBRAIC GEOMETRY I, FALL 2016. DIVISORS. 1. Weil and Cartier divisors Let X be an algebraic variety. Define a Weil divisor on X as a formal (finite) linear combination of irreducible subvarieties of

More information

HARTSHORNE EXERCISES

HARTSHORNE EXERCISES HARTSHORNE EXERCISES J. WARNER Hartshorne, Exercise I.5.6. Blowing Up Curve Singularities (a) Let Y be the cusp x 3 = y 2 + x 4 + y 4 or the node xy = x 6 + y 6. Show that the curve Ỹ obtained by blowing

More information

MATH2810 ALGEBRAIC GEOMETRY NOTES. Contents

MATH2810 ALGEBRAIC GEOMETRY NOTES. Contents MATH2810 ALGEBRAIC GEOMETRY NOTES KIUMARS KAVEH Contents 1. Affine Algebraic Geometry 1 2. Sheaves 3 3. Projective varieties 4 4. Degree and Hilbert Functions 6 5. Bernstein-Kushnirenko theorem 7 6. Degree

More information

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ. ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ. ANDREW SALCH 1. Hilbert s Nullstellensatz. The last lecture left off with the claim that, if J k[x 1,..., x n ] is an ideal, then

More information

A NOTE ON SIMPLE DOMAINS OF GK DIMENSION TWO

A NOTE ON SIMPLE DOMAINS OF GK DIMENSION TWO A NOTE ON SIMPLE DOMAINS OF GK DIMENSION TWO JASON P. BELL Abstract. Let k be a field. We show that a finitely generated simple Goldie k-algebra of quadratic growth is noetherian and has Krull dimension

More information

Math 121 Homework 4: Notes on Selected Problems

Math 121 Homework 4: Notes on Selected Problems Math 121 Homework 4: Notes on Selected Problems 11.2.9. If W is a subspace of the vector space V stable under the linear transformation (i.e., (W ) W ), show that induces linear transformations W on W

More information

LEVINE S CHOW S MOVING LEMMA

LEVINE S CHOW S MOVING LEMMA LEVINE S CHOW S MOVING LEMMA DENIS NARDIN The main result of this note is proven in [4], using results from [2]. What is here is essentially a simplified version of the proof (at the expense of some generality).

More information

ON VARIETIES OF MAXIMAL ALBANESE DIMENSION

ON VARIETIES OF MAXIMAL ALBANESE DIMENSION ON VARIETIES OF MAXIMAL ALBANESE DIMENSION ZHI JIANG A smooth projective complex variety X has maximal Albanese dimension if its Albanese map X Alb(X) is generically finite onto its image. These varieties

More information

Preliminary Exam Topics Sarah Mayes

Preliminary Exam Topics Sarah Mayes Preliminary Exam Topics Sarah Mayes 1. Sheaves Definition of a sheaf Definition of stalks of a sheaf Definition and universal property of sheaf associated to a presheaf [Hartshorne, II.1.2] Definition

More information

ON SUBADDITIVITY OF THE LOGARITHMIC KODAIRA DIMENSION

ON SUBADDITIVITY OF THE LOGARITHMIC KODAIRA DIMENSION ON SUBADDITIVITY OF THE LOGARITHMIC KODAIRA DIMENSION OSAMU FUJINO Abstract. We reduce Iitaka s subadditivity conjecture for the logarithmic Kodaira dimension to a special case of the generalized abundance

More information

Some Remarks on Prill s Problem

Some Remarks on Prill s Problem AFFINE ALGEBRAIC GEOMETRY pp. 287 292 Some Remarks on Prill s Problem Abstract. N. Mohan Kumar If f : X Y is a non-constant map of smooth curves over C and if there is a degree two map π : X C where C

More information

arxiv:math/ v3 [math.ag] 1 Mar 2006

arxiv:math/ v3 [math.ag] 1 Mar 2006 arxiv:math/0506132v3 [math.ag] 1 Mar 2006 A NOTE ON THE PROJECTIVE VARIETIES OF ALMOST GENERAL TYPE SHIGETAKA FUKUDA Abstract. A Q-Cartier divisor D on a projective variety M is almost nup, if (D, C) >

More information

9. Birational Maps and Blowing Up

9. Birational Maps and Blowing Up 72 Andreas Gathmann 9. Birational Maps and Blowing Up In the course of this class we have already seen many examples of varieties that are almost the same in the sense that they contain isomorphic dense

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 27

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 27 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 27 RAVI VAKIL CONTENTS 1. Proper morphisms 1 2. Scheme-theoretic closure, and scheme-theoretic image 2 3. Rational maps 3 4. Examples of rational maps 5 Last day:

More information

Noetherian property of infinite EI categories

Noetherian property of infinite EI categories Noetherian property of infinite EI categories Wee Liang Gan and Liping Li Abstract. It is known that finitely generated FI-modules over a field of characteristic 0 are Noetherian. We generalize this result

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43 RAVI VAKIL CONTENTS 1. Facts we ll soon know about curves 1 1. FACTS WE LL SOON KNOW ABOUT CURVES We almost know enough to say a lot of interesting things about

More information

INTERSECTION THEORY CLASS 6

INTERSECTION THEORY CLASS 6 INTERSECTION THEORY CLASS 6 RAVI VAKIL CONTENTS 1. Divisors 2 1.1. Crash course in Cartier divisors and invertible sheaves (aka line bundles) 3 1.2. Pseudo-divisors 3 2. Intersecting with divisors 4 2.1.

More information

Dedicated to Mel Hochster on his 65th birthday. 1. Introduction

Dedicated to Mel Hochster on his 65th birthday. 1. Introduction GLOBAL DIVISION OF COHOMOLOGY CLASSES VIA INJECTIVITY LAWRENCE EIN AND MIHNEA POPA Dedicated to Mel Hochster on his 65th birthday 1. Introduction The aim of this note is to remark that the injectivity

More information

Algebraic Varieties. Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra

Algebraic Varieties. Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra Algebraic Varieties Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra Algebraic varieties represent solutions of a system of polynomial

More information

MATH 8254 ALGEBRAIC GEOMETRY HOMEWORK 1

MATH 8254 ALGEBRAIC GEOMETRY HOMEWORK 1 MATH 8254 ALGEBRAIC GEOMETRY HOMEWORK 1 CİHAN BAHRAN I discussed several of the problems here with Cheuk Yu Mak and Chen Wan. 4.1.12. Let X be a normal and proper algebraic variety over a field k. Show

More information

This is a closed subset of X Y, by Proposition 6.5(b), since it is equal to the inverse image of the diagonal under the regular map:

This is a closed subset of X Y, by Proposition 6.5(b), since it is equal to the inverse image of the diagonal under the regular map: Math 6130 Notes. Fall 2002. 7. Basic Maps. Recall from 3 that a regular map of affine varieties is the same as a homomorphism of coordinate rings (going the other way). Here, we look at how algebraic properties

More information

mult V f, where the sum ranges over prime divisor V X. We say that two divisors D 1 and D 2 are linearly equivalent, denoted by sending

mult V f, where the sum ranges over prime divisor V X. We say that two divisors D 1 and D 2 are linearly equivalent, denoted by sending 2. The canonical divisor In this section we will introduce one of the most important invariants in the birational classification of varieties. Definition 2.1. Let X be a normal quasi-projective variety

More information

ON ECKL S PSEUDO-EFFECTIVE REDUCTION MAP

ON ECKL S PSEUDO-EFFECTIVE REDUCTION MAP ON ECKL S PSEUDO-EFFECTIVE REDUCTION MAP BRIAN LEHMANN Abstract. Suppose that X is a complex projective variety and L is a pseudo-effective divisor. A numerical reduction map is a quotient of X by all

More information

CANONICAL BUNDLE FORMULA AND VANISHING THEOREM

CANONICAL BUNDLE FORMULA AND VANISHING THEOREM CANONICAL BUNDLE FORMULA AND VANISHING THEOREM OSAMU FUJINO Abstract. In this paper, we treat two different topics. We give sample computations of our canonical bundle formula. They help us understand

More information

12 Hilbert polynomials

12 Hilbert polynomials 12 Hilbert polynomials 12.1 Calibration Let X P n be a (not necessarily irreducible) closed algebraic subset. In this section, we ll look at a device which measures the way X sits inside P n. Throughout

More information

7. Classification of Surfaces The key to the classification of surfaces is the behaviour of the canonical

7. Classification of Surfaces The key to the classification of surfaces is the behaviour of the canonical 7. Classification of Surfaces The key to the classification of surfaces is the behaviour of the canonical divisor. Definition 7.1. We say that a smooth projective surface is minimal if K S is nef. Warning:

More information

CHAPTER 1. AFFINE ALGEBRAIC VARIETIES

CHAPTER 1. AFFINE ALGEBRAIC VARIETIES CHAPTER 1. AFFINE ALGEBRAIC VARIETIES During this first part of the course, we will establish a correspondence between various geometric notions and algebraic ones. Some references for this part of the

More information

Ring Theory Problems. A σ

Ring Theory Problems. A σ Ring Theory Problems 1. Given the commutative diagram α A σ B β A σ B show that α: ker σ ker σ and that β : coker σ coker σ. Here coker σ = B/σ(A). 2. Let K be a field, let V be an infinite dimensional

More information

MA 206 notes: introduction to resolution of singularities

MA 206 notes: introduction to resolution of singularities MA 206 notes: introduction to resolution of singularities Dan Abramovich Brown University March 4, 2018 Abramovich Introduction to resolution of singularities 1 / 31 Resolution of singularities Let k be

More information

arxiv:alg-geom/ v1 21 Mar 1996

arxiv:alg-geom/ v1 21 Mar 1996 AN INTERSECTION NUMBER FOR THE PUNCTUAL HILBERT SCHEME OF A SURFACE arxiv:alg-geom/960305v 2 Mar 996 GEIR ELLINGSRUD AND STEIN ARILD STRØMME. Introduction Let S be a smooth projective surface over an algebraically

More information

The Noether Inequality for Algebraic Threefolds

The Noether Inequality for Algebraic Threefolds .... Meng Chen School of Mathematical Sciences, Fudan University 2018.09.08 P1. Surface geography Back ground Two famous inequalities c 2 1 Miyaoka-Yau inequality Noether inequality O χ(o) P1. Surface

More information

where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism

where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism 8. Smoothness and the Zariski tangent space We want to give an algebraic notion of the tangent space. In differential geometry, tangent vectors are equivalence classes of maps of intervals in R into the

More information

PROJECTIVE BUNDLES OF SINGULAR PLANE CUBICS STEFAN KEBEKUS

PROJECTIVE BUNDLES OF SINGULAR PLANE CUBICS STEFAN KEBEKUS PROJECTIVE BUNDLES OF SINGULAR PLANE CUBICS STEFAN KEBEKUS ABSTRACT. Classification theory and the study of projective varieties which are covered by rational curves of minimal degrees naturally leads

More information

COMPLEX ALGEBRAIC SURFACES CLASS 9

COMPLEX ALGEBRAIC SURFACES CLASS 9 COMPLEX ALGEBRAIC SURFACES CLASS 9 RAVI VAKIL CONTENTS 1. Construction of Castelnuovo s contraction map 1 2. Ruled surfaces 3 (At the end of last lecture I discussed the Weak Factorization Theorem, Resolution

More information

Math 203A - Solution Set 3

Math 203A - Solution Set 3 Math 03A - Solution Set 3 Problem 1 Which of the following algebraic sets are isomorphic: (i) A 1 (ii) Z(xy) A (iii) Z(x + y ) A (iv) Z(x y 5 ) A (v) Z(y x, z x 3 ) A Answer: We claim that (i) and (v)

More information

MANIN-MUMFORD AND LATTÉS MAPS

MANIN-MUMFORD AND LATTÉS MAPS MANIN-MUMFORD AND LATTÉS MAPS JORGE PINEIRO Abstract. The present paper is an introduction to the dynamical Manin-Mumford conjecture and an application of a theorem of Ghioca and Tucker to obtain counterexamples

More information

Betti numbers of abelian covers

Betti numbers of abelian covers Betti numbers of abelian covers Alex Suciu Northeastern University Geometry and Topology Seminar University of Wisconsin May 6, 2011 Alex Suciu (Northeastern University) Betti numbers of abelian covers

More information

Formal power series rings, inverse limits, and I-adic completions of rings

Formal power series rings, inverse limits, and I-adic completions of rings Formal power series rings, inverse limits, and I-adic completions of rings Formal semigroup rings and formal power series rings We next want to explore the notion of a (formal) power series ring in finitely

More information

arxiv: v1 [math.ag] 14 Dec 2016

arxiv: v1 [math.ag] 14 Dec 2016 Some elementary remarks on lci algebraic cycles arxiv:1612.04570v1 [math.ag] 14 Dec 2016 M. Maggesi and G. Vezzosi Dipartimento di Matematica ed Informatica Università di Firenze - Italy Notes for students

More information

Math 797W Homework 4

Math 797W Homework 4 Math 797W Homework 4 Paul Hacking December 5, 2016 We work over an algebraically closed field k. (1) Let F be a sheaf of abelian groups on a topological space X, and p X a point. Recall the definition

More information

Exercises of the Algebraic Geometry course held by Prof. Ugo Bruzzo. Alex Massarenti

Exercises of the Algebraic Geometry course held by Prof. Ugo Bruzzo. Alex Massarenti Exercises of the Algebraic Geometry course held by Prof. Ugo Bruzzo Alex Massarenti SISSA, VIA BONOMEA 265, 34136 TRIESTE, ITALY E-mail address: alex.massarenti@sissa.it These notes collect a series of

More information

MORDELL EXCEPTIONAL LOCUS FOR SUBVARIETIES OF THE ADDITIVE GROUP

MORDELL EXCEPTIONAL LOCUS FOR SUBVARIETIES OF THE ADDITIVE GROUP MORDELL EXCEPTIONAL LOCUS FOR SUBVARIETIES OF THE ADDITIVE GROUP DRAGOS GHIOCA Abstract. We define the Mordell exceptional locus Z(V ) for affine varieties V G g a with respect to the action of a product

More information