Structured Sparsity. group testing & compressed sensing a norm that induces structured sparsity. Mittagsseminar 2011 / 11 / 10 Martin Jaggi

Size: px
Start display at page:

Download "Structured Sparsity. group testing & compressed sensing a norm that induces structured sparsity. Mittagsseminar 2011 / 11 / 10 Martin Jaggi"

Transcription

1 Structured Sparsity group testing & compressed sensing a norm that induces structured sparsity (ariv.org/abs/ Obozinski, G., Jacob, L., & Vert, J.-P., October 2011) Mittagssear 2011 / 11 / 10 Martin Jaggi

2 Sparse Solutions to underdetered Linear Systems b = A b 2 R m 2 R d m d kk 0 apple k

3 Group Testing b 2 R m 2 R d kk 0 apple k m d Dorfman, R. (1943). The Detection of Defective Members of Large Populations. Annals of Mathematical Statistics b A Kainkaryam et al. (2010). poolmc: Smart pooling of mrna samples in microarray eperiments. BMC Bioinformatics Coding theory interpretation: A is the parity check matri of a linear code

4 Group Testing b 2 R m 2 R d kk 0 apple k m d b A

5 Compressed sensing b 2 R m 2 R d kk 0 apple k m d b A Theorem m = O(k log d) is enough. k-sparse signals are recovered by taking the solution of smallest `1 -norm Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory (3400 citations) Candes, E. J., & Tao, T. (2005). Decoding by Linear Programg. IEEE Transactions on Information Theory (1200 citations) hard `0 ka bk 2 + kk 0 easy `1 ka bk 2 + kk 1 Santosa and Symes (1983)

6 b 2 Rm 2 Rd Phase transition kk0 k hard `0 ka m d easy `1 bk2 + kk0 bk2 + kk1 ka CHAPTER 3. PERFORMANCE ANALYSIS: EMPIRICAL PHASE DIAGRAMS32 Stepwise with FDR threshold, z~n(0,16), Normalized L2 error, p=200 combinatorial search relative error #non-zeros in 0.6 ρ=k/n k m `1 solves ` δ=n/p m d #rows of A = #measurements Figure 3.8: Empirical Phase diagram for Forward Stepwise-FDR Thresholding: each 2 color indicates a different median normalized!2 error of the coefficients β β over β Stodden, V.2 (2006). Model Selection When The Number Of Variables 10 realizations. A term is added to the model if it has the largest t-statistic of all Eceeds The Number Of Observations. PhD thesis. stanford.edu. candidate terms and its corresponding p-value is less than the FDR value, defined as (.25 (number of terms currently in the model)/(total number of variables)). The number of variables is fied at 200, and model noise z N(0, 16). This version of

7 Why does easy `1 ka bk 2 + kk 1 have sparse solutions? A = b kk 1 apple t

8 How to solve easy `1 ka bk 2 + kk 1 in practice? Linear Program kk 1 A b =0 f() Frank-Wolfe (Sparse Greedy) ka bk 2 kk 1 apple t D R n D =

9 Single Piel Camera b i ka bk 2 + kk 1 A i Duarte et al. Single-Piel Imaging via Compressive Sampling. IEEE Signal Processing Magazine

10 Computer Vision Background Subtraction kb k + kk 1 B B Candes, E. J. et al. (2011). Robust principal component analysis Journal of the ACM

11 A Structured Norm Obozinski, G., Jacob, L., & Vert, J.-P. (October 2011). Group Lasso with Overlaps: the Latent Group Lasso approach. ariv stat.ml. G is a collection of subsets g [d] [ g =[d] kk 1 := (v i ) v i i2[d] = i2[d] v i kk G := (v g ) kv g k g v g = supp(v i )={i} supp(v g ) g G = {{1}, {2}, {3}}

12 A Structured Norm Obozinski, G., Jacob, L., & Vert, J.-P. (October 2011). Group Lasso with Overlaps: the Latent Group Lasso approach. ariv stat.ml. G is a collection of subsets g [d] [ g =[d] kk 1 := (v i ) v i i2[d] = i2[d] v i kk G := (v g ) kv g k g v g = supp(v i )={i} supp(v g ) g G = {{1}, {2}, {3}} k.k G Lemma: the unit ball of is the conve hull of the union of disks D g = n v 2 R d supp(v g ) g, kv g k g apple1 o G = {{1, 2}, {2, 3}}

13 A Structured Norm kkg := g (v ) Obozinski, G., Jacob, L., & Vert, J.-P. (October 2011). Group Lasso with Overlaps: the Latent Group Lasso approach. ariv stat.ml. G = {{1}, {2}, {3}} G = {{1, 2}, {3}} = kv g kg vg G = {{1, 2}, {2, 3}} Lemma: the unit ball of k.kg is the conve hull of a union of disks G = {{1, 2}, {1, 3}, {2, 3}} Figure 2: Unit balls for k k`1 /`2 (left), proposed by Jenatton et al. (2009), and G[ (m proposed in this paper, for the groups G = {{1, 2}, {2, 3}}. w2 is represe the vertical coordinate. We note that singularities eist in both cases, bu at di erent positions: for k k`1 /`2 they correspond to situations where o or only w2 is nonzero, i.e., where all covariates of one group are shrunk t w G[, they correspond to situations where only w1 or only w3 2is equal to where all covariates of one group are nonzero. For comparison, we show right the unit ball of both norms for the partition G = {{1, 2}, {3}}, whe {1,2} both reduce to the classical group Lasso penalty.

14 Optimizing with the Structured Norm kk G := (v g ) kv g k g v g = f()+ kk G Lemma: the unit ball of k.k G is the conve hull of a union of disks Frank-Wolfe (Sparse Greedy) f() kk G apple t f() D R n

15 Relation to Set-Cover G is a collection of subsets g [d] [ g =[d] kk 1 := (v i ) v i i2[d] v i = i2[d] kk G := (v g ) kv g k g v g = supp(v i )={i} supp(v g ) g kk 0 := (v i ) 1 vi 6=0 i2[d] v i = i2[d] kk G set cover := (v g ) 1 v g 6=0 v g = supp(v i )={i} supp(v g ) g

16 Open Questions kk G := (v g ) kv g k g v g = More applications (related to set-cover?) Phase transition phenomenon when applied to the combinatorial set-cover? Is it the closest conve function to set-cover? G = {{1, 2}, {2, 3}}

Convex relaxation for Combinatorial Penalties

Convex relaxation for Combinatorial Penalties Convex relaxation for Combinatorial Penalties Guillaume Obozinski Equipe Imagine Laboratoire d Informatique Gaspard Monge Ecole des Ponts - ParisTech Joint work with Francis Bach Fête Parisienne in Computation,

More information

Robust Principal Component Analysis

Robust Principal Component Analysis ELE 538B: Mathematics of High-Dimensional Data Robust Principal Component Analysis Yuxin Chen Princeton University, Fall 2018 Disentangling sparse and low-rank matrices Suppose we are given a matrix M

More information

Equivalence of Minimal l 0 and l p Norm Solutions of Linear Equalities, Inequalities and Linear Programs for Sufficiently Small p

Equivalence of Minimal l 0 and l p Norm Solutions of Linear Equalities, Inequalities and Linear Programs for Sufficiently Small p Equivalence of Minimal l 0 and l p Norm Solutions of Linear Equalities, Inequalities and Linear Programs for Sufficiently Small p G. M. FUNG glenn.fung@siemens.com R&D Clinical Systems Siemens Medical

More information

Nikhil Rao, Miroslav Dudík, Zaid Harchaoui

Nikhil Rao, Miroslav Dudík, Zaid Harchaoui THE GROUP k-support NORM FOR LEARNING WITH STRUCTURED SPARSITY Nikhil Rao, Miroslav Dudík, Zaid Harchaoui Technicolor R&I, Microsoft Research, University of Washington ABSTRACT Several high-dimensional

More information

Sparse regression. Optimization-Based Data Analysis. Carlos Fernandez-Granda

Sparse regression. Optimization-Based Data Analysis.   Carlos Fernandez-Granda Sparse regression Optimization-Based Data Analysis http://www.cims.nyu.edu/~cfgranda/pages/obda_spring16 Carlos Fernandez-Granda 3/28/2016 Regression Least-squares regression Example: Global warming Logistic

More information

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit

New Coherence and RIP Analysis for Weak. Orthogonal Matching Pursuit New Coherence and RIP Analysis for Wea 1 Orthogonal Matching Pursuit Mingrui Yang, Member, IEEE, and Fran de Hoog arxiv:1405.3354v1 [cs.it] 14 May 2014 Abstract In this paper we define a new coherence

More information

Sparsity in Underdetermined Systems

Sparsity in Underdetermined Systems Sparsity in Underdetermined Systems Department of Statistics Stanford University August 19, 2005 Classical Linear Regression Problem X n y p n 1 > Given predictors and response, y Xβ ε = + ε N( 0, σ 2

More information

Color Scheme. swright/pcmi/ M. Figueiredo and S. Wright () Inference and Optimization PCMI, July / 14

Color Scheme.   swright/pcmi/ M. Figueiredo and S. Wright () Inference and Optimization PCMI, July / 14 Color Scheme www.cs.wisc.edu/ swright/pcmi/ M. Figueiredo and S. Wright () Inference and Optimization PCMI, July 2016 1 / 14 Statistical Inference via Optimization Many problems in statistical inference

More information

CSC 576: Variants of Sparse Learning

CSC 576: Variants of Sparse Learning CSC 576: Variants of Sparse Learning Ji Liu Department of Computer Science, University of Rochester October 27, 205 Introduction Our previous note basically suggests using l norm to enforce sparsity in

More information

Lecture 26: April 22nd

Lecture 26: April 22nd 10-725/36-725: Conve Optimization Spring 2015 Lecture 26: April 22nd Lecturer: Ryan Tibshirani Scribes: Eric Wong, Jerzy Wieczorek, Pengcheng Zhou Note: LaTeX template courtesy of UC Berkeley EECS dept.

More information

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing

Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing Near Ideal Behavior of a Modified Elastic Net Algorithm in Compressed Sensing M. Vidyasagar Cecil & Ida Green Chair The University of Texas at Dallas M.Vidyasagar@utdallas.edu www.utdallas.edu/ m.vidyasagar

More information

Linear Regression with Strongly Correlated Designs Using Ordered Weigthed l 1

Linear Regression with Strongly Correlated Designs Using Ordered Weigthed l 1 Linear Regression with Strongly Correlated Designs Using Ordered Weigthed l 1 ( OWL ) Regularization Mário A. T. Figueiredo Instituto de Telecomunicações and Instituto Superior Técnico, Universidade de

More information

Linear Methods for Regression. Lijun Zhang

Linear Methods for Regression. Lijun Zhang Linear Methods for Regression Lijun Zhang zlj@nju.edu.cn http://cs.nju.edu.cn/zlj Outline Introduction Linear Regression Models and Least Squares Subset Selection Shrinkage Methods Methods Using Derived

More information

INDUSTRIAL MATHEMATICS INSTITUTE. B.S. Kashin and V.N. Temlyakov. IMI Preprint Series. Department of Mathematics University of South Carolina

INDUSTRIAL MATHEMATICS INSTITUTE. B.S. Kashin and V.N. Temlyakov. IMI Preprint Series. Department of Mathematics University of South Carolina INDUSTRIAL MATHEMATICS INSTITUTE 2007:08 A remark on compressed sensing B.S. Kashin and V.N. Temlyakov IMI Preprint Series Department of Mathematics University of South Carolina A remark on compressed

More information

Sparse signals recovered by non-convex penalty in quasi-linear systems

Sparse signals recovered by non-convex penalty in quasi-linear systems Cui et al. Journal of Inequalities and Applications 018) 018:59 https://doi.org/10.1186/s13660-018-165-8 R E S E A R C H Open Access Sparse signals recovered by non-conve penalty in quasi-linear systems

More information

Tractable Upper Bounds on the Restricted Isometry Constant

Tractable Upper Bounds on the Restricted Isometry Constant Tractable Upper Bounds on the Restricted Isometry Constant Alex d Aspremont, Francis Bach, Laurent El Ghaoui Princeton University, École Normale Supérieure, U.C. Berkeley. Support from NSF, DHS and Google.

More information

ISyE 691 Data mining and analytics

ISyE 691 Data mining and analytics ISyE 691 Data mining and analytics Regression Instructor: Prof. Kaibo Liu Department of Industrial and Systems Engineering UW-Madison Email: kliu8@wisc.edu Office: Room 3017 (Mechanical Engineering Building)

More information

Greedy Signal Recovery and Uniform Uncertainty Principles

Greedy Signal Recovery and Uniform Uncertainty Principles Greedy Signal Recovery and Uniform Uncertainty Principles SPIE - IE 2008 Deanna Needell Joint work with Roman Vershynin UC Davis, January 2008 Greedy Signal Recovery and Uniform Uncertainty Principles

More information

Group Lasso with Overlaps: the Latent Group Lasso approach

Group Lasso with Overlaps: the Latent Group Lasso approach Group Lasso with Overlaps: the Latent Group Lasso approach Guillaume Obozinski, Laurent Jacob, Jean-Philippe Vert To cite this version: Guillaume Obozinski, Laurent Jacob, Jean-Philippe Vert. Group Lasso

More information

On State Estimation with Bad Data Detection

On State Estimation with Bad Data Detection On State Estimation with Bad Data Detection Weiyu Xu, Meng Wang, and Ao Tang School of ECE, Cornell University, Ithaca, NY 4853 Abstract We consider the problem of state estimation through observations

More information

Compressive Sensing with Random Matrices

Compressive Sensing with Random Matrices Compressive Sensing with Random Matrices Lucas Connell University of Georgia 9 November 017 Lucas Connell (University of Georgia) Compressive Sensing with Random Matrices 9 November 017 1 / 18 Overview

More information

Finding a sparse vector in a subspace: Linear sparsity using alternating directions

Finding a sparse vector in a subspace: Linear sparsity using alternating directions Finding a sparse vector in a subspace: Linear sparsity using alternating directions Qing Qu, Ju Sun, and John Wright {qq05, js4038, jw966}@columbia.edu Dept. of Electrical Engineering, Columbia University,

More information

Lecture 24 May 30, 2018

Lecture 24 May 30, 2018 Stats 3C: Theory of Statistics Spring 28 Lecture 24 May 3, 28 Prof. Emmanuel Candes Scribe: Martin J. Zhang, Jun Yan, Can Wang, and E. Candes Outline Agenda: High-dimensional Statistical Estimation. Lasso

More information

1-Bit Compressive Sensing

1-Bit Compressive Sensing 1-Bit Compressive Sensing Petros T. Boufounos, Richard G. Baraniuk Rice University, Electrical and Computer Engineering 61 Main St. MS 38, Houston, TX 775 Abstract Compressive sensing is a new signal acquisition

More information

Introduction to Sparsity. Xudong Cao, Jake Dreamtree & Jerry 04/05/2012

Introduction to Sparsity. Xudong Cao, Jake Dreamtree & Jerry 04/05/2012 Introduction to Sparsity Xudong Cao, Jake Dreamtree & Jerry 04/05/2012 Outline Understanding Sparsity Total variation Compressed sensing(definition) Exact recovery with sparse prior(l 0 ) l 1 relaxation

More information

Topographic Dictionary Learning with Structured Sparsity

Topographic Dictionary Learning with Structured Sparsity Topographic Dictionary Learning with Structured Sparsity Julien Mairal 1 Rodolphe Jenatton 2 Guillaume Obozinski 2 Francis Bach 2 1 UC Berkeley 2 INRIA - SIERRA Project-Team San Diego, Wavelets and Sparsity

More information

An Introduction to Sparse Approximation

An Introduction to Sparse Approximation An Introduction to Sparse Approximation Anna C. Gilbert Department of Mathematics University of Michigan Basic image/signal/data compression: transform coding Approximate signals sparsely Compress images,

More information

Recent Advances in Structured Sparse Models

Recent Advances in Structured Sparse Models Recent Advances in Structured Sparse Models Julien Mairal Willow group - INRIA - ENS - Paris 21 September 2010 LEAR seminar At Grenoble, September 21 st, 2010 Julien Mairal Recent Advances in Structured

More information

EE 381V: Large Scale Optimization Fall Lecture 24 April 11

EE 381V: Large Scale Optimization Fall Lecture 24 April 11 EE 381V: Large Scale Optimization Fall 2012 Lecture 24 April 11 Lecturer: Caramanis & Sanghavi Scribe: Tao Huang 24.1 Review In past classes, we studied the problem of sparsity. Sparsity problem is that

More information

Does Compressed Sensing have applications in Robust Statistics?

Does Compressed Sensing have applications in Robust Statistics? Does Compressed Sensing have applications in Robust Statistics? Salvador Flores December 1, 2014 Abstract The connections between robust linear regression and sparse reconstruction are brought to light.

More information

Reconstruction from Anisotropic Random Measurements

Reconstruction from Anisotropic Random Measurements Reconstruction from Anisotropic Random Measurements Mark Rudelson and Shuheng Zhou The University of Michigan, Ann Arbor Coding, Complexity, and Sparsity Workshop, 013 Ann Arbor, Michigan August 7, 013

More information

Supremum of simple stochastic processes

Supremum of simple stochastic processes Subspace embeddings Daniel Hsu COMS 4772 1 Supremum of simple stochastic processes 2 Recap: JL lemma JL lemma. For any ε (0, 1/2), point set S R d of cardinality 16 ln n S = n, and k N such that k, there

More information

Structured Sparse Estimation with Network Flow Optimization

Structured Sparse Estimation with Network Flow Optimization Structured Sparse Estimation with Network Flow Optimization Julien Mairal University of California, Berkeley Neyman seminar, Berkeley Julien Mairal Neyman seminar, UC Berkeley /48 Purpose of the talk introduce

More information

Stochastic geometry and random matrix theory in CS

Stochastic geometry and random matrix theory in CS Stochastic geometry and random matrix theory in CS IPAM: numerical methods for continuous optimization University of Edinburgh Joint with Bah, Blanchard, Cartis, and Donoho Encoder Decoder pair - Encoder/Decoder

More information

Generalized Conditional Gradient and Its Applications

Generalized Conditional Gradient and Its Applications Generalized Conditional Gradient and Its Applications Yaoliang Yu University of Alberta UBC Kelowna, 04/18/13 Y-L. Yu (UofA) GCG and Its Apps. UBC Kelowna, 04/18/13 1 / 25 1 Introduction 2 Generalized

More information

ABSTRACT. Recovering Data with Group Sparsity by Alternating Direction Methods. Wei Deng

ABSTRACT. Recovering Data with Group Sparsity by Alternating Direction Methods. Wei Deng ABSTRACT Recovering Data with Group Sparsity by Alternating Direction Methods by Wei Deng Group sparsity reveals underlying sparsity patterns and contains rich structural information in data. Hence, exploiting

More information

Probabilistic Graphical Models

Probabilistic Graphical Models School of Computer Science Probabilistic Graphical Models Gaussian graphical models and Ising models: modeling networks Eric Xing Lecture 0, February 5, 06 Reading: See class website Eric Xing @ CMU, 005-06

More information

Constructing Explicit RIP Matrices and the Square-Root Bottleneck

Constructing Explicit RIP Matrices and the Square-Root Bottleneck Constructing Explicit RIP Matrices and the Square-Root Bottleneck Ryan Cinoman July 18, 2018 Ryan Cinoman Constructing Explicit RIP Matrices July 18, 2018 1 / 36 Outline 1 Introduction 2 Restricted Isometry

More information

sublinear time low-rank approximation of positive semidefinite matrices Cameron Musco (MIT) and David P. Woodru (CMU)

sublinear time low-rank approximation of positive semidefinite matrices Cameron Musco (MIT) and David P. Woodru (CMU) sublinear time low-rank approximation of positive semidefinite matrices Cameron Musco (MIT) and David P. Woodru (CMU) 0 overview Our Contributions: 1 overview Our Contributions: A near optimal low-rank

More information

Tutorial: Sparse Signal Recovery

Tutorial: Sparse Signal Recovery Tutorial: Sparse Signal Recovery Anna C. Gilbert Department of Mathematics University of Michigan (Sparse) Signal recovery problem signal or population length N k important Φ x = y measurements or tests:

More information

Z Algorithmic Superpower Randomization October 15th, Lecture 12

Z Algorithmic Superpower Randomization October 15th, Lecture 12 15.859-Z Algorithmic Superpower Randomization October 15th, 014 Lecture 1 Lecturer: Bernhard Haeupler Scribe: Goran Žužić Today s lecture is about finding sparse solutions to linear systems. The problem

More information

Noise Removal? The Evolution Of Pr(x) Denoising By Energy Minimization. ( x) An Introduction to Sparse Representation and the K-SVD Algorithm

Noise Removal? The Evolution Of Pr(x) Denoising By Energy Minimization. ( x) An Introduction to Sparse Representation and the K-SVD Algorithm Sparse Representation and the K-SV Algorithm he CS epartment he echnion Israel Institute of technology Haifa 3, Israel University of Erlangen - Nürnberg April 8 Noise Removal? Our story begins with image

More information

Latent Variable Graphical Model Selection Via Convex Optimization

Latent Variable Graphical Model Selection Via Convex Optimization Latent Variable Graphical Model Selection Via Convex Optimization The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

Combining geometry and combinatorics

Combining geometry and combinatorics Combining geometry and combinatorics A unified approach to sparse signal recovery Anna C. Gilbert University of Michigan joint work with R. Berinde (MIT), P. Indyk (MIT), H. Karloff (AT&T), M. Strauss

More information

Bayesian Methods for Sparse Signal Recovery

Bayesian Methods for Sparse Signal Recovery Bayesian Methods for Sparse Signal Recovery Bhaskar D Rao 1 University of California, San Diego 1 Thanks to David Wipf, Jason Palmer, Zhilin Zhang and Ritwik Giri Motivation Motivation Sparse Signal Recovery

More information

Adaptive Compressive Imaging Using Sparse Hierarchical Learned Dictionaries

Adaptive Compressive Imaging Using Sparse Hierarchical Learned Dictionaries Adaptive Compressive Imaging Using Sparse Hierarchical Learned Dictionaries Jarvis Haupt University of Minnesota Department of Electrical and Computer Engineering Supported by Motivation New Agile Sensing

More information

A New Estimate of Restricted Isometry Constants for Sparse Solutions

A New Estimate of Restricted Isometry Constants for Sparse Solutions A New Estimate of Restricted Isometry Constants for Sparse Solutions Ming-Jun Lai and Louis Y. Liu January 12, 211 Abstract We show that as long as the restricted isometry constant δ 2k < 1/2, there exist

More information

Stability and Robustness of Weak Orthogonal Matching Pursuits

Stability and Robustness of Weak Orthogonal Matching Pursuits Stability and Robustness of Weak Orthogonal Matching Pursuits Simon Foucart, Drexel University Abstract A recent result establishing, under restricted isometry conditions, the success of sparse recovery

More information

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT

MLCC 2018 Variable Selection and Sparsity. Lorenzo Rosasco UNIGE-MIT-IIT MLCC 2018 Variable Selection and Sparsity Lorenzo Rosasco UNIGE-MIT-IIT Outline Variable Selection Subset Selection Greedy Methods: (Orthogonal) Matching Pursuit Convex Relaxation: LASSO & Elastic Net

More information

Subset selection with sparse matrices

Subset selection with sparse matrices Subset selection with sparse matrices Alberto Del Pia, University of Wisconsin-Madison Santanu S. Dey, Georgia Tech Robert Weismantel, ETH Zürich February 1, 018 Schloss Dagstuhl Subset selection for regression

More information

Compressed Sensing and Related Learning Problems

Compressed Sensing and Related Learning Problems Compressed Sensing and Related Learning Problems Yingzhen Li Dept. of Mathematics, Sun Yat-sen University Advisor: Prof. Haizhang Zhang Advisor: Prof. Haizhang Zhang 1 / Overview Overview Background Compressed

More information

Group lasso for genomic data

Group lasso for genomic data Group lasso for genomic data Jean-Philippe Vert Mines ParisTech / Curie Institute / Inserm Machine learning: Theory and Computation workshop, IMA, Minneapolis, March 26-3, 22 J.P Vert (ParisTech) Group

More information

Bhaskar Rao Department of Electrical and Computer Engineering University of California, San Diego

Bhaskar Rao Department of Electrical and Computer Engineering University of California, San Diego Bhaskar Rao Department of Electrical and Computer Engineering University of California, San Diego 1 Outline Course Outline Motivation for Course Sparse Signal Recovery Problem Applications Computational

More information

ACCORDING to Shannon s sampling theorem, an analog

ACCORDING to Shannon s sampling theorem, an analog 554 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 59, NO 2, FEBRUARY 2011 Segmented Compressed Sampling for Analog-to-Information Conversion: Method and Performance Analysis Omid Taheri, Student Member,

More information

Conditions for a Unique Non-negative Solution to an Underdetermined System

Conditions for a Unique Non-negative Solution to an Underdetermined System Conditions for a Unique Non-negative Solution to an Underdetermined System Meng Wang and Ao Tang School of Electrical and Computer Engineering Cornell University Ithaca, NY 14853 Abstract This paper investigates

More information

Signal Recovery from Permuted Observations

Signal Recovery from Permuted Observations EE381V Course Project Signal Recovery from Permuted Observations 1 Problem Shanshan Wu (sw33323) May 8th, 2015 We start with the following problem: let s R n be an unknown n-dimensional real-valued signal,

More information

Sparse Estimation and Dictionary Learning

Sparse Estimation and Dictionary Learning Sparse Estimation and Dictionary Learning (for Biostatistics?) Julien Mairal Biostatistics Seminar, UC Berkeley Julien Mairal Sparse Estimation and Dictionary Learning Methods 1/69 What this talk is about?

More information

Compressed Sensing and Sparse Recovery

Compressed Sensing and Sparse Recovery ELE 538B: Sparsity, Structure and Inference Compressed Sensing and Sparse Recovery Yuxin Chen Princeton University, Spring 217 Outline Restricted isometry property (RIP) A RIPless theory Compressed sensing

More information

Phase Transition Phenomenon in Sparse Approximation

Phase Transition Phenomenon in Sparse Approximation Phase Transition Phenomenon in Sparse Approximation University of Utah/Edinburgh L1 Approximation: May 17 st 2008 Convex polytopes Counting faces Sparse Representations via l 1 Regularization Underdetermined

More information

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery

Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Sparse analysis Lecture VII: Combining geometry and combinatorics, sparse matrices for sparse signal recovery Anna C. Gilbert Department of Mathematics University of Michigan Sparse signal recovery measurements:

More information

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28

Sparsity Models. Tong Zhang. Rutgers University. T. Zhang (Rutgers) Sparsity Models 1 / 28 Sparsity Models Tong Zhang Rutgers University T. Zhang (Rutgers) Sparsity Models 1 / 28 Topics Standard sparse regression model algorithms: convex relaxation and greedy algorithm sparse recovery analysis:

More information

Block-sparse Solutions using Kernel Block RIP and its Application to Group Lasso

Block-sparse Solutions using Kernel Block RIP and its Application to Group Lasso Block-sparse Solutions using Kernel Block RIP and its Application to Group Lasso Rahul Garg IBM T.J. Watson research center grahul@us.ibm.com Rohit Khandekar IBM T.J. Watson research center rohitk@us.ibm.com

More information

Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise

Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise Orthogonal Matching Pursuit for Sparse Signal Recovery With Noise The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published

More information

High-dimensional Statistics

High-dimensional Statistics High-dimensional Statistics Pradeep Ravikumar UT Austin Outline 1. High Dimensional Data : Large p, small n 2. Sparsity 3. Group Sparsity 4. Low Rank 1 Curse of Dimensionality Statistical Learning: Given

More information

Optimisation Combinatoire et Convexe.

Optimisation Combinatoire et Convexe. Optimisation Combinatoire et Convexe. Low complexity models, l 1 penalties. A. d Aspremont. M1 ENS. 1/36 Today Sparsity, low complexity models. l 1 -recovery results: three approaches. Extensions: matrix

More information

Sketching Sparse Covariance Matrices and Graphs

Sketching Sparse Covariance Matrices and Graphs Sketching Sparse Covariance Matrices and Graphs Gautam Dasarathy 1, Pariskhit Shah 2, Badri Narayan Bhaskar 1, and Robert Nowak 1 1 Department of Electrical and Computer Engineering, University of Wisconsin

More information

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference

ECE G: Special Topics in Signal Processing: Sparsity, Structure, and Inference ECE 18-898G: Special Topics in Signal Processing: Sparsity, Structure, and Inference Low-rank matrix recovery via convex relaxations Yuejie Chi Department of Electrical and Computer Engineering Spring

More information

Simultaneous Support Recovery in High Dimensions: Benefits and Perils of Block `1=` -Regularization

Simultaneous Support Recovery in High Dimensions: Benefits and Perils of Block `1=` -Regularization IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 6, JUNE 2011 3841 Simultaneous Support Recovery in High Dimensions: Benefits and Perils of Block `1=` -Regularization Sahand N. Negahban and Martin

More information

Randomness-in-Structured Ensembles for Compressed Sensing of Images

Randomness-in-Structured Ensembles for Compressed Sensing of Images Randomness-in-Structured Ensembles for Compressed Sensing of Images Abdolreza Abdolhosseini Moghadam Dep. of Electrical and Computer Engineering Michigan State University Email: abdolhos@msu.edu Hayder

More information

Near Optimal Signal Recovery from Random Projections

Near Optimal Signal Recovery from Random Projections 1 Near Optimal Signal Recovery from Random Projections Emmanuel Candès, California Institute of Technology Multiscale Geometric Analysis in High Dimensions: Workshop # 2 IPAM, UCLA, October 2004 Collaborators:

More information

Compressive Phase Retrieval From Squared Output Measurements Via Semidefinite Programming

Compressive Phase Retrieval From Squared Output Measurements Via Semidefinite Programming Compressive Phase Retrieval From Squared Output Measurements Via Semidefinite Programming Henrik Ohlsson, Allen Y. Yang Roy Dong S. Shankar Sastry Department of Electrical Engineering and Computer Sciences,

More information

6508 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016

6508 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016 6508 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 62, NO. 11, NOVEMBER 2016 Group-Sparse Model Selection: Hardness and Relaxations Luca Baldassarre, Nirav Bhan, Volkan Cevher, Senior Member, IEEE, Anastasios

More information

An algebraic perspective on integer sparse recovery

An algebraic perspective on integer sparse recovery An algebraic perspective on integer sparse recovery Lenny Fukshansky Claremont McKenna College (joint work with Deanna Needell and Benny Sudakov) Combinatorics Seminar USC October 31, 2018 From Wikipedia:

More information

6. Regularized linear regression

6. Regularized linear regression Foundations of Machine Learning École Centrale Paris Fall 2015 6. Regularized linear regression Chloé-Agathe Azencot Centre for Computational Biology, Mines ParisTech chloe agathe.azencott@mines paristech.fr

More information

Efficient Adaptive Compressive Sensing Using Sparse Hierarchical Learned Dictionaries

Efficient Adaptive Compressive Sensing Using Sparse Hierarchical Learned Dictionaries 1 Efficient Adaptive Compressive Sensing Using Sparse Hierarchical Learned Dictionaries Akshay Soni and Jarvis Haupt University of Minnesota, Twin Cities Department of Electrical and Computer Engineering

More information

SPARSE signal representations have gained popularity in recent

SPARSE signal representations have gained popularity in recent 6958 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 57, NO. 10, OCTOBER 2011 Blind Compressed Sensing Sivan Gleichman and Yonina C. Eldar, Senior Member, IEEE Abstract The fundamental principle underlying

More information

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery

Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Journal of Information & Computational Science 11:9 (214) 2933 2939 June 1, 214 Available at http://www.joics.com Pre-weighted Matching Pursuit Algorithms for Sparse Recovery Jingfei He, Guiling Sun, Jie

More information

Guaranteed Sparse Recovery under Linear Transformation

Guaranteed Sparse Recovery under Linear Transformation Ji Liu JI-LIU@CS.WISC.EDU Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA Lei Yuan LEI.YUAN@ASU.EDU Jieping Ye JIEPING.YE@ASU.EDU Department of Computer Science

More information

Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit

Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit Signal Recovery From Incomplete and Inaccurate Measurements via Regularized Orthogonal Matching Pursuit Deanna Needell and Roman Vershynin Abstract We demonstrate a simple greedy algorithm that can reliably

More information

Approximate Message Passing with Built-in Parameter Estimation for Sparse Signal Recovery

Approximate Message Passing with Built-in Parameter Estimation for Sparse Signal Recovery Approimate Message Passing with Built-in Parameter Estimation for Sparse Signal Recovery arxiv:1606.00901v1 [cs.it] Jun 016 Shuai Huang, Trac D. Tran Department of Electrical and Computer Engineering Johns

More information

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit

Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit Uniform Uncertainty Principle and signal recovery via Regularized Orthogonal Matching Pursuit arxiv:0707.4203v2 [math.na] 14 Aug 2007 Deanna Needell Department of Mathematics University of California,

More information

Structured matrix factorizations. Example: Eigenfaces

Structured matrix factorizations. Example: Eigenfaces Structured matrix factorizations Example: Eigenfaces An extremely large variety of interesting and important problems in machine learning can be formulated as: Given a matrix, find a matrix and a matrix

More information

MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing

MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing MAT 585: Johnson-Lindenstrauss, Group testing, and Compressed Sensing Afonso S. Bandeira April 9, 2015 1 The Johnson-Lindenstrauss Lemma Suppose one has n points, X = {x 1,..., x n }, in R d with d very

More information

Covariance Sketching

Covariance Sketching Covariance Sketching Gautam Dasarathy, Parikshit Shah, Badri Narayan Bhaskar, Robert Nowak University of Wisconsin - Madison Abstract Learning covariance matrices from highdimensional data is an important

More information

High-dimensional Statistical Models

High-dimensional Statistical Models High-dimensional Statistical Models Pradeep Ravikumar UT Austin MLSS 2014 1 Curse of Dimensionality Statistical Learning: Given n observations from p(x; θ ), where θ R p, recover signal/parameter θ. For

More information

ORIE 4741: Learning with Big Messy Data. Regularization

ORIE 4741: Learning with Big Messy Data. Regularization ORIE 4741: Learning with Big Messy Data Regularization Professor Udell Operations Research and Information Engineering Cornell October 26, 2017 1 / 24 Regularized empirical risk minimization choose model

More information

17 Random Projections and Orthogonal Matching Pursuit

17 Random Projections and Orthogonal Matching Pursuit 17 Random Projections and Orthogonal Matching Pursuit Again we will consider high-dimensional data P. Now we will consider the uses and effects of randomness. We will use it to simplify P (put it in a

More information

1 Regression with High Dimensional Data

1 Regression with High Dimensional Data 6.883 Learning with Combinatorial Structure ote for Lecture 11 Instructor: Prof. Stefanie Jegelka Scribe: Xuhong Zhang 1 Regression with High Dimensional Data Consider the following regression problem:

More information

Sparse Linear Models (10/7/13)

Sparse Linear Models (10/7/13) STA56: Probabilistic machine learning Sparse Linear Models (0/7/) Lecturer: Barbara Engelhardt Scribes: Jiaji Huang, Xin Jiang, Albert Oh Sparsity Sparsity has been a hot topic in statistics and machine

More information

On Optimal Frame Conditioners

On Optimal Frame Conditioners On Optimal Frame Conditioners Chae A. Clark Department of Mathematics University of Maryland, College Park Email: cclark18@math.umd.edu Kasso A. Okoudjou Department of Mathematics University of Maryland,

More information

Part III Advanced Coding Techniques

Part III Advanced Coding Techniques Part III Advanced Coding Techniques José Vieira SPL Signal Processing Laboratory Departamento de Electrónica, Telecomunicações e Informática / IEETA Universidade de Aveiro, Portugal 2010 José Vieira (IEETA,

More information

Composite Loss Functions and Multivariate Regression; Sparse PCA

Composite Loss Functions and Multivariate Regression; Sparse PCA Composite Loss Functions and Multivariate Regression; Sparse PCA G. Obozinski, B. Taskar, and M. I. Jordan (2009). Joint covariate selection and joint subspace selection for multiple classification problems.

More information

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery

Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Compressibility of Infinite Sequences and its Interplay with Compressed Sensing Recovery Jorge F. Silva and Eduardo Pavez Department of Electrical Engineering Information and Decision Systems Group Universidad

More information

INFORMATION in many natural and man-made signals can be exactly represented or well approximated

INFORMATION in many natural and man-made signals can be exactly represented or well approximated Group-Sparse Model Selection: Hardness and Relaxations 1 Luca Baldassarre, Nirav Bhan, Volkan Cevher, Anastasios Kyrillidis and Siddhartha Satpathi Abstract arxiv:1303.3207v4 [cs.lg] 4 Mar 2015 Group-based

More information

Sparse representation classification and positive L1 minimization

Sparse representation classification and positive L1 minimization Sparse representation classification and positive L1 minimization Cencheng Shen Joint Work with Li Chen, Carey E. Priebe Applied Mathematics and Statistics Johns Hopkins University, August 5, 2014 Cencheng

More information

Multipath Matching Pursuit

Multipath Matching Pursuit Multipath Matching Pursuit Submitted to IEEE trans. on Information theory Authors: S. Kwon, J. Wang, and B. Shim Presenter: Hwanchol Jang Multipath is investigated rather than a single path for a greedy

More information

On the Lagrangian Biduality of Sparsity Minimization Problems

On the Lagrangian Biduality of Sparsity Minimization Problems On the Lagrangian Biduality of Sparsity Minimization Problems Dheeraj Singaraju Roberto Tron Ehsan Elhamifar Allen Yang S. Shankar Sastry Electrical Engineering and Computer Sciences University of California

More information

Robustly Stable Signal Recovery in Compressed Sensing with Structured Matrix Perturbation

Robustly Stable Signal Recovery in Compressed Sensing with Structured Matrix Perturbation Robustly Stable Signal Recovery in Compressed Sensing with Structured Matri Perturbation Zai Yang, Cishen Zhang, and Lihua Xie, Fellow, IEEE arxiv:.7v [cs.it] 4 Mar Abstract The sparse signal recovery

More information

of Orthogonal Matching Pursuit

of Orthogonal Matching Pursuit A Sharp Restricted Isometry Constant Bound of Orthogonal Matching Pursuit Qun Mo arxiv:50.0708v [cs.it] 8 Jan 205 Abstract We shall show that if the restricted isometry constant (RIC) δ s+ (A) of the measurement

More information