DFTT 61/98 hep-ph/ October 6, 1998 Is bi-maximal mixing compatible with the large angle MSW solution of the solar neutrino problem? C. Giunti I

Size: px
Start display at page:

Download "DFTT 61/98 hep-ph/ October 6, 1998 Is bi-maximal mixing compatible with the large angle MSW solution of the solar neutrino problem? C. Giunti I"

Transcription

1 DFTT 6/98 hep-ph/9807 October 6, 998 Is bi-maximal mixing compatible with the large angle MSW solution of the solar neutrino problem? C. Giunti INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Universita di Torino, Via P. Giuria, I{05 Torino, Italy Abstract It is shown that the large angle MSW solution of the solar neutrino problem with a bi-maximal neutrino mixing matrix implies an energy-independent suppression of the solar e ux. The present solar neutrino data exclude this solution of the solar neutrino problem at 99.6% CL.

2 The possibility that the neutrino mixing matrix U has the bi-maximal mixing form U = 0 p B@ p 0 p CA () p has attracted a large attention [] after the presentation at the Neutrino '98 conference of the Super-Kamiokande evidence in favor of atmospheric neutrino oscillations with large mixing []. Neutrino bi-maximal mixing is capable of explaining in a elegant way the atmospheric neutrino anomaly [, 3, 4, 5], through! oscillations due to m ev and the solar neutrino problem (SNP) [6, 7, 8, 9, 0] through e! ; oscillations in vacuum due to m 0 0 ev []. As noted in [], the results of the recent analysis of solar neutrino data presented in [3] seem to imply that neutrino bi-maximal mixing may be also compatible at 99% CL with the large mixing angle (LMA) MSW [4] solution of the SNP [5] (see Fig. of [3]). Here I would like to notice that this conclusion seems to be in contradiction with the exclusion at 99.8% CL of an energy-independent suppression of the solar e ux presented in the same paper [3] (see section IV.D). The reason of this incompatibility is that bi-maximal mixing with the m ev corresponding to the LMA solution of the SNP implies an energy-independent suppression by a factor / of the solar e ux. This can be seen following the simple reasoning presented in [6]. The mixing of the neutrino states in vacuum is given X by (see, for example, [7]) j i = U k j k i ( = e; ; ) ; () k=;;3 where the states j i ( = e; ; ) describe neutrinos produced in weak interaction processes and the states j k i (k =;;3) describe neutrinos with denite masses m k. In the bi-maximal mixing scenario the numbering of the massive neutrinos is the usual one, i.e. such that m m m 3, and m ev for the solution of the atmospheric neutrino anomaly. If m ev for the LMA solution of the SNP, we have m 3 ' m ev. Solar neutrinos have energy E MeV and the ratio m 3 =E ' m 3 =E 0 9 ev is much larger than the matter induced potential V. 0 ev in the interior of the sun. Hence, the evolution equation of the heaviest massive neutrino 3 is decoupled from that of the two light neutrinos and (see, for example, [8]). Taking also in account that in the case of bi-maximal mixing U e3 = 0, one can see that an electron neutrino m m m is the dierence between the squared masses of the two massive neutrinos kj k j k and j. In the bi-maximal mixing scenario there are three massive neutrinos,, and 3. I want toemphasize from the beginning that I do not want to criticize at all the beautiful paper [3]. I am only concerned with the interpretation of its results.

3 is created in the core of the sun as a superposition of the two light mass eigenstates and and, whatever happens during his propagation in the interior of the sun, its state when it emerges from the surface of the sun X is a linear combination of j i and j i: ji S = a k j k i ; (3) with k=; ja j + ja j =: (4) Since the massive neutrino states j k i propagate as plane waves, the state describing the neutrino detected on the Earth is X ji E = a k e ie kl j k i ; (5) k=; where L is the distance from the surface of the Sun to the detector on the Earth. The survival probability of solar electron neutrinos is then given by P sun e!e = jh eji E j : P e!e = X a k e ie kl h e j k i = X a k e iekl U k=; k=; ek : (6) Taking now into account the explicit values p U e == and U e = p = in the case of bi-maximal mixing and the fact that the neutrinos are extremely relativistic, we have P e!e = a a exp i m L E : (7) In the case of the LMA solution of the SNP m ev and the survival probability (7) oscillates with an oscillation length 4E=m 0 7 cm that is about one million times smaller than the Sun{Earth distance. Hence, the oscillations are not observable on the Earth because of averaging over the energy spectrum and only the average probability hp e!ei = (ja j + ja j )= (8) is observable. We have obtained the announced result: the LMA solution of the SNP in the bi-maximal mixing scenario implies an energy-independent suppression of the solar e ux of a factor =. Therefore, we have the apparent paradox that an energy-independent suppression of the solar e ux seems to be allowed at 99% CL by Fig. of Ref. [3] and is excluded at 99.8% CL in Section IV.D of the same paper. Notice that the two conclusions are based on the same set of data and the same theoretical calculation of the neutrino ux produced by thermonuclear reactions in the core of the sun [9]. The fact that the two cases refer to the same physical situation, i.e. an energyindependent suppression of the solar e ux, is also shown by the calculated in the 3

4 two cases. The of the right border of the LMA region 3 in Fig. of Ref. [3] is 4:3 +9: = 3:5, whereas the calculated in Section IV.D of the same paper for an energy-independent suppression of the solar e ux by a factor 0:48 is.0. Since this is the best t for an energy-independent suppression of the solar e ux, a value of =3:5 for a suppression factor 0:5 looks plausible. The solution of the apparent paradox explained above lies in a correct statistical interpretation of the allowed LMA region in Fig. of Ref. [3] and of the exclusion in Section IV.D of the same paper. The two cases have dierent statistical meanings. The allowed regions in Fig. of Ref. [3] are obtained under the assumption that the neutrino masses and mixing parameters are not known. In this case a general neutrino oscillation formula is used in the t, with the neutrino masses and mixing angles considered as free parameters. The best t in the LMA region happens to have a min = 4:3, which corresponds to a CL of 3.8% with DOF. Hence, a LMA solution is allowed at 3.8% CL and one can draw a 99% CL region corresponding to the parameters that have min +9:. The statistical analysis discussed in Section IV.D of Ref. [3] assumes that the solar e ux is suppressed by a constant factor that is the free parameter to be determined by the t. It happens that the best t has min =:0, which corresponds to a CL of 0.% with DOF. Hence, the hypothesis is excluded at 99.8% CL and no allowed region of the free parameter can be drawn. Since the two statistical analyses start from dierent assumptions, it is clear that they answer dierent questions and their conclusions cannot be compared. Moreover, it is important to notice that the test of the maximal mixing scenario with m ev does not correspond to either of the two statistical analyses. Indeed, if this scenario is assumed, we know that the solar e ux is suppressed by an energyindependent factor 0.5 and there is no parameter to t. Hence we test the hypothesis under consideration on the basis of its. The ' 3:5 indicated by Fig. of Ref. [3] implies a CL of 0.4% with 3 DOF. Therefore, the hypothesis is rejected at 99.6% CL. Notice that this exclusion is based only on the values of the elements U e, U e and U e3 of the neutrino mixing matrix. This means that also other types of neutrino mixing matrix, as those discussed in [0], are incompatible with the LMA solution of the SNP. In conclusion, I would like to emphasize that the allowed regions of the neutrino oscillation parameters calculated in the usual way (i.e. as Fig. of Ref. [3]) cannot be used to test a denite model (as the bi-maximal mixing model) because they have been obtained under dierent assumptions 4. In order to obtain allowed regions appropriate for model testing one must use the procedure described in [, ], i.e. one must consider each point of the parameter space as a model and perform a goodness of t testing with it. I think that it would be very useful if both types of allowed regions will be presented in future papers. 3 If U e3 =0,wehave sin =4jU ej ju ej (see []) and sin = corresponds to ju ej = ju ej = = p, as in the bi-maximal mixing matrix (). 4 They are useful if one wants to know the allowed range of the mixing parameters for other purposes. 4

5 Acknowledgement I would like to thank Z.Z. Xing for bringing my attention to the problem under discussion. References [] V. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant, hep-ph/ ; A.J. Baltz, A.S. Goldhaber and M. Goldhaber, hep-ph/ ; Y. Nomura and T. Yanagida, hep-ph/980735; G. Altarelli and F. Feruglio, hep-ph/ ; E. Ma, hepph/ ; N. Haba, hep-ph/980755; H. Fritzsch and Z.Z. Xing, hep-ph/98087; H. Georgi and S.L. Glashow, hep-ph/980893; S. Davidson and S.F. King, hepph/980896; R.N. Mohapatra and S. Nussinov, hep-ph/980830; hep-ph/980945; G. Altarelli and F. Feruglio, hep-ph/ [] T. Kajita, Talk presented at Neutrino '98 [3]; Y. Fukuda et al., Super-Kamiokande Coll., Phys. Rev. Lett. 8, 56 (998). [3] Y. Fukuda et al., Kamiokande Coll., Phys. Lett. B 335, 37 (994). [4] R. Becker-Szendy et al., IMB Coll., Nucl. Phys. B (Proc. Suppl.) 38, 33 (995). [5] W.W.M. Allison et al., Soudan Coll., Phys. Lett. B 39, 49 (997). [6] B.T. Cleveland et al., Ap. J. 496, 505 (998). [7] K.S. Hirata et al., Kamiokande Coll., Phys. Rev. Lett. 77, 683 (996). [8] W. Hampel et al., GALLEX Coll., Phys. Lett. B 388, 384 (996). [9] J.N. Abdurashitov et al., SAGE Coll., Phys. Rev. Lett. 77, 4708 (996). [0] Y. Suzuki, Talk presented at Neutrino '98 [3], 998. [] S.M. Bilenky and C. Giunti, preprint hep-ph/9800 (998). [] R.N. Mohapatra and S. Nussinov, hep-ph/ [3] J.N. Bahcall, P.I. Krastev and A.Yu. Smirnov, preprint hep-ph/98076 (998). [4] S.P. Mikheyev and A.Yu. Smirnov, Yad. Fiz. 4, 44 (985) [Sov. J. Nucl. Phys. 4, 93 (985)]; Il Nuovo Cimento C 9, 7 (986); L. Wolfenstein, Phys. Rev. D 7, 369 (978); ibid. 0, 634 (979). [5] See, for example: J.N. Bahcall, Talk presented at Neutrino '98 [3] (hepph/98086); A.Yu. Smirnov, Talk presented at Neutrino '98 [3] (hep-ph/980948). [6] S.M. Bilenky, C. Giunti and C.W. Kim, Phys. Lett. B 380, 33 (996). 5

6 [7] S.M. Bilenky and B. Pontecorvo, Phys. Rep. 4, 5 (978); S.M. Bilenky and S.T. Petcov Rev. Mod. Phys. 59, 67 (987); R.N. Mohapatra and P.B. Pal, Massive Neutrinos in Physics and Astrophysics, World Scientic Lecture Notes in Physics, Vol.4, World Scientic, Singapore, 99; C.W. Kim and A. Pevsner, Neutrinos in Physics and Astrophysics, Contemporary Concepts in Physics, Vol.8, Harwood Academic Press, Chur, Switzerland, 993. [8] T.K. Kuo and J. Pantaleone, Rev. Mod. Phys. 6, 937 (989). [9] J.N. Bahcall, S. Basu and M.H. Pinsonneault, Phys. Lett. B 433, (998). [0] H. Fritzsch and Z.Z. Xing, Phys. Lett. B 37, 65 (996); hep-ph/980734; K.S. Kang and S.K. Kang, Phys. Rev. D 56, 5 (997); M. Tanimoto, preprint hepph/ [] E. Gates, L.M. Krauss and M. White, Phys. Rev. D 5, 63 (995). [] S.M. Bilenky and C. Giunti, preprint hep-ph/ ; Nucl. Phys. B (Proc. Suppl.) 43, 7 (995). [3] Neutrino '98 WWW page: 6

hep-ph/ Oct 1994

hep-ph/ Oct 1994 A Model Independent Analysis of Solar Neutrino Data DFTT 32/94 S.M. Bilenky Joint Institute of Nuclear Research, Dubna, Russia INFN Torino, Via P. Giuria 1, 10125 Torino, Italy Dipartimento di Fisica Teorica,

More information

Solar neutrino oscillations in the quasi-vacuum regime

Solar neutrino oscillations in the quasi-vacuum regime 1 Solar neutrino oscillations in the quasi-vacuum regime Daniele Montanino a a Dipartimento di Scienza dei Materiali dell Università di Lecce, Via Arnesano, I-73100 Lecce, Italy Motivated by recent experimental

More information

Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance

Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance Journal of Physics: Conference Series 335 (011) 01054 doi:10.1088/174-6596/335/1/01054 Hint of CPT Violation in Short-Baseline Electron Neutrino Disappearance Carlo Giunti INFN, Sezione di Torino, and

More information

arxiv:hep-ph/ v1 24 Feb 1996

arxiv:hep-ph/ v1 24 Feb 1996 TMUP-HEL-9604 February 1996 arxiv:hep-ph/9602386v1 24 Feb 1996 THREE FLAVOR NEUTRINO OSCILLATION CONSTRAINTS FROM ACCELERATOR, REACTOR, ATMOSPHERIC AND SOLAR NEUTRINO EXPERIMENTS Osamu Yasuda 1 and Hisakazu

More information

arxiv:hep-ph/ v2 8 Feb 2000

arxiv:hep-ph/ v2 8 Feb 2000 Neutrino Tests of General and Special Relativity C. N. Leung 1 arxiv:hep-ph/0002073v2 8 Feb 2000 Department of Physics and Astronomy, University of Delaware Newark, DE 19716, U.S.A. Abstract We review

More information

arxiv:hep-ph/ v1 21 Sep 1998

arxiv:hep-ph/ v1 21 Sep 1998 Four-Neutrino ixing, Oscillations and Big-Bang Nucleosynthesis arxiv:hep-ph/9809466v1 21 Sep 1998 Abstract S.. Bilenky Joint Institute for Nuclear Research, Dubna, Russia, and Institut für Theoretische

More information

arxiv:hep-ph/ v1 19 Jun 2004

arxiv:hep-ph/ v1 19 Jun 2004 Democratic Neutrino Mixing Reexamined Harald Fritzsch Sektion Physik, Universität München, Theresienstrasse 7A, 80 Munich, Germany arxiv:hep-ph/0400 v1 19 Jun 004 Zhi-zhong Xing Institute of High Energy

More information

Distinguishing magnetic moment from oscillation solutions of the solar neutrino problem with Borexino

Distinguishing magnetic moment from oscillation solutions of the solar neutrino problem with Borexino FISIST/01-2002/CFIF hep-ph/0201089 Distinguishing magnetic moment from oscillation solutions of the solar neutrino problem with Borexino E. Kh. Akhmedov and João Pulido Centro de Física das Interacções

More information

arxiv:hep-ph/ v1 16 May 1997

arxiv:hep-ph/ v1 16 May 1997 Solutions to the Solar Neutrino Anomaly Naoya Hata 1 and Paul Langacker 2 1 Institute for Advanced Study Princeton, NJ 08540 2 Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania

More information

arxiv:hep-ph/ v1 4 Dec 1998

arxiv:hep-ph/ v1 4 Dec 1998 CUPP-98/3 hep-ph/9812249 December 1998 arxiv:hep-ph/9812249v1 4 Dec 1998 SOLAR NEUTRINO OSCILLATION DIAGNOSTICS AT SUPERKAMIOKANDE AND SNO Debasish Majumdar and Amitava Raychaudhuri Department of Physics,

More information

KamLAND Data and the Solution to the Solar Neutrino Problem

KamLAND Data and the Solution to the Solar Neutrino Problem 1416 Brazilian Journal of Physics, vol. 34, no. 4A, December, 004 KamLAND Data and the Solution to the Solar Neutrino Problem P. C. de Holanda 1 and A. Yu. Smirnov,3 1 Instituto de Física Gleb Wataghin

More information

Wave Packet Description of Neutrino Oscillation in a Progenitor Star Supernova Environment

Wave Packet Description of Neutrino Oscillation in a Progenitor Star Supernova Environment Brazilian Journal of Physics, vol. 37, no. 4, December, 2007 1273 Wave Packet Description of Neutrino Oscillation in a Progenitor Star Supernova Environment F. R. Torres and M. M. Guzzo Instituto de Física

More information

No Mikheyev-Smirnov-Wolfenstein Effect in Maximal Mixing arxiv:hep-ph/ v1 26 Jan 1996

No Mikheyev-Smirnov-Wolfenstein Effect in Maximal Mixing arxiv:hep-ph/ v1 26 Jan 1996 RAL-TR-95-078 20 December 1995 No Mikheyev-Smirnov-Wolfenstein Effect in Maximal Mixing arxiv:hep-ph/9601346v1 26 Jan 1996 P. F. Harrison Physics Department, Queen Mary and Westfield College Mile End Rd.

More information

arxiv:hep-ph/ v1 18 Apr 2001

arxiv:hep-ph/ v1 18 Apr 2001 Resonance in the seesaw mechanism Haijun Pan and G. Cheng 2,3 Lab of Quantum Communication and Quantum Computation, and Center of Nonlinear Science, University of Science and Technology of China, Heifei,

More information

Energy Independent Solution to the Solar Neutrino Anomaly including the SNO Data

Energy Independent Solution to the Solar Neutrino Anomaly including the SNO Data TIFR/TH/01-34 SINP/TNP/01-20 Energy Independent Solution to the Solar Neutrino Anomaly including the SNO Data Sandhya Choubey a, Srubabati Goswami a,d.p.roy b a Saha Institute of Nuclear Physics, 1/AF,

More information

On Exotic Solutions of the Atmospheric Neutrino Problem.

On Exotic Solutions of the Atmospheric Neutrino Problem. On Exotic Solutions of the Atmospheric Neutrino Problem. Paolo Lipari and Maurizio Lusignoli Dipartimento di Fisica, Università di Roma la Sapienza, and I.N.F.N., Sezione di Roma, P. A. Moro 2, I-00185

More information

Constraining Almost Degenerate Three-Flavor Neutrinos. Abstract

Constraining Almost Degenerate Three-Flavor Neutrinos. Abstract TMUP-HEL-9610 hep-ph/9609276 Constraining Almost Degenerate Three-Flavor Neutrinos Hisakazu Minakata 1,2 and Osamu Yasuda 1 1 Department of Physics, Tokyo Metropolitan University Minami-Osawa, Hachioji,

More information

arxiv: v1 [hep-ex] 22 Jan 2009

arxiv: v1 [hep-ex] 22 Jan 2009 Solar neutrino detection Lino Miramonti Physics department of Milano University and INFN arxiv:0901.3443v1 [hep-ex] 22 Jan 2009 Abstract. More than 40 years ago, neutrinos where conceived as a way to test

More information

Solar Neutrinos & MSW Effect. Pouya Bakhti General Seminar Course Nov IPM

Solar Neutrinos & MSW Effect. Pouya Bakhti General Seminar Course Nov IPM Solar Neutrinos & MSW Effect Pouya Bakhti General Seminar Course Nov. 2012 - IPM Outline Introduction Neutrino Oscillation Solar Neutrinos Solar Neutrino Experiments Conclusions Summary Introduction Introduction

More information

arxiv:hep-ph/ v2 8 Sep 2000

arxiv:hep-ph/ v2 8 Sep 2000 July 2000 Revised September 2000 Is the ν µ ν s oscillation solution to the atmospheric neutrino anomaly excluded by the superkamiokande data? arxiv:hep-ph/0007065v2 8 Sep 2000 R. Foot School of Physics

More information

arxiv:hep-ph/ v1 12 Jun 1996

arxiv:hep-ph/ v1 12 Jun 1996 SNUTP 96-059 KAIST-TP 96/10 hep-ph/yymmdd arxiv:hep-ph/9606304v1 1 Jun 1996 Medium Effects on the CP phases and Dynamical Mixing Angles in the Neutrino Mixing Matrix J. D. Kim a, C. W. Kim b,c, Jewan Kim

More information

Department of Applied Physics, Chubu University. Kasugai, Aichi 487, Japan. April 1997

Department of Applied Physics, Chubu University. Kasugai, Aichi 487, Japan. April 1997 CU/TP-97-3 April 1997 Neutrino Mass and Mixing in the Universal Yukawa Coupling Framework arxiv:hep-ph/97466v1 9 Apr 1997 Tadayuki Teshima, Toyokazu Sakai and Osamu Inagaki Department of Applied Physics,

More information

Relations between the SNO and the Super Kamiokande solar. Waikwok Kwong and S. P. Rosen

Relations between the SNO and the Super Kamiokande solar. Waikwok Kwong and S. P. Rosen UTAPHY-HEP-14 Relations between the SNO and the Super Kamiokande solar neutrino rates Waikwok Kwong and S. P. Rosen Department of Physics, University of Texas at Arlington, Arlington, Texas 76019-0059

More information

Can Neutrinos Decay?

Can Neutrinos Decay? Can Neutrinos Decay? Renan Picoreti, M. M. Guzzo, and P. C. de Holanda Instituto de Física Gleb Wataghin - UNICAMP, 13083-859, Campinas SP, Brazil. O. L. G. Peres Instituto de Física Gleb Wataghin - UNICAMP,

More information

Introduction Variety of experimental ndings strongly suggest that possibly [] all the neutrinos are massive. But these masses have tobemuch smaller th

Introduction Variety of experimental ndings strongly suggest that possibly [] all the neutrinos are massive. But these masses have tobemuch smaller th Pseudo Dirac Neutrinos in Seesaw model Gautam Dutta and Anjan S. Joshipura Theory Group, Physical Research Laboratory Navrangpura, Ahmedabad 8 9, India Abstract Specic class of textures for the Dirac and

More information

How Many Solar Neutrino Experiments Are Wrong? 3. Abstract

How Many Solar Neutrino Experiments Are Wrong? 3. Abstract How Many Solar Neutrino Experiments Are Wrong? 3 John N. Bahcall Institute for Advanced Study, School of Natural Sciences, Princeton, NJ 08540 Abstract Ten recently-published solar models give 7 Be neutrino

More information

arxiv:hep-ph/ v1 5 May 2005

arxiv:hep-ph/ v1 5 May 2005 Estimate of neutrino masses from Koide s relation Nan Li a, Bo-Qiang Ma b,a, arxiv:hep-ph/050508v1 5 May 005 Abstract a School of Physics, Peking University, Beijing 100871, China b CCAST (World Laboratory),

More information

Supernova Neutrino Energy Spectra and the MSW

Supernova Neutrino Energy Spectra and the MSW DSF 26/96 hep-ph/9607226 Supernova Neutrino Energy Spectra and the MSW Effect F. Buccella 1, S. Esposito 1,C.Gualdi 2 and G. Miele 1 1 Dipartimento di Scienze Fisiche, Università di Napoli Federico II,

More information

Ruling out four-neutrino oscillation interpretations of the LSND anomaly?

Ruling out four-neutrino oscillation interpretations of the LSND anomaly? UWThPh-2002-20 Ruling out four-neutrino oscillation interpretations of the LSND anomaly? M. Maltoni a,t.schwetz b,m.a.tórtola a and J. W. F. Valle a a Instituto de Física Corpuscular C.S.I.C./Universitat

More information

Exact Formula of Probability and CP Violation for Neutrino Oscillations in Matter

Exact Formula of Probability and CP Violation for Neutrino Oscillations in Matter Exact Formula of Probability and CP Violation for Neutrino Oscillations in Matter K. Kimura,A.Takamura,,andH.Yokomakura Department of Physics, Nagoya University, Nagoya, 6-86, Japan Department of Mathematics,

More information

The Variation of the Solar Neutrino Fluxes over Time in the Homestake, GALLEX(GNO) and Super-Kamiokande Experiments

The Variation of the Solar Neutrino Fluxes over Time in the Homestake, GALLEX(GNO) and Super-Kamiokande Experiments The Variation of the Solar Neutrino Fluxes over Time in the Homestake, GALLEX(GNO) and Super-Kamiokande Experiments K. Sakurai 1,3, H. J. Haubold and T. Shirai 1 1. Institute of Physics, Kanagawa University,

More information

arxiv:hep-ph/ v2 30 Jul 1998

arxiv:hep-ph/ v2 30 Jul 1998 Do hep neutrinos affect the solar neutrino energy spectrum? John N. Bahcall 1 arxiv:hep-ph/9807525v2 30 Jul 1998 School of Natural Sciences, Institute for Advanced Study, Princeton, NJ 08540 Abstract Plamen

More information

Sterile Neutrinos in July 2010

Sterile Neutrinos in July 2010 Sterile Neutrinos in July 0 Carlo Giunti INFN, Sezione di Torino Presidenza INFN, Roma, 19 July 0 Collaboration with Marco Laveder (Padova University) C. Giunti Sterile Neutrinos in July 0 Presidenza INFN,

More information

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter

Carlo Giunti. CERN Particle and Astro-Particle Physics Seminar. work in collaboration with Mario Acero Marco Laveder Walter Winter Very-Short-BaseLine Electron Neutrino Disappearance Carlo Giunti INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino mailto://giunti@to.infn.it Neutrino Unbound: http://www.nu.to.infn.it

More information

LONG BASELINE NEUTRINO OSCILLATION EXPERIMENTS

LONG BASELINE NEUTRINO OSCILLATION EXPERIMENTS Proc Indian Natn Sci Acad, 70, A, No.1, January 2004, pp.63 69 c Printed in India. LONG BASELINE NEUTRINO OSCILLATION EXPERIMENTS S UMA SANKAR Department of Physics, IIT Bombay, Powai, Mumbai 400 076 (India)

More information

arxiv:hep-ph/ v2 5 Jun 1992

arxiv:hep-ph/ v2 5 Jun 1992 IC/92/79 SISSA-83/92/EP LMU-04/92 May 1992 arxiv:hep-ph/9205230v2 5 Jun 1992 PLANCK-SCALE PHYSICS AND NEUTRINO MASSES Eugeni Kh. Akhmedov (a,b,c), Zurab G. Berezhiani (d,e), Goran Senjanović (a) (a) International

More information

Damping signatures in future neutrino oscillation experiments

Damping signatures in future neutrino oscillation experiments Damping signatures in future neutrino oscillation experiments Based on JHEP 06(2005)049 In collaboration with Tommy Ohlsson and Walter Winter Mattias Blennow Division of Mathematical Physics Department

More information

Neutrino oscillation experiments: Recent results and implications

Neutrino oscillation experiments: Recent results and implications Title transparency Neutrino oscillation experiments: Recent results and implications W. Hampel MPI Kernphysik Heidelberg Motivation for talk On the way from the Standard Model to String Theory: appropriate

More information

arxiv:hep-ph/ v1 26 Jul 2006

arxiv:hep-ph/ v1 26 Jul 2006 Neutrino mass and baryogenesis arxiv:hep-ph/0607287v1 26 Jul 2006 D. Falcone Dipartimento di Scienze Fisiche, Università di Napoli, Via Cintia, Napoli, Italy A brief overview of the phenomenology related

More information

m νe < 2.9 ev [26] (4) 2. Neutrinoless double β-decay and 3 H β-decay experiments

m νe < 2.9 ev [26] (4) 2. Neutrinoless double β-decay and 3 H β-decay experiments 10 January 2002 Physics Letters B 524 (2002) 319 331 www.elsevier.com/locate/npe Searching for the CP-violation associated with Majorana neutrinos S. Pascoli a,b,s.t.petcov a,b,1,l.wolfenstein c a Scuola

More information

SOLAR NEUTRINO EXPERIMENTS: NEW PHYSICS? JOHN N. BAHCALL ABSTRACT. 1. New Physics is Required if Solar Neutrino Experiments are Correct.

SOLAR NEUTRINO EXPERIMENTS: NEW PHYSICS? JOHN N. BAHCALL ABSTRACT. 1. New Physics is Required if Solar Neutrino Experiments are Correct. SOLAR NEUTRINO EXPERIMENTS: NEW PHYSICS? JOHN N. BAHCALL Institute for Advanced Study, Princeton, New Jersey 08540, USA ABSTRACT Physics beyond the simplest version of the standard electroweak model is

More information

4p 4 He + 2e + +2ν e. (1)

4p 4 He + 2e + +2ν e. (1) 1 SOLAR NEUTRINOS Revised September 2001 by K. Nakamura (KEK, High Energy Accelerator Research Organization, Japan). 1. Introduction: The Sun is a main-sequence star at a stage of stable hydrogen burning.

More information

Solar Neutrino Road Map. Carlos Pena Garay IAS

Solar Neutrino Road Map. Carlos Pena Garay IAS α Solar Neutrino Road Map Carlos Pena Garay IAS ~ February 11, 004 NOON004 Be + p-p p p (pep) measurements Why perform low-energy solar neutrino experiments? Amazing progress on how the Sun shines, the

More information

Optimization of Neutrino Oscillation Parameters Using Differential Evolution

Optimization of Neutrino Oscillation Parameters Using Differential Evolution Commun. Theor. Phys. 59 (2013) 324 330 Vol. 59, No. 3, March 15, 2013 Optimization of Neutrino Oscillation Parameters Using Differential Evolution Ghulam Mustafa, Faisal Akram, and Bilal Masud Centre for

More information

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation

PLAN. Lecture I: Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings. Lecture III: The quest for leptonic CP violation PLAN Lecture I: Neutrinos in the SM Neutrino masses and mixing: Majorana vs Dirac Lecture II: Neutrino oscillations and the discovery of neutrino masses and mixings Lecture III: The quest for leptonic

More information

arxiv:hep-ph/ v2 22 May 2003

arxiv:hep-ph/ v2 22 May 2003 IFUM-871/FT FTUAM-02-459 ULB-02-167 arxiv:hep-ph/0212212v2 22 May 2003 Neutrino mass parameters from Kamland, SNO and other solar evidence P. Aliani ab, V. Antonelli a, M. Picariello a, E. Torrente-Lujan

More information

Flavor Symmetry L e L µ L τ, Atmospheric Neutrino Mixing and CP Violation in the Lepton Sector

Flavor Symmetry L e L µ L τ, Atmospheric Neutrino Mixing and CP Violation in the Lepton Sector SISSA 63/004/EP hep-ph/0409135 Flavor Symmetry L e L µ L τ, Atmospheric Neutrino Mixing and CP Violation in the Lepton Sector arxiv:hep-ph/0409135v3 9 Mar 005 S.T. Petcov and W. Rodejohann Scuola Internazionale

More information

arxiv:hep-ph/ v3 14 Feb 2003

arxiv:hep-ph/ v3 14 Feb 2003 Probing neutrino non standard interactions with atmospheric neutrino data N. Fornengo Dipartimento di Fisica Teorica, Università di Torino and INFN, Sezione di Torino, Via P. Giuria 1, I 1125 Torino, Italy

More information

Neutrino Oscillation Probability from Tri-Bimaximality due to Planck Scale Effects

Neutrino Oscillation Probability from Tri-Bimaximality due to Planck Scale Effects EJTP 6, No. 21 (2009) 149 156 Electronic Journal of Theoretical Physics Neutrino Oscillation Probability from Tri-Bimaximality due to Planck Scale Effects Bipin Singh Koranga Department of Physics, Kirori

More information

arxiv:hep-ph/ v3 3 Mar 2003

arxiv:hep-ph/ v3 3 Mar 2003 SINP/TNP/02-35 SISSA 92/2002/EP arxiv:hep-ph/0212146 v3 3 Mar 2003 The Solar Neutrino Problem after the first results from Kamland Abhijit Bandyopadhyay a1, Sandhya Choubey b2, Raj Gandhi c3, Srubabati

More information

arxiv:hep-ph/ v2 16 May 2002

arxiv:hep-ph/ v2 16 May 2002 UMD-PP-0-50 May 00 Testing Neutrino Mass Matrices with Approximate L e L µ L τ Symmetry arxiv:hep-ph/005131v 16 May 00 H. S. Goh, R.N. Mohapatra, and S.- P. Ng Department of Physics, University of Maryland

More information

Theory of Neutrino Oscillations

Theory of Neutrino Oscillations INCONTRI SULLA FISICA DELLE ALTE ENERGIE TORINO, APRIL 14-16, 2004 Theory of Neutrino Oscillations Carlo Giunti 1) arxiv:hep-ph/0409230v1 20 Sep 2004 1. INFN, Sezione di Torino, and Dipartimento di Fisica

More information

Status of Light Sterile Neutrinos Carlo Giunti

Status of Light Sterile Neutrinos Carlo Giunti C. Giunti Status of Light Sterile Neutrinos EPS-HEP 05 3 July 05 /5 Status of Light Sterile Neutrinos Carlo Giunti INFN, Sezione di Torino and Dipartimento di Fisica, Università di Torino giunti@to.infn.it

More information

Introduction to Neutrino Physics

Introduction to Neutrino Physics Introduction to Neutrino Physics Tommy Ohlsson tommy@theophys.kth.se Royal Institute of Technology (KTH) Stockholm Center for Physics, Astronomy, and Biotechnology Stockholm, Sweden Abisko, Norrbotten,

More information

PHYS 5326 Lecture #6. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements

PHYS 5326 Lecture #6. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements PHYS 5326 Lecture #6 Wednesday, Feb. 14, 2007 Dr. 1. Neutrino Oscillation Formalism 2. Neutrino Oscillation Measurements 1. Solar Neutrinos 2. Atmospheric neutrinos 3. Accelerator Based Oscillation Experiments

More information

Solar neutrino event spectra: Tuning SNO to equalize Super-Kamiokande. Abstract

Solar neutrino event spectra: Tuning SNO to equalize Super-Kamiokande. Abstract Solar neutrino event spectra: Tuning SNO to equalize Super-Kamiokande G.L. Fogli, E. Lisi, A. Palazzo Dipartimento di Fisica and Sezione INFN di ari, Via Amendola 173, I-70126 ari, Italy F.L. Villante

More information

Atmospheric neutrinos at Super-Kamiokande and parametric resonance in neutrino oscillations

Atmospheric neutrinos at Super-Kamiokande and parametric resonance in neutrino oscillations IC/98/98 hep-ph/9808270 Atmospheric neutrinos at Super-Kamiokande and parametric resonance in neutrino oscillations E. Kh. Akhmedov 1,A.Dighe 1,P.Lipari 2, A. Yu. Smirnov 1 (1) The Abdus Salam International

More information

arxiv:hep-ph/ v2 3 Apr 2003

arxiv:hep-ph/ v2 3 Apr 2003 3 April 2003 hep-ph/0302026 Coherence and Wave Packets in Neutrino Oscillations C. Giunti arxiv:hep-ph/0302026v2 3 Apr 2003 INFN, Sezione di Torino, and Dipartimento di Fisica Teorica, Università di Torino,

More information

arxiv:hep-ph/ v1 14 Jan 1993

arxiv:hep-ph/ v1 14 Jan 1993 SISSA -172/92/EP, Roma n. 902 IMPLICATIONS OF GALLIUM SOLAR NEUTRINO DATA FOR THE RESONANT SPIN-FLAVOR PRECESSION SCENARIO arxiv:hep-ph/9301239v1 14 Jan 1993 E.Kh. Akhmedov, A. Lanza, S.T. Petcov Scuola

More information

Solar Neutrinos John N. Bahcall

Solar Neutrinos John N. Bahcall SOLAR NEUTRINOS 1 Solar Neutrinos John N. Bahcall How does the Sun shine? How well do we understand the evolution and ages of stars? Does the neutrino have a mass? Can a neutrino change its lepton number

More information

Where do we stand with solar neutrino oscillations?

Where do we stand with solar neutrino oscillations? PHYSICAL REVIEW D, VOLUME 58, 096016 Where do we stand with solar neutrino oscillations? J. N. Bahcall School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 P. I. Krastev

More information

L int = 1. V MSW =2 1/2 G F ρ e. (2) V W (r) =2 1/2 G F ρ ν (r), (5)

L int = 1. V MSW =2 1/2 G F ρ e. (2) V W (r) =2 1/2 G F ρ ν (r), (5) Electrostatic corrections to the Mikheyev-Smirnov-Wolfenstein potential of a neutrino in the sun C. J. Horowitz Nuclear Theory Center and Dept. of Physics, Indiana University, Bloomington, IN 705 (December,

More information

Neutrino Physics: an Introduction

Neutrino Physics: an Introduction Neutrino Physics: an Introduction Lecture 2: Neutrino mixing and oscillations Amol Dighe Department of Theoretical Physics Tata Institute of Fundamental Research, Mumbai SERC EHEP School 2017 NISER Bhubaneswar,

More information

The MSW effect and Solar Neutrinos

The MSW effect and Solar Neutrinos The MSW effect and Solar Neutrinos A. Yu. Smirnov 2,3 (2) The Abdus Salam International Centre for Theoretical Physics, I-34100 Trieste, Italy (3) Institute for Nuclear Research of Russian Academy of Sciences,

More information

What can be learned by measuring the fluxes of the 7 Be and the pep solar neutrino lines?

What can be learned by measuring the fluxes of the 7 Be and the pep solar neutrino lines? PHYSICAL REVIEW C VOLUME 55, NUMBER 2 FEBRUARY 1997 What can be learned by measuring the fluxes of the 7 Be and the pep solar neutrino lines? J N Bahcall and P I Krastev School of Natural Sciences, Institute

More information

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006

Unbound Neutrino Roadmaps. MARCO LAVEDER Università di Padova e INFN NOW September 2006 Unbound Neutrino Roadmaps MARCO LAVEDER Università di Padova e INFN NOW 2006-11 September 2006 Experimental Data : 2006 Experiment Observable (# Data) Measured/SM Chlorine Average Rate (1) [CC]=0.30 ±

More information

SOLAR NEUTRINOS REVIEW Revised December 2007 by K. Nakamura (KEK, High Energy Accelerator Research Organization, Japan).

SOLAR NEUTRINOS REVIEW Revised December 2007 by K. Nakamura (KEK, High Energy Accelerator Research Organization, Japan). 1 SOLAR NEUTRINOS REVIEW Revised December 2007 by K. Nakamura (KEK, High Energy Accelerator Research Organization, Japan). 1. Introduction The Sun is a main-sequence star at a stage of stable hydrogen

More information

Phenomenology of neutrino mixing in vacuum and matter

Phenomenology of neutrino mixing in vacuum and matter Phenomenology of neutrino mixing in vacuum and matter A Upadhyay 1 and M Batra 1 School of Physics and Material Science Thapar University, Patiala-147004. E-mail:mbatra310@gmail.com Abstract: During last

More information

Neutrino Physics After the Revolution. Boris Kayser PASI 2006 October 26, 2006

Neutrino Physics After the Revolution. Boris Kayser PASI 2006 October 26, 2006 Neutrino Physics After the Revolution Boris Kayser PASI 2006 October 26, 2006 1 What We Have Learned 2 The (Mass) 2 Spectrum ν 3 ν 2 ν 1 } Δm 2 sol (Mass) 2 Δm 2 atm or Δm 2 atm ν ν 2 } Δm 2 sol 1 ν 3

More information

COMMENTS UPON THE MASS OSCILLATION FORMULAS. Abstract

COMMENTS UPON THE MASS OSCILLATION FORMULAS. Abstract COMMENTS UPON THE MASS OSCILLATION FORMULAS S. De Leo (a,b), G. Ducati (b) and P. Rotelli (a) (a) Dipartimento di Fisica, INFN, Sezione di Lecce, via Arnesano, CP 193, 73100 Lecce, Italia. (b) Departamento

More information

Status of Solar Neutrino Oscillations

Status of Solar Neutrino Oscillations Status of Solar Neutrino Oscillations With many thanks to Dave Wark - RAL/ University of Sussex and Stephen Brice - Fermilab The Solar Neutrino Problem Next three plots adapted from http://www.sns.ias.edu/~jnb/

More information

SNOW Global fits to neutrino oscillation data. Thomas Schwetz SISSA, Trieste

SNOW Global fits to neutrino oscillation data. Thomas Schwetz SISSA, Trieste SNOW 26 Global fits to neutrino oscillation data Thomas Schwetz SISSA, Trieste based on work in collaboration with M. Maltoni, M.A. Tortola, and J.W.F. Valle [hep-ph/3913, hep-ph/45172] T.S. is supported

More information

Neutrino Unbound. ESSENTIAL SOLAR NEUTRINOS C. Giunti & M. Laveder. 31 January 2003.

Neutrino Unbound.  ESSENTIAL SOLAR NEUTRINOS C. Giunti & M. Laveder. 31 January 2003. C. Giunti & M. Laveder, ESSENTIAL SOLAR NEUTRINOS 1 arxiv:hep-ph/0301276v1 31 Jan 2003 ESSENTIAL SOLAR NEUTRINOS C. Giunti & M. Laveder 31 January 2003 http://www.to.infn.it/~giunti/nu hep-ph/0301276 C.

More information

Zee Neutrino Mass Matrix in the Gauge Mediated Supersymmetry Breaking Scenario

Zee Neutrino Mass Matrix in the Gauge Mediated Supersymmetry Breaking Scenario Zee Neutrino Mass Matrix in the Gauge Mediated Supersymmetry Breaking Scenario hep-ph/9911511 N. Haba 1, M. Matsuda 2 and M. Tanimoto 3 arxiv:hep-ph/9911511v3 28 Mar 2000 1 Faculty of Engineering, Mie

More information

Progress in neutrino oscillation searches and their implications

Progress in neutrino oscillation searches and their implications PRAMANA cfl Indian Academy of Sciences Vol. 60, No. 2 journal of February 2003 physics pp. 261 278 Progress in neutrino oscillation searches and their implications SRUBABATI GOSWAMI Harish-Chandra Research

More information

Fundamentals of Neutrino Physics and Astrophysics

Fundamentals of Neutrino Physics and Astrophysics Fundamentals of Neutrino Physics and Astrophysics Carlo Giunti Istituto Nazionale di Fisica Nucleare, Sezione di Torino and Dipartimento di Fisica Teorica, Universita di Torino, Italy Chung W. Kim Korea

More information

SNO: Predictions for ten measurable quantities

SNO: Predictions for ten measurable quantities PHYSICAL REVIEW D, VOLUME 62, 093004 SNO: Predictions for ten measurable quantities John N. Bahcall* School of Natural Sciences, Institute for Advanced Study, Princeton, New Jersey 08540 Plamen I. Krastev

More information

arxiv:hep-ph/ v1 24 Jun 1998

arxiv:hep-ph/ v1 24 Jun 1998 The Solar Neutrino Problem and Solar Neutrino Oscillations in Vacuum and in Matter S.T. Petcov arxiv:hep-ph/9806466v1 24 Jun 1998 Scuola Internazionale Superiore di Studi Avanzati, and Istituto Nazionale

More information

Global Analysis of Solar Neutrino Data P.I. Krastev University of Wisconsin-Madison The data from all solar neutrino experiments presented at the Neut

Global Analysis of Solar Neutrino Data P.I. Krastev University of Wisconsin-Madison The data from all solar neutrino experiments presented at the Neut Global Analysis of Solar Neutrino Data P.I. Krastev University of Wisconsin-Madison The data from all solar neutrino experiments presented at the Neutrino 98 conference has been analyzed and a brief summary

More information

Neutrino Physics: the Roadmap for Precision Physics

Neutrino Physics: the Roadmap for Precision Physics 1178 Brazilian Journal of Physics, vol. 36, no. 4A, December, 006 Neutrino Physics: the Roadmap for Precision Physics O. L. G. Peres Universidade Estadual de Campinas - UNICAMP, Instituto de Física Gleb

More information

arxiv:hep-ph/ v2 18 Sep 2002

arxiv:hep-ph/ v2 18 Sep 2002 arxiv:hep-ph/0204160v2 18 Sep 2002 Solar Magnetic Field Profile: A Natural Consequence of RSFP Scenario Bhag C. Chauhan Centro de Física das Interacções Fundamentais (CFIF) Departmento de Fisica, Instituto

More information

Implications of Quark-Lepton Symmetry for Neutrino Masses and Oscillations

Implications of Quark-Lepton Symmetry for Neutrino Masses and Oscillations LA-UR-00-908 UM-P-000/007 nucl-th/000053 arxiv:nucl-th/000053v 14 Mar 000 Implications of Quark-Lepton Symmetry for Neutrino Masses and Oscillations T. Goldman MS B83, Theoretical Division, Los Alamos

More information

Status and prospects of neutrino oscillations

Status and prospects of neutrino oscillations Status and prospects of neutrino oscillations S. Bilenky JINR(Dubna)TRIUMF June 10, 2017 The award of the 2015 Nobel Prize to T. Kajita and A. McDonald for the discovery of neutrino oscillations, which

More information

New index of CP phase effect and θ 13 screening in long baseline neutrino experiments

New index of CP phase effect and θ 13 screening in long baseline neutrino experiments Physics Letters B 640 (006) 3 36 www.elsevier.com/locate/physletb New index of CP phase effect and θ 13 screening in long baseline neutrino experiments Keiichi Kimura a,, Akira Takamura a,b, Tadashi Yoshikawa

More information

Neutrino Oscillations

Neutrino Oscillations Neutrino Oscillations Elisa Bernardini Deutsches Elektronen-Synchrotron DESY (Zeuthen) Suggested reading: C. Giunti and C.W. Kim, Fundamentals of Neutrino Physics and Astrophysics, Oxford University Press

More information

arxiv:hep-ph/ v1 11 May 2006

arxiv:hep-ph/ v1 11 May 2006 A MONOCHROMATIC NEUTRINO BEAM FOR θ 13 and δ a JOSE BERNABEU and CATALINA ESPINOZA Universitat de València and IFIC, E-46100 Burjassot, València, Spain E-mail: Jose.Bernabeu@uv.es E-mail: m.catalina.espinoza@uv.es

More information

Day-Night and Energy Dependence of MSW Solar Neutrinos for Maximal Mixing

Day-Night and Energy Dependence of MSW Solar Neutrinos for Maximal Mixing Preprint typeset in JHEP style. - HYPER VERSION DISTRIBUTION A. hep-ph/9903464 MIT-CTP-2841 Revised April 28, 1999 arxiv:hep-ph/9903464v2 28 Apr 1999 Day-Night and Energy Dependence of MSW Solar Neutrinos

More information

Review of Neutrino Oscillation Experiments

Review of Neutrino Oscillation Experiments Flavor Physics and CP Violation Conference, Vancouver, Review of Neutrino Oscillation Experiments M.D. Messier Department of Physics, Indiana University, Bloomington IN, 4745, USA Several experiments have

More information

Naturalness of nearly degenerate neutrinos

Naturalness of nearly degenerate neutrinos IEM-FT-9/99 CERN-TH/99-03 IFT-UAM/CSIC-99-5 hep-ph/9904395 Naturalness of nearly degenerate neutrinos J.A. Casas,, J.R. Espinosa, A. Ibarra and I. Navarro arxiv:hep-ph/9904395v 3 May 999 Instituto de Estructura

More information

1. Neutrino Oscillations

1. Neutrino Oscillations Neutrino oscillations and masses 1. Neutrino oscillations 2. Atmospheric neutrinos 3. Solar neutrinos, MSW effect 4. Reactor neutrinos 5. Accelerator neutrinos 6. Neutrino masses, double beta decay 1.

More information

Detection of MeV scale neutrinos and the solar energy paradigm

Detection of MeV scale neutrinos and the solar energy paradigm Journal of Physics: Conference Series PAPER OPEN ACCESS Detection of MeV scale neutrinos and the solar energy paradigm To cite this article: Aldo Ianni 2018 J. Phys.: Conf. Ser. 940 012023 View the article

More information

Analysis of Neutrino Oscillation experiments

Analysis of Neutrino Oscillation experiments Analysis of Neutrino Oscillation experiments Mario Andrés Acero Ortega Università degli Studi di Torino, LAPTH - Université de Savoie Second Year - Seminar Torino, Italy January 15th, 2008 Tutor: Carlo

More information

Solving the solar neutrino puzzle with KamLAND and solar data

Solving the solar neutrino puzzle with KamLAND and solar data PHYSICAL REVIEW D, VOLUME 64, 113011 Solving the solar neutrino puzzle with KamLAND and solar data André de Gouvêa Theory Division, CERN, CH-1211 Geneva 23, Switzerland Carlos Peña-Garay Instituto de Física

More information

arxiv:hep-ph/ v2 20 Jul 2005

arxiv:hep-ph/ v2 20 Jul 2005 OSU-HEP-05-10 July 005 Model of Geometric Neutrino Mixing arxiv:hep-ph/050717v 0 Jul 005 K.S. Babu 1 and Xiao-Gang He, 1 Oklahoma Center for High Energy Physics Department of Physics, Oklahoma State University

More information

Reconstruction of the Earth s matter density profile using a single neutrino baseline

Reconstruction of the Earth s matter density profile using a single neutrino baseline TUM-HEP-1/01 Reconstruction of the Earth s matter density profile using a single neutrino baseline Tommy Ohlsson a, Walter Winter a a Institut für Theoretische Physik, Physik-Department, Technische Universität

More information

Neutrino oscillations: from an historical perspective to the present status

Neutrino oscillations: from an historical perspective to the present status Neutrino oscillations: from an historical perspective to the present status S Bilenky Joint Institute for Nuclear Research, Dubna, R-141980, Russia; TRIUMF 4004 Wesbrook Mall, Vancouver BC, V6T 2A3 Canada

More information

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV

Solar spectrum. Nuclear burning in the sun produce Heat, Luminosity and Neutrinos. pp neutrinos < 0.4 MeV SOLAR NEUTRINOS Solar spectrum Nuclear burning in the sun produce Heat, Luminosity and Neutrinos pp neutrinos < 0.4 MeV Beryllium neutrinos 0.86 MeV Monochromatic since 2 body decay 2 kev width due to

More information

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter

Neutrinos: Three-Flavor Effects in Sparse and Dense Matter Neutrinos: Three-Flavor Effects in Sparse and Dense Matter Tommy Ohlsson tommy@theophys.kth.se Royal Institute of Technology (KTH) & Royal Swedish Academy of Sciences (KVA) Stockholm, Sweden Neutrinos

More information

D. VIGNAUD DAPNIA/SPP. CEA/Saclay Gif-sur-Yvette, France

D. VIGNAUD DAPNIA/SPP. CEA/Saclay Gif-sur-Yvette, France FINAL RESULTS OF THE GALLEX SOLAR NEUTRINO EXPERIMENT D. VIGNAUD DAPNIA/SPP CEA/Saclay 91191 Gif-sur-Yvette, France For the GALLEX Collaboration The radiochemical GALLEX experiment is based on the reaction

More information

Neutrino Oscillations and the Matter Effect

Neutrino Oscillations and the Matter Effect Master of Science Examination Neutrino Oscillations and the Matter Effect RAJARSHI DAS Committee Walter Toki, Robert Wilson, Carmen Menoni Overview Introduction to Neutrinos Two Generation Mixing and Oscillation

More information